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Abstract

We investigate excited random walks on Zd, d ≥ 1, and on planar strips Z× {0, 1, . . . , L− 1}
which have a drift in a given direction. The strength of the drift may depend on a random
i.i.d. environment and on the local time of the walk. We give exact criteria for recurrence and
transience, thus generalizing results by Benjamini and Wilson for once-excited random walk
on Zd and by the author for multi-excited random walk on Z.

1 Introduction

We consider excited random walks (ERWs), precisely to be defined below, which move on
either Zd or strips, i.e. which have state space

Y = Zd (d ≥ 1) or Y = Z× {0, 1, . . . , L− 1} ⊂ Z2 (L ≥ 2).

In general, ERWs are not Markovian. Instead, the transition probabilities may depend on how
often the walk has previously visited its present location and additionally on the environment
at this location.
To be more precise, let us first fix two quantities for the rest of the paper: A direction ` and
the so-called ellipticity constant κ. In the case Y = Z or Y = Z× {0, 1, . . . , L− 1} we always
choose ` = e1 ∈ Y to be the first standard unit vector. In the case Y = Zd, d ≥ 2, we let
` ∈ Rd be any direction with |`|1 = 1. The ellipticity constant κ ∈ (0, 1/(2d)] will be a uniform
lower bound for the probability of the walk to jump from x to any nearest neighbor of x. Then
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an environment ω for an ERW is an element of

Ω :=
{ ((

(ω(x, e, i))|e|=1

)
i≥1

)
x∈Y

∈ [κ, 1− κ]2d×N×Y
∣∣∣∣

∀x ∈ Y ∀i ≥ 1
∑

e∈Zd,|e|=1

ω(x, e, i) = 1,
∑

e∈Zd,|e|=1

ω(x, e, i) e · ` ≥ 0
}
.

Here in the case of Y being a strip, d = 2 and x+ e is modulo L in the second coordinate.
An ERW starting at x ∈ Y in an environment ω ∈ Ω is a Y -valued process (Xn)n≥0 on
some suitable probability space (Ω′,F , Px,ω) for which the history process (Hn)n≥0 defined by
Hn := (Xm)0≤m≤n ∈ Y n+1 is a Markov chain which satisfies Px,ω-a.s.

Px,ω[X0 = x] = 1,
Px,ω[Xn+1 = Xn + e | Hn] = ω(Xn, e,#{m ≤ n | Xm = Xn}).

Thus ω(x, e, i) is the probability to jump upon the i-th visit to x from x to x + e. In the
language introduced in [Ze05], an environment ω ∈ Ω consists of infinite sequences of cookies
attached to each site x ∈ Y . The i-th cookie at x is the transition vector (ω(x, e, i))|e|=1 to the
neighbors x+ e of x. Each time the walk visits x it removes the first cookie from the sequence
of cookies at x and then jumps according to this cookie to a neighbor of x. Note that the
assumption

∑
e ω(x, e, i)e · ` ≥ 0 means that we allow only cookies which create a non-negative

drift in direction `. A model in which different sites may induce drift into opposite directions
has been studied in [ABK05].
The model described above generalizes ERW as introduced by Benjamini and Wilson [BW03].
Their walk, which we will call BW-ERW, is an ERW on Zd, d ≥ 1, in the environment ω given
by ω(x, e, i) = 1/(2d) for all (x, e, i) with the only exception that ω(x,±e1, 1) = 1/(2d) ± ε,
where 0 < ε < 1/(2d) is fixed. Thus on the first visit to any site x, BW-ERW steps to x± e1
with probability 1/(2d)±ε and to all the other neighboring sites x+e with probability 1/(2d),
while on any subsequent visit to x a neighbor is chosen uniformly at random. A main result
of [BW03] is the following.

Theorem A (see [BW03]) BW-ERW on Zd, d ≥ 2, is transient in direction e1, i.e. Xn ·e1 →
∞ almost surely as n→∞.

Besides this it is also shown in [BW03] that BW-ERW has positive liminf speed if d ≥ 4.
Kozma extended this result to Z3 in [K03] and very recently even to Z2 in [K05].
The proof of Theorem A presented in [BW03] uses the following strategy. Firstly, BW-ERW
(Xn)n is coupled in the canonical way to a simple symmetric random walk (Yn)n such that
0 ≤ (Xn − Yn) · e1 is non-decreasing in n and Xn · ei = Yn · ei for all n and i ≥ 2. Then
so-called tan points are considered, which are points x to the right of which no other point
has been visited prior to x. Any time n at which the walk reaches a new tan point is called a
tan time. It is easy to see that any tan time for (Yn)n is also a tan time for (Xn)n. Moreover,
at any tan time, (Xn)n consumes a cookie and thus gets a drift to the right, i.e. into direction
` = e1. Then, roughly speaking, using a lower bound on the number of tan points for (Yn)n,
one gets a lower bound on the number of cookies consumed by (Xn)n, which Benjamini and
Wilson show to be sufficient to ensure transience to the right.
We do not see how this line of proof could be adapted to other settings, in which for instance
the excitement occurs not on the first but only on the second visit to a site and points into a
direction other than a coordinate direction. For this reason we suggest in the present paper an
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alternative method of proof. It is based on martingales and on the environment viewed from
the particle and applies to BW-ERW as well as to other more general environments ω which
are sampled from Ω according to a probability measure P on Ω such that the family

(ω(x, ·, ·))x∈Y is i.i.d. under P. (1)

Throughout the paper we will assume (1) and denote the expectation with respect to P by
E. Note that we do not assume independence between different cookies at the same site
nor between transition probabilities to different neighbors of the same site, but only between
cookies at different sites. An important quantity will be the total drift δx in direction ` of all
the cookies stored at site x ∈ Y , i.e.

δx(ω) :=
∑

i≥1,|e|=1

ω(x, e, i) e · ` .

Note that by definition of Ω, δx(ω) ≥ 0 for all x ∈ Y and ω ∈ Ω. We shall generalize Theorem
A as follows.

Theorem 1 Let d ≥ 2, Y = Zd and E[δ0] > 0. Then the walk is for P-almost all ω transient
in direction `, i.e. P0,ω-a.s. Xn · `→∞ as n→∞.

The technique of proof improves methods used in [Ze05] to show the following result for d = 1.
Some simulation studies for Y = Z can be found in [AR05].

Theorem B (see [Ze05, Theorem 12]) Let Y = Z. Then for P-almost all environments ω ∈ Ω,
(Xn)n is recurrent, i.e. returns P0,ω-a.s. (infinitely often) to its starting point, if and only if
E[δ0] ≤ 1.

In fact, [Ze05, Theorem 12] is more general since it does not need any ellipticity condition and
allows the environment to be stationary and ergodic only instead of i.i.d.. In the present paper
we shall generalize Theorem B to strips as follows.

Theorem 2 Let Y = Z and L = 1 or Y = Z × {0, . . . , L − 1} for some L ≥ 2. If E[δ0] >
1/L then the walk is for P-almost all ω transient in direction e1. If E[δ0] ≤ 1/L then the
walk is for P-almost all ω recurrent, and moreover P0,ω-a.s. lim supn→∞Xn · e1 = ∞ and
lim infn→∞Xn · e1 = −∞.

So if the strip is made wider and wider while the distribution of ω(x, ·, ·) is kept fixed, the
walk will eventually become transient if E[δ0] > 0. This provides some additional support for
Theorem 1.

2 Preliminaries

For z ∈ R, n ∈ N ∪ {∞} we let

Dz
n :=

∑
x∈Sz

#{m<n | Xm=x}∑
i=1

∑
|e|=1

ω(x, e, i)e · `

denote the drift absorbed by the walk by time n while visiting the slab Sz := {x ∈ Y | z ≤
x · ` < z + 1}. Then Dn :=

∑
z∈Z D

z
n is the total drift encountered by the walk up to time n.

Observe that Dz
n ≥ 0 and therefore also Dn ≥ 0 for all ω ∈ Ω and all paths (Xm)m.
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By standard arguments, for any ω ∈ Ω the process (Mn)n≥0 defined by

Mn := Xn · `−Dn (2)

is a martingale under P0,ω with respect to the filtration generated by (Xn)n≥0. Indeed, (2) is
just the Doob-Meyer decomposition of the submartingale (Xn · `)n.
In the setting considered in [BW03] and [Ze05] part of the following fact was achieved by
coupling the ERW to a simple symmetric random walk staying always to the left of the ERW.
For the present more general setting we need a different argument.

Lemma 3 Let ω ∈ Ω. Then P0,ω-a.s.

lim inf
n→∞

Xn · ` ∈ {−∞,+∞} and lim sup
n→∞

Xn · ` = +∞.

In particular, for all x ≥ 0,

Tx := inf{n ≥ 0 | Xn · ` ≥ x} <∞ P0,ω-a.s..

Proof. Let c ∈ R. Then on the event {Xn · ` ∈ [c, c + 1] infinitely often}, due to ellipticity
and the Borel-Cantelli lemma, almost surely Xn · ` < c infinitely often. This implies the first
statement.
For the statement about lim sup, let x ≥ 0. Since Dn ≥ 0 for all n, the martingale (Mn∧Tx

)n is
bounded from above by x and hence converges P0,ω-a.s. to a finite limit as n→∞. Therefore,
it suffices to show that (Mn)n itself P0,ω-a.s. does not converge, because then the convergence
of (Mn∧Tx)n can only be due to Tx being P0,ω-a.s. finite.
So if (Mn)n did converge, then |(Xn+1 − Xn) · ` − (Dn+1 − Dn)| → 0 as n → ∞. However,
this is impossible. Indeed, let e0 ∈ Y be a unit vector which maximizes e0 · `. Then due to
ellipticity and the Borel-Cantelli lemma, |(Xn+1 − Xn) · `| = e0 · ` infinitely often, whereas,
again by ellipticity, for all n and some random i = i(n) ∈ N,

|Dn+1 −Dn| =
∣∣∣∣ ∑
e

ω(Xn, e, i)e · `
∣∣∣∣

≤
(
|ω(Xn, e0, i)− ω(Xn,−e0, i)|+

∑
e 6=±e0

ω(Xn, e, i)
)
e0 · `

= (1− 2 (ω(Xn, e0, i) ∧ ω(Xn,−e0, i))) e0 · `,

which is at most (1− 2κ)e0 · `. �

The next result bounds the number of cookies consumed by the walk before it reaches a certain
level.

Lemma 4 For all ω ∈ Ω and all x ≥ 0, E0,ω[DTx ] ≤ x+ 1.

Proof. By the Optional Stopping Theorem for all n ∈ N, 0 = E0,ω[MTx∧n] and consequently
by (2), E0,ω[DTx∧n] = E0,ω[XTx∧n · `] ≤ x + maxe e · ` ≤ x + 1. The statement now follows
from monotone convergence. �

Now we introduce some notation taken from [Ze05] for the cookie environment left over by the
walk. For ω ∈ Ω and any finite sequence (xn)n≤m in Y we define ψ(ω, (xn)n≤m) ∈ Ω by

ψ(ω, (xn)n≤m)(x, e, i) := ω (x, e, i+ #{n < m | xn = x}) .
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This is the environment created by the ERW by following the path (xn)n≤m and removing all
the first cookies encountered, except for the last visit to xm. Finiteness of T1, guaranteed by
Lemma 3, implies that the Markov transition kernel

R(ω, ω′) := P0,ω

[
θXT1 (ψ (ω,HT1)) = ω′

]
for ω, ω′ ∈ Ω is well-defined. Here θz denotes the spatial shift of the environment by z,
i.e. θz(ω(x, ·, ·)) := ω(x + z, ·, ·). The probability measure R(ω, ·) is the distribution of the
modified environment ω viewed from the particle at time T1. Note that it is supported on
those countably many ω′ ∈ Ω, which are obtained from ω by removing finitely many cookies
from ω.

Lemma 5 R is weak Feller, i.e. convergence w.r.t. the product topology on Ω of ωn ∈ Ω
towards ω ∈ Ω as n→∞ implies∣∣∣∣∣ ∑

ω′∈Ω

R(ωn, ω′)f(ω′)−
∑
ω′∈Ω

R(ω, ω′)f(ω′)

∣∣∣∣∣ −→ 0 as n→∞ (3)

for any bounded continuous function f : Ω → R.

Note that the assumption of boundedness of f is redundant since Ω is compact. Also note
that due to the discreteness of R(ω, ·) only countably many terms in the sums in (3) do not
vanish.

Proof. Let ε > 0. Since T1 is P0,ω-a.s. finite due to Lemma 3, there is some finite t such that

ε > P0,ω[T1 > t] = 1−
∑
π∈Πt

P0,ω [(Xm)m follows π] , (4)

where Πt denotes the set of nearest-neighbor paths π starting at the origin and ending at time
T1(π) with T1 ≤ t. Since ωn → ω,

P0,ωn [(Xm)m follows π] −→ P0,ω [(Xm)m follows π] as n→∞ (5)

for all π ∈ Πt. Therefore, by (4),

P0,ωn
[T1 > t] < ε for n large. (6)

Now partition Πt into sets Πz
t according to the final point z of the paths. Then the left-hand

side of (3) can be bounded from above by∑
z∈Y

∑
π∈Πz

t

∣∣∣∣P0,ωn [(Xm)m follows π]f (θz(ψ(ωn, π)))

− P0,ω[(Xm)m follows π]f (θz(ψ(ω, π)))
∣∣∣∣ (7)

+ cP0,ω[T1 > t] + cP0,ωn [T1 > t],

where c is a bound on |f |. Since f is continuous, f (θz(ψ(ωn, π))) converges to f (θz(ψ(ω, π)))
as n → ∞. Together with (4), (5) and (6) this shows that the whole expression in (7) is less
than 2cε for n large. �
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Lemma 6 There is a probability measure P̃ on Ω which is invariant under R and under which

(ω(x, ·, ·))x∈Y,x·`≥0 has the same distribution as under P. (8)

Proof. Being a closed subset of the compact set [κ, 1 − κ]2d×N×Y , Ω is compact, too. Conse-
quently, the set of all probability measures on Ω is compact with respect to weak convergence
as well. Since the set M of all probability measures on Ω under which (8) holds is a closed
subset of this compact set, M is compact, too. Moreover, observe that MR ∈ M for all
M ∈M since the part of the environment ψ(ω,HT1) which is to the right of XT1 has by time
T1 not been touched by the walk yet and is therefore still i.i.d.. Hence, since R is weak Feller
due to Lemma 5 the statement follows from standard arguments, see e.g. [MT96, Theorem
12.0.1 (i)]. �

For the remainder of this paper we fix P̃ according to Lemma 6 and let Ẽ be its expectation
operator. We also introduce the annealed probability measures P0 = P×P0,ω and P̃0 = P̃×P0,ω

with expectation operators E0 and Ẽ0, respectively, which one gets by averaging the so-called
quenched measure P0,ω over E and Ẽ, respectively, i.e. P0[·] = E[P0,ω[·]] and P̃0[·] = Ẽ[P0,ω[·]].
The following statement is similar to [Ze05, Lemma 11].

Lemma 7 If Y is a strip or Z then Ẽ0[D0
∞] ≤ 1. If Y = Zd, d ≥ 2, then Ẽ0[D0

∞] ≤ 2.

Proof. Consider the stopping times defined by τ0 := 0 and τn+1 := inf{n > τn : Xn · ` ≥
Xτn · `+ 1} for n ≥ 0. Note that

τn = Tn if Y is a strip or Z and τn ≤ T2n if Y = Zd, d ≥ 2, (9)

because in the second case, due to |`|1 = 1, Xτn+1 ·` ≤ Xτn ·`+2. Since the slabs SXτn ·`, n ≥ 0,
are disjoint, we have DTK

≥
∑
n≥0D

Xτn ·`
TK

for all K ≥ 0. Therefore, for all 0 ≤ k < K/2,

DTK
≥

m∑
n=0

D
Xτn ·`
τn+k , (10)

where m = m(K, k) := K − k for Y being a strip or Z and m(K, k) := bK/2c − k for
Y = Zd, d ≥ 2. Indeed, in both cases τn+k ≤ TK for all n ≤ m due to (9). Consequently, by
Lemma 4 and (10),

K + 1 ≥ Ẽ0[DTK
] ≥

m∑
n=0

Ẽ0

[
D
Xτn ·`
τn+k

]
. (11)

By conditioning on the history up to time τn and using the strong Markov property we get

Ẽ0

[
D
Xτn ·`
τn+k

]
= Ẽ

[
E0,ω

[
E0,θXτn (ψ(ω,Hτn ))[D

0
τk

]
]]

= Ẽ

[ ∑
ω′∈Ω

E0,ω

[
E0,ω′ [D0

τk
], θXτn (ψ(ω,Hτn)) = ω′

]]
(12)

= Ẽ

[ ∑
ω′∈Ω

E0,ω′ [D0
τk

]Rn(ω, ω′)

]
= Ẽ

[
E0,ω[D0

τk
]
]
,

where Rn denotes the n-th iteration of R and the last identity holds due to P̃Rn = P̃. Conse-
quently, we obtain from (11) that Ẽ0[D0

τk
] ≤ (K + 1)/m(K, k). Letting K →∞ gives, for all

k ≥ 0, Ẽ0[D0
τk

] ≤ 1 for the strip and Z and Ẽ0[D0
τk

] ≤ 2 for Zd, d ≥ 2. Monotone convergence
as k →∞ then yields the claim. �
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3 Transience on Zd and strips

We denote by

A` :=
{

lim
n→∞

Xn · ` = +∞
}

and B` := {∀n ≥ 1 Xn · ` > X0 · `}

the event that the walk tends to the right and the event that it stays forever strictly to the right
of its initial point, respectively. As a preliminary result, we are now going to prove Theorem
1 with P̃ instead of P.

Lemma 8 Let d ≥ 2, Y = Zd and E[δ0] > 0. Then P̃0[A`] = 1.

Proof. On Ac`, Xn · ` changes sign P̃0-a.s. infinitely often due to Lemma 3. Therefore, because
of ellipticity, on Ac` it also visits P̃0-a.s. infinitely many sites in the slab S0. Among these
sites x there are P̃0-a.s. infinitely many ones with

∑
|e|=1,i≤I ω(x, e, i)e · ` > ε for some ε > 0

and some finite I due to the assumption of independence in the environment and E[δ0] > 0.
Again by ellipticity, on Ac`, P̃0-a.s. infinitely many of those sites will be visited at least I times.
Indeed, after the first visit to any site x the walk has a chance of at least κ2I to visit that site
I times by just jumping 2I times back and forth between x and one of its neighbors. This
yields that on Ac`, P̃0-a.s. D0

∞ = ∞, which would contradict Lemma 7 unless P̃0[Ac`] = 0. �

The following type of result is standard, see e.g. [Se94, Lemma 1], [SzZe99, Proposition 1.2]
and [Ze05, Lemma 8].

Lemma 9 Let ω ∈ Ω such that P0,ω[A`] > 0. Then P0,ω[A` ∩B`] > 0.

Proof. By assumption there is a finite nearest-neighbor path π1 starting at 0 and ending at
some a with a · ` > d such that with positive P0,ω-probability the walk first follows π1 and
then stays to the right of a, while tending to the right, i.e.

P0,ω[(Xn)n follows π1] Pa,ψ(ω,π1)[A` ∩B`] > 0, (13)

see Figure 1. In particular, the second factor in (13) is positive. Now on A`, the walk can
visit sites on the path π1 only finitely often. Therefore, there is another path π2 of length m2

entirely to the right of a which starts at a and ends at some b such that

0 < Pa,ψ(ω,π1)[{(Xn)n follows π2} ∩ {∀n ≥ m2 Xn /∈ π1} ∩A` ∩B`]
≤ Pb,ψ(ω,(π1,π2))[{∀n > 0 Xn · ` > a · `,Xn /∈ π1} ∩A`].

However, on the event that the walk never visits π1 the walk does not feel whether it moves
in the environment ψ(ω, (π1, π2)) or ψ(ω, π2). Therefore,

0 < Pb,ψ(ω,π2)[{∀n > 0 Xn · ` > a · `} ∩A`].

Since Pa,ω[(Xn)n follows π2] > 0 due to ellipticity, we get from this

0 < Pa,ω[(Xn)n follows π2] Pb,ψ(ω,π2)[{∀n > 0 Xn · ` > a · `} ∩A`]
= Pa,ω[{(Xn)n follows π2} ∩A` ∩B`] ≤ Pa,ω[A` ∩B`]. (14)

Now because of a·` > d there is a nearest-neighbor path π0 from 0 to a with 0 < x·` < a·` for all
sites x on π0 except for its starting and its end point. By ellipticity, the walk will follow π0 with
positive P0,ω-probability. Therefore, due to (14) and since Pa,ω[A` ∩B`] = Pa,ψ(ω,π0)[A` ∩B`],

0 < P0,ω[(Xn)n follows π0] Pa,ω[A` ∩B`] = P0,ω[{(Xn)n follows π0} ∩A` ∩B`]
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0

=0aπ 

a

b

=abπ2
1

π 
0

Figure 1: For the proof of Lemma 9. The path π1 from 0 to a is cut out and replaced by the
dotted path π0.

by the strong Markov property. Hence P0,ω[A` ∩B`] > 0. �

We are now ready to prove a 0-1-law. We shall apply this result to P̄ ∈ {P, P̃}.

Proposition 10 Let P̄ be a probability measure on Ω and let (ω(x, ·, ·))x·`≥0 be i.i.d. under P̄.
Then (P̄× P0,ω)[A`] ∈ {0, 1}.

Proof. For short set P̄0 = P̄× P0,ω. Let us assume P̄0[A`] > 0. We need to show P̄0[A`] = 1.
By Lemma 9, P̄0[B`] > 0. The following argument is well-known, see e.g. [SzZe99, Lemma
1.1] and [ZeM01, Proposition 3]. Fix M ∈ N. We define recursively possibly infinite stopping
times (Sk)k≥0 and (Rk)k≥0 by S0 := TM ,

Rk := inf{n ≥ Sk | Xn · ` < M} and

Sk+1 := inf
{
n ≥ Rk | Xn · ` > max

m<n
Xm · `

}
.

Due to Lemma 3, S0 is P̄0-a.s. finite and any subsequent Sk+1 is P̄0-a.s. finite as well provided
Rk is finite. Moreover, at each finite time Sk the walk has reached a half space it has never
touched before. The environment (ω(x + XSk

, ·, ·))x·`≥0 in this half space is independent of
the environment visited so far and has the same distribution as (ω(x, ·, ·))x·`≥0. Hence the
walk has probability P̄0[B`] never to leave this half space again. Therefore, by induction,
P̄0[Rk < ∞] ≤ P̄0[Bc` ]

k, which goes to 0 as k → ∞. Consequently, there is a random integer
K with RK = ∞. This means that Xn · ` ≥ M for all n ≥ SK . Since this holds for all M ,
P̄0[A`] = 1. �

The following is the counterpart of Lemma 8 for Z and strips.

Lemma 11 Let Y = Z and L = 1 or Y = Z × {0, . . . , L − 1} for some L ≥ 2 and let
E[δ0] > 1/L. Then P̃0[A`] = 1.

Proof. Assume that P̃0[A`] < 1. Then by Proposition 10, P̃0[A`] = 0. Therefore, Xn · `
changes sign P̃0-a.s. infinitely often due to Lemma 3. However, if the walk crosses the finite
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set S0 infinitely often then by ellipticity it will eventually eat all the cookies in S0, i.e. P̃0-a.s.
D0
∞ =

∑
x∈S0

δx. Hence Ẽ0[D0
∞] = LẼ0[δ0] > 1, which contradicts Lemma 7. �

Proof of Theorem 1 and of transience in Theorem 2. By Lemma 8 and Lemma 11, respectively,
P̃0[A`] = 1. Therefore, due to Lemma 9, P̃0[A` ∩ B`] > 0. However, since (8) holds under P̃,
P0[A` ∩B`] = P̃0[A` ∩B`] > 0. Consequently, by Proposition 10, P0[A`] = 1. �

4 Recurrence on strips

Proof of recurrence in Theorem 2. Let LE[δ0] ≤ 1. We need to show that P0-a.s. lim infnXn ·
e1 ≤ 0, since then, by ellipticity, Xn = 0 infinitely often. Assume the contrary. Then by Lemma
3, P0[A`] > 0. Consequently, by Lemma 9, even P0[A` ∩ B`] > 0. However, P0[A` ∩ B`] =
P̃0[A` ∩B`]. Hence, by Proposition 10,

P̃0[A`] = 1. (15)

Now let T−i := inf{n | Xn · ` ≤ −i} for i > 0. Then we have by the Optional Stopping
Theorem for all i, k, n ∈ N and all ω ∈ Ω,

0 = E0,ω[MTk∧T−i∧n] = kP0,ω[Tk < T−i ∧ n]− iP0,ω[T−i < Tk ∧ n]
+ E0,ω[Xn · `, n < Tk ∧ T−i]− E0,ω[DTk∧T−i∧n]. (16)

Using dominated convergence as n → ∞ for both terms in (16) and Tk < ∞ P0,ω-a.s., see
Lemma 3, for the first term in (16), we obtain

1
k
E0,ω[DTk∧T−i ] = P0,ω[Tk < T−i]−

i

k
P0,ω[T−i < Tk].

Hence, due to (15), P̃-a.s. limi→∞ limk→∞ k−1E0,ω[DTk∧T−i ] = 1. Splitting Dn into D+
n :=∑

k≥0D
k
n and D−

n :=
∑
k<0D

k
n then yields

lim
i→∞

lim
k→∞

1
k
E0,ω[D+

Tk∧T−i
] = 1, (17)

since E0,ω[D−
Tk∧T−i

] ≤
∑

−i<x·e1<0 δ
x(ω), which is P̃-a.s. finite, does not depend on k and thus

vanishes when divided by k →∞. However,

E0,ω[D+
Tk∧T−i

] ≤ E0,ω[D+
Tk

] ≤ k + 1 (18)

by Lemma 4. Therefore, (17) implies

lim
k→∞

1
k
E0,ω[D+

Tk
] = 1. (19)

By a calculation similar to the one in (12), Ẽ0[Dk
∞] = Ẽ0[D0

∞]. Consequently, we can proceed
like in the proof of [Ze05, Theorem 12] as follows and get

Ẽ0[D0
∞] =

1
K

K−1∑
k=0

Ẽ0[Dk
∞] ≥ Ẽ0

[
1
K

K−1∑
k=0

Dk
TK

]
= Ẽ

[
1
K
E0,ω[D+

TK
]
]
.



Excited random walks 127

Dominated convergence for K →∞, justified by (18), and (19) then yield

1 ≤ Ẽ0[D0
∞] ≤ Ẽ

[ ∑
x∈S0

δx
]

= LẼ[δ0]. (20)

Now consider the event S :=
{∑

x∈S0
δx > ω(0, e1, 1)− ω(0,−e1, 1)

}
that not all the drift

contained in the slab S0 is stored in the first cookie at 0. Observe that P̃[S] > 0. Indeed, for
L ≥ 2 this follows from independence of the environment at different sites and for L = 1 the
opposite would imply Ẽ[δ0] ≤ 1− κ, contradicting (20).
Now according to (15) we have P̃-a.s. P0,ω[A`] = 1. Therefore, by Lemma 9, P̃-a.s. P0,ω[A` ∩
B`] > 0. Hence, since P̃[S] > 0, as shown above,

0 < Ẽ[P0,ω[B`], S] ≤ P̃0[D0
∞ = ω(0, e1, 1)− ω(0,−e1, 1), S] ≤ P̃0

[
D0
∞ <

∑
x∈S0

δx
]
.

Since D0
∞ ≤

∑
x∈S0

δx anyway, this implies Ẽ0[D0
∞] < LẼ[δ0] = LE[δ0]. Along with (20) this

contradicts the assumption LE[δ0] ≤ 1. �

We conclude with some remarks, discussing the assumption of uniform ellipticity and some
relation to branching processes with immigration.

Remark 1. The following example shows that the assumption of uniform ellipticity in
Theorems 1 and 2 for Y 6= Z is essential. Let ` = e1, and let (ω(x))x be i.i.d. under
P with P[ω(0) = ω+] = 1/2 = P[ω(0) = ω−], where ω+ and ω− are such that for all
i ≥ 1, (ω±(e, i))|e|=1 ∈ (0, 1)2d is a probability transition vector with ω±(±e2, i) = 1 − 2−i

and ω±(e1, i) ≥ ω±(−e1, i). Then all the requirements for ω ∈ Ω are fulfilled except for
ω(x, e, i) ≥ κ > 0. However, by independence in the environment and the Borel-Cantelli
lemma, the walk will P0-a.s. eventually become periodic and get stuck on two random sites x
and x+ e2 with ω(x) = ω+ and ω(x+ e2) = ω−. Hence it will not be transient and might not
be recurrent to its starting point.
2. It is well-known that recurrence of the simple symmetric random walk (Yn)n on Z cor-
responds to extinction of the Galton-Watson process (Zm)m with geometric(1/2) offspring
distribution. Indeed, let the walk start at Y0 = 1, set Z0 = 1 and denote by Zm, m ≥ 1,
the number of transitions of (Yn)n from m to m + 1 before the walk hits 0. Since for ERW
transitions to the right are more likely than for (Yn)n, ERW can be viewed as a Galton-Watson
process with immigration. Pakes [P71, Theorem 1] and Zubkov [Zu72, Theorem 3] showed that
adding to each non-empty generation of a critical Galton-Watson process an i.i.d. number of
immigrants makes it supercritical if the mean number of immigrants exceeds a certain critical
threshold. This is reminiscent of Theorem B. However, since the immigration component of
the Galton-Watson process derived from ERW is not independent these results do not directly
translate into results for ERW.
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