Change-point inference for high-dimensional heteroscedastic data

Teng Wu
Microsoft Corporation
Redmond
e-mail: tengwu@microsoft.com

Stanislav Volgushev
Department of Statistics
University of Toronto
e-mail: stanislav.volgushev@utoronto.ca

Xiaofeng Shao
Department of Statistics
University of Illinois a Urbana-Champaign
e-mail: xshao@illinois.edu

Abstract

We propose a bootstrap-based test to detect a mean shift in a sequence of high-dimensional observations with unknown time-varying heteroscedasticity. The proposed test builds on the U-statistic based approach in Wang et al. (2022), targets a dense alternative, and adopts a wild bootstrap procedure to generate critical values. The bootstrap-based test is free of tuning parameters and is capable of accommodating unconditional time varying heteroscedasticity in the high-dimensional observations, as demonstrated in our theory and simulations. Theoretically, we justify the bootstrap consistency by using the recently proposed unconditional approach in Bücher and Kojadinovic (2019). Extensions to testing for multiple changepoints and estimation using wild binary segmentation are also presented. Numerical simulations demonstrate the robustness of the proposed testing and estimation procedures with respect to different kinds of time-varying heteroscedasticity.

MSC2020 subject classifications: Primary 62F40, 62H15; secondary 62G10, 62G20.
Keywords and phrases: Bootstrap, dense alternative, U-statistic.

Received July 2022.

1. Introduction

Owing to the advances in science and technology, high-dimensional data has been increasingly important in many areas, such as genomics, neuroscience and finance among others. In the analysis of high-dimensional datasets, often some kind of homogeneity assumption such as iid (independent and identically distributed) is made, but in reality the data may exhibit certain breaks in its
stochastic property, especially when the data is ordered by time (e.g., stock return data) or one-dimensional locations (e.g., gene expression levels indexed by genomic loci). This has motivated a growing literature of change-point testing and estimation for the mean shift in high-dimensional data. See Horváth and Hušková (2012); Cho and Fryzlewicz (2015); Jirak (2015); Wang and Samworth (2018); Wang et al. (2022); Enikeeva and Harchaoui (2019); Yu and Chen (2021); Zhang et al. (2021) for some recent work.

A common feature of all above-mentioned papers is that they assume the second order properties (i.e, covariance matrix for independent high-dimensional data) is time invariant, while the mean may undergo changes at unknown times. This is a strong assumption and may be violated for many high-dimensional datasets. See Section 6 for significant evidence of time varying heteroscedasticity for a genomic dataset that has been analyzed by several researchers (Wang and Samworth, 2018; Wang et al., 2022; Zhang et al., 2021). When heteroscedasticity is present, the existing change-point detection methods developed under the homoscedastic assumption may fail or their validity remains unknown. For low dimensional time series, novel change-point detection methods have been developed by Zhou (2013) and Górecki et al. (2018) to detect mean changes while allowing for second or higher order non-stationarity, but an extension of their methods to high-dimensional setting is very nontrivial. In summary, there is a lack of methodology to detect mean changes for high-dimensional heteroscedastic data.

In this article, we develop a novel test and estimation procedure that can detect change-points in the mean when unconditional heteroscedasticity is present in the sequence of high-dimensional observations. To facilitate our methodological development, we assume the following mathematical framework: the p-dimensional observation at the i th time or location is

$$
\begin{equation*}
X_{i}=\mu_{i}+H(i / n) Z_{i}, i=1, \ldots, n \tag{1}
\end{equation*}
$$

where Z_{i} 's are i.i.d. p-dimensional random vectors with mean 0 and covariance matrix Σ, and $H(i / n)$ is a $p \times p$ diagonal matrix that models the unconditional time/location dependent heteroscedasticity. We are interested in testing

$$
\begin{gathered}
H_{0}: \mu_{1}=\mu_{2} \ldots=\mu_{n} \text { vs } \\
H_{1}: \exists s \in \mathbb{N} \text { and } 1<k_{1}<\cdots<k_{s}<n \text { such that } \\
\mu_{1}=\cdots=\mu_{k_{1}} \neq \mu_{k_{1}+1}=\ldots \cdots=\mu_{k_{s}} \neq \mu_{k_{s}+1}=\cdots=\mu_{n}
\end{gathered}
$$

Under $H_{1}, k_{1}, \ldots, k_{s}$ are unknown change points. The estimation of the number s and location of change-points $\left(k_{1}, \ldots, k_{s}\right)$ is also addressed in the present paper. Note that when $p=1$, our model is similar to that in Górecki et al. (2018), except that the latter paper allowed serial dependence in $\left\{Z_{i}\right\}_{i=1}^{n}$. We do not pursue the more general, heteroscedastic and temporally dependent case, as there are methodological challenges to handle temporal dependence in the highdimensional setting; see Section 7 for more discussions. Nevertheless, the tem-
poral independence assumption is commonly made in the literature of changepoint detection of genomic data; see Jeng et al. (2010) and Zhang and Siegmund (2012).

In this paper, we propose to build on the U-statistic based approach in Wang et al. (2022), who extended the two sample U-statistic used in Chen and Qin (2010) from high-dimensional two sample testing to change-point testing. In Wang et al. (2022), the sequence of observations is assumed to be homoskedastic subject to mean shifts under the alternative, that is $H(\cdot)=\mathbf{I}_{p}(p \times p$ identity matrix). They adopt the idea of self-normalization (Shao, 2010b; Shao and Zhang, 2010) in forming their test statistic and the theoretical validity of their SN-based test is shown under homoskedasticity. When there is time-varying heteroscedasticity, we show that the asymptotic null distribution of the SN-based test statistic in Wang et al. (2022) is no longer pivotal, and it depends on the unknown $H(\cdot)$. To accommodate the unknown heteroscedascity, we propose to use the wild bootstrap to directly approximate the finite sample distribution of the original class of U-statistics, instead of doing self-normalization. With the aid of the recently proposed unconditional approach in justifying bootstrap consistency (Bücher and Kojadinovic, 2019), we are able to show the consistency of wild bootstrap under the framework (1) and derive the local asymptotic power under the one-change point alternative. In the context of testing for one change point in mean, our bootstrap-based test is free of tuning parameters, and performs well for a broad range of heteroscedastic models in our simulation studies. Extensions to testing for multiple change-point alternative and estimation of change-points using WBS (wild binary segmentation, Fryzlewicz, 2014) are also made. Note that like Wang et al. (2022), our bootstrap-based test targets dense alternatives (i.e., when small changes occur for a substantial portion of the components), which can be well motivated by real data and is often the type of alternative we are interested in. For example, copy number variations in cancer cells are commonly manifested as change-points occurring at the same positions across many related data sequences corresponding to cancer samples and biologically- related individuals; see Fan and Mackey (2017).

The rest of the paper is structured as follows. Section 2 describes the test statistic and wild bootstrap scheme for testing a single change point. An extension to testing multiple change points is also made. Section 3 provides the assumptions and theoretical results for the proposed testing procedure under the null and alternatives. In Section 4, we combine the WBS with our bootstrapbased test for change-point estimation. Section 5 compares the bootstrap-based testing and estimation methods with their counterparts in Wang et al. (2022) via simulations. Section 6 illustrates the usefulness of our method using a real dataset and Section 7 concludes. All technical details and proofs are relegated to the Appendix.

2. Test statistics and bootstrap calibration

2.1. Single change point testing

We first focus on the single change point alternative

$$
H_{11}: \mu_{1}=\mu_{2} \ldots=\mu_{k_{1}} \neq \mu_{k_{1}+1}=\ldots \mu_{n}
$$

Our test statistic is motivated by Wang et al. (2022), which was inspired by the two sample testing statistics in Chen and Qin (2010). For readers who are not familiar with those papers, we now provide a brief introduction to the main ideas which appeared in there. More precisely, suppose $\left(U_{2}, V_{2}\right)$ is an independent copy of $\left(U_{1}, V_{1}\right)$. Consider the function

$$
h\left\{\left(U_{1}, V_{1}\right),\left(U_{2}, V_{2}\right)\right\}=\left(U_{1}-V_{1}\right)^{T}\left(U_{2}-V_{2}\right)
$$

The expectation of this kernel function is

$$
E\left[h\left\{\left(U_{1}, V_{1}\right),\left(U_{2}, V_{2}\right)\right\}\right]=\left\|E\left(U_{1}\right)-E\left(V_{1}\right)\right\|^{2}
$$

Note that this expectation equals zero if and only if $E\left[U_{1}\right]=E\left[V_{1}\right]$. A natural unbiased estimator for $E\left[h\left\{\left(U_{1}, V_{1}\right),\left(U_{2}, V_{2}\right)\right\}\right]$ given two independent samples $U_{1}, \ldots, U_{n}, V_{1}, \ldots, V_{m}$ take sthe form

$$
\begin{aligned}
& \frac{1}{n(n-1) m(m-1)} \sum_{i_{1} \neq i_{2}, i_{1}, i_{2}=1}^{n} \sum_{j_{1} \neq j_{2}, j_{1}, j_{2}=1}^{m} h\left(\left(U_{i_{1}}, V_{j_{1}}\right),\left(U_{i_{2}}, V_{j_{2}}\right)\right) \\
= & \frac{4}{n(n-1) m(m-1)} \sum_{1 \leq i_{1}<i_{2} \leq n} \sum_{1 \leq j_{1}<j_{2} \leq m} h\left(\left(U_{i_{1}}, V_{j_{1}}\right),\left(U_{i_{2}}, V_{j_{2}}\right)\right) .
\end{aligned}
$$

Note that this is simply a two-sample U-Statistic with kernel h. This statistic was proposed by Chen and Qin (2010) for comparing the means of two possibly high-dimensional vectors. The key observation of Chen and Qin (2010) was that this statistic is more appropriate than the seemingly natural alternative $\| \bar{U}-$ $\bar{V} \|_{2}^{2}$ (with \bar{U}, \bar{V} denoting the corresponding sample means) because the latter contains terms of the form $\left(U_{i}-V_{j}\right)^{T}\left(U_{i}-V_{j}\right)$ which do not have expected value zero under the null of equal means. This does not matter in fixed dimensions, but can blow up if the dimension of the vectors grows with sample size.

Suppose the change in mean vector occurs at time $k+1$. We can view X_{1}, \ldots, X_{k} and X_{k+1}, \ldots, X_{n} as two independent samples with different means. A natural test statistic for a change at time k is thus

$$
\begin{aligned}
G_{n}(k)= & \frac{2}{k(k-1)} \frac{2}{(n-k)(n-k-1)} \\
& \times \sum_{1 \leq i_{1}<j_{1} \leq k} \sum_{k+1 \leq i_{2}<j_{2} \leq n}\left(X_{i_{1}}-X_{i_{2}}\right)^{T}\left(X_{j_{1}}-X_{j_{2}}\right) \\
= & \frac{2}{k(k-1)} \sum_{1 \leq i<j \leq k} X_{i}^{T} X_{j}+\frac{2}{(n-k)(n-k-1)} \sum_{k+1 \leq i<j \leq n} X_{i}^{T} X_{j}
\end{aligned}
$$

$$
-\frac{2}{k(n-k)} \sum_{i=1}^{k} \sum_{j=k+1}^{n} X_{i}^{T} X_{j}
$$

Here, the second equality follows after straightforward computations and facilitates the theoretical analysis of our test statistic. Since the location k of the change point is unknown, we consider the maximum value over all possible change-points.

To mimic the CUSUM process used in the low dimensional setting, we define a rescaled version of $G_{n}(m)$,

$$
\tilde{G}_{n}(m)=\frac{m(m-1)(n-m)(n-m-1)}{n^{3}} G_{n}(m)
$$

where the rescaling is adopted to prevent the statistics $G_{n}(m)$ on the two ends from blowing up. Note that this was implicitly done in the SN -based test statistic of Wang et al. (2022). Then we define our test statistic for H_{11} to be

$$
T_{n}=\max _{m=2,3, \ldots, n-2} \tilde{G}_{n}(m)
$$

This formulation is similar to Wang et al. (2022) but does not require the use of self-normalization technique, which has its origin from Shao (2010b) and Shao and Zhang (2010). Under the null we have $E\left[G_{n}(m)\right]=0$ for all n, m. Hence the statistic T_{n} is expected to converge to a non-degenerate distribution upon suitable standardization. Under the single change-point alternative with change at k_{0} we have $E\left[G_{n}\left(k_{0}\right)\right]>0$ with magnitude depending on k_{0} and the size of the change. Hence the test statistic with the same normalization as under the null diverges under the one change-point alternative if the magnitude of change is large enough. As will be shown later, the limiting null distribution of T_{n} depends on the unknown $H(\cdot)$, thus is not asymptotically pivotal and the idea of self-normalization is not directly applicable. This motivates us to propose a bootstrap-based approach to approximate the finite sample distribution (or the limiting null distribution) of T_{n} under the null.

Specifically, we employ the Gaussian multiplier bootstrap. Let e_{1}, \ldots, e_{n} be i.i.d $N(0,1)$ random variables independent of $X_{1}, X_{2}, \ldots, X_{n}$. Let $\bar{X}=$ $\frac{1}{n} \sum_{i=1}^{n} X_{i}$ denote the sample mean. The bootstrap test statistic is defined as

$$
T_{n}^{*}=\max _{m=2,3, \ldots, n-2} \tilde{G}_{n}^{*}(m)
$$

where

$$
\tilde{G}_{n}^{*}(m)=\frac{m(m-1)(n-m)(n-m-1)}{n^{3}} G_{n}^{*}(m)
$$

and

$$
\begin{aligned}
G_{n}^{*}(m)= & \frac{2}{m(m-1)} \sum_{1 \leq i<j \leq m}\left(X_{i}-\bar{X}\right)^{T}\left(X_{j}-\bar{X}\right) e_{i} e_{j} \\
& +\frac{2}{(n-m)(n-m-1)} \sum_{m+1 \leq i<j \leq n}\left(X_{i}-\bar{X}\right)^{T}\left(X_{j}-\bar{X}\right) e_{i} e_{j}
\end{aligned}
$$

$$
-\frac{2}{m(n-m)} \sum_{i=1}^{m} \sum_{j=m+1}^{n}\left(X_{i}-\bar{X}\right)^{T}\left(X_{j}-\bar{X}\right) e_{i} e_{j}
$$

To ensure the bootstrap consistency, the observations are centered with the overall mean. In practice, we also tried the centering by local mean (e.g., replace \bar{X} by $\frac{1}{m} \sum_{i=1}^{m} X_{i}$ in the first summand of $G_{n}^{*}(m)$), and the results are similar to the ones we obtain by centering by overall mean. The proof and implementation for the latter seem a bit simpler, so we only present the latter.

In the low dimensional setting, i.e., when p is fixed, the weighted bootstrap for degenerate U-statistic has been studied by Huskova and Janssen (1992); Janssen (1994); Dehling and Mikosch (1994); Wang and Jing (2004), among others. We refer the reader to a recent paper by Huang et al. (2021) and more references therein. We are not aware of any results on bootstrap consistency for degenerate U-Statistics for data of increasing dimension.

The theoretical bootstrap critical value for a size α test is defined to be

$$
c_{1, \alpha}=\inf \left\{t \in \mathbb{R}: P\left(T_{n}^{*}>t \mid \boldsymbol{X}\right) \leq \alpha\right\}
$$

where $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$. In practice this theoretical value is typically approximated by Monte Carlo simulations. Let F_{M}^{*} denote the empirical cdf of M bootstrap statistics $T_{n}^{*, 1}, \ldots, T_{n}^{*, M}$, where each of them is based on an independent sequence of multipliers. Then we define

$$
c_{1, \alpha}^{(M)}=\inf \left\{t \in \mathbb{R}: 1-F_{M}^{*}(t) \leq \alpha\right\}
$$

This quantity can be computed through simulations. We reject the null hypothesis when $T_{n}>c_{1, \alpha}^{(M)}$.

2.2. Multiple change points testing

In practice, the number of change points is often unknown, so we consider a more general multiple change-points alternative,

$$
\begin{gathered}
H_{1}: \exists s \in \mathbb{N} \text { and } 1<k_{1}<\cdots<k_{s}<n \text { such that } \\
\mu_{1}=\cdots=\mu_{k_{1}} \neq \mu_{k_{1}+1}=\ldots \cdots \ldots=\mu_{k_{s}} \neq \mu_{k_{s}+1}=\cdots=\mu_{n}
\end{gathered}
$$

Inspired by the scanning approach developed by Zhang and Lavitas (2018) for change-point testing in the univariate time series setting, we can incorporate the idea of forward and backward scanning into our test statistics for multiple change points detection.

To this end, we first introduce some more general notations. For any $a \leq$ $m \leq b, a, b, m \in\{1, \ldots, n\}$ define

$$
G_{n}(m ; a, b)=\binom{m-a+1}{2}^{-1} \sum_{a \leq i<j \leq m} X_{i}^{T} X_{j}+\binom{b-m}{2}^{-1} \sum_{m+1 \leq i<j \leq b} X_{i}^{T} X_{j}
$$

$$
\begin{gathered}
-\frac{2}{(m-a+1)(b-m)} \sum_{i=a}^{m} \sum_{j=m+1}^{b} X_{i}^{T} X_{j} \\
\tilde{G}_{n}(m ; a, b)=\frac{(m-a+1)(m-a)(b-m)(b-m-1)}{(b-a+1)^{3}} G_{n}(m ; a, b)
\end{gathered}
$$

It is obvious that $G_{n}(m)=G_{n}(m ; 1, n)$ and $\tilde{G}_{n}(m)=\tilde{G}_{n}(m ; 1, n)$. Our test statistic for multiple change points alternative takes the following form

$$
T_{n, M}=\max _{1 \leq m<k \leq n} \tilde{G}_{n}(m ; 1, k)+\max _{1 \leq k<m \leq n} \tilde{G}_{n}(m ; k, n)
$$

Under H_{0}, since there is no change point, both forward and backward scanning parts are expected to be small. When there is at least one change point, the first change point would result in an inflation of the forward scanning part and the last change point would lead to a large value for the backward scanning part.

Again, we use the Gaussian multiplier bootstrap to obtain the bootstrap distribution and calibrate the size. The bootstrap statistic is defined as

$$
T_{n, M}^{*}=\max _{1 \leq m<k \leq n} \tilde{G}_{n}^{*}(m ; 1, k)+\max _{1 \leq k<m \leq n} \tilde{G}_{n}^{*}(m ; k, n)
$$

where

$$
\tilde{G}_{n}^{*}(m ; a, b)=\frac{(m-a+1)(m-a)(b-m)(b-m-1)}{(b-a+1)^{3}} G_{n}^{*}(m ; a, b),
$$

and

$$
\begin{aligned}
G_{n}^{*}(m ; a, b)= & \binom{m-a+1}{2}^{-1} \sum_{a \leq i<j \leq m}\left(X_{i}-\bar{X}\right)^{T}\left(X_{j}-\bar{X}\right) e_{i} e_{j} \\
& +\binom{b-m}{2}^{-1} \sum_{m+1 \leq i<j \leq b}\left(X_{i}-\bar{X}\right)^{T}\left(X_{j}-\bar{X}\right) e_{i} e_{j} \\
& -\frac{2}{(m-a+1)(b-m)} \sum_{i=a}^{m} \sum_{j=m+1}^{b}\left(X_{i}-\bar{X}\right)^{T}\left(X_{j}-\bar{X}\right) e_{i} e_{j}
\end{aligned}
$$

The bootstrap critical value is defined to be

$$
c_{2, \alpha}=\inf \left\{t \in \mathbb{R}: P\left(T_{n, M}^{*}>t \mid \boldsymbol{X}\right) \leq \alpha\right\}
$$

In practice, the critical value is approximated by $c_{2, \alpha}^{\left(M_{n}\right)}$, which is computed from the M_{n} bootstrap samples, similarly as $c_{1, \alpha}^{\left(M_{n}\right)}$. We then reject the null hypothesis when $T_{n, M}>c_{2, \alpha}^{\left(M_{n}\right)}$. It is worth noting that the proposed bootstrap test avoids the trimming parameter that is required in Zhang and Lavitas (2018) and Wang et al. (2022), and is thus tuning parameter free.

3. Theoretical results

In this section, we present the theoretical results regarding the asymptotic properties of the test statistics and bootstrap consistency. Throughout this paper, we work with triangular array asymptotics where Z_{1}, \ldots, Z_{n} are independent across n but with dimension $p=p_{n}$ that can grow with n. In order to keep the notation simple, we will not explicitly mark the dependence of the distribution and dimension of Z on n. All asymptotics will be for $n \rightarrow \infty$. For a symmetric matrix Σ, we denote $\|\Sigma\|_{F}$ its Frobenius norm. Consider the model (1), where Z_{i} 's are i.i.d. p-dimensional random vectors with $E\left[Z_{1}\right]=0, E\left[Z_{1} Z_{1}^{T}\right]=\Sigma$. The main technical assumptions are displayed below.

Assumption 3.1. $\operatorname{tr}\left(\Sigma^{4}\right)=o\left(\|\Sigma\|_{F}^{4}\right)$.
Assumption 3.2. $\sum_{l_{1}, \ldots, l_{h}=1}^{p} \operatorname{cum}^{2}\left(Z_{1, l_{1}}, \ldots, Z_{1, l_{h}}\right) \leq C\|\Sigma\|_{F}^{h}$ for $h=2,3,4$, 5,6 and some positive constant C which does not depend on n.

Assumption 3.3. For every $t \in[0,1], H(t)$ is a $p \times p$ diagonal matrix with all diagonal elements bounded by some finite constant B, independent of n that is

$$
\left|H_{l, l}(t)\right| \leq B \text { for all } t \in[0,1] \text { and } l=1, \ldots, p_{n}, n \geq 1
$$

Assumption 3.4. Assume that the following limit

$$
V(a, b):=\lim _{n \rightarrow \infty} \frac{1}{n^{2}\|\Sigma\|_{F}^{2}} \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i} \operatorname{tr}\left(H^{2}\left(\frac{j}{n}\right) H^{2}\left(\frac{i+1}{n}\right) \Sigma^{2}\right)
$$

exists for all $0 \leq a \leq b \leq 1$.
Assumptions 3.1 and 3.2 are also imposed in Wang et al. (2022). As shown in Wang et al. (2022), Assumption 3.1 is equivalent to $\|\Sigma\|_{2}=o\left(\|\Sigma\|_{F}\right)$ and can only hold when $p=p_{n} \rightarrow \infty$ as $n \rightarrow \infty$. See page 813 of Chen and Qin (2010) for additional discussion on its implications on the eigenvalues of Σ. Assumption 3.2 was first imposed in Wang et al. (2022), which is shown to be weaker than the factor-model-like assumption in Chen and Qin (2010); see Remark 3.3 in Wang et al. (2022). The summability of cumulants assumption is commonly used in time series analysis for the asymptotic analysis of lowdimensional time series (Brillinger, 1975). In our setting, it is used to ensure that the dependence is weak enough across the dimension of the vector. This is a crucial technical ingredient in our asymptotic analysis when establishing finite-dimensional convergence of a suitably normalized version of the process \widetilde{G}_{n} to a multivariate normal limit. Assumption 3.2 in general holds under uniform bounds on moments and 'short-range' dependence conditions on the components of X (possible after permutation). For example, if the sequence corresponding to the ordered components of X (or a permutation of components) satisfies certain mixing and moment conditions, then Assumption 3.2 holds. See Remark 3.2 of Wang et al. (2022) for more discussion and references.

Assumptions 3.3 and 3.4 are regarding the time varying heteroskedasticity $\{H(t)\}$. Assumption 3.3 bounds the range of heteroskedasticity, and is mild. Assumption 3.4 appears when we study the process $t \mapsto \tilde{G}_{n}(\lfloor n t\rfloor)$. More precisely, in the Appendix we decompose $\tilde{G}_{n}(\lfloor n t\rfloor)$ into a linear combination of a process \tilde{S}_{n} evaluated at different points (see beginning of the proof of Theorem 3.1). The limiting variance of this process \tilde{S}_{n} is directly related to the limit appearing in Assumption 3.4 (see the proof of Proposition A.1). For a transparent example, assume $H(t)=f(t) I_{p}$ where f is a real-valued function and I_{p} denotes the $p \times p$ identity matrix. In this case the assumption simplifies because $\operatorname{tr}\left(H^{2}(i / n) H^{2}(j / n) \Sigma^{2}\right)$ reduces to $f^{2}(i / n) f^{2}(j / n) \operatorname{tr}\left(\Sigma^{2}\right)=$ $f^{2}(i / n) f^{2}(j / n)\|\Sigma\|_{F}^{2}$. The normalized sum can be seen as a Riemann approximation of an integral, and convergence takes place provided that f is sufficiently regular (for instance, bounded and piece-wise continuous with a finite number of jumps.) In general settings, Assumption 3.4 boils down to requiring sufficient regularity of each component of H in a suitable uniform sense. In what follows, we use $I(\cdot)$ to denote the indicator function.

Theorem 3.1. Under Assumptions 3.1-3.4 and H_{0}, the normalized test statistic T_{n} converges to a non-pivotal distribution after proper standardization, that is,

$$
\frac{T_{n}}{\|\Sigma\|_{F}} \stackrel{d}{\rightarrow} T=\sup _{r \in[0,1]} G(r),
$$

where

$$
G(r):=2(1-r) Q(0, r)+2 r Q(r, 1)-2 r(1-r) Q(0,1),
$$

and Q is a mean-zero Gaussian process on $[0,1]^{2}$, and the covariance is given by

$$
\operatorname{Cov}\left(Q\left(a_{1}, b_{1}\right), Q\left(a_{2}, b_{2}\right)\right)=V\left(a_{1} \vee a_{2}, b_{1} \wedge b_{2}\right) I\left(b_{1} \wedge b_{2}>a_{1} \vee a_{2}\right)
$$

The theorem implies that the normalized test statistic converges to a potentially non pivotal distribution which depends on the time varying heteroskedasticity function $H(\cdot)$. When the time varying heteroskedasticity function is the identity matrix (i.e., $H(t)=I_{p}$ for every $t \in[0,1]$), the covariance structure of Q is the same as that in Theorem 3.4 of Wang et al. (2022) and the limit is pivotal. Self-normlization can then help to get rid of the unknown normalizing factor $\|\Sigma\|_{F}$ leading to a pivotal test. However, in general the distribution of the self normalized statistic from Wang et al. (2022) is not pivotal due to presence of the unknown heteroskedasticity function $H(\cdot)$ in the definition of V.

Next we present the results on the bootstrap consistency under H_{0}. Additional assumptions are needed to establish bootstrap consistency. In particular, we assume

Assumption 3.5. Assume that $\operatorname{tr}(\Sigma)^{2}=o\left(n^{2}\|\Sigma\|_{F}^{2}\right)$ and

$$
\frac{\sum_{s, t=1}^{p} \operatorname{cum}\left(Z_{1, s}, Z_{1, s}, Z_{1, t}, Z_{1, t}\right)}{n^{2}\|\Sigma\|_{F}^{2}} \rightarrow 0
$$

As shown in the Appendix, Assumption 3.5 implies

$$
\kappa_{4}:=E\left[Z_{1}^{T} Z_{1} Z_{1}^{T} Z_{1}\right]=o\left(n^{2}\|\Sigma\|_{F}^{2}\right),
$$

which is comparable to Assumption 3.2 and can be verified under similar weak dependence structure as described in Wang et al. (2022). This assumption is used when showing the negligibility of some remainder terms for the bootstrap process.
Theorem 3.2. Assume Assumptions 3.1-3.5 hold. Under H_{0}, we have for any sequence $M_{n} \rightarrow \infty$ and any $\alpha<1 / 2: P\left(T_{n}>c_{1, \alpha}^{\left(M_{n}\right)}\right) \rightarrow \alpha$.

Next we state the result regarding the power of the proposed test statistics.
Theorem 3.3. Suppose that Assumptions 3.1-3.5 hold. Assume there is one single change point at $k_{1}:=\lfloor n c\rfloor, \mu_{i}=\mu, i=1, \ldots, k_{1}$ and $\mu_{i}=\mu+\Delta, i=$ $k_{1}+1 \ldots, n$. Then for any sequence $M_{n} \rightarrow \infty$ and any $\alpha<1 / 2$

1. (Diminishing local alternative) If $\frac{n\|\Delta\|_{2}^{2}}{\|\Sigma\|_{F}} \rightarrow 0$, then $P\left(T_{n}>c_{1, \alpha}^{\left(M_{n}\right)}\right) \rightarrow \alpha$.
2. (Diverging local alternative) If $\frac{n\|\Delta\|_{2}^{2}}{\|\Sigma\|_{F}} \rightarrow \infty$, then $P\left(T_{n}>c_{1, \alpha}^{\left(M_{n}\right)}\right) \rightarrow 1$.
3. (Fixed local alternative) If $\frac{n\|\Delta\|_{2}^{2}}{\|\Sigma\|_{F}} \rightarrow \beta \in(0, \infty)$,

$$
\frac{T_{n}}{\|\Sigma\|_{F}} \xrightarrow{d} \sup _{r \in[0,1]}(G(r ; 0,1)+\Lambda(r)),
$$

where

$$
\Lambda(r)= \begin{cases}(1-c)^{2} r^{2} \beta & r \leq c, \\ c^{2}(1-r)^{2} \beta & r>c .\end{cases}
$$

Moreover, for 2 copies of the bootstrap statistic $T_{n}^{1, *}, T_{n}^{2, *}$ which are based on independent sets of multipliers we have

$$
\left(T_{n} /\|\Sigma\|_{F}, T_{n}^{1, *} /\|\Sigma\|_{F}, T_{n}^{2, *} /\|\Sigma\|_{F}\right) \xrightarrow{d}\left(T, T^{(1)}, T^{(2)}\right),
$$

where $T, T^{(1)}, T^{(2)}$ are independent copies of T from Theorem 3.1.
The result in Theorem 3.3 shows that our test has nontrivial power when the \mathcal{L}_{2}-norm of change is large relative to $\|\Sigma\|_{F}$, which targets the dense alternative. In the special homoscedastic case, i.e., $H(t)=\mathbf{I}_{p}$ for all $t \in[0,1]$, the power result is consistent with the one obtained in Wang et al. (2022), in the sense that both tests share the same rate of alternative under which nontrivial power occurs. This suggests that the bootstrap-based procedure brings extra robustness with respect to unconditional time-varying heteroscedasticity, as compared to the SN-based one in Wang et al. (2022), without sacrificing power. Finally, we note that by results in Bücher and Kojadinovic (2019) the result in part 3 remains true for an arbitrary number of bootstrap copies $T_{n}^{*, 1}, \ldots, T_{n}^{*, K}$ that are obtained from independent multipiers.

The following theoretical results can be derived similarly for multiple change point testing.

Theorem 3.4. Assume Assumptions 3.1-3.5 hold, under H_{0}, we have

$$
\frac{T_{n, M}}{\|\Sigma\|_{F}} \xrightarrow{d} T_{M}:=\sup _{0 \leq r_{1}<r_{2} \leq 1} G\left(r_{1} ; 0, r_{2}\right)+\sup _{0 \leq r_{1}<r_{2} \leq 1} G\left(r_{2} ; r_{1}, 1\right)
$$

where
$G(r ; a, b):=2(b-a)(b-r) Q(a, r)+2(b-a)(r-a) Q(r, b)-2(r-a)(b-r) Q(a, b)$.
Moreover, for 2 copies of the bootstrap statistic $T_{n, M}^{1, *}, T_{n, M}^{2, *}$ which are based on independent sets of multipliers we have

$$
\left(T_{n, M} /\|\Sigma\|_{F}, T_{n, M}^{1, *} /\|\Sigma\|_{F}, T_{n, M}^{2, *} /\|\Sigma\|_{F}\right) \xrightarrow{d}\left(T_{M}, T_{M}^{(1)}, T_{M}^{(2)}\right)
$$

where $\left(T_{n, M}, T_{M}^{(1)}, T_{M}^{(2)}\right)$ are independent copies of T_{M}.
Under the alternative, we show that the power of the proposed test for multiple change-point detection goes to 1 when there is a dense mean change.
Theorem 3.5. Assume Assumptions 3.1-3.5 hold. Suppose that there are change points at k_{1}, \ldots, k_{s}, that $k_{j}=\left\lfloor c_{j} n\right\rfloor$ for constants $0<c_{1}<\cdots<c_{s}<1$, and at least one of the change-point sizes, say for the r'th change-point, satisfies $\frac{n\left\|\Delta_{r}\right\|_{2}^{2}}{\|\Sigma\|_{F}} \rightarrow \infty$. Then $P\left(T_{n, M}>c_{2, \alpha}^{\left(M_{n}\right)}\right) \rightarrow 1$.

4. Change-point estimation

Wild binary segmentation (WBS) was introduced by Fryzlewicz (2014) as an alternative to the popular binary segmentation algorithm to estimate the changepoints locations in a univariate sequence. Wang et al. (2022) combined WBS and their SN-based test and showed that WBS outperforms binary segmentation, especially when the changes are non-monotonic. Here, we shall combine our bootstrap-based test with the WBS algorithm to estimate the locations of change-points in the mean of high-dimensional heteroscedastic data. The algorithm involves generating N random segments $\left\{\left(s_{m}, e_{m}\right)\right\}_{m=1, \ldots, N}$, calculating the single change point test statistic on each segment $\left(s_{m}, e_{m}\right)$,

$$
W\left(s_{m}, e_{m}\right)=\max _{s_{m}+2 \leq t \leq e_{m}-2} \tilde{G}_{n}\left(t ; s_{m}, e_{m}\right)
$$

and then taking a maximum over all random segments, that is, $\max _{m=1, \ldots, N} W\left(s_{m}, e_{m}\right)$. A change point is detected when $\max _{m=1, \ldots, N} W\left(s_{m}, e_{m}\right)$ $>\xi_{n}$, where ξ_{n} is a proper threshold parameter. In the event that a change point is detected, let $\widehat{m}=\arg \max _{m} W\left(s_{m}, e_{m}\right)$. The location of the changepoint is estimated at

$$
\hat{t}_{1}=\underset{s_{\widehat{m}}+2 \leq t \leq e_{\widehat{m}}-2}{\arg \max } \tilde{G}_{n}\left(t ; s_{\widehat{m}}, e_{\widehat{m}}\right)
$$

Then the data is split into two parts $\left(X_{1}, \ldots, X_{\hat{t}_{1}}\right)$ and $\left(X_{\hat{t}_{1}+1}, \ldots, X_{n}\right)$ and WBS is employed for each part until no change-points are detected.

In Wang et al. (2022), the threshold was obtained by applying the same test to the simulated iid Gaussian data to the same set of random segments. This approach makes intuitive sense since SN -based test statistic is asymptotically pivotal when there is no heterosecasticity, but is no longer meaningful in the presence of heteroscedasticity, as the asymptotic pivotal nature of the SN -based test statistic is lost and the function $H(\cdot)$ is unknown. To overcome this difficulty, we propose to adopt a bootstrap-based approach in determining the threshold. Specifically, for N random segments (s_{m}, e_{m}), we generate R independent copies of Gaussian multipliers. Let

$$
W^{*(i)}(s, e)=\max _{s+2 \leq t \leq e-2} \tilde{G}_{n}^{*(i)}(t ; s, e)
$$

be the i th bootstrap-based test statistic on the interval $[s, e]$. For the i th bootstrap replicate, we calculate

$$
\hat{\xi}_{n}^{i}=\max _{m=1, \ldots, N} W^{*(i)}\left(s_{m}, e_{m}\right)
$$

The threshold ξ_{n} is defined as the 95% quantile of the values $\left\{\hat{\xi}_{n}^{1}, \ldots, \hat{\xi}_{n}^{R}\right\}$. Note that we generate multipliers once for each bootstrap replication and apply the same multipliers in all intervals. Changepoints are now estimated by running $\operatorname{WBS}\left(1, n, \xi_{n}, \emptyset\right)$ below.

```
\(\operatorname{WBS}\left(s, e, \xi_{n}, \hat{C}\right)\)
Set of estimated changepoints: \(\hat{C}\)
if \(e-s<4\) then
    STOP;
end
else
    \(\mathcal{M}_{s, e}:=\) set of those \(1 \leq m \leq N\) for which \(s \leq s_{m}, e_{m} \leq e\)
    \(m_{0}:=\arg \max _{m \in \mathcal{M}_{s, e}} W\left(s_{m}, e_{m}\right)\)
    if \(W\left(s_{m_{0}}, e_{m_{0}}\right)>\xi_{n}\) then
        Add \(m_{0}\) to the set of estimated change-points \(\hat{C}\);
        \(\operatorname{WBS}\left(s, m_{0}, \xi_{n}, \hat{C}\right)\);
        \(\operatorname{WBS}\left(m_{0}+1, e, \xi_{n}, \hat{C}\right) ;\)
        end
        else
            Stop;
        end
end
```

Algorithm 1: Bootstrap-based WBS

5. Simulation studies

In this section, we investigate the finite sample performance of our proposed bootstrap-based tests and WBS+Bootstrap estimation method via simulations.

In Section 5.1, we present the size and power for our bootstrap-based tests in comparison with SN-based tests in Wang et al. (2022) for the settings of single and multiple change points in high-dimensional homoskedastic and heteroscedastic data. Section 5.2 examines the performance of the WBS+Bootstrap change point estimation method in comparison with the WBS+SN based approach in Wang et al. (2022) when the unconditional heteroscedasticity is present.

5.1. Testing

Recall that we assume the following data generating model

$$
X_{i}=\mu_{i}+H(i / n) Z_{i}, \text { for } i=1, \ldots, n
$$

We generate $Z_{i}, i=1, \ldots, n$ independently from a multivariate normal distribution $\operatorname{MVN}(\mathbf{0}, \Sigma)$, where the following three different types of covariance matrix Σ are considered,

- (Case 1) $\mathrm{AR}(1)$ covariance matrix with $\Sigma_{i j}=0.5^{|i-j|}$;
- (Case 2) $\mathrm{AR}(1)$ covariance matrix with $\Sigma_{i j}=0.8^{|i-j|}$;
- (Case 3) Compound symmetric covariance matrix with $\Sigma_{i j}=0.5^{\mathbf{1}(i \neq j)}$.

Cases 1 and 2 both belong to weakly dependent (across coordinates of X) models and it will be interesting to see how the increased dependence from Case 1 to Case 2 impact the finite sample size accuracy. Case 3 corresponds to a model with strong dependence, and it violates the componentwise weakly dependent assumption we imposed in our theory (see Assumptions 1\&2). Nevertheless it would be interesting to see how robust our bootstrap-based tests are with respect to strong componentwise dependence.

Next, we consider the following time varying trend function $H(\cdot)$, which specifies the trend in time-varying variance of each component but not the trend in mean. We use the terminology "trend" with the understanding that it always refers to the time-varying variance.

- A0: $H(i / n)=\mathbf{I}_{p}, i=1, \ldots, n$. This is the case for no trend.
- A1: $H(i / n)=\left\{0.2 \mathbf{1}_{i \leq n / 2}+0.6 \mathbf{1}_{i>n / 2}\right\} \mathbf{I}_{p}$ (piecewise constant trend).
- A2: $H(i / n)=(i / n) \mathbf{I}_{p}$ (linear trend).
- A3: $H(i / n)=\left[0.2\left\{1+\cos ^{2}\left(i / n^{4 / 5}\right)\right\}\right] \mathbf{I}_{p}$. This trend function has a cosine shape.
- A4: $H(i / n)=\{0.2+0.1 \log (1+|i-n / 2|)\} \mathbf{I}_{p}$. This trend function has a sharp change around $n / 2$.
- A1 + A2: Apply trend function A1 to the first $p / 2$ coordinates in Z, and apply trend function A2 to the rest of coordinates.
- A1 + A3: Apply trend function A1 to the first $p / 2$ coordinates in Z, and apply trend function A3 to the rest of coordinates.
- A1 + A4: Apply trend function A1 to the first $p / 2$ coordinates in Z, and apply trend function A4 to the rest of coordinates.

Some of these trend functions, such as A1, A3 and A4, have been considered in Zhao and Li (2012), who studied the inference of the mean for a univariate time series with time-varying variance.

First, we investigate the case where there is at most one change point in the mean. Under the null hypothesis, we set $\mu_{i}=\mathbf{0}$ for all $i=1, \ldots, n$. We consider $(n, p)=(400,100),(100,100),(400,400)$, for all choices of Σ and $H(\cdot)$ described above. The empirical sizes at significance levels $\alpha=0.05,0.1$ are reported based on 1000 Monte Carlo simulations. The results of SN-based test statistic for one change point (i.e., T_{n} in Wang et al., 2022) are also reported for comparison. From Table 1, we can see that for AR covariance matrix with $\rho=0.5,0.8$, both tests achieve size accuracy, i.e., the empirical sizes are close to the nominal level, when there is no time-varying heteroscedasticity. However, when time varying heteroscedasticity is present, the SN-based test exhibits pronounced over-size distortion in the case of $\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 1+\mathrm{A} 2$, and $\mathrm{A} 1+\mathrm{A} 3$. By contrast, the bootstrap-based test we propose achieves accurate size across all trend types. When the covariance matrix is compound symmetric, the model assumptions required for the validity of both SN -based test and bootstrap-based test are violated. It is observed that the SN-based test over-rejects even when there is no trend, which is consistent with the result in Wang et al. (2022). Interestingly, the bootstrap-based test still maintains accurate size for all settings. This suggests that the applicability of bootstrap-based test may be broader than what we are able to justify. It would be interesting but may be challenging to provide a new theory that supports the robustness of our bootstrap-based test when the panel dependence is strong.

Next, we investigate the power of the proposed bootstrap test under the alternative of one change point. We consider $(n, p)=(100,100)$ and the mean shift occurs at the center of data, i.e., $\mu_{i}=\Delta \mathbf{1}\{i \geq\lfloor n / 2\rfloor\}$. We provide the power curves of the proposed bootstrap test and SN-based test for two AR covariance matrices and all trend types. We let Δ steadily increase from 0 to some larger values and evaluate the empirical power at different change magnitudes based on 1000 Monte Carlo simulations. In Figure 1, the solid line corresponds to the power for bootstrap-based test and the dashed line corresponds to SNbased test, with the colors red and black indicating the results for $\rho=0.8$ and $\rho=0.5$, respectively. When there is no time varying trend in variance, the two tests have similar size and power. Similar phenomenon holds for trend types A3, A4, and A1+A4, for all of which we observe size accuracy for both tests. On the other hand, the SN-based test shows significant size distortion for trend types $\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 1+\mathrm{A} 2$ and $\mathrm{A} 1+\mathrm{A} 3$, making it difficult to compare the power of the two tests directly. To make a fair comparison, we also report the size adjusted power of the SN -based test for these cases. To be more specific, we calibrate the empirical critical values used in SN-based test such that the empirical sizes are exactly 0.05 . The size adjusted powers of SN-based test are shown in dotted lines in the figures for trend types $\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 1+\mathrm{A} 2$, and $\mathrm{A} 1+\mathrm{A} 3$. The size for the bootstrap-based test is fairly close to 0.05 , so we did not make any power adjustment. A direct comparison between the size-adjusted power of SN-based test and the raw power of bootstrap-based test suggests that the powers are

Table 1. Size for single change point testing under different trend functions.

$n=400$	AR 0.5				AR 0.8				CS			
$p=100$	SN		Boot		SN		Boot		SN		Boot	
α	0.05	0.1	0.05	0.1	0.05	0.1	0.05	0.1	0.05	0.1	0.05	0.1
A0	0.050	0.096	0.052	0.106	0.063	0.090	0.05	0.098	0.093	0.123	0.046	0.093
A1	0.171	0.284	0.050	0.097	0.181	0.268	0.057	0.099	0.141	0.176	0.053	0.093
A2	0.244	0.341	0.049	0.113	0.223	0.316	0.052	0.104	0.151	0.194	0.046	0.101
A3	0.041	0.074	0.052	0.109	0.043	0.077	0.061	0.106	0.090	0.113	0.049	0.094
A4	0.038	0.08	0.045	0.100	0.052	0.090	0.045	0.102	0.099	0.124	0.048	0.094
$\mathrm{A} 1+\mathrm{A} 2$	0.217	0.313	0.051	0.111	0.193	0.298	0.059	0.106	0.150	0.179	0.06	0.097
$\mathrm{A} 1+\mathrm{A} 3$	0.126	0.198	0.052	0.106	0.12	0.188	0.051	0.096	0.133	0.169	0.05	0.092
A1+A4	0.054	0.090	0.056	0.103	0.056	0.095	0.045	0.098	0.099	0.134	0.053	0.092
$\cdots=100$	AR 0.5				AR 0.8				CS			
$p=100$	SN		Boot		SN		Boot		SN		Boot	
α	0.05	0.1	0.05	0.1	0.05	0.1	0.05	0.1	0.05	0.1	0.05	0.1
A0	0.047	0.085	0.049	0.106	0.055	0.097	0.043	0.085	0.116	0.140	0.068	0.128
A1	0.158	0.238	0.044	0.098	0.165	0.228	0.043	0.109	0.133	0.170	0.056	0.111
A2	0.208	0.286	0.046	0.106	0.205	0.290	0.046	0.108	0.157	0.207	0.057	0.118
A3	0.052	0.094	0.048	0.114	0.056	0.088	0.050	0.096	0.117	0.147	0.071	0.132
A4	0.036	0.068	0.047	0.106	0.049	0.081	0.040	0.090	0.111	0.146	0.060	0.128
$\mathrm{A} 1+\mathrm{A} 2$	0.173	0.263	0.048	0.112	0.185	0.256	0.045	0.108	0.156	0.196	0.058	0.115
$\mathrm{A} 1+\mathrm{A} 3$	0.078	0.134	0.044	0.100	0.087	0.130	0.050	0.111	0.108	0.135	0.060	0.120
A1+A4	0.041	0.083	0.042	0.100	0.063	0.103	0.039	0.098	0.106	0.142	0.058	0.123
$n=400$	AR 0.5				AR 0.8				CS			
$p=400$	SN		Boot		SN		Boot		SN		Boot	
α	0.05	0.1	0.05	0.1	0.05	0.1	0.05	0.1	0.05	0.1	0.05	0.1
A0	0.051	0.101	0.059	0.124	0.043	0.088	0.047	0.115	0.094	0.128	0.050	0.090
A1	0.186	0.284	0.057	0.105	0.180	0.264	0.049	0.099	0.147	0.179	0.052	0.089
A2	0.241	0.344	0.058	0.115	0.255	0.350	0.052	0.113	0.151	0.189	0.049	0.098
A3	0.035	0.073	0.057	0.124	0.040	0.069	0.056	0.102	0.090	0.115	0.051	0.092
A4	0.046	0.087	0.061	0.120	0.039	0.073	0.047	0.096	0.100	0.129	0.052	0.092
A1+A2	0.223	0.326	0.062	0.117	0.220	0.322	0.061	0.114	0.148	0.174	0.053	0.100
$\mathrm{A} 1+\mathrm{A} 3$	0.118	0.192	0.052	0.098	0.123	0.193	0.056	0.110	0.130	0.166	0.051	0.090
$\underline{\mathrm{A} 1+\mathrm{A} 4}$	0.047	0.092	0.060	0.114	0.040	0.084	0.043	0.098	0.105	0.135	0.050	0.090

FIG 1. Power curves for single change point testing under different trend functions.

Table 2
Size and power of multiple change points testing, $(n, p)=(50,50)$.

$\underline{A R(0.5)}$	H_{0}				$H_{1}(2 C P)$				$H_{2}(3 C P)$			
	SN		Boot		SN		Boot		SN		Boot	
α	0.05	0.1	0.05	0.1	0.05	0.1	0.05	0.1	0.05	0.1	0.05	0.1
A0	0.143	0.206	0.039	0.098	0.253	0.335	0.166	0.321	0.242	0.320	0.080	0.194
A1	0.222	0.318	0.037	0.094	0.999	0.999	0.839	0.934	1.000	1.000	0.493	0.727
A2	0.384	0.495	0.040	0.097	0.994	0.997	0.448	0.645	1.000	1.000	0.189	0.366
A1+A2	0.242	0.329	0.043	0.106	0.997	1.000	0.601	0.777	1.000	1.000	0.268	0.487
	H_{0}				$H_{1}(2 C P)$				$\mathrm{H}_{2}(3 \mathrm{CP})$			
AR(0.8)	SN		Boot		SN		Boot		SN		Boot	
α	0.05	0.1	0.05	0.1	0.05	0.1	0.05	0.1	0.05	0.1	0.05	0.1
A0	0.226	0.288	0.052	0.116	0.319	0.386	0.125	0.245	0.299	0.371	0.091	0.180
A1	0.307	0.386	0.045	0.122	0.972	0.990	0.435	0.609	0.994	0.997	0.230	0.389
A2	0.413	0.524	0.066	0.121	0.914	0.946	0.211	0.380	0.968	0.981	0.142	0.263
$\underline{\mathrm{A} 1+\mathrm{A} 2}$	0.314	0.397	0.062	0.125	0.935	0.954	0.266	0.454	0.966	0.981	0.161	0.295

quite comparable, with slight advantage for the bootstrap-based test in some settings, such as A1, A2, and A1+A2.

Next, we investigate the performance of the bootstrap-based test that targets unknown number of change points, where there are more than one change point under the alternative. We only present the results for trend types A0, A1, A2 and A1 + A2. Following Wang et al. (2022), we consider a two-change-points alternative (2CP)

$$
\mu_{i}=\Delta \mathbf{1}\{\lfloor n / 3\rfloor \leq i \leq\lfloor 2 n / 3\rfloor\}
$$

and a three-change-points alternative (3CP),

$$
\mu_{i}=\Delta \mathbf{1}\{\lfloor n / 4\rfloor \leq i \leq\lfloor n / 2\rfloor\}+\Delta \mathbf{1}\{\lfloor 3 n / 4\rfloor \leq i \leq n\} .
$$

We consider two AR covariance matrices used before when generating Z_{i} and set $(n, p)=(50,50)$ and $\Delta=0.2$. We compare the empirical size and power with those of SN-based test statistic T_{n}^{\diamond} in Wang et al. (2022) based on 1000 replications.

According to Table 2, we can see that even for homoscedastic case (trend type A0), the SN-based test is unable to control the size, which is presumably due to relatively small sample size n and dimension p. The size distortion for the SN-based test when there are time varying heterocedasticity is obvious. In comparison, the bootstrap test shows quite accurate size for both homoscedastic and heteroscedastic cases. Notice that under the alternatives where there are 2 or 3 change points, the proposed bootstrap test still shows respectable power in most cases. Due to the size inflation of SN-based test, the interpretation of its high power needs to be done with caution. Overall, we would not recommend to use SN-based test when there is time varying heteroscedasticity and bootstrapbased test is preferred.

5.2. Estimation

In this subsection, we examine the finite sample performance of the WBS+Bootstrap based change point estimation method described in Section 4. We followed the same setting used in Wang et al. (2022). Let $n=120, p=50$, and change point locations are 30,60 and 90 . These change points partitioned the data into four zones. We draw i.i.d. normal samples from $N\left(\boldsymbol{\nu}_{j}, \boldsymbol{I}_{p}\right), j=1,2,3,4$ for each zone. Let $\boldsymbol{\theta}_{j}=\boldsymbol{\nu}_{j+1}-\boldsymbol{\nu}_{j}$ be the strength of the signals. For the dense case, we choose $\boldsymbol{\theta}_{1}=k \times \mathbf{1}_{p}, \boldsymbol{\theta}_{2}=-k \times \mathbf{1}_{p}, \boldsymbol{\theta}_{3}=k \times \mathbf{1}_{p}$ and $k=\sqrt{2.5 / p}, 2 \sqrt{2.5 / p}$. We consider all the trend functions.

In addition to reporting the frequency for the difference between the estimated number of change points and the actual number of change points $(\hat{N}-N)$, we also use the mean squared error (MSE) of $(\hat{N}-N)$ to measure the estimation accuracy for the number of change point. Similar to the comparison in Wang et al. (2022), we can view the change point estimation problem as a special case of classification. We treat the data between two successive change points as if they are in the same category, and evaluate the classification accuracy based on Adjusted Rand Index (ARI) (Rand, 1971; Hubert and Arabie, 1985; Wang and Samworth, 2018). ARI can only take values between 0 and 1, and the larger ARI is associated with the better accuracy. When all change points are estimated perfectly, the ARI is 1 . If there is no change point estimated, the corresponding ARI is 0 . The results are summarized in Table 3. Notice that for weaker signal $k=\sqrt{2.5 / p}$, even when there is no trend (Type A0), the $\mathrm{WBS}+\mathrm{SN}$ is unable to provide an accurate estimate while our WBS+Bootstrap correctly estimates the number and location of change points. When there is heteroscedasticity, our WBS+Bootstrap also substantially outperforms WBS+SN, in particular for trend types A2, A4, A1 + A 2 and A1+ A4. Both methods perform worse for trend type A2 which corresponds to a linear trend, while the WBS + Bootstrap still maintains reasonably good MSE and ARI. For the strong signal $k=2 \sqrt{2.5 / p}$ case, WBS+SN still cannot compete with WBS+Bootstrap when there is no trend (A0). For the heteroscedastic cases, WBS+SN seems to perform better than the no trend case. However, this is due to the fact that the trend function yields a smaller variance, which makes the signal to noise ratio larger and easier for $\mathrm{WBS}+\mathrm{SN}$ to estimate the change point locations. For all four trend types we considered, the estimated number of change points \hat{N} by WBS+Bootstrap are all correct in 200 replications (i.e., MSE $=0$), which is another evidence to support the superiority of WBS+Bootstrap over WBS+SN.

6. Real data application

In this section, we compare the performance of the proposed change point location estimation method on the micro-array bladder tumor dataset. The ACGH (Array Comparative Genomic Hybridisation) data is publicly available and it contains log intensity ratio measurements for 43 individuals at 2215 different loci on their genome. The dataset is available in R package "ecp" and was also studied by Wang and Samworth (2018) and Wang et al. (2022). Following the latter

TABLE 3
WBS for change point estimation.

$\sqrt{2.5 / p}$		$\hat{N}-N$					MSE	ARI
		-3	-2	-1	0	1		
A0	SN	196	4	0	0	0	8.900	0.005
	Boot	90	64	34	12	0	5.504	0.277
A1	SN	0	6	161	33	0	0.926	0.723
	Boot	0	0	0	200	0	0.000	0.985
A2	SN	0	88	110	2	0	2.311	0.524
	Boot	2	12	46	140	0	0.564	0.865
A3	SN	0	0	0	198	2	0.010	0.967
	Boot	0	0	0	200	0	0.000	0.999
A4	SN	15	65	81	28	1	2.389	0.618
	Boot	0	0	0	200	0	0.000	0.984
$\mathrm{A} 1+\mathrm{A} 2$	SN	0	54	136	10	0	1.761	0.594
	Boot	0	2	16	182	0	0.121	0.949
$\mathrm{A} 1+\mathrm{A} 3$	SN	0	2	90	107	1	0.496	0.826
	Boot	0	0	0	199	1	0.005	0.993
$\mathrm{A} 1+\mathrm{A} 4$	SN	11	43	106	40	0	1.888	0.634
	Boot	0	0	0	200	0	0.000	0.987
$2 \sqrt{2.5 / p}$		$\hat{N}-N$					MSE	ARI
		-3	-2	-1	0	1		
A0	SN	31	55	70	43	1	2.855	0.538
	Boot	0	0	0	200	0	0.000	0.986
A1	SN	0	0	0	198	2	0.010	0.975
	Boot	0	0	0	200	0	0.000	0.985
A2	SN	0	0	2	197	1	0.015	0.964
	Boot	0	0	0	200	0	0.000	0.998
A3	SN	0	0	0	198	2	0.010	0.981
	Boot	0	0	0	200	0	0.000	0.999
A4	SN	0	0	0	198	2	0.010	0.971
	Boot	0	0	0	200	0	0.000	0.984
$\mathrm{A} 1+\mathrm{A} 2$	SN	0	0	0	196	4	0.020	0.970
	Boot	0	0	0	200	0	0.000	0.999
$\mathrm{A} 1+\mathrm{A} 3$	SN	0	0	0	198	2	0.010	0.975
	Boot	0	0	0	200	0	0.000	0.993
$\mathrm{A} 1+\mathrm{A} 4$	SN	0	0	0	199	1	0.005	0.968
	Boot	0	0	0	200	0	0.000	0.987

paper, we only considered first 200 loci and perform change point estimation using WBS+Bootstrap and compare with WBS+SN.

To examine whether there are changes in the variance of each component, we apply the test for constant variance proposed by Schmidt et al. (2021) for a univariate time series to each of the 43 subjects. For a sequence of univariate random variable D_{1}, \ldots, D_{n}, the test statistic is constructed as follows:

$$
U(n)=\frac{1}{b_{n}\left(b_{n}-1\right)} \sum_{1 \leq j \neq k \leq b_{n}}\left|\log \hat{\sigma}_{j}^{2}-\log \hat{\sigma}_{k}^{2}\right|
$$

where

$$
\hat{\sigma}_{j}^{2}=\frac{1}{l_{n}} \sum_{i=(j-1) l_{n}+1}^{j l_{n}}\left(D_{i}-\frac{1}{l_{n}} \sum_{r=(j-1) l_{n}+1}^{j l_{n}} D_{r}\right)^{2}, \quad l_{n}=\left\lfloor n^{s}\right\rfloor, \quad b_{n}=\left\lfloor n / l_{n}\right\rfloor .
$$

Under the null, $U(n)$ is asymptotically normal,

$$
\sqrt{b_{n}}\left(\frac{\sqrt{l_{n}}}{\hat{\kappa}^{*}} U(n)-\frac{2}{\sqrt{\pi}}\right) \xrightarrow{D} N\left(0, \frac{4}{3}+\frac{8}{\pi}(\sqrt{3}-2)\right),
$$

where $\hat{\kappa}^{* 2}$ is the estimated long run variance

$$
\begin{gathered}
\hat{\kappa}^{*}=\frac{1}{\tilde{b}_{n}} \sqrt{\frac{\pi}{2}} \frac{1}{\hat{\sigma}_{H}^{2}} \sum_{j=1}^{\tilde{b}_{n}}\left|\frac{1}{\sqrt{\tilde{l}_{n}}} \sum_{i=(j-1) \tilde{l}_{n}+1}^{j \tilde{l}_{n}}\left(\tilde{D}_{i}^{2}-\hat{\sigma}_{H}^{2}\right)\right|, \\
\tilde{D}_{i}=D_{i}-\frac{1}{l_{n}} \sum_{r=(j-1) l_{n}+1}^{j l_{n}} D_{r}, \quad \hat{\sigma}_{H}^{2}=\frac{1}{n} \sum_{i=1}^{n} \tilde{D}_{i}^{2}, \\
\tilde{l}_{n}=\left\lfloor n^{q}\right\rfloor, \quad \tilde{b}_{n}=\left\lfloor n / \tilde{l}_{n}\right\rfloor .
\end{gathered}
$$

We set the tuning parameters $s=0.7$ and $q=0.5$, following the recommendation in Schmidt et al. (2021). An appealing feature of this test is that it allows for changes in the mean, in particular, a piecewise Lipschitz-continuous mean function. We treat the resulting 43 p -values as independent and apply the Higher Criticism test (Donoho and Jin, 2004) to determine whether there is a variance change in any of the 43 dimensions. The resulting p -value is 0.022 , which indicates quite strong evidence against the constant variance assumption for all components. The WBS+SN yields 6 change points $\{39,74,87,134,173,191\}$, while the WBS+Bootstrap only reports 3 change points at $\{73,135,173\}$, which largely coincides with the three change-points $\{74,134,173\}$ detected by WBS+SN. The additional change-point locations obtained from WBS+SN could be spurious due to the variance instability un-accounted for in the latter procedure.

7. Conclusion

In this paper, we develop a bootstrap-based test for the mean changes in highdimensional heteroscedastic data. Existing literature on high-dimensional mean change detection exclusively focuses on the homoscedastic case, and the applicability of existing tests is questionable when there is time-varying heterscedasticity. Building on the U-statistic approach proposed in Wang et al. (2022), we develop a new test statistic and a bootstrap-based approximation for single change point testing. The bootstrap consistency is justified under mild assumptions on the heteroscedasticity and componentwise dependence. Our test involves no tuning parameters and is easy to implement. Extensions to multiple change-points testing and estimation using WBS are also presented. Numerical comparison demonstrates the robustness of our proposed testing and estimation procedures with respect to time-varying heteroscedasticity and the degree of panel dependence.

To conclude, we mention a few possible extensions. First, it would be interesting to extend our method to allow temporal dependence, that is, assuming $\left\{Z_{i}\right\}$
to be stationary and weakly dependent instead of independent observations. Under this setting, the Gaussian multiplier bootstrap may not be adequate. The dependent wild bootstrap proposed in Shao (2010a) may be needed to capture the serial dependence. Second, as the numerical results suggest, the bootstrapbased test may still work when the panel dependence is strong, i.e., compound symmetric case. It would be desirable to expand our theory to cover this interesting case. Third, we did not provide any theoretical support for the consistency of WBS+Bootstrap, although the empirical performance is very encouraging. Further theoretical investigation is left for future work.

Appendix A

In the Appendix, we include all the technical proofs for the theorems. Note that under H_{0}, the test statistics T_{n} can be viewed a continuous transformation of a partial sum process

$$
S_{n}(a, b)=\sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i} X_{i+1}^{T} X_{j}
$$

for any $0 \leq a<b \leq 1$ and $\lfloor n a\rfloor+1 \leq\lfloor n b\rfloor-1$.
Consider the following representation of the bootstrapped version of the partial sum process $S_{n}^{*}(a, b)$:

$$
\begin{aligned}
S_{n}^{*}(a, b)= & \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i}\left(X_{i+1}-\bar{X}\right)^{T}\left(X_{j}-\bar{X}\right) e_{i+1} e_{j} \\
= & \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i} X_{i+1}^{T} X_{j} e_{i+1} e_{j}-\bar{X}^{T} \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i} X_{j} e_{i+1} e_{j} \\
& -\bar{X}^{T} \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i} X_{i+1} e_{i+1} e_{j}+\bar{X}^{T} \bar{X} \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i} e_{i} e_{j} \\
= & S_{n, 1}^{*}(a, b)+S_{n, 2}^{*}(a, b)+S_{n, 3}^{*}(a, b)+S_{n, 4}^{*}(a, b) .
\end{aligned}
$$

The proofs are divided into three subsections: In Section A.1, we show the bootstrap process $S_{n}^{*}(a, b)$ converges to the same limiting process of $S_{n}(a, b)$ by using the unconditional convergence argument proposed in Bücher and Kojadinovic (2019). The asymptotic results in Theorem 3.1 and Theorem 3.2 follow from these arguments. In Section A.2, we study the behavior of $S_{n}(a, b)$ and $S_{n}^{*}(a, b)$ under three different kinds of alternatives. The power of the bootstrap test presented in Theorem 3.3 follows from these results. Finally, in Section A.3, we show theoretical results for multiple change points testing, which is a generalization of the first two parts.

A.1. Proof of Theorems 3.1 and 3.2

A.1.1. Process convergence of S_{n} and S_{n}^{*} under the null

This section contains the crucial technical ingredient for establishing bootstrap consistency. Let

$$
S_{n}^{k, *}(a, b):=\sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i}\left(X_{i+1}-\bar{X}\right)^{T}\left(X_{j}-\bar{X}\right) e_{i+1, k} e_{j, k}
$$

where $\left\{e_{i, k}\right\}_{i=1, \ldots, n}, k=1,2$ denote two independent collections of i.i.d. $N(0,1)$ random variables. The main result in this section establishes process convergence of S_{n} and joint convergence of ($S_{n}, S_{n}^{1, *}, S_{n}^{2, *}$) under the null. The latter result will be later combined with and the results in Bücher and Kojadinovic (2019) to establish bootstrap consistency under the null.

Proposition A.1. Let Assumptions 3.1-3.4 hold. Then

$$
\left\{\frac{1}{n\|\Sigma\|_{F}} S_{n}(a, b)\right\}_{(a, b) \in[0,1]^{2}} \rightsquigarrow Q \text { in } \ell^{\infty}\left([0,1]^{2}\right),
$$

where the centered Gaussian process Q is defined in Theorem 3.1. If Assumption 3.5 also holds then

$$
\begin{align*}
& \left(\left\{\frac{S_{n}(a, b)}{n\|\Sigma\|_{F}}\right\}_{(a, b) \in[0,1]^{2}},\left\{\frac{S_{n}^{1, *}(a, b)}{n\|\Sigma\|_{F}}\right\}_{(a, b) \in[0,1]^{2}},\left\{\frac{S_{n}^{2, *}(a, b)}{n\|\Sigma\|_{F}}\right\}_{(a, b) \in[0,1]^{2}}\right) \\
& \rightsquigarrow\left(Q, Q^{(1)}, Q^{(2)}\right) \tag{2}
\end{align*}
$$

where $Q, Q^{(1)}, Q^{(2)}$ are i.i.d. copies of Q and convergence takes place in $\ell^{\infty}\left([0,1]^{2}\right) \times \ell^{\infty}\left([0,1]^{2}\right) \times \ell^{\infty}\left([0,1]^{2}\right)$. Moreover, the sample paths of each process are asymptotically uniformly equicontinuous in probability with respect to the Euclidean metric in $[0,1]^{2}$.

The proof of Proposition A. 1 is long and technical and will be split over several subsections. Since the proof of the second statement contains the proof of the first statement, we will only provide that proof. A close look will reveal that all parts which are relevant to showing the first part go through without Assumption 3.5.
Proof of Theorem 3.1. Begin by observing the representation

$$
\begin{aligned}
\tilde{G}_{n}(k)= & \frac{2(n-k)(n-k-1)}{n^{3}} \widetilde{S}_{n}(1, k)+\frac{2 k(k-1)}{n^{3}} \widetilde{S}_{n}(k+1, n) \\
& -\frac{2 k(n-k)}{n^{3}}\left(\widetilde{S}_{n}(1, n)-\widetilde{S}_{n}(1, k)-\widetilde{S}_{n}(k+1, n)\right)
\end{aligned}
$$

where

$$
\widetilde{S}_{n}(k, m):=\sum_{i=k}^{m} \sum_{j=k}^{i} X_{i+1}^{T} X_{j}
$$

Proposition A. 1 and uniform asymptotic equi-continuity of the sample path of S_{n} in probability together with some simple calculations yields,

$$
\frac{1}{\|\Sigma\|_{F}} \tilde{G}_{n}(\lfloor n r\rfloor) \rightsquigarrow G(r):=2(1-r) Q(0, r)+2 r Q(r, 1)-2 r(1-r) Q(0,1)
$$

Since the sample paths of Q are uniformly continuous with respect to the Euclidean metric on $[0,1]^{2}$, a simple calculation shows that the sample paths of $G(r ; 0,1)$ are uniformly continuous with respect to the Euclidean metric on $[0,1]$. Consider the maps

$$
\Phi_{n}(f):=\max _{k=2, \ldots, n-3} f(k / n)
$$

defined for bounded functions $f:[0,1] \rightarrow \mathbb{R}$. With this definition, we have $T_{n}=\Phi_{n}\left(\tilde{G}_{n}\right)$. Consider the map

$$
\Phi(f)=\sup _{r \in[0,1]} f(r)
$$

defined for bounded functions $f:[0,1] \rightarrow \mathbb{R}$. It is straightforward to see that, for any sequence of bounded functions f_{n} with $\left\|f_{n}-f\right\|_{\infty}=o(1)$ for a continuous function f, we have $\Phi_{n}\left(f_{n}\right) \rightarrow \Phi(f)$. Applying the extended continuous mapping theorem (see Theorem 1.11.1 in Van Der Vaart and Wellner, 1996), this implies

$$
\frac{1}{\|\Sigma\|_{F}} T_{n}=\Phi_{n}\left(\frac{1}{\|\Sigma\|_{F}} \tilde{G}_{n}\right) \rightsquigarrow \Phi(G)=\sup _{r \in[0,1]} G(r)=T,
$$

which completes the proof.
Proof of Theorem 3.2 Similar arguments as given in the proof of Theorem 3.1 but utilizing equation (2) instead of the first part of that proposition show that

$$
\begin{equation*}
\left(\frac{T_{n}}{\|\Sigma\|_{F}}, \frac{T_{n, 1}^{*}}{\|\Sigma\|_{F}}, \frac{T_{n, 2}^{*}}{\|\Sigma\|_{F}}\right) \rightsquigarrow\left(T, T^{\prime}, T^{\prime \prime}\right) \tag{3}
\end{equation*}
$$

where $T^{\prime}, T^{\prime \prime}$ are i.i.d. copies of T and $T_{n, 1}^{*}, T_{n, 2}^{*}$ are two copies of the bootstrap statistic each with independent sets of multipliers e_{i}.

Next observe that by Corollary 1.3 and Remark 4.1 in Gaenssler et al. (2007) the function

$$
t \mapsto P\left(\sup _{r \in[0,1]}|G(r)| \leq t\right)
$$

is continuous on \mathbb{R} and strictly increasing on \mathbb{R}^{+}. This implies that the function

$$
H(t):=P\left(\sup _{r \in[0,1]} G(r) \leq t\right)
$$

satisfies $H(\varepsilon)>0$ for all $\varepsilon>0$. Indeed,

$$
P\left(\sup _{r \in[0,1]} G(r) \leq \varepsilon\right) \geq P\left(\sup _{r \in[0,1]}|G(r)| \leq \varepsilon\right)>0
$$

since the latter is strictly increasing on \mathbb{R}^{+}. Thus the left support point of the cdf H must be in $t \leq 0$. Hence by Theorem 1 in Tsirel'Son (1976) the function H is continuous on $(0, \infty)$. Clearly $H(0) \leq 1-P(G(1 / 2)>0)=1 / 2$.

The proof is completed by observing that the conclusion of Lemma 4.2 in Bücher and Kojadinovic (2019) remains true if continuity of the cdf F in there (corresponding to H in our case) is replaced by continuity on $(0, \infty)$ and the additional assumption $G^{-1}(1-\alpha) \in(0, \infty)$ is made (note that $1-\alpha$ in our notation corresponds to α in Bücher and Kojadinovic, 2019). The condition $G^{-1}(1-\alpha) \in(0, \infty)$ is guaranteed by the assumption $\alpha<1 / 2$. Next observe that (3) verifies Condition (a) in Lemma 2.2 in the latter paper. Condition 4.1 in Bücher and Kojadinovic (2019) is satisfied as well and relaxing continuity of the cdf of the limit was described above. This completes the proof.

A.2. Proof of Proposition A. 1

We begin by providing an overview of the proof: first, we show that the process $S_{n}^{k, *}$ admits the representation

$$
\begin{align*}
S_{n}^{k, *}(a, b) & =\sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i} X_{i+1}^{T} X_{j} e_{i+1} e_{j}+o_{P}\left(n\|\Sigma\|_{F}\right) \\
& =: S_{n, 1}^{k, *}(a, b)+o_{P}\left(n\|\Sigma\|_{F}\right) \tag{4}
\end{align*}
$$

uniformly in $a, b \in[0,1]$, see Section A.2.2. Thus it suffices to establish (2) with $S_{n, 1}^{k, *}$ instead of $S_{n}^{k, *}$. Then, in Section A.2.1, we show that under Assumptions 3.1-3.4,

$$
\begin{align*}
\lim _{\delta \downarrow 0} \limsup _{n \rightarrow \infty} P\left(\sup _{\|u-v\|_{2} \leq \delta}\left|\frac{1}{n\|\Sigma\|_{F}} S_{n}(u)-\frac{1}{n\|\Sigma\|_{F}} S_{n}(v)\right|>x\right)=0, \tag{5}\\
\lim _{\delta \downarrow 0} \limsup _{n \rightarrow \infty} P\left(\sup _{\|u-v\|_{2} \leq \delta}\left|\frac{1}{n\|\Sigma\|_{F}} S_{n, 1}^{1, *}(u)-\frac{1}{n\|\Sigma\|_{F}} S_{n, 1}^{1, *}(v)\right|>x\right)=0 . \tag{6}
\end{align*}
$$

This implies that each of the processes $S_{n} / n\|\Sigma\|_{F}, S_{n, 1}^{1, *} / n\|\Sigma\|_{F}, S_{n, 1}^{2, *} / n\|\Sigma\|_{F}$ is tight. Finally, we show joint finite-dimensional convergence of the processes $S_{n} / n\|\Sigma\|_{F}, S_{n, 1}^{1, *} / n\|\Sigma\|_{F}, S_{n, 1}^{2, *} / n\|\Sigma\|_{F}$ to the joint limit in (2), again under Assumptions 3.1-3.4 (see Section A.2.3). Combined, the results above imply the statement in (2). Note in particular that process convergence of $S_{n} /\left(n\|\Sigma\|_{F}\right)$ follows under just Assumptions 3.1-3.4 without utilizing Assumption 3.5.

Before proceeding, we state a useful technical Lemma that we will utilize in several places throughout the proof.
Lemma A.1. Under Assumptions 3.2 and 3.3 we have for a constant \tilde{C} independent of n, p and the distribution of Z we have for $s=4,6$

$$
\max _{j_{1}, \ldots, j_{s}, k_{1}, \ldots, k_{s}=1, k_{i} \neq j_{i}}\left|E\left[X_{k_{1}}^{T} X_{j_{1}} \cdots X_{k_{s}}^{T} X_{j_{s}}\right]\right| \leq \tilde{C} B^{2 s}\|\Sigma\|_{F}^{s}
$$

Proof. Observe that by the generalized version of Hölder's inequality

$$
\begin{aligned}
\left|E\left[X_{k_{1}}^{T} X_{j_{1}} \cdots X_{k_{s}}^{T} X_{j_{s}}\right]\right| & \leq E\left[\left|X_{k_{1}}^{T} X_{j_{1}}\right|^{s}\right]^{1 / s} \cdots E\left[\left|X_{k_{s}}^{T} X_{j_{s}}\right|^{s}\right]^{1 / s} \\
& \leq \max _{k \neq j} E\left[\left|X_{k}^{T} X_{j}\right|^{s}\right] .
\end{aligned}
$$

Now let \mathcal{P}_{s} denote the set of disjoint partitions π of the set $1, \ldots, s$ such that With this notation we obtain for $k \neq j$

$$
\begin{aligned}
E & {\left[\left|X_{k}^{T} X_{j}\right|^{s}\right] } \\
& =\left|\sum_{l_{1}, \ldots, l_{s}=1}^{p} H_{l_{1}}(k / n) H_{l_{1}}(j / n) \cdots H_{l_{s}}(k / n) H_{l_{s}}(j / n) E\left[Z_{k, l_{1}} Z_{j, l_{1}} \cdots Z_{k, l_{s}} Z_{j, l_{s}}\right]\right| \\
& =\left|\sum_{l_{1}, \ldots, l_{s}=1}^{p} H_{l_{1}}(k / n) H_{l_{1}}(j / n) \cdots H_{l_{s}}(k / n) H_{l_{s}}(j / n)\left(E\left[Z_{k, l_{1}} \cdots Z_{k, l_{s}}\right]\right)^{2}\right| \\
& \leq B^{2 s} \sum_{l_{1}, \ldots, l_{s}=1}^{p}\left(E\left[Z_{1, l_{1}} \cdots Z_{1, l_{s}}\right]\right)^{2} \\
& =B^{2 s} \sum_{l_{1}, \ldots, l_{s}=1}^{p}\left(\sum_{\pi \in \mathcal{P}_{s}} \prod_{B \in \pi} \operatorname{cum}\left(Z_{1, l_{j}}: j \in B\right)\right)^{2} \\
& \leq B^{2 s}\left|\mathcal{P}_{s}\right| \sum_{l_{1}, \ldots, l_{s}=1}^{p} \sum_{\pi \in \mathcal{P}_{s}} \prod_{B \in \pi} \operatorname{cum}\left(Z_{1, l_{j}}: j \in B\right)^{2} \\
& =B^{2 s}\left|\mathcal{P}_{s}\right| \sum_{\pi \in \mathcal{P}_{s}} \prod_{B \in \pi}\left\{\sum_{l_{k}: k \in B} \operatorname{cum}\left(Z_{1, l_{j}}: j \in B\right)^{2}\right\} \\
& \leq B^{2 s}\left|\mathcal{P}_{s}\right| \sum_{\pi \in \mathcal{P}_{s}} \prod_{B \in \pi}\|\Sigma\|_{F}^{|B|} \\
& =B^{2 s}\left|\mathcal{P}_{s}\right|\|\Sigma\|_{F}^{s}
\end{aligned}
$$

where the second equality uses stationarity and independence across t of $\left\{Z_{t}\right\}$ and the last inequality follows by Assumption 3.2. Setting $\tilde{C}=\left|\mathcal{P}_{s}\right|$ completes the proof.

A.2.1. Proof of (5) and (6)

Both proofs follow the same principle. Observe that the processes $S_{n}, S_{n, 1}^{*}$ are piecewise constant on their index set and their values are entirely determined by their values on the $\operatorname{grid}\{(i / n, j / n): i, j=0, \ldots, n\}$. Now following the arguments in section 8.8.1 in Wang et al. (2022) it is clear that (5) and (6) follow if we prove that there exists a constant C which is independent of n such that

$$
\sup _{u, v \in[0,1]^{2}} E\left[\frac{\left|S_{n}(u)-S_{n}(v)\right|^{6}}{n^{6}\|\Sigma\|_{F}^{6}}\right] \leq C\left(\|u-v\|_{2}^{3}+n^{-3}\right)
$$

$$
\sup _{u, v \in[0,1]^{2}} E\left[\frac{\left|S_{n, 1}^{*}(u)-S_{n, 1}^{*}(v)\right|^{6}}{n^{6}\|\Sigma\|_{F}^{6}}\right] \leq C\left(\|u-v\|_{2}^{3}+n^{-3}\right)
$$

Next, a close look at the proof of (8.18) in Wang et al. (2022) shows that it suffices to show that, for a possibly different constant C,

$$
\begin{aligned}
& \max _{j_{1}, \ldots, j_{6}, k_{1}, \ldots, k_{6}=1, k_{i} \neq j_{i}}\left|E\left[X_{k_{1}}^{T} X_{j_{1}} \cdots X_{k_{6}}^{T} X_{j_{6}}\right]\right| \leq C\|\Sigma\|_{F}^{6}, \\
& \max _{j_{1}, \ldots, j_{6}, k_{1}, \ldots, k_{6}=1, k_{i} \neq j_{i}}\left|E\left[X_{k_{1}}^{T} X_{j_{1}} \cdots X_{k_{6}}^{T} X_{j_{6}} e_{k_{1}} e_{j_{1}} \cdots e_{k_{6}} e_{j 6}\right]\right| \leq C\|\Sigma\|_{F}^{6} .
\end{aligned}
$$

The first bound is a direct consequence of Lemma A.1. For the second bound, note that by independence of e_{i} and X_{i}

$$
\begin{aligned}
& \left|E\left[X_{k_{1}}^{T} X_{j_{1}} \cdots X_{k_{6}}^{T} X_{j_{6}} e_{k_{1}} e_{j_{1}} \cdots e_{k_{6}} e_{j 6}\right]\right| \\
& \quad=\left|E\left[X_{k_{1}}^{T} X_{j_{1}} \cdots X_{k_{6}}^{T} X_{j_{6}}\right] E\left[e_{k_{1}} e_{j_{1}} \cdots e_{k_{6}} e_{j 6}\right]\right|
\end{aligned}
$$

and the claim follows from Lemma A. 1 since the e_{i} are standard normal and have finite moments of all orders. Note that the proofs in this section did not make use of Assumption 3.5 and all arguments hold under Assumptions 3.1-3.4.

A.2.2. Proof of (4)

Throughout this section we will drop the index k in $S_{n}^{k, *}$ for notational convenience. Consider the decomposition

$$
\begin{aligned}
S_{n}^{*}(a, b)= & \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i}\left(X_{i+1}-\bar{X}\right)^{T}\left(X_{j}-\bar{X}\right) e_{i+1} e_{j} \\
= & \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i} X_{i+1}^{T} X_{j} e_{i+1} e_{j}-\bar{X}^{T} \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i} X_{j} e_{i+1} e_{j} \\
& -\bar{X}^{T} \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i} X_{i+1} e_{i+1} e_{j}+\bar{X}^{T} \bar{X} \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i} e_{i} e_{j} \\
= & S_{n, 1}^{*}(a, b)-S_{n, 2}^{*}(a, b)-S_{n, 3}^{*}(a, b)+S_{n, 4}^{*}(a, b) .
\end{aligned}
$$

Observe that $0 \leq \bar{X}^{T} \bar{X}$ and that

$$
E\left[\bar{X}^{T} \bar{X}\right]=\frac{1}{n^{2}} \sum_{i, j} E\left[X_{i}^{T} X_{j}\right] \leq \frac{B^{2}}{n} \operatorname{tr}(\Sigma)
$$

since we are under the null and the X_{i} are centered. Thus

$$
\begin{equation*}
\bar{X}^{T} \bar{X}=O_{P}(\operatorname{tr}(\Sigma) / n) \tag{7}
\end{equation*}
$$

Moreover

$$
\sup _{a, b \in[0,1]}\left|\frac{1}{n} \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i} e_{i} e_{j}\right|=O_{P}(1)
$$

since the above term is simply the process S_{n} with e_{i} instead of X_{i} and S_{n} converges weakly under Assumptions 3.1-3.4 as argued in the beginning of Section A.2. Hence

$$
\sup _{a, b \in[0,1]}\left|S_{n, 4}^{*}(a, b)\right|=O_{P}(\operatorname{tr}(\Sigma))=o_{P}\left(n\|\Sigma\|_{F}\right)
$$

by Assumption 3.5. Next observe the decomposition

$$
\begin{aligned}
S_{n, 2}^{*}(a, b)+S_{n, 3}^{*}(a, b) & =\bar{X}^{T} \sum_{i, j=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} X_{j} e_{i} e_{j}-\bar{X}^{T} \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} X_{i} e_{i}^{2} \\
& =\bar{X}^{T}\left(\sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} X_{i} e_{i}\right) \sum_{j=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} e_{j}-\bar{X}^{T} \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} X_{i} e_{i}^{2}
\end{aligned}
$$

We first deal with the second term. Observe that by the Cauchy-Schwarz inequality

$$
\begin{aligned}
& \sup _{a, b \in[0,1]}\left|\bar{X}^{T} \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} X_{i} e_{i}^{2}\right| \\
& \leq\left|\bar{X}^{T} \bar{X}\right|^{1 / 2} \sup _{a, b \in[0,1]}\left|\sum_{i, j=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} X_{i}^{T} X_{j} e_{i}^{2} e_{j}^{2}\right|^{1 / 2} \\
& =\left|\bar{X}^{T} \bar{X}\right|^{1 / 2} \sup _{a, b \in[0,1]}\left|\sum_{i, j=\lfloor n a\rfloor+1, i \neq j}^{\lfloor n b\rfloor-1} X_{i}^{T} X_{j} e_{i}^{2} e_{j}^{2}-\sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} X_{i}^{T} X_{i} e_{i}^{4}\right|^{1 / 2} \\
& \leq\left|\bar{X}^{T} \bar{X}\right|^{1 / 2}\left(\sup _{a, b \in[0,1]}\left|\sum_{i, j=\lfloor n a\rfloor+1, i \neq j}^{\lfloor n b\rfloor-1} X_{i}^{\lfloor n} X_{j} e_{i}^{2} e_{j}^{2}\right|+\sup _{a, b \in[0,1]}^{\sum_{i=\lfloor n a\rfloor+1}} \sum_{i=1}^{\lfloor n b\rfloor-1} X_{i}^{T} X_{i} e_{i}^{4} \mid\right)^{1 / 2}
\end{aligned}
$$

Now we have

$$
E\left|\sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} X_{i}^{T} X_{i} e_{i}^{4}\right| \leq n E\left|X_{i}^{T} X_{i} e_{i}^{4}\right|=O(\operatorname{tr}(\Sigma) n)
$$

Moreover

$$
\sup _{a, b \in[0,1]}\left|\sum_{i, j=\lfloor n a\rfloor+1, i \neq j}^{\lfloor n b\rfloor-1} X_{i}^{T} X_{j} e_{i}^{2} e_{j}^{2}\right|=O_{P}\left(n\|\Sigma\|_{F}\right)
$$

since this is simply the process S_{n} with the new random vectors $\tilde{X}_{i}=X_{i} e_{i}^{2}$. It is straightforward to check that X_{i} satisfy Assumption 3.1-3.4, and thus convergence of the process follows (recall that in the beginning of Section A. 2 we
argued that Assumptions 3.1-3.4 suffice for process convergence of S_{n}). Combining all results so far we find that

$$
\sup _{a, b \in[0,1]}\left|\bar{X}^{T} \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} X_{i} e_{i}^{2}\right|=O_{P}\left(\operatorname{tr}(\Sigma)+\operatorname{tr}(\Sigma)^{1 / 2}\|\Sigma\|_{F}^{1 / 2}\right)=o_{P}\left(n\|\Sigma\|_{F}\right)
$$

by the assumption $\operatorname{tr}(\Sigma)=o\left(n\|\Sigma\|_{F}\right)$.
Next observe that

$$
\begin{aligned}
& \sup _{a, b \in[0,1]}\left|\bar{X}^{T}\left(\sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} X_{i} e_{i}\right) \sum_{j=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} e_{j}\right| \\
& \quad \leq 4 \max _{k=1, \ldots, n}\left|\bar{X}^{T} \sum_{i=1}^{k} X_{i} e_{i}\right| \times \max _{j=1, \ldots, n}\left|\sum_{i=1}^{j} e_{i}\right|
\end{aligned}
$$

By the classical Donsker theorem for partial sum processes

$$
\max _{k=1, \ldots, n}\left|\sum_{j=1}^{k} e_{j}\right|=O_{P}\left(n^{1 / 2}\right)
$$

Next consider the decomposition

$$
\max _{k=1, \ldots, n}\left|\bar{X}^{T} \sum_{i=1}^{k} X_{i} e_{i}\right| \leq \max _{k=1, \ldots, n}\left|\frac{1}{n} \sum_{i=1}^{k} \sum_{j=1, j \neq i}^{n} X_{j}^{T} X_{i} e_{i}\right|+\max _{k=1, \ldots, n}\left|\frac{1}{n} \sum_{i=1}^{k} X_{i}^{T} X_{i} e_{i}\right| .
$$

By Kolmogorov's maximal inequality

$$
\begin{aligned}
\max _{k=1, \ldots, n}\left|\frac{1}{n} \sum_{i=1}^{k} X_{i}^{T} X_{i} e_{i}\right| & =O_{P}\left(n^{-1 / 2} \operatorname{Var}\left(X_{i}^{T} X_{i} e_{i}\right)^{1 / 2}\right) \\
& =O_{P}\left(n^{-1 / 2} \max _{i} E\left[\left(X_{i}^{T} X_{i}\right)^{2}\right]^{1 / 2}\right)=o_{P}\left(n^{1 / 2}\|\Sigma\|_{F}\right)
\end{aligned}
$$

where the last line follows since

$$
\begin{aligned}
E\left[\left(X_{j}^{T} X_{j}\right)^{2}\right] & =\sum_{s, t=1}^{p} E\left[H_{s}^{2}(j / n) H_{t}^{2}(j / n) Z_{j, s}^{2} Z_{j, t}^{2}\right] \leq B^{4} \sum_{s, t=1}^{p} E\left[Z_{j, s}^{2} Z_{j, t}^{2}\right] \\
& =B^{4} \sum_{s, t=1}^{p}\left(\Sigma_{s, s} \Sigma_{t, t}+\Sigma_{s, t}^{2}+\operatorname{cum}\left(Z_{j, s} Z_{j, s} Z_{j, t} Z_{j, t}\right)\right) \\
& =B^{4} \operatorname{tr}(\Sigma)^{2}+B^{4}\|\Sigma\|_{F}^{2}+B^{4} \sum_{s, t=1}^{p} \operatorname{cum}\left(Z_{j, s} Z_{j, s} Z_{j, t} Z_{j, t}\right) \\
& =o\left(n^{2}\|\Sigma\|_{F}^{2}\right)
\end{aligned}
$$

by Assumption 3.5. Hence it remains to show that

$$
\begin{equation*}
\max _{k=1, \ldots, n}\left|\frac{1}{n} \sum_{i=1}^{k} \sum_{j=1, j \neq i}^{n} X_{j}^{T} X_{i} e_{i}\right|=o_{P}\left(n^{1 / 2}\|\Sigma\|_{F}\right) \tag{8}
\end{equation*}
$$

To this end observe that for $1 \leq \ell<k \leq n$

$$
\begin{aligned}
E & {\left[\left(\sum_{i=\ell}^{k} \sum_{j=1, j \neq i}^{n} X_{j}^{T} X_{i} e_{i}\right)^{4}\right] } \\
& =\sum_{j_{1}, \ldots, j_{4}=\ell}^{k} \sum_{k_{1}, \ldots, k_{4}=1, k_{i} \neq j_{i}}^{n} E\left[X_{k_{1}}^{T} X_{j_{1}} \cdots X_{k_{4}}^{T} X_{j_{4}}\right] E\left[e_{j_{1}} e_{j_{2}} e_{j_{3}} e_{j_{4}}\right] \\
& \leq C_{1} n^{2}(k-\ell)^{2} \max _{j_{1}, \ldots, j_{4}, k_{1}, \ldots, k_{4}, k_{i} \neq j_{i}}\left|E\left[X_{k_{1}}^{T} X_{j_{1}} \cdots X_{k_{4}}^{T} X_{j_{4}}\right]\right| \\
& \leq B^{8} C_{2} C n^{2}(k-\ell)^{2}\|\Sigma\|_{F}^{4},
\end{aligned}
$$

where C_{1}, C_{2} are constants that are independent of n, k, ℓ and the distribution of X_{i} and C is the constant from Assumption 3.2. Here the last line uses Lemma A.1. The second-to-last line follows since the e_{i} are centered and independent across i, and so are the X_{i}. Thus we can have at most two different values for the j_{i}. Further, each k_{i} has to be equal to either at least one j_{i} or at least one other k_{i}. This gives at most $K(k-\ell)^{2} n^{2}$ different choices for a universal constant K.

To conclude the proof define the process

$$
G_{n}(t):=\frac{1}{n\|\Sigma\|_{F}} \sum_{i=1}^{n t} \sum_{j=1, j \neq i}^{n} X_{j}^{T} X_{i} e_{i}
$$

with index set $T_{n}=\{i / n: i=0, \ldots, n\}$ where $G_{n}(0) \equiv 0$. The computation above implies that for $s, t \in T_{n}, s \neq t$ we have (note that $s, t \in T_{n}, s \neq t$ implies $|s-t| \geq 1 / n)$

$$
E\left[\left|G_{n}(s)-G_{n}(t)\right|^{4}\right] \leq C_{3}|s-t|^{2}
$$

for a universal constant C_{3} where we used the fact that $s \neq t, s, t \in T_{n}$ implies $|s-t| \geq 1 / n$. Applying Corollary 2.2.5 from Van Der Vaart and Wellner (1996) with T, Ψ, d, X in the latter result defined as follows: $T=T_{n}, \Psi(x)=x^{4}$, $d(s, t)=|t-s|^{1 / 2}, X_{t}=G_{n}(t)$ we find

$$
\left\|\sup _{s, t \in T_{n}}\left|G_{n}(s)-G_{n}(t)\right|\right\|_{4} \leq K \int_{0}^{1}\left(C_{4} \epsilon^{-2}\right)^{1 / 4} d \epsilon<\infty
$$

here C_{4}, K are constants that depend on ψ, C_{3} only and are thus independent of n. An application of the Markov inequality yields

$$
\sup _{s, t \in T_{n}}\left|G_{n}(s)-G_{n}(t)\right|=O_{P}(1)
$$

Finally, observe that

$$
\begin{aligned}
\max _{k=1, \ldots, n}\left|\frac{1}{n} \sum_{i=1}^{k} \sum_{j=1, j \neq i}^{n} X_{j}^{T} X_{i} e_{i}\right| & =\|\Sigma\|_{F} \sup _{t \in T_{n}}\left|G_{n}(t)\right| \\
& \leq\|\Sigma\|_{F} \sup _{s, t \in T_{n}}\left|G_{n}(t)-G_{n}(s)\right|=O_{P}\left(\|\Sigma\|_{F}\right)
\end{aligned}
$$

since by definition $G_{n}(0)=0$. This completes the proof of (8) and thus of (4).

A.2.3. Finite dimensional convergence result

Proposition A.2. Under the Assumptions 3.1-3.5, for any $\left(a_{u, k}, b_{u, k}\right) \in(0,1)^{2}$, $a_{u, k}<b_{u, k}$ and contrasts $\alpha_{u, k} \in \mathbb{R}$, where $u=1,2,3, k=1, \ldots, K$, it holds that

$$
\begin{aligned}
S_{n}:= & \frac{1}{n\|\Sigma\|_{F}}\left(\sum_{k=1}^{K} \alpha_{1, k} S_{n}\left(a_{1, k}, b_{1, k}\right)+\sum_{k=1}^{K} \alpha_{2, k} S_{n, 1}^{*}\left(a_{2, k}, b_{2, k}\right)\right. \\
& \left.+\sum_{k=1}^{K} \alpha_{3, k} S_{n, 1}^{\prime *}\left(a_{3, k}, b_{3, k}\right)\right) \xrightarrow{d} N\left(0, \tilde{\sigma}^{2}\right)
\end{aligned}
$$

where

$$
\tilde{\sigma}^{2}=\sum_{u=1}^{3} \sum_{k=1}^{K} \sum_{k^{\prime}=1}^{K} \alpha_{u, k} \alpha_{u, k^{\prime}} V\left(a_{u, k} \vee a_{u, k^{\prime}}, b_{u, k} \wedge b_{u, k^{\prime}}\right)
$$

Proof. Consider the following decomposition:

$$
S_{n}=\sum_{i=\left\lfloor n a_{\min }\right\rfloor+1}^{\left\lfloor n b_{\max }\right\rfloor-1} \hat{\xi}_{n, i+1}
$$

where $a_{\text {min }}=\min _{u, k} a_{u, k}$ and $b_{\max }=\max _{u, k} b_{u, k}$,

$$
\hat{\xi}_{n, i+1}=\sum_{u=1}^{3} \sum_{k=1}^{K} \mathbf{1}\left\{\left\lfloor a_{u, k} n\right\rfloor+1 \leq i \leq\left\lfloor b_{u, k} n\right\rfloor-1\right\} \alpha_{u, k} \xi_{a_{u, k}, i+1}^{u}
$$

and

$$
\begin{gathered}
\xi_{a_{u, k}, i+1}^{1}=\frac{1}{n\|\Sigma\|_{F}} \sum_{j=\left\lfloor a_{u, k} n\right\rfloor+1}^{i} X_{i+1}^{T} X_{j} \\
\xi_{a_{u, k}, i+1}^{2}=\frac{1}{n\|\Sigma\|_{F}} \sum_{j=\left\lfloor a_{u, k} n\right\rfloor+1}^{i} X_{i+1}^{T} X_{j} e_{i+1} e_{j} \\
\xi_{a_{u, k}, i+1}^{3}=\frac{1}{n\|\Sigma\|_{F}} \sum_{j=\left\lfloor a_{u, k} n\right\rfloor+1}^{i} X_{i+1}^{T} X_{j} e_{i+1}^{\prime} e_{j}^{\prime}
\end{gathered}
$$

Let $\mathcal{F}_{i}=\sigma\left(X_{1} \ldots X_{i}, e_{1} \ldots e_{i}, e_{1}^{\prime} \ldots e_{i}^{\prime}\right)$ be a filtration, it is easy to check that $\sum_{i=\left\lfloor a_{\min } n\right\rfloor}^{j} \hat{\xi}_{a_{u, k}, i+1}^{u}$ is still a martingale. To get the convergence result, we need to check the following conditions:

1. $\forall \epsilon>0, \sum_{\left.i=\left\lfloor a_{\min }\right\rfloor\right\rfloor+1}^{\left.\left\lfloor b_{\max }\right\rfloor\right\rfloor-1} E\left[\left(\hat{\xi}_{n, i+1}\right)^{2} I\left(\hat{\xi}_{n, i+1}>\epsilon\right) \mid \mathcal{F}_{i}\right] \xrightarrow{p} 0$,
2. $V_{n}=\sum_{i=\left\lfloor a_{\min } n\right\rfloor+1}^{\left.\left\lfloor b_{\text {max }}\right\rfloor\right\rfloor-1} E\left[\left(\hat{\xi}_{n, i+1}\right)^{2} \mid \mathcal{F}_{i}\right] \xrightarrow{p} \sum_{u=1}^{3} \sum_{k=1}^{k} \sum_{k^{\prime}=1}^{k} \alpha_{u, k} \alpha_{u, k^{\prime}} \times$ $V\left(a_{u, k} \vee a_{u, k^{\prime}}, b_{u, k} \wedge b_{u, k^{\prime}}\right)$,
For Condition 1, it suffices to check that for any fixed interval (a, b) and $u \in$ $\{1,2,3\}$,

$$
\sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} E\left[\left(\xi_{a, i+1}^{u}\right)^{4}\right] \rightarrow 0
$$

For the case $u=1$ observe that by independence of the X_{i} and since X_{i} are centered

$$
\begin{aligned}
& E\left[\left(\xi_{a, i+1}^{1}\right)^{4}\right] \\
= & \frac{1}{n^{4}\|\Sigma\|_{F}^{4}} \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} E\left[\left(X_{i+1}^{T} \sum_{j=\lfloor n a\rfloor+1}^{i} X_{j}\right)^{4}\right] \\
= & \frac{1}{n^{4}\|\Sigma\|_{F}^{4}} \sum_{j=\lfloor n a\rfloor+1}^{i} E\left[\left(X_{i+1}^{T} X_{j}\right)^{4}\right] \\
& +\frac{1}{n^{4}\|\Sigma\|_{F}^{4}} \sum_{j_{1}, j_{2}=\lfloor n a\rfloor+1}^{i} E\left[\left(X_{i+1}^{T} X_{j_{1}}\right)^{2}\left(X_{i+1}^{T} X_{j_{2}}\right)^{2}\right] \\
\leq & \frac{1}{n^{4}\|\Sigma\|_{F}^{4}} \sum_{j=\lfloor n a\rfloor+1}^{i} E\left[\left(X_{i+1}^{T} X_{j}\right)^{4}\right] \\
& +\frac{1}{n^{4}\|\Sigma\|_{F}^{4}} \sum_{j_{1}, j_{2}=\lfloor n a\rfloor+1}^{i} E\left[\left(X_{i+1}^{T} X_{j_{1}}\right)^{4}\right]^{1 / 2} E\left[\left(X_{i+1}^{T} X_{j_{2}}\right)^{4}\right]^{1 / 2} \\
\leq & \frac{1}{n^{4}\|\Sigma\|_{F}^{4}}\left(n \tilde{C} B^{8}\|\Sigma\|_{F}^{4}+n^{2} \tilde{C} B^{8}\|\Sigma\|_{F}^{4}\right)=O\left(n^{-2}\right),
\end{aligned}
$$

where we applied Lemma A. 1 for the last step. Thus

$$
\sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} E\left[\left(\xi_{a, i+1}^{1}\right)^{4}\right]=O(1 / n)=o(1) .
$$

Similarly we obtain for $u=2$

$$
\begin{aligned}
& E\left[\left(\xi_{a, i+1}^{2}\right)^{4}\right] \\
= & \frac{1}{n^{4}\|\Sigma\|_{F}^{4}} \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} E\left[\left(e_{i+1} X_{i+1}^{T} \sum_{j=\lfloor n a\rfloor+1}^{i} e_{j} X_{j}\right)^{4}\right]
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{n^{4}\|\Sigma\|_{F}^{4}} \sum_{j=\lfloor n a\rfloor+1}^{i} E\left[\left(X_{i+1}^{T} X_{j}\right)^{4}\right] E\left[e_{1}^{4}\right]^{2} \\
& +\frac{1}{n^{4}\|\Sigma\|_{F}^{4}} \sum_{j_{1}, j_{2}=\lfloor n a\rfloor+1}^{i} E\left[\left(X_{i+1}^{T} X_{j_{1}}\right)^{2}\left(X_{i+1}^{T} X_{j_{2}}\right)^{2}\right] E\left[e_{1}^{4}\right] \\
\leq & \frac{9}{n^{4}\|\Sigma\|_{F}^{4}} \sum_{j=\lfloor n a\rfloor+1}^{i} E\left[\left(X_{i+1}^{T} X_{j}\right)^{4}\right] \\
& +\frac{3}{n^{4}\|\Sigma\|_{F}^{4}} \sum_{j_{1}, j_{2}=\lfloor n a\rfloor+1}^{i} E\left[\left(X_{i+1}^{T} X_{j_{1}}\right)^{4}\right]^{1 / 2} E\left[\left(X_{i+1}^{T} X_{j_{2}}\right)^{4}\right]^{1 / 2} \\
\leq & \frac{1}{n^{4}\|\Sigma\|_{F}^{4}}\left(n 9 \tilde{C} B^{8}\|\Sigma\|_{F}^{4}+3 n^{2} \tilde{C} B^{8}\|\Sigma\|_{F}^{4}\right)=O\left(n^{-2}\right)
\end{aligned}
$$

and thus

$$
\sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} E\left[\left(\xi_{a, i+1}^{2}\right)^{4}\right]=O(1 / n)=o(1)
$$

The case $u=3$ is treated by exactly the same arguments and the proof of part 1 is complete.

For Condition 2, observe that the bootstrap multipliers are independent of X_{i} 's, which implies for $u \neq v$,

$$
E\left[\xi_{a_{1}, i+1}^{u} \xi_{a_{2}, i+1}^{v} \mid \mathcal{F}_{i}\right]=0
$$

Therefore, we have the following simplification

$$
\begin{aligned}
& \sum_{i=\left\lfloor n a_{\min }\right\rfloor+1}^{\left\lfloor n b_{\max }\right\rfloor-1} E\left[\hat{\xi}_{n, i+1}^{2} \mid \mathcal{F}_{i}\right] \\
& \quad=\sum_{u=1}^{3} \sum_{k=1}^{K} \sum_{k^{\prime}=1}^{K}\left\{\alpha_{u, k} \alpha_{u, k^{\prime}} \sum_{i=\left\lfloor\left(a_{u, k} \vee a_{u, k^{\prime}}\right) n\right\rfloor+1}^{\left\lfloor\left(b_{u, k} \wedge b_{u, k^{\prime}}\right) n\right\rfloor-1} E\left[\xi_{a_{u, k}, i+1}^{u} \xi_{a_{u, k^{\prime}}, i+1}^{u} \mid \mathcal{F}_{i}\right]\right\} .
\end{aligned}
$$

To complete the proof, it remains to show for $u \in\{1,2,3\}$,

$$
\sum_{i=\left\lfloor\left(a_{u, k} \vee a_{u, k^{\prime}}\right) n\right\rfloor+1}^{\left\lfloor\left(b_{u, k} \wedge b_{u, k^{\prime}}\right) n\right\rfloor-1} E\left[\xi_{a_{u, k}, i+1}^{u} \xi_{a_{u, k}, i+1}^{u} \mid \mathcal{F}_{i}\right] \xrightarrow{p} V\left(a_{u, k} \vee a_{u, k^{\prime}}, b_{u, k} \wedge b_{u, k^{\prime}}\right)
$$

Given this structure, it suffices to show for $a^{\prime} \leq a \leq b \leq b \leq 1$,

$$
\sum_{i=\lfloor a n\rfloor+1}^{\lfloor b n\rfloor-1} E\left[\xi_{a^{\prime}, i+1}^{u} \xi_{a, i+1}^{u} \mid \mathcal{F}_{i}\right] \xrightarrow{p} V(a, b) .
$$

Define

$$
\begin{aligned}
M_{1}(a, b) & :=\sum_{i=\lfloor a n\rfloor+1}^{\lfloor b n\rfloor-1} E\left[\xi_{a^{\prime}, i+1}^{1} \xi_{a, i+1}^{1} \mid \mathcal{F}_{i}\right] \\
& =\frac{1}{n^{2}\|\Sigma\|_{F}^{2}} \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} E\left[\left(X_{i+1}^{T} \sum_{j=\lfloor n a\rfloor+1}^{i} X_{j}\right)^{2} \mid \mathcal{F}_{i}\right], \\
M_{2}(a, b) & :=\frac{1}{n^{2}\|\Sigma\|_{F}^{2}} \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} E\left[\left(X_{i+1}^{T} e_{i+1} \sum_{j=\lfloor n a\rfloor+1}^{i} X_{j} e_{j}\right)^{2} \mid \mathcal{F}_{i}\right], \\
M_{3}(a, b) & :=\frac{1}{n^{2}\|\Sigma\|_{F}^{2}} \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} E\left[\left(X_{i+1}^{T} e_{i+1}^{\prime} \sum_{j=\lfloor n a\rfloor+1}^{i} X_{j} e_{j}^{\prime}\right)^{2} \mid \mathcal{F}_{i}\right] .
\end{aligned}
$$

Since $M_{1} M_{2}, M_{3}$ have a very similar structure we will only prove that

$$
M_{2}(a, b) \xrightarrow{p} V(a, b),
$$

the other two cases follow similarly. In what follows write M_{2} for $M_{2}(a, b)$. Consider the following decomposition,

$$
\begin{aligned}
M_{2}= & \frac{1}{n^{2}\|\Sigma\|_{F}^{2}} \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j_{1}, j_{2}=\lfloor n a\rfloor+1}^{i} E\left[X_{i+1}^{T} X_{j_{1}} X_{j_{2}}^{T} X_{i+1} e_{i+1}^{2} e_{j_{1}} e_{j_{2}} \mid \mathcal{F}_{i}\right] \\
= & \frac{1}{n^{2}\|\Sigma\|_{F}^{2}} \\
& \times \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j_{1}, j_{2}=\lfloor n a\rfloor+1}^{i} Z_{j_{2}}^{T} H\left(\frac{j_{2}}{n}\right) H\left(\frac{i+1}{n}\right) \Sigma H\left(\frac{i+1}{n}\right) H\left(\frac{j_{1}}{n}\right) Z_{j_{1}} e_{j_{1}} e_{j_{2}} \\
= & \frac{1}{n^{2}\|\Sigma\|_{F}^{2}} \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i} Z_{j}^{T} H\left(\frac{j}{n}\right) H\left(\frac{i+1}{n}\right) \Sigma H\left(\frac{i+1}{n}\right) H\left(\frac{j}{n}\right) Z_{j} e_{j}^{2} \\
& +\frac{1}{n^{2}\|\Sigma\|_{F}^{2}} \\
& \times \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{\substack{ \\
j_{1}, j_{2}=\lfloor n a\rfloor+1 \\
j_{1} \neq j_{2}}}^{i} Z_{j_{2}}^{T} H\left(\frac{j_{2}}{n}\right) H\left(\frac{i+1}{n}\right) \Sigma H\left(\frac{i+1}{n}\right) H\left(\frac{j_{1}}{n}\right) Z_{j_{1}} e_{j_{1}} e_{j_{2}} \\
= & M_{2}^{(1)}+M_{2}^{(2)} .
\end{aligned}
$$

For $M_{2}^{(1)}$,

$$
\begin{aligned}
& E\left[M_{2}^{(1)}\right] \\
& =\frac{1}{n^{2}\|\Sigma\|_{F}^{2}} \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i} E\left[Z_{j}^{T} H\left(\frac{j}{n}\right) H\left(\frac{i+1}{n}\right) \Sigma H\left(\frac{i+1}{n}\right) H\left(\frac{j}{n}\right) Z_{j}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{n^{2}\|\Sigma\|_{F}^{2}} \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i} \operatorname{tr}\left(E\left[H\left(\frac{j}{n}\right) H\left(\frac{i+1}{n}\right) \Sigma H\left(\frac{i+1}{n}\right) H\left(\frac{j}{n}\right) Z_{j} Z_{j}^{T}\right]\right) \\
& =\frac{1}{n^{2}\|\Sigma\|_{F}^{2}} \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i} \operatorname{tr}\left(H\left(\frac{j}{n}\right) H\left(\frac{i+1}{n}\right) \Sigma H\left(\frac{i+1}{n}\right) H\left(\frac{j}{n}\right) \Sigma\right) \\
& =\frac{1}{n^{2}\|\Sigma\|_{F}^{2}} \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i} \operatorname{tr}\left(H^{2}\left(\frac{j}{n}\right) H^{2}\left(\frac{i+1}{n}\right) \Sigma^{2}\right) \\
& \rightarrow V(a, b) .
\end{aligned}
$$

Here the last equality follows since for symmetric matrices A, B, C we have

$$
\operatorname{tr}(A B C)=\operatorname{tr}\left((A B C)^{T}\right)=\operatorname{tr}(C B A)=\operatorname{tr}(A C B)
$$

and since $H(\cdot)$ are diagonal matrices. Thus letting $A=H(j / n) H((i+1) / n) \Sigma$, $B=H(j / n) H((i+1) / n), C=\Sigma$ the claim follows after some simple computations. Next observe

$$
\begin{aligned}
E & {\left[\left(M_{2}^{(1)}\right)^{2}\right] } \\
= & \frac{1}{n^{4}\|\Sigma\|_{F}^{4}} \sum_{i_{1}, i_{2}=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{\min \left(i_{1}, i_{2}\right)} \\
& \times E\left[Z_{j}^{T} H\left(\frac{j}{n}\right) H\left(\frac{i_{1}+1}{n}\right) \Sigma H\left(\frac{i_{1}+1}{n}\right) H\left(\frac{j}{n}\right) Z_{j} Z_{j}^{T} H\left(\frac{j}{n}\right) H\left(\frac{i_{2}+1}{n}\right)\right. \\
& \left.\times \Sigma H\left(\frac{i_{2}+1}{n}\right) H\left(\frac{j}{n}\right) Z_{j}\right] E\left[e_{j}^{4}\right] \\
& +\frac{1}{n^{4}\|\Sigma\|_{F}^{4}} \sum_{i_{1}, i_{2}=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j_{1}=\lfloor n a\rfloor+1}^{i_{1}} \sum_{\substack{j_{2}=\lfloor n a\rfloor+1 \\
j_{1} \neq j_{2}}}^{i_{2}}\left(E \left[Z_{j_{1}}^{T} H\left(\frac{j_{1}}{n}\right) H\left(\frac{i_{1}+1}{n}\right)\right.\right. \\
& \left.\times \Sigma H\left(\frac{i_{1}+1}{n}\right) H\left(\frac{j_{1}}{n}\right) Z_{j_{1}}\right] \\
& \left.\times E\left[Z_{j_{2}}^{T} H\left(\frac{j_{2}}{n}\right) H\left(\frac{i_{2}+1}{n}\right) \Sigma H\left(\frac{i_{2}+1}{n}\right) H\left(\frac{j_{2}}{n}\right) Z_{j_{2}}\right] E\left[e_{j_{1}}^{2}\right] E\left[e_{j_{2}}^{2}\right]\right) .
\end{aligned}
$$

For the first part, let

$$
\tilde{\Sigma}^{i, j}:=H\left(\frac{j}{n}\right) H\left(\frac{i_{1}+1}{n}\right) \Sigma H\left(\frac{i_{1}+1}{n}\right) H\left(\frac{j}{n}\right)
$$

denote a matrix with entries $\tilde{\sigma}_{k, l}^{i, j}$. Then

$$
\left\lvert\, E\left[Z_{j}^{T} H\left(\frac{j}{n}\right) H\left(\frac{i_{1}+1}{n}\right) \Sigma H\left(\frac{i_{1}+1}{n}\right) H\left(\frac{j}{n}\right) Z_{j} Z_{j}^{T} H\left(\frac{j}{n}\right) H\left(\frac{i_{2}+1}{n}\right)\right.\right.
$$

$$
\begin{aligned}
& \left.\times \Sigma H\left(\frac{i_{2}+1}{n}\right) H\left(\frac{j}{n}\right) Z_{j}\right] \mid \\
= & \left|E\left[\left(Z_{j}^{T} H\left(\frac{j}{n}\right) H\left(\frac{i_{1}+1}{n}\right) \Sigma H\left(\frac{i_{1}+1}{n}\right) H\left(\frac{j}{n}\right) Z_{j}\right)^{2}\right]\right| \\
\leq & \sum_{k, \ell, k^{\prime}, \ell^{\prime}=1}^{p}\left|\tilde{\sigma}_{k, l}^{i, j} \tilde{\sigma}_{k^{\prime}, l^{\prime}}^{i, j} E\left[Z_{k} Z_{\ell} Z_{k^{\prime}} Z_{\ell^{\prime}}\right]\right| \\
\leq & B^{8} \sum_{k, \ell, k^{\prime}, \ell^{\prime}=1}^{p} \sigma_{k, l} \sigma_{k^{\prime}, l^{\prime}}\left|\operatorname{cum}\left(Z_{1, k} Z_{1, l} Z_{1, k^{\prime}} Z_{1, l^{\prime}}\right)+\sigma_{k, l} \sigma_{k^{\prime}, l^{\prime}}+\sigma_{k, l^{\prime}} \sigma_{k^{\prime}, l}+\sigma_{k, l^{\prime}} \sigma_{k^{\prime}, l}\right| \\
\lesssim & \|\Sigma\|_{F}^{4},
\end{aligned}
$$

where the last inequality follows from Assumption 3.2 by repeated application of the Cauchy-Schwarz inequality. For instance

$$
\begin{aligned}
\sum_{k, \ell, k^{\prime}, \ell^{\prime}=1}^{p} \sigma_{k, l} \sigma_{k^{\prime}, l^{\prime}} \sigma_{k, l^{\prime}} \sigma_{k^{\prime}, l} & \leq\left(\sum_{k, \ell, k^{\prime}, \ell^{\prime}=1}^{p} \sigma_{k, l}^{2} \sigma_{k^{\prime}, l^{\prime}}^{2}\right)^{1 / 2}\left(\sum_{k, \ell, k^{\prime}, \ell^{\prime}=1}^{p} \sigma_{k, l^{\prime}}^{2} \sigma_{k^{\prime}, l}^{2}\right)^{1 / 2} \\
& =\left(\sum_{k, l=1}^{p} \sigma_{k, l}^{2}\right)^{2} \leq C^{2}\|\Sigma\|_{F}^{4}
\end{aligned}
$$

since $\sigma_{k, l}=\operatorname{cum}\left(Z_{1, k}, Z_{1, l}\right)$ and similarly for the other terms. The second sum in the representation of $E\left[\left(M_{2}^{(1)}\right)^{2}\right]$ can be rewritten as

$$
\begin{aligned}
& \frac{1}{n^{4}\|\Sigma\|_{F}^{4}} \sum_{i_{1}, i_{2}=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j_{1}=\lfloor n a\rfloor+1}^{i_{1}} \sum_{j_{2}=\lfloor n a\rfloor+1}^{j_{1} \neq j_{2}} \\
& i_{2} \operatorname{tr}\left(H^{2}\left(\frac{j_{1}}{n}\right) H^{2}\left(\frac{i_{1}+1}{n}\right) \Sigma^{2}\right) \\
&= \frac{1}{n^{4}\|\Sigma\|_{F}^{4}}\left(\sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i} \operatorname{tr}\left(H^{2}\left(\frac{j_{2}}{n}\right) H^{2}\left(\frac{i_{2}+1}{n}\right) \Sigma^{2}\right)\right. \\
&\left.\left.-\frac{1}{n^{4}\|\Sigma\|_{F}^{4}} \sum_{i_{1}, i_{2}=\lfloor n a\rfloor+1}^{\left\lfloor\sum_{j=\lfloor n a\rfloor+1}\right.} H^{2}\left(\frac{i+1}{n}\right) \Sigma^{2}\right)\right)^{2} \\
& \times \operatorname{tr}\left(H^{2}\left(\frac{j}{n}\right) H^{2}\left(\frac{i_{2}+1}{n}\right) \Sigma^{2}\right) \\
&=\left.\frac{1}{n^{4}\|\Sigma\|_{F}^{4}}\left(\sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i} \operatorname{tr}\left(H^{2}\left(\frac{j}{n}\right) H^{2}\left(\frac{i+1}{n}\right) \Sigma^{2}\right)\right)^{2}+O\left(\frac{i_{1}+1}{n}\right) \Sigma^{2}\right) \\
& \rightarrow V(a, b)^{2},
\end{aligned}
$$

where we used the fact that

$$
\left|\operatorname{tr}\left(H^{2}\left(\frac{j}{n}\right) H^{2}\left(\frac{i_{2}+1}{n}\right) \Sigma^{2}\right)\right| \leq B^{4} \operatorname{tr}\left(\Sigma^{2}\right)=B^{4}\|\Sigma\|_{F}^{2} .
$$

Therefore, $M_{2}^{(1)} \xrightarrow{p} V(a, b)$. As for $M_{2}^{(2)}$, it is easy to check that $E\left[M_{2}^{(2)}\right]=0$.

$$
\begin{aligned}
& E\left[\left(M_{2}^{(2)}\right)^{2}\right] \\
= & \frac{1}{n^{4}\|\Sigma\|_{F}^{4}} \sum_{i, i^{\prime}=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{\substack{j_{1}, j_{2}=\lfloor n a\rfloor+1 \\
j_{1} \neq j_{2}}}^{i} \sum_{\substack{j_{3}, j_{4}=\lfloor n a\rfloor+1 \\
j_{3} \neq j_{4}}}^{i^{\prime}} \\
& \times\left(E \left[X_{j_{1}}^{T} H\left(\frac{j_{1}}{n}\right) H\left(\frac{i+1}{n}\right) \Sigma H\left(\frac{i+1}{n}\right) H\left(\frac{j_{2}}{n}\right) X_{j_{2}} X_{j_{3}}^{T} H\left(\frac{j_{3}}{n}\right) H\left(\frac{i^{\prime}+1}{n}\right)\right.\right. \\
& \left.\left.\times \Sigma H\left(\frac{i^{\prime}+1}{n}\right) H\left(\frac{j_{4}}{n}\right) X_{j_{4}}\right] E\left[e_{j_{1}} e_{j_{2}} e_{j_{3}} e_{\left.j_{4}\right]}\right]\right) \\
= & \frac{4}{n^{4}\|\Sigma\|_{F}^{4}} \sum_{i, i^{\prime}=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{\substack{j_{1}, j_{2}=\lfloor n a\rfloor+1 \\
j_{1}<j_{2}}}^{i} \sum_{\substack{j_{3}, j_{4}=\lfloor n a\rfloor+1 \\
j_{3}<j_{4}}}^{i^{\prime}} \\
& \times\left(E \left[X_{j_{1}}^{T} H\left(\frac{j_{1}}{n}\right) H\left(\frac{i+1}{n}\right) \Sigma H\left(\frac{i+1}{n}\right) H\left(\frac{j_{2}}{n}\right) X_{j_{2}} X_{j_{3}}^{T} H\left(\frac{j_{3}}{n}\right) H\left(\frac{i^{\prime}+1}{n}\right)\right.\right. \\
& \left.\left.\times \Sigma H\left(\frac{i^{\prime}+1}{n}\right) H\left(\frac{j_{4}}{n}\right) X_{j_{4}}\right] E\left[e_{j_{1}} e_{j_{2}} e_{j_{3}} e_{\left.j_{4}\right]}\right]\right) .
\end{aligned}
$$

Only when $j_{1}=j_{3}, j_{2}=j_{4}$, the expectation is nonzero. Therefore,

$$
\begin{aligned}
E & {\left[\left(M_{2}^{(2)}\right)^{2}\right] } \\
= & \frac{4}{n^{4}\|\Sigma\|_{F}^{4}} \sum_{i, i^{\prime}=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j_{1}, j_{2}=\lfloor n a\rfloor+1, j_{1}<j_{2}}^{\min \left(i, i^{\prime}\right)} \\
& \times E\left[X_{j_{1}}^{T} H\left(\frac{j_{1}}{n}\right) H\left(\frac{i+1}{n}\right) \Sigma H\left(\frac{i+1}{n}\right) H\left(\frac{j_{2}}{n}\right) X_{j_{2}} X_{j_{2}}^{T} H\left(\frac{j_{2}}{n}\right) H\left(\frac{i^{\prime}+1}{n}\right)\right. \\
& \left.\times \Sigma H\left(\frac{i^{\prime}+1}{n}\right) H\left(\frac{j_{1}}{n}\right) X_{j_{1}}\right] \\
\leq & \frac{4}{n^{4}\|\Sigma\|_{F}^{4}} \sum_{i, i^{\prime}=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j_{1}, j_{2}=\lfloor n a\rfloor+1,, j_{1}<j_{2}}^{\min \left(i, i^{\prime}\right)} B^{8} \operatorname{tr}\left(\Sigma^{4}\right) \\
= & \frac{4}{\|\Sigma\|_{F}^{4}} \operatorname{tr}\left(\Sigma^{4}\right) O(1) \\
= & O\left(\frac{\operatorname{tr}\left(\Sigma^{4}\right)}{\|\Sigma\|_{F}^{4}}\right) \rightarrow 0 .
\end{aligned}
$$

Here the inequality follows since by repeated application of the identity

$$
\operatorname{tr}(A B C)=\operatorname{tr}\left((A B C)^{T}\right)=\operatorname{tr}(C B A)=\operatorname{tr}(A C B)=\operatorname{tr}(B A C)
$$

valid for symmetric matrices A, B, C as well as the cyclic permutation property of the trace operator we have

$$
\begin{aligned}
& \operatorname{tr}\left(\Sigma H\left(\frac{j_{1}}{n}\right) H\left(\frac{i+1}{n}\right) \Sigma H\left(\frac{i+1}{n}\right) H\left(\frac{j_{2}}{n}\right) \Sigma H\left(\frac{j_{2}}{n}\right) H\left(\frac{i^{\prime}+1}{n}\right)\right. \\
& =\operatorname{tr}\left(\Sigma^{2} H\left(\frac{j_{1}}{n}\right) H\left(\frac{i+1}{n}\right) \Sigma H\left(\frac{i+1}{n}\right) H\left(\frac{j_{2}}{n}\right) \Sigma H\left(\frac{j_{2}}{n}\right) H\left(\frac{i^{\prime}+1}{n}\right)\right. \\
& =\cdots= \\
& \left.\quad \times \Sigma H\left(\frac{i^{\prime}+1}{n}\right) H\left(\frac{j_{1}}{n}\right)\right) \\
& \quad \times H\left(\frac{i^{\prime}+1}{n}\right) H\left(\frac{j_{1}}{n}\right) H\left(\frac{i+1}{n}\right) H\left(\frac{i+1}{n}\right) H\left(\frac{j_{2}}{n}\right) H\left(\frac{j_{2}}{n}\right) H\left(\frac{i^{\prime}+1}{n}\right)
\end{aligned}
$$

Now the largest entry of the diagonal matrix

$$
H\left(\frac{j_{1}}{n}\right) H\left(\frac{i+1}{n}\right) H\left(\frac{i+1}{n}\right) H\left(\frac{j_{2}}{n}\right) H\left(\frac{j_{2}}{n}\right) H\left(\frac{i^{\prime}+1}{n}\right) H\left(\frac{i^{\prime}+1}{n}\right) H\left(\frac{j_{1}}{n}\right)
$$

is bounded by B^{8} and Σ^{4} has positive diagonal entries (since it can be seen as covariance matrix of $\left.\left(\Sigma^{1 / 2}\right)^{3} Z_{1}\right)$ so that

$$
\begin{aligned}
& \operatorname{tr}\left(\Sigma^{4} H\left(\frac{j_{1}}{n}\right) H\left(\frac{i+1}{n}\right) H\left(\frac{i+1}{n}\right) H\left(\frac{j_{2}}{n}\right) H\left(\frac{j_{2}}{n}\right) H\left(\frac{i^{\prime}+1}{n}\right) H\left(\frac{i^{\prime}+1}{n}\right)\right. \\
& \left.\quad \times H\left(\frac{j_{1}}{n}\right)\right) \leq B^{8} \operatorname{tr}\left(\Sigma^{4}\right) .
\end{aligned}
$$

This shows that $M_{2}^{(2)} \xrightarrow{p} 0$. Together with previous result, we have shown that

$$
M_{2} \xrightarrow{p} V(a, b) .
$$

Similarly,

$$
M_{3} \xrightarrow{p} V(a, b), \quad M_{1} \xrightarrow{p} V(a, b) .
$$

This completes the proof.

A.3. Proof of Theorem 3.3: power of the test

The following equivalent representation for the quantity $G_{n}(k)$ will be useful:

$$
\begin{aligned}
G_{n}(k)= & \frac{1}{k(k-1)(n-k)(n-k-1)} \\
& \times \sum_{1 \leq j_{1}, j_{3} \leq k, j_{1} \neq j_{3}} \sum_{k+1 \leq j_{2}, j_{4} \leq n, j_{2} \neq j_{4}}\left(X_{j_{1}}-X_{j_{2}}\right)^{T}\left(X_{j_{3}}-X_{j_{4}}\right)
\end{aligned}
$$

$$
\begin{equation*}
=\frac{1}{k(k-1)(n-k)(n-k-1)} D_{n}(k) \tag{9}
\end{equation*}
$$

This expression can be obtained by elementary calculations after multiplying out the products in the expression above.

Further, recall that we assumed $k^{*}=\lfloor n c\rfloor$ for some constant $c \in(0,1)$. Define a new sequence of random vectors Y_{i},

$$
Y_{i}=H(i / n) Z_{i}= \begin{cases}X_{i} & i=1, \ldots, k^{*} \\ X_{i}-\Delta & i=k^{*}+1, \ldots, n\end{cases}
$$

This sequence does not have a change point. Without loss of generosity, assume Y_{i} 's are centered. The remaining proof consists of a detailed analysis of the original test statistic and the bootstrap statistic under different types of alternatives.

For the bootstrap statistic, we will prove that under the null and any alternative $S_{n}^{* X}$ satisfies

$$
\begin{equation*}
\frac{S_{n}^{* X}(a, b)}{n\|\Sigma\|_{F}}=\frac{S_{n}^{* Y}(a, b)}{n\|\Sigma\|_{F}}+O_{p}\left(\frac{\left(\Delta^{T} \Sigma \Delta\right)^{1 / 2}}{\|\Sigma\|_{F}}\right)+O_{p}\left(\frac{\|\Delta\|_{2}^{2}}{\|\Sigma\|_{F}}\right) \tag{10}
\end{equation*}
$$

where the remainder terms are uniform in $a, b \in[0,1]$ and $S_{n}^{* Y}$ is defined in exactly the same way as $S_{n}^{* X}$ but with Y_{i} in place of X_{i}. We will further show that
$T_{n} \begin{cases}\xrightarrow{d} T, & n\|\Delta\|_{2}^{2} /\|\Sigma\|_{F} \rightarrow 0 \\ \xrightarrow[\rightarrow]{d} \sup _{r \in[0,1]}\{G(r)+\Lambda(r)\}, & n\|\Delta\|_{2}^{2} /\|\Sigma\|_{F} \rightarrow \beta \in(0, \infty) \\ \geq \frac{k^{*}\left(k^{*}-1\right)\left(n-k^{*}\right)\left(n-k^{*}-1\right)}{n^{4}} \frac{n\|\Delta\|_{2}^{2}}{\|\Sigma\|_{F}}+o_{P}\left(n \frac{\|\Delta\|_{2}^{2}}{\|\Sigma\|_{F}}\right), & n\|\Delta\|_{2}^{2} /\|\Sigma\|_{F} \rightarrow \infty\end{cases}$
where

$$
\Lambda(r)= \begin{cases}(1-c)^{2} r^{2} \beta & r \leq c \tag{11}\\ c^{2}(1-r)^{2} \beta & r>c\end{cases}
$$

for $c=\lim _{n \rightarrow \infty} k^{*} / n$. The argument in the case $n\|\Delta\|_{2}^{2} /\|\Sigma\|_{F} \rightarrow \beta \in(0, \infty)$ is complete. The remaining two cases are discussed below.

The case $n\|\Delta\|_{2}^{2} /\|\Sigma\|_{F} \rightarrow 0$ In this case (10) implies

$$
\frac{S_{n}^{* X}(a, b)}{n\|\Sigma\|_{F}}=\frac{S_{n}^{* Y}(a, b)}{n\|\Sigma\|_{F}}+o_{P}(1)
$$

Since the sequence Y_{i} contains no change-points and satisfies all assumptions of Theorem 3.2, the proof follows from exactly the same arguments as the proof of the latter result.

The case $n\|\Delta\|_{2}^{2} /\|\Sigma\|_{F} \rightarrow \infty \quad$ From expression (10) we find that in this case $T_{n}^{*}=o_{P}\left(n\|\Delta\|_{2}^{2} /\|\Sigma\|_{F}\right)$ and hence $c_{1, \alpha}^{(M)}=o_{P}\left(n\|\Delta\|_{2}^{2} /\|\Sigma\|_{F}\right)$. Since also

$$
\frac{k^{*}\left(k^{*}-1\right)\left(n-k^{*}\right)\left(n-k^{*}-1\right)}{n^{4}} \rightarrow c^{2}(1-c)^{2}
$$

we obtain

$$
P\left(T_{n}>c_{1, \alpha}^{(M)}\right) \geq P\left(c^{2}(1-c)^{2} n\|\Delta\|_{2}^{2} /\|\Sigma\|_{F}>o_{P}\left(n\|\Delta\|_{2}^{2} /\|\Sigma\|_{F}\right)\right) \rightarrow 1 .
$$

This completes the proof of Theorem 3.3.

A.3.1. Proof of (11): Behaviour of $G_{n}(k)$ under the alternative

Simple computations show that in the case $k^{*}>k$, the statistic $D_{n}(k)$ admits the following decomposition

$$
\begin{aligned}
D_{n}(k)= & D_{n}^{Y}(k)+k(k-1)\left(n-k^{*}\right)\left(n-k^{*}-1\right)\|\Delta\|_{2}^{2} \\
& -2(k-1)\left(n-k^{*}\right)(n-k-2) \sum_{j=1}^{k} Y_{j}^{T} \Delta \\
& -4(k-1)(k-2)\left(n-k^{*}\right) \sum_{j=k+1}^{k^{*}} Y_{j}^{T} \Delta,
\end{aligned}
$$

where D_{n}^{Y} is defined similarly as D_{n} but with Y_{i} replacing X_{i}. By Kolmogorov's maximal inequality we have

$$
\begin{aligned}
\sup _{1 \leq l \leq k \leq n}\left|\sum_{j=l}^{k} X_{j}^{T} \Delta\right| & \leq 2 \sup _{1 \leq k \leq n}\left|\sum_{j=1}^{k} X_{j}^{T} \Delta\right|=O_{p}\left(n^{1 / 2}\left(\Delta^{T} \Sigma \Delta\right)^{1 / 2}\right) \\
& =o_{p}\left(n^{1 / 2}\|\Delta\|_{2}\|\Sigma\|_{F}^{1 / 2}\right),
\end{aligned}
$$

where we used the bound

$$
\max _{j} \operatorname{Var}\left(\Delta^{T} Y_{j}\right) \leq B^{2} \Delta^{T} \Sigma \Delta
$$

and the fact that under Assumption 1 we have $\|\Sigma\|_{2}=o\left(\|\Sigma\|_{F}\right)$, see Remark 3.2 in Wang et al. (2022).

Combining this with the representation in (9) we find that, uniformly in $1 \leq k \leq k^{*}$,

$$
\tilde{G}_{n}(k)=\tilde{G}_{n}^{Y}(k)+\frac{k(k-1)\left(n-k^{*}\right)\left(n-k^{*}-1\right)\|\Delta\|_{2}^{2}}{n^{3}}+o_{p}\left(n^{1 / 2}\|\Delta\|_{2}\|\Sigma\|_{F}^{1 / 2}\right) .
$$

Similar arguments show that, uniformly in $1 \leq k^{*} \leq k \leq n$,

$$
\tilde{G}_{n}(k)=\tilde{G}_{n}^{Y}(k)+\frac{k^{*}\left(k^{*}-1\right)(n-k)(n-k-1)\|\Delta\|_{2}^{2}}{n^{3}}+o_{p}\left(n^{1 / 2}\|\Delta\|_{2}\|\Sigma\|_{F}^{1 / 2}\right) .
$$

Finally, elementary computations show that for $k / n \rightarrow r$

$$
\frac{k(k-1)\left(n-k^{*}\right)\left(n-k^{*}-1\right)}{n^{4}} \rightarrow r^{2}(1-c)^{2}
$$

and

$$
\frac{k^{*}\left(k^{*}-1\right)(n-k)(n-k-1)}{n^{4}} \rightarrow c^{2}(1-r)^{2}
$$

We now discuss the consequence of this result for three types of alternatives.
Case 1: $n\|\Delta\|_{2}^{2} /\|\Sigma\|_{F} \rightarrow 0 \quad$ In this case we have

$$
\frac{\tilde{G}_{n}(k)}{\|\Sigma\|_{F}}=\frac{\tilde{G}_{n}^{Y}(k)}{\|\Sigma\|_{F}}+o_{P}(1)
$$

uniformly in k. Hence $T_{n} \xrightarrow{d} T$.
Case 2: $n\|\Delta\|_{2}^{2} /\|\Sigma\|_{F} \rightarrow \beta>0$ In this case we obtain

$$
\left(\frac{\tilde{G}_{n}(\lfloor n r\rfloor)}{\|\Sigma\|_{F}}\right)_{r \in[0,1]} \rightsquigarrow(G(r)+\Lambda(r))_{r \in[0,1]}
$$

where

$$
\Lambda(r)= \begin{cases}(1-c)^{2} r^{2} \beta & r \leq c \\ c^{2}(1-r)^{2} \beta & r>c\end{cases}
$$

Hence by the continuous mapping theorem

$$
T_{n} \xrightarrow{d} \sup _{r \in[0,1]} G(r)+\Lambda(r) .
$$

Case 3: $n\|\Delta\|_{2}^{2} /\|\Sigma\|_{F} \rightarrow \infty$ In this case note that
$T_{n} \geq \frac{\tilde{G}_{n}\left(k^{*}\right)}{\|\Sigma\|_{F}}=O_{P}(1)+\frac{k^{*}\left(k^{*}-1\right)\left(n-k^{*}\right)\left(n-k^{*}-1\right)}{n^{4}} \frac{n\|\Delta\|_{2}^{2}}{\|\Sigma\|_{F}}+o_{P}\left(\frac{n\|\Delta\|_{2}^{2}}{\|\Sigma\|_{F}}\right)$.
This completes the proof of (11).
A.3.2. Proof of (10): $S_{n}^{*}(a, b)$ under the alternatives

For the bootstrap partial sum process, we observe the following decomposition:

$$
\begin{aligned}
& S_{n}^{* X}(a, b) \\
= & \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i}\left(X_{i+1}-\bar{X}\right)^{T}\left(X_{j}-\bar{X}\right) e_{i+1} e_{j}
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i}\left(\Delta\left[\boldsymbol{I}\left(k^{*}+1 \leq i+1 \leq n\right)-\frac{n-k^{*}}{n}\right]+Y_{i+1}-\bar{Y}\right)^{T} \\
& \times\left(\Delta\left[\boldsymbol{I}\left(k^{*}+1 \leq j \leq n\right)-\frac{n-k^{*}}{n}\right]+Y_{j}-\bar{Y}\right) e_{i+1} e_{j} \\
= & \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i}\left(Y_{i+1}-\bar{Y}\right)^{T}\left(Y_{j}-\bar{Y}\right) e_{i+1} e_{j} \\
& +\sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i} \Delta^{T}\left(Y_{j}-\bar{Y}\right)\left[\boldsymbol{I}\left(k^{*}+1 \leq i+1 \leq n\right)-\frac{n-k^{*}}{n}\right] e_{i+1} e_{j} \\
& +\sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i} \Delta^{T}\left(Y_{i+1}-\bar{Y}\right)\left[\boldsymbol{I}\left(k^{*}+1 \leq j \leq n\right)-\frac{n-k^{*}}{n}\right] e_{i+1} e_{j} \\
& +\sum_{i=\lfloor n a\rfloor+1}^{i n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i} \Delta^{T} \Delta\left[\boldsymbol{I}\left(k^{*}+1 \leq i+1 \leq n\right)-\frac{n-k^{*}}{n}\right] \\
& \times\left[\boldsymbol{I}\left(k^{*}+1 \leq j \leq n\right)-\frac{n-k^{*}}{n}\right] e_{i+1} e_{j} \\
= & S_{n}^{* Y}(a, b)+S_{n, 2}^{* Y}(a, b)+S_{n, 3}^{* Y}(a, b)+S_{n, 4}^{* Y}(a, b) .
\end{aligned}
$$

The first term corresponds to the case with no changepoint and has the same limiting behaviour as under the null. We now study he behaviour of the remainder terms.

The case $c<a<b$ The remainder terms take the form

$$
\begin{aligned}
& \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i} \frac{k^{*}}{n} \Delta^{T}\left(Y_{j}-\bar{Y}\right) e_{i+1} e_{j}+\sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i} \frac{k^{*}}{n} \Delta^{T}\left(Y_{i+1}-\bar{Y}\right) e_{i+1} e_{j} \\
&+\sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i}\left(\frac{k^{*}}{n}\right)^{2} \Delta^{T} \Delta e_{i+1} e_{j}
\end{aligned}
$$

For the last term, observe that this has the same form as $S_{n}(a, b) / n$ where X_{i} are replaced by e_{i}. The corresponding covariance matrix is $\Sigma=1$ and hence by weak convergence of $S_{n} / n\|\Sigma\|_{F}$ under general conditions which are satisfied in this special case we have

$$
\begin{equation*}
\sup _{a, b} \frac{1}{n} \sum_{\substack{i, j=\lfloor n a\rfloor+1 \\ i \neq j}}^{\lfloor n b\rfloor-1} e_{i} e_{j}=O_{p}(1) . \tag{12}
\end{equation*}
$$

Therefore, the last term is of order $O_{p}\left(n\|\Delta\|_{2}^{2}\right)$.

The terms $S_{n, 2}^{* Y}(a, b)$ and $S_{n, 3}^{* Y}(a, b)$ will be handled together. Note that

$$
\begin{aligned}
& S_{n, 2}^{* Y}(a, b)+S_{n, 3}^{* Y}(a, b) \\
= & \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i} \frac{k^{*}}{n} \Delta^{T}\left(Y_{j}+Y_{i+1}-2 \bar{Y}\right) e_{i+1} e_{j} \\
= & \frac{1}{2} \sum_{i, j=\lfloor n a\rfloor+1, i \neq j}^{\lfloor n b\rfloor-1} \frac{k^{*}}{n} \Delta^{T}\left(Y_{j}+Y_{i}-2 \bar{Y}\right) e_{i} e_{j} \\
= & \frac{k^{*}}{2 n}\left(\sum_{i, j=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \Delta^{T}\left(Y_{j}+Y_{i}\right) e_{i} e_{j}-\sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} 2 \Delta^{T} Y_{i} e_{i}^{2}\right) \\
& -\Delta^{T} \bar{Y} \sum_{i, j=\lfloor n a\rfloor+1, i \neq j}^{\lfloor n b\rfloor-1} \frac{k^{*}}{n} e_{i} e_{j} .
\end{aligned}
$$

For the first term in the bracket observe that

$$
\sum_{i, j=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \Delta^{T} Y_{j} e_{i} e_{j}=\left\{\sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \Delta^{T} Y_{i} e_{i}\right\}\left\{\sum_{j=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} e_{j}\right\} .
$$

Since $E\left[Y_{i}\right]=0$ and Y_{i} are independent of e_{i} we obtain by Kolmogorov's maximal inequality,

$$
\begin{align*}
\sup _{0 \leq a, b \leq 1}\left|\sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \Delta^{T} Y_{i} e_{i}\right| & =O_{p}\left(n^{1 / 2} \max _{j} \operatorname{Var}\left(\Delta^{T} Y_{j} e_{j}\right)^{1 / 2}\right) \\
& =O_{p}\left(n^{1 / 2}\left(\Delta^{T} \Sigma \Delta\right)^{1 / 2}\right), \tag{13}\\
\sup _{0 \leq a, b \leq 1}\left|\sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \Delta^{T} Y_{i} e_{i}^{2}\right| & =O_{p}\left(n^{1 / 2} \max _{j} \operatorname{Var}\left(\Delta^{T} Y_{j} e_{j}^{2}\right)^{1 / 2}\right) \\
& =O_{p}\left(n^{1 / 2}\left(\Delta^{T} \Sigma \Delta\right)^{1 / 2}\right), \tag{14}\\
\sup _{0 \leq a, b \leq 1}\left|\sum_{j=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} e_{j}\right| & =O_{p}\left(n^{1 / 2}\right) . \tag{15}
\end{align*}
$$

For the last term we have by (12) and an elementary calculation using independence of the Y_{i}

$$
\begin{align*}
\sup _{0 \leq a, b \leq 1}\left|\Delta^{T} \bar{Y} \sum_{i, j=\lfloor n a\rfloor+1, i \neq j}^{\lfloor n b\rfloor-1} \frac{k^{*}}{n} e_{i} e_{j}\right| & \leq\left|\Delta^{T} \bar{Y}\right| \cdot \sup _{a, b}\left|\sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i} e_{i+1} e_{j}\right| \\
& =O_{p}\left(\operatorname{Var}\left(\Delta^{T} \bar{Y}\right)^{1 / 2}\right) O_{p}(n) \\
& =O_{p}\left(n^{1 / 2}\left(\Delta^{T} \Sigma \Delta\right)^{1 / 2}\right) \tag{16}
\end{align*}
$$

In summary, we have proved that in the case $c<a<b$

$$
\begin{equation*}
\frac{S_{n}^{* X}(a, b)}{n\|\Sigma\|_{F}}=\frac{S_{n}^{* Y}(a, b)}{n\|\Sigma\|_{F}}+O_{p}\left(\frac{\left(\Delta^{T} \Sigma \Delta\right)^{1 / 2}}{\|\Sigma\|_{F}}\right)+O_{p}\left(\frac{\|\Delta\|_{2}^{2}}{\|\Sigma\|_{F}}\right) \tag{17}
\end{equation*}
$$

The case $a<b<c$ The remainder terms take the form

$$
\begin{aligned}
- & \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i} \frac{n-k^{*}}{n} \Delta^{T}\left(Y_{j}-\bar{Y}\right) e_{i+1} e_{j} \\
& -\sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i} \frac{n-k^{*}}{n} \Delta^{T}\left(Y_{i+1}-\bar{Y}\right) e_{i+1} e_{j} \\
& +\sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i}\left(\frac{n-k^{*}}{n}\right)^{2} \Delta^{T} \Delta e_{i+1} e_{j} .
\end{aligned}
$$

This can be handled similarly to the case $c<a<b$.

The case $a<c<b$ Compared to the case $a<b<c$ we have the additional terms

$$
\begin{aligned}
& \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i} \Delta^{T}\left(Y_{j}-\bar{Y}\right) w_{i+1} e_{i+1} e_{j} \\
&+\sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i} \Delta^{T}\left(Y_{i+1}-\bar{Y}\right) w_{j} e_{i+1} e_{j} \\
&+\sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i} \Delta^{T} \Delta w_{i+1} w_{j} e_{i+1} e_{j}
\end{aligned}
$$

where $w_{t}=\boldsymbol{I}\left\{k^{*}+1 \leq t \leq n\right\}$. For the last term, note that

$$
w_{t}=H(t / n)+r_{n}(t)
$$

where $H(x)=\boldsymbol{I}\{c \leq x\}$ and $\left|r_{n}(t)\right| \leq \boldsymbol{I}\{|t-\lfloor n c\rfloor| \leq 1\}$. Now a direct computation shows that the pieces involving $r_{n}(t)$ are negligible while the remaining term takes the form

$$
\sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i} \Delta^{T} \Delta H((i+1) / n) H(j / n) e_{i+1} e_{j}
$$

This has the same form as $S_{n}(a, b) / n$ where $\mu_{i}=0, H$ as above and Z_{i} are replaced by e_{i}. The corresponding covariance matrix is $\Sigma=1$ and hence by
weak convergence of $S_{n} / n\|\Sigma\|_{F}$ under general conditions which are satisfied in this special case we have

$$
\begin{equation*}
\sup _{a, b} \frac{1}{n} \sum_{\substack{i, j=\lfloor n a\rfloor+1 \\ i \neq j}}^{\lfloor n b\rfloor-1} H((i+1) / n) H(j / n) e_{i+1} e_{j}=O_{p}(1) . \tag{18}
\end{equation*}
$$

Therefore, the last term is of order $O_{p}\left(n\|\Delta\|_{2}^{2}\right)$.
Next we bound the first two terms. We have

$$
\begin{aligned}
& \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i} \Delta^{T}\left(Y_{j}-\bar{Y}\right) w_{i+1} e_{i+1} e_{j} \\
& +\sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i} \Delta^{T}\left(Y_{i+1}-\bar{Y}\right) w_{j} e_{i+1} e_{j} \\
= & \sum_{i=\lfloor n c\rfloor}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n c\rfloor}^{i} \Delta^{T}\left(Y_{j}-\bar{Y}\right) e_{i+1} e_{j}+\sum_{i=\lfloor n c\rfloor}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{\lfloor n c\rfloor-1} \Delta^{T}\left(Y_{j}-\bar{Y}\right) e_{i+1} e_{j} \\
& +\sum_{i=\lfloor n c\rfloor}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n c\rfloor}^{i} \Delta^{T}\left(Y_{i+1}-\bar{Y}\right) e_{i+1} e_{j}-\sum_{i=\lfloor n c\rfloor}^{\lfloor n b\rfloor-1} \Delta^{T}\left(Y_{i+1}-\bar{Y}\right) e_{i+1} e_{\lfloor n c\rfloor} .
\end{aligned}
$$

The terms

$$
\sum_{i=\lfloor n c\rfloor}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n c\rfloor}^{i} \Delta^{T}\left(Y_{j}-\bar{Y}\right) e_{i+1} e_{j}+\sum_{i=\lfloor n c\rfloor}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n c\rfloor}^{i} \Delta^{T}\left(Y_{i+1}-\bar{Y}\right) e_{i+1} e_{j}
$$

have a similar structure as in the case $a<b<c$ and can be treated similarly as there. For the remaining two terms note that

$$
\begin{aligned}
& \left|\sum_{i=\lfloor n c\rfloor}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{\lfloor n c\rfloor-1} \Delta^{T}\left(Y_{j}-\bar{Y}\right) e_{i+1} e_{j}-e_{\lfloor n c\rfloor} \sum_{i=\lfloor n c\rfloor}^{\lfloor n b\rfloor-1} \Delta^{T}\left(Y_{i+1}-\bar{Y}\right) e_{i+1}\right| \\
\leq & \left|\sum_{i=\lfloor n c\rfloor}^{\lfloor n b\rfloor-1} e_{i+1}\right| \cdot\left|\sum_{j=\lfloor n a\rfloor+1}^{\lfloor n c\rfloor-1} \Delta^{T}\left(Y_{j}-\bar{Y}\right) e_{j}\right|+\left|e_{\lfloor n c\rfloor}\right| \cdot\left|\sum_{i=\lfloor n c\rfloor}^{\lfloor n b\rfloor-1} \Delta^{T}\left(Y_{i+1}-\bar{Y}\right) e_{i+1}\right| \\
\leq & 2 \sup _{0 \leq a, b \leq 1}\left|\sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \Delta^{T} Y_{i} e_{i}\right| \cdot \sup _{0 \leq a, b \leq 1}\left|\sum_{j=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} e_{j}\right| \\
& +2\left|\Delta^{T} \bar{Y}\right| \cdot\left(\sup _{0 \leq a, b \leq 1}\left|\sum_{j=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} e_{j}\right|\right)^{2} \\
= & O_{p}\left(n^{1 / 2}\left(\Delta^{T} \Sigma \Delta\right)^{1 / 2}\right) O_{p}\left(n^{1 / 2}\right)+O_{p}\left(n^{-1 / 2}\left(\Delta^{T} \Sigma \Delta\right)^{1 / 2}\right) O_{p}(n) \\
= & O_{p}\left(n\left(\Delta^{T} \Sigma \Delta\right)^{1 / 2}\right)
\end{aligned}
$$

Where the last line uses the bounds in (13)-(16). Summarizing, we have proved that in the case $a<c<b$

$$
\begin{equation*}
\frac{S_{n}^{* X}(a, b)}{n\|\Sigma\|_{F}}=\frac{S_{n}^{* Y}(a, b)}{n\|\Sigma\|_{F}}+O_{p}\left(\frac{\left(\Delta^{T} \Sigma \Delta\right)^{1 / 2}}{\|\Sigma\|_{F}}\right)+O_{p}\left(\frac{\|\Delta\|_{2}^{2}}{\|\Sigma\|_{F}}\right) \tag{19}
\end{equation*}
$$

This completes the proof.

A.4. Proof of Theorem 3.4 and Theorem 3.5: theory for multiple change point testing

Under the null, the process convergence result of $S_{n}^{*}(a, b)$ and continuous mapping theorem, we conclude that

$$
\frac{T_{n, M}^{*}}{\|\Sigma\|_{F}} \xrightarrow{d} \sup _{0 \leq r_{1}<r_{2} \leq 1} G\left(r_{1} ; 0, r_{2}\right)+\sup _{0 \leq r_{1}<r_{2} \leq 1} G\left(r_{2} ; r_{1}, 1\right), \text { in probability. }
$$

Similar to the arguments in the proof of Theorem 3.3, the result stated in Theorem 3.4 holds.

Under the alternative, there are M change points at locations $k_{1}, k_{2}, \ldots, k_{M}$, and denote the changes by $\Delta_{i}=\mu_{i+1}-\mu_{i}$. The partial sum process can be decomposed as follows,

$$
\begin{aligned}
& S_{n}^{* X}(a, b) \\
= & \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i}\left(X_{i+1}-\bar{X}\right)^{T}\left(X_{j}-\bar{X}\right) e_{i+1} e_{j} \\
= & \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i}\left(\sum_{r=0}^{M} \Delta_{r} \boldsymbol{I}\left(k_{r} \leq i+1 \leq k_{r+1}\right)+Y_{i+1}-\bar{Y}\right)^{T} \\
& \times\left(\sum_{r=0}^{M} \Delta_{r} \boldsymbol{I}\left(k_{r} \leq j \leq k_{r+1}\right)+Y_{j}-\bar{Y}\right) e_{i+1} e_{j} \\
= & \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i}\left(Y_{i+1}-\bar{Y}\right)^{T}\left(Y_{j}-\bar{Y}\right) e_{i+1} e_{j} \\
& +\sum_{r=0}^{M} \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i} Y_{j}^{T} \Delta_{r} \boldsymbol{I}\left(k_{r} \leq i+1 \leq k_{r+1}\right) e_{i+1} e_{j} \\
& +\sum_{r=0}^{M} \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i} Y_{i+1}^{T} \Delta_{r} \boldsymbol{I}\left(k_{r} \leq j \leq k_{r+1}\right) e_{i+1} e_{j} \\
& +\sum_{t, r=0}^{M} \sum_{i=\lfloor n a\rfloor+1}^{\lfloor n b\rfloor-1} \sum_{j=\lfloor n a\rfloor+1}^{i} \Delta_{t}^{T} \Delta_{r} \boldsymbol{I}\left(k_{r} \leq i+1 \leq k_{r+1}\right) \boldsymbol{I}\left(k_{t} \leq j \leq k_{t+1}\right) e_{i+1} e_{j} .
\end{aligned}
$$

Again, the first term is simply the process under the null. Similar analysis to single change point case shows that the second term and third term is of order $O_{p}\left(n \sum_{i=1}^{M}\left(\Delta_{i}^{T} \Sigma \Delta_{i}\right)^{1 / 2}\right)$. The last term is of order $O_{p}\left(n \sum_{i=1}^{M}\left\|\Delta_{i}\right\|_{2}^{2}\right)$. Under local or fixed alternative, that is

$$
\frac{n \Delta_{i}^{T} \Delta_{i}}{\|\Sigma\|_{F}} \rightarrow b_{i} \in[0, \infty), \text { for all } i=1, \ldots M
$$

$\frac{S_{n}^{* X}(a, b)}{n\|\Sigma\|_{F}}$ converges to the same process under the null. When there is at least one diverging change point, according the the bootstrap statistic is bounded by $O_{p}\left(\left\|\Delta_{s}\right\|_{2}^{2}\right)$, where $\Delta_{s}=\mu_{s+1}-\mu_{s}$ is the largest change. To show that the proposed test has power converging to one, it suffices to check that the order of the original statistic. To this end, we consider the forward scanning statistic $G_{n}\left(k_{s} ; 1, k_{s+1}\right)$.

$$
\begin{aligned}
& k_{s}\left(k_{s}-1\right)\left(k_{s+1}-k_{s}\right)\left(k_{s+1}-k_{s}-1\right) G_{n}\left(k_{s} ; 1, k_{s+1}\right) \\
& =\sum_{j_{1}=1}^{k_{s}} \sum_{j_{3}=1, j_{3} \neq j_{1}}^{k_{s}} \sum_{j_{2}=k_{s}+1}^{k_{s+1}} \sum_{j_{4}=k_{s}+1, j_{4} \neq j_{2}}^{k_{s+1}}\left(X_{j_{1}}-X_{j_{2}}\right)^{T}\left(X_{j_{3}}-X_{j_{4}}\right) \\
& =\sum_{j_{1}=1}^{k_{s}} \sum_{j_{3}}^{k_{s}} \sum_{1, j_{3} \neq j_{1}}^{k_{s+1}} \sum_{j_{2}=k_{s}+1}^{k_{s+1}} \sum_{j_{4}=k_{s}+1, j_{4} \neq j_{2}}\left(Y_{j_{1}}-Y_{j_{2}}\right. \\
& \left.+\sum_{j=0}^{s-1} \boldsymbol{I}\left\{k_{j}+1 \leq j_{1} \leq k_{j+1}\right\} \mu_{j+1}-\mu_{s}\right)^{T} \\
& \times\left(Y_{j_{3}}-Y_{j_{4}}+\sum_{j=0}^{s-1} \boldsymbol{I}\left\{k_{j}+1 \leq j_{3} \leq k_{j+1}\right\} \mu_{j+1}-\mu_{s}\right) \\
& =\sum_{1 \leq j_{1} \neq j_{3} \leq k_{s}} \sum_{k_{s}+1 \leq j_{2} \neq j_{4} \leq k_{s+1}}\left(\mu_{s+1}-\sum_{j=0}^{s-1} \boldsymbol{I}\left\{k_{j}+1 \leq j_{1} \leq k_{j+1}\right\} \mu_{j+1}\right)^{T} \\
& \times\left(\mu_{s+1}-\sum_{j=1}^{s} \boldsymbol{I}\left\{k_{j}+1 \leq j_{3} \leq k_{j+1}\right\} \mu_{j+1}\right) \\
& +\sum_{1 \leq j_{1} \neq j_{3} \leq k_{s}} \sum_{k_{s}+1 \leq j_{2} \neq j_{4} \leq k_{s+1}}\left(Y_{j_{1}}-Y_{j_{2}}\right)^{T}\left(Y_{j_{3}}-Y_{j_{4}}\right) \\
& +\sum_{1 \leq j_{1} \neq j_{3} \leq k_{s}} \sum_{k_{s}+1 \leq j_{2} \neq j_{4} \leq k_{s+1}}\left(Y_{j_{1}}-Y_{j_{2}}\right)^{T} \\
& \times\left(\sum_{j=0}^{s-1} \boldsymbol{I}\left\{k_{j}+1 \leq j_{3} \leq k_{j+1}\right\} \mu_{j+1}-\mu_{s}\right) \\
& +\sum_{1 \leq j_{1} \neq j_{3} \leq k_{s}} \sum_{k_{s}+1 \leq j_{2} \neq j_{4} \leq k_{s+1}}\left(Y_{j_{3}}-Y_{j_{4}}\right)^{T}
\end{aligned}
$$

$$
\times\left(\sum_{j=0}^{s-1} \boldsymbol{I}\left\{k_{j}+1 \leq j_{1} \leq k_{j+1}\right\} \mu_{j+1}-\mu_{s}\right)
$$

Similar to the single change point case, the order of the first term dominates. Since we assumed that k_{s} is the largest change, and there are only finite change points, the order of the this is $n^{4}\left\|\Delta_{s}\right\|_{2}^{2}$. After proper scaling, the order of the original test statistic is $T_{n, M}=O_{p}\left(n\left\|\Delta_{s}\right\|_{2}^{2}\right)$. Together with the fact that the bootstrap statistic is of order $\left\|\Delta_{s}\right\|_{2}^{2}$, we conclude that the power will converge to 1 .

Acknowledgment

We would like to thank two referees for constructive comments, which led to substantial improvements.

Funding

Stanislav Volgushev was supported by a grant from NSERC of Canada; Xiaofeng Shao was supported by grants NSF-DMS2014018 and NSF-DMS2210002.

References

Brillinger, D. (1975). Time Series: Data Analysis and Theory. Holden-Day, San Francisco. MR0595684
Bücher, A. and I. Kojadinovic (2019). A note on conditional versus joint unconditional weak convergence in bootstrap consistency results. Journal of Theoretical Probability 32(3), 1145-1165. MR3979663
Chen, S. X. and Y.-L. Qin (2010). A two-sample test for high-dimensional data with applications to gene-set testing. The Annals of Statistics 38(2), 808-835. MR2604697
Cho, H. and P. Fryzlewicz (2015). Multiple-change-point detection for high dimensional time series via sparsified binary segmentation. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 77(2), 475-507. MR3310536
Dehling, H. and T. Mikosch (1994). Random quadratic forms and the bootstrap for u-statistics. Journal of Multivariate Analysis 41, 392-413. MR1321305
Donoho, D. and J. Jin (2004). Higher criticism for detecting sparse heterogeneous mixtures. Annals of Statistics 32(3), 962-994. MR2065195
Enikeeva, F. and Z. Harchaoui (2019). High-dimensional change-point detection under sparse alternatives. The Annals of Statistics 47(4), 2051-2079. MR3953444
Fan, Z. and L. Mackey (2017). An empirical bayesian analysis of simultaneous changepoints in multiple data sequences. The Annals of Applied Statistics. MR3743294

Fryzlewicz, P. (2014). Wild binary segmentation for multiple change-point detection. The Annals of Statistics 42(6), 2243-2281. MR3269979
Gaenssler, P., P. Molnár, and D. Rost (2007). On continuity and strict increase of the cdf for the sup-functional of a gaussian process with applications to statistics. Results in Mathematics 51(1), 51-60. MR2375638
Górecki, T., L. Horváth, and P. Kokoszka (2018). Change point detection in heteroscedastic time series. Econometrics and Statistics 7, 63-88. MR3824127
Horváth, L. and M. Hušková (2012). Change-point detection in panel data. Journal of Time Series Analysis 33(4), 631-648. MR2944843
Huang, B., Y. Liu, and L. Peng (2021). Weighted bootstrap for two-sample u-statistics. Preprint. MR4559376
Hubert, L. and P. Arabie (1985). Comparing partitions. Journal of Classification 2(1), 193-218.
Huskova, M. and P. Janssen (1992). Consistency of the generalized bootstrap for degenerate u-statistics. The Annals of Statistics 21, 1811-1823. MR1245770
Janssen, P. (1994). Weighted bootstrapping of u-statistics. Journal of Statistical Planning and Inference 38, 31-42. MR1256846
Jeng, Jessie, X., T. Cai, Tony, and H. Li (2010). Optimal sparse segment identification with application in copy number variation analysis. Journal of the American Statistical Association 105(491), 1156-1166. MR2752611
Jirak, M. (2015). Uniform change point tests in high dimension. The Annals of Statistics 43(6), 2451-2483. MR3405600
Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association 66(336), 846-850.
Schmidt, S. K., M. Wornowizki, R. Fried, and H. Dehling (2021). An asymptotic test for constancy of the variance under short-range dependence. Annals of Statistics 49(6), 3460-3481. MR4352537
Shao, X. (2010a). The dependent wild bootstrap. Journal of the American Statistical Association 105(489), 218-235. MR2656050
Shao, X. (2010b). A self-normalized approach to confidence interval construction in time series. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 72(3), 343-366. MR2758116
Shao, X. and X. Zhang (2010). Testing for change points in time series. Journal of the American Statistical Association 105(491), 1228-1240. MR2752617
Tsirel'Son, V. (1976). The density of the distribution of the maximum of a gaussian process. Theory of Probability and Its Applications 20(4), 847-856.
Van Der Vaart, A. W. and J. A. Wellner (1996). Weak convergence. In Weak Convergence and Empirical Processes, pp. 16-28. Springer. MR1385671
Wang, Q. and B. Jing (2004). Weighted bootstrap for u-statistics. Journal of Multivariate Analysis 91, 177-198. MR2087842
Wang, R., C. Zhu, S. Volgushev, and X. Shao (2022). Inference for change points in high dimensional data via self-normalization. Annals of Statistics 50(2), 781-806. MR4405366
Wang, T. and R. J. Samworth (2018). High dimensional change point estimation via sparse projection. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 80(1), 57-83. MR3744712

Yu, M. and X. Chen (2021). Finite sample change point inference and identification for high-dimensional mean vectors. Journal of the Royal Statistical Society, Series B (Statistical Methodology) 83(2), 247-270. MR4250275
Zhang, N. R. and D. O. Siegmund (2012). Model selection for high-dimensional multi-sequence change-point problems. Statistica Sinica 22, 1507-1538. MR3027097
Zhang, T. and L. Lavitas (2018). Unsupervised self-normalized change-point testing for time series. Journal of the American Statistical Association 113, 637-648. MR3832215
Zhang, Y., R. Wang, and X. Shao (2021). Adaptive inference for change-points in high-dimensional data. Journal of the American Statistical Association, to appear. MR4528468
Zhao, Z. and X. Li (2012). Inference for modulated stationary processes. Bernoulli 19(1), 205-227. MR3019492
Zhou, Z. (2013). Heteroscedasticity and autocorrelation robust structural change detection. Journal of the American Statistical Association 108(502), 726-740. MR3174655

