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Abstract: This paper studies a class of plug-in estimators of the sta-
tionary density of an autoregressive model with autoregression parameter
0 < p < 1. These use two types of estimator of the innovation density,
a standard kernel estimator and a weighted kernel estimator with weights
chosen to mimic the condition that the innovation density has mean zero.
Bahadur expansions are obtained for this class of estimators in L1, the
space of integrable functions. These stochastic expansions establish root-n
consistency in the Li-norm. It is shown that the density estimators based
on the weighted kernel estimators are asymptotically efficient if an asymp-
totically efficient estimator of the autoregression parameter is used. Here
asymptotic efficiency is understood in the sense of the Hajek—Le Cam con-
volution theorem.
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1. Introduction

Consider observations Xy, ..., X, from a stationary autoregressive process of
order 1,
Xt = Qthl + €t te Z7

with unknown autoregression parameter g in the open interval (0, 1). The inter-
val (0, 1) is chosen for notational convenience. The following carries over to ¢ in
the open interval (—1,0). The innovations e, t € Z, are i.i.d. with a common
density f, mean zero and finite variance o2, and { X, s < t} and {e,,r > t} are
independent. Then X; has the infinite series representation

oo
Xi=¢¢+ Z o’eij.
i=1
2880
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This is a semiparametric model with parameters ¢ and f. We are interested in
estimating the stationary density g of the process. The usual density estimators
based on the observations Xy, ..., X, are generally developed for nonparametric
Markov chains or more general time series models. They do not use the autore-
gressive structure of the data. See, for example, [4, 25, 7, 22, 3, 6, 8, 24, 2] and
[20].

For the autoregressive process, the stationary density g satisfies the equation

=[&f®—gwmwdu reR

Thus a natural estimator of g is given by the plug-in estimator
/ flz—op)ialy)dy, =R,

with 9 a root-n consistent estimator of p, f an estimator of f based on the
residuals €; = X; — 9X;_1,j =1,...,n, and § a kernel estimator of g based on
the observations X, ..., X,,. We view our estimators as members of L1, the set
of measurable functions A from R to R with finite L;-norm

Il = [ " () de.

It can be deduced from [21] that the plug-in estimator §o is root-n consistent in
Ly under mild assumptions. Similar results for moving average processes are in
[17, 18].

We can repeat the above plug-in procedure with gy replacing §. This leads
to the estimator

z) = /_ fz— w)io(y)dy, = €R.

One expects the estimator §; to be better than gy as it uses a better initial
estimator of g. Proceeding in this way one recursively defines new estimators

gk+1 / f .’IJ - Qy)gk( )d% S Ra

for positive integers k. It is easy to check that g has the representation

k
aw) = [ (z—zgyz #12) [ fo )= 1)

for nonnegative k.

In this paper we study the estimator gi, where k,, is a sequence of integers
that grow to infinity slowly. We derive root-n consistency of g, in the Li-
norm through a Bahadur expansion, see Theorem 2.1. We establish Hadamard
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differentiability of the stationary density in Theorem 2.2. Using these results we
show that for proper choices of f, ¢ and k,, the estimator g, is asymptotically
efficient. By this we mean that ffooo ¢(x) gk, (x) dx is a least dispersed regular

estimator of [*°_¢(x)g(x)dx for each bounded and measurable function ¢ in
the sense of a semiparametric version of the Hajek—Le Cam convolution theorem.

2. Results

We study the asymptotic behavior of gi, under the following assumptions.

(A1) The density f has finite Fisher information for location.
(A2) The estimator ¢ satisfies the stochastic expansion

S

b=0+=> V(X 1,6)+op(n ')
=1

for a function v satisfying ffooo Y(z,y)f(y)dy =0 and

- [ Z / : (2,11 (9) dy 9(x) dar < oo,

Recall that the density f has finite Fisher information for location if f is
absolutely continuous and the integral

is finite, where f’ denotes the almost everywhere derivative of f. In this case
we let £y = —f'/f denote the score function for location. Assumption (Al)

implies that f’ is integrable with Li-norm || f'||1 = ||€; f]1 < J;/Q. This allows
the representation

s = [ T FWd, ceR,

and shows that f is bounded by || f’||;. Furthermore, the moment assumptions
on f, assumption (Al) and an application of the Cauchy—Schwarz inequality
show that the integral

[ s @lae= [ @i+l

is finite.

It follows from (A2) that n'/2(4 — p) converges in distribution to a normal
random variable with mean zero and variance W. The sample autocorrelation
coefficient | <

izt Xi1Xi
TN 2
n 21:1 X
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meets this requirement with 1 (z,y) = xy/E[XE] = xy(1 — 0?)/0?. An asymp-
totically efficient estimator of p is characterized by (A2) with

xly(y) _ alp(y)(d - 92).

w(xay) = E[Xg]Jf = UQJf

Such an estimator was constructed in [11].
We shall work with two estimators of f. The first one is the usual kernel
density estimator

1 n
:EZKb(x—éj)v SCER,

based on the residuals. Here K;(z) = (1/b)K (x/b) for a density K and a band-
width b. For asymptotic efficiency, it is necessary to exploit that the innovation
density f has mean zero. Our second estimator mimics the mean zero property
using weights stemming from an empirical likelihood approach for mean zero

observations,
n

1
:—Z Ky(x —&5), weR,
n & 11 + ¢

where \ is chosen such that 1+ )\él , 1+ )\En are positive and

1
n Z )\Ej

=1

on the event {min;<j<,€; < 0 < max;<;j<,€;} and is taken to be zero other-
wise. The second estimator satisfies

/_ yfa(y)dy =0

on this event and thus mimics that f has mean zero. Rates of convergence in
the Li-norm of these two estimators were derived in [13] in the more general
setting of nonlinear autoregressive models. We shall improve these results for
the present model in later sections. Both density estimators have the same rates
of convergence in the Li-norm, but the estimator f2 performs better as plug-in
estimator for linear functionals of f. This was observed in [13] in the context of
estimating the innovation distribution function and further exploited in [14] in
the prediction for autoregressive models.
To state our first result we introduce some notation. We start with the random

variables

o0 o]

=Y jd ey and Y =Xo—oe ;=) 1[i#jlo'e_i, j=0.
j= i=0

Let ¢ denote the function defined by
g(x) = E[-Xof' (x — pX_1)], z€R.



2884 A. Schick and W. Wefelmeyer

This function is integrable with Li-norm

. Elleoll _ I ller sl

gl < I I EIXoll < |1f = ) 21

9l < 1A BT Xol] < 11F 1l e (1— o) (2.1)
where (g denotes the identity map on R. For j = 0,1,2,..., let 7; denote

the density of Y;. Then we have the following representation of the stationary
density,

ﬂ@=[5w@—dwﬂw@7xek (2.2)

for each such j. Now introduce functions v and v* by
o0
=Y (@ —dy) —g(x), zyeR,
7=0

and
oo

v (z,y) = (2, y) —/ Y(z,2)2f(2) dZ%, T,y € R.

— 00

These functions satisfy the integrability conditions

(/RQ (2, y)| da f(y) dy)2 < 7r/}Rz(l + 2%y (2, y)P def(y)dy < oo (2.3)
and

([ p@ldetay) <= [ (+ah@afdefd <o @24)

as will be shown in Section 3. Finally we introduce the average

= % ; Y(Xi—1,€5)

and assume that the kernel estimator § also uses the kernel K and the band-
width b,

; .
g(x) = nJrljz:(:)Kb(x—Xj), z eR.

The kernel K will be taken to be a symmetric density satisfying some smoothness
and integrability conditions as stated in the next theorem. We do not require
K to have compact support.

Theorem 2.1. Suppose (Al) and (A2) are met, the kernel K is a symmetric
density with finite variance and is twice continuously differentiable with ||(1
B)VK'||1 and ||(1+ &) (K")?||1 finite, and the sequence k,, and the bandwidth
b = b, are chosen to satisfy

kn, k2
— 00, kibvin—0 and —= — 0.
log(n) nb3
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Then, for the choice f: fl, the estimator g, satisfies the Li-Bahadur expan-
sion

| [0 ) = 900~ Buglo) = 332020 o = opu7 )

i=1

while, for the choice f: fg, it satisfies the L1-Bahadur expansion

[ [ @) - 50 - e - £ 37

The proof of Theorem 2.1 is in Section 6. The assumptions on k,, and b,, are
met by taking k, = (logn)® for some o« > 1 and b, = n~? for some 3 in the
open interval (1/4,1/3). The standard normal density is a possible choice for K.

Inspecting the proof of Theorem 2.1 reveals that the theorem remains valid
if we omit integration with respect to z in the formula (1.1), resulting in the

estimator
En kn
pz) = /k f(x—Z@w) I1/w)dy;, zeRr.
Rfn i=1 j=1

In view of the identity

| i Z/ (&) — u)Ky(u) du,

— 00

dz = op(n~1/?).

valid for any bounded measurable function h, this estimator with f = fl can be
written as a V-statistic

1 n n k'n, .
):WZ Z Kn(:c—;@léji), z €R,

Jo=1 Jkp=1

=
~
8

with K, the convolution of the densities Ky, Kpp,. .., Kyrnyp. For the estimator
f = fo we can write p(x) as a weighted V-statistic

P = ey 3o 3 Bl TnlG) -,

Jo=1 Jkp=1 Hl 0(1+)‘5J1)

If we take for K the standard normal density, then K,, equals the normal den-
sity with mean zero and variance b? Zkio 5%'. This allows for a straightforward

computation of the estimator p for both, f1 and fg.

It follows from the integrability conditions on v and v* that the CLT in L,
applies both to the L;-valued random variables Z; = v(-,¢;), j = 1,2,..., and
to Z; =v*(-,¢;), j = 1,2..., and yields that

’I’Lil/QZZj :n71/2 Z’Y(’E]) and n71/2ZZ; :nil/QZ’y*( .
=t =1 j=1 =1
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converge in distribution to centered Gaussian processes. Indeed, as shown in
Lemma 3 of [19], the integrability conditions imply the necessary and sufficient
conditions of the CLT in Ly; see [12], Theorem 10.10, or [23], p. 92.

Our next result gives Hadamard differentiability of the stationary density
which will be crucial in the characterization of asymptotically efficient estimators
of g in L;. For this we write g,, ¢ for g to stress the dependence of g on the param-
eters o and f. Let H denote the set of all measurable functions h which satisfy

[ mwswdr=o. [ swf@dy=0 ad [ Ky <.
This set is the tangent space at f of the set F of all densities with mean zero, fi-
nite variance and finite Fisher information. Indeed, one can show that for each h
in H there is a sequence f,, of densities with finite Fisher information satisfying

| P VRE - VI@) - shaVT@) de o, (@)

/00 Zfn(x)dr =0 and /OO x2|fn(x)—f($)‘dx—>0. (2.6)

The proof of the next theorem, establishing Hadamard differentiability, is in
Section 7.

Theorem 2.2. Suppose f has finite Fisher information for location. Let h
belong to H. Let f, be a sequence of densities satisfying (2.5) and (2.6) and
let 0, be a sequence in (0,1) satisfying n*/?(o, — 0) — t for some real t. Then

Gon,fn Satisfies
/ 1112 (g0 1., (%) — Go.4(2)) — Ah(z) — §(a)t] dz = op(n"/?)

with -
Ahw) = [ ¥ @)@ dy. v R

We will now show that the density estimator gx, is asymptotically effi-
cient for g if we use fg and an asymptotically efficient estimator ¢ for p.
More specifically we consider linear functionals of the density g of the form
D(g) = ffooo #(y)g(y) dy with ¢ bounded and measurable, i.e., ¢ € Lo, and
show that ® (g, ) is asymptotically efficient for the functional ®(g). We follow
efficiency proofs for other models and functionals and will be brief. See [11, 5, 10],
and [16]. Write P, for the joint distribution of (Xo, ..., X,,) when p and f are
true. Choose o, and f, close to o and f as in Theorem 2.2. Under the above
assumptions it follows from [10] that the local log-likelihood ratio admits the
stochastic expansion

Py, e ,
log _dPQn]J:rL.<XO; o Xp)=n 1/2 Z[thfléf(Ej) + h(i;‘j)] — §A(t, h) + 0P<1)
ne

j=1

with A(t,h) = E[(tXols(e1) + h(e1))?].
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In other words, the model is locally asymptotically normal (LAN) with cen-
tral sequence n-1/2 St X aly(e5) +nT 230 h(ey). Tt follows from The-
orem 2.1 and the above Charactemzatlon of asymptotically efficient estimators
for p that

n'2(®(g,) — ®(9))

is approximated stochastically by an expression of the form of a central sequence.
This implies that ®(gg, ) is asymptotically efficient for ®(g) (and also regular
and asymptotically linear).

This asymptotic efficiency result is an instance of the plug-in principle for-
mulated in [9] in the ii.d. case. In order to see this, fix o, write ¢;(0) = ¢; =
X; — 0X;_1, and set

1 n
E;H =), wer,

where A(p) is chosen such that 1+ A(g)e1(0), ..., 1+ A(0)en(0) are positive and

_Zl+)\ ):O

on the event {mini<;<,€;(0) < 0 < maxi<j<ne;(0)} and is taken to be zero
otherwise. Set

k
§k(x7Q)Z/RHlfz(x—ZQiyi—QkH )H 2(yj,0) dy; 9(2)dz, x €R.
=1

x>

Then for k,, as in Theorem 2.1 the estimator ®( gk f_ (z,0) dx

is asymptotically efficient for ®(g f oy dy when ois ﬁxed Plugglng
in an asymptotically efficient estlmator 0 for g, we obtain an asymptotically

efficient estimator
[ @i, @ o= [ o, @) ds

when p is unknown.

3. Some auxiliary lemmas

In this section we collect some lemmas that will be used in the proofs of our
theorems. We start with three inequalities.

Lemma 3.1. For numbers r and s in the interval (0,1), we have the inequalities

o0

. , [r — s
ZW—S”S—U_ 39 (3.1)

= max{r, s})
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c- r—s|?
S il L] E— 3.2
;'T I (1 — max{r,s})3’ (3:2)

r—sf?

o0
J i =L(p ) < .
; I =7 = s’ r =)l < (1 — max{r,s})3

Proof. Recall the infinite series

= 1 Nt 2
> ogtt = and > j(j- 7= It < 1.
j=1

)2 — 53’
-1 2 -1
Using the inequality |r? — s7| < |r — s|j max{r, s}~ and the first infinite series,
we obtain (3.1). Using |r/ — s7|> < 1(r — $)?25(2j — 1) max{r, s}’ =2 and the
second infinite series, we obtain (3.2). Using

[/ — 7 = js? " (r = 5)] < 5 (r = )% — 1) max{r, s} 2

| =

and the second infinite series, we obtain (3.3). O
Lemma 3.2. Let h be a measurable function. Then we have the inequality

Mﬁs/ w(1 4 22)h3(z) de.

— 00

Proof. Let us set w(z) = 7w(1+22%), z € R. Then 1/w is the Cauchy density. We
calculate

IR113 = IVwh/Vw|| < [wh?|[1]|1/w]y = [wh?|
which is the desired result. |

Lemma 3.3. Let p and q be two integrable functions with |[(Zp|1 and ||ikqllx
finite. Then the inequality ||trp — trql|3 < (|[i&pll1 + |lt&qll1)llp — qll1 holds.

Proof. Bound |tgrp — trq| by [p—q|*2(|p| + |q|)'/?|ir| and then use the Cauchy—
Schwarz inequality. O

Let h be an integrable function. Then the Li-modulus of continuity of h is
the map wy, defined by

o
wp(t) = sup / |h(z —u) — h(z)|dz, t>0.
[ul<t J —oo
The map wy, is bounded by 2||h||; and continuous at 0; see [15], Theorem 9.5,
for the latter. We say h is Lq-Lipschitz if there is a constant A such that
/ |h(z —t) — h(z)|dx < Alt], teR.

In this case the inequality wy(t) < At holds for all ¢ > 0.
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Lemma 3.4. Let h be an integrable function and T, Ty, T, ... be random vari-
ables such that E[|T,, — T|] — 0. Then

/fo |Elh(z — To)] — Elh(z — T))| dz — 0.

Proof. In view of the inequality |E[X]| < E[|X]] and Fubini’s theorem, the
integral is bounded by Elwp(|T;, — T'])], and the desired result follows from the
dominated convergence theorem. O

Let H; denote the set of all integrable functions of the form

for some integrable function h’ and let Hy denote set of all A in Hy with A’
in H;. We write h” for (h')’. If h belongs to Hj, then h is bounded by ||A’||; and
uniformly continuous. More precisely, we have

)~ hi) = | [ wsds— [ W= (= o) ds] < wnlly ~ al)

for all real = and y. As an integrable and uniformly continuous function, h(x) —
0 as z — oo. This implies that b’ integrates to zero,

/ W (z)dx =0,

and this gives the alternative representation

Using this we can show that ||hlz < |[trh’||1. Indeed, the left-hand side is
bounded by

/ / |dtdx+/ / |dtdw</_ooo |1H”L'(t)|dt+/ooo |th(t)| dt.

In view of this inequality, we conclude that a continuously differentiable function
h belongs to H if lim|,—oo A(2) = 0 and ||(1 + [¢g|)A||1 is finite.

Assumption (Al) implies that the density f belongs to Hj. The next two
results are easily verified.

Lemma 3.5. Let h belong to Hy and let t be a positive number. Then the
function hy defined by

he(z) = h(z/t)/t, =z €R,
belongs to Hy, and we can take

Ry(z) = W (z/t)/t*, xR
Thus ||hillx = [|P"[|1/2-
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Lemma 3.6. Let h = hy x hy denote the convolution of the integrable functions
h1 and ho. Then the following are true.

1. If hy is Ly-Lipschitz with constant A, then h is Ly -Lipschitz with constant
Allh-

2. If hy belongs to Hy, then h belongs to Hy with h' = h} x ha.

3. If h1 and hg belong to Hy, then h belongs to Hy with h” = h x h},.

Lemma 3.7. Let h belong to Hy. Then h is Ly-Lipschitz with constant |h/||;.
Moreover, we have the inequality

/ |h(z —t) — h(z) + th'(z)| dz < [tlwp (Jt]), teR.
In particular, if h' is L,-Lipschitz with constant A, then we have
/ I — 1) — h(z) + th'(2)| dx < 2A, tER.

— 00

Proof. Fix t € R. Then we have the identity

1
h(z —t) — h(z) = ft/o h'(z — st)ds

and consequently the bounds

o9} [e'e) 1
/ Ih(z — ) — h(z)|dz < |t / / W ( — st)| ds dz = [£][[1 ]
—o0 JO

— 00

and

/oo ]h(m—t)—h(x)+th’(m)|dm§/_oo |t|/O |W'(z — st) — W (z)|ds dx

—00

< [tlwn ([2])-
If b’ is Ly-Lipschitz with constant A, then [t|wy ([t]) < At%. d

Lemma 3.8. Let h belong to Hy and let T, U and V' be random variables. If T
and U have finite means, then we have the inequalities

/ Bz — V — T)] - Elh(z — V)| de < |1 E|T]

— 00

and
/ |E[h(z —V = T)] — Elh(z — V)] + E[UN (z — V)]| da

—00

E[|T wn (TN} + WL E(T = U]

<
< El[U]wn (ITD] + 3|7 L EIT = UJ].
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Proof. Using the formula |F[X]| < E[|X|], Fubini’s theorem and then the sub-
stitution u = © — V we obtain that the left-hand side of the first inequality is
bounded by

E/_Oo |h(u —T) — h(u)| du,

and of the second inequality by
E/ Ih(u—T) — h(u) + TH (u) — (T — U) ()| d

The desired result then follows from the previous lemma and the fact that wy,
is bounded by 2[|A/||;. O

Corollary 3.1. Let f be in Hy. Then, as r — o,
9r.5 = 9o — (r = 0)d||, = ol — o) (3.4)

Proof. For 0 < r < 1, let S, = 3272, r/e_;. Recall X, = Y jo ey Tt
follows from Lemma 3.1 that

| — olllrflls

B[S, = S|l < (1 — max{r, 0})?

and

' 2
E[|S, = S, — (r— 0)Xo|] < %.

Note the identity

gr,f(x) = E[f(.’E - Sr)]
Applying Lemma 3.8 with h = f, V. =5, = oX_1, T = 5, — 5, and U =
(r — 0)Xo shows that the left-hand side of (3.4) is bounded by

2
— o|B[|Xolws (IS, — S,|)] + 3| f Ir—o®
r = olB{ohup (15 — S)] + 31 Il o=t
The desired result now follows from the dominated convergence theorem. [

For integrable functions p and ¢ and ¢ > 0, we denote by By(p, q) the inte-
grable function defined by

oo

Bi(p,q)(x) :/ plx—ty)q(y)dy, z=eR.

— 00

The integrability of B(p, ¢) follows from the inequality

1Be(ps @)ll1 < llpllillqll1-

We can view B; as a bilinear operator from L; x Ly to L;. Since By(p, q) is the
convolution of p and ¢q;, where ¢;(x) = g(x/t)/t, € R, the following lemma is
an immediate consequence of Lemmas 3.5 and 3.6.
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Lemma 3.9. Let p and q be integrable functions and t be a positive number.
Then the following hold.

1. If p is Li-Lipschitz with constant A, then By(p,q) is L1-Lipschitz with
constant Al|q|1-

2. If p belongs to Hy, then Bi(p,q) belongs to Hy with Bi(p,q)’ = Bi(p',q).

3. If q belongs to Hy, then B:(p,q) belongs to H; with B(p,q)’ = Bt(p,q’)/t.

4. If p and q belong to Hy, then Bi(p,q) belongs to Hy with By(p,q)” =
Bi(p',q')/t.

The next two results are consequences of Lemmas 3.7 and 3.8.

Lemma 3.10. Let p and q be integrable functions with ||trq||1 finite and p being
L1-Lipschitz with constant A. Then we have the inequality

oo

HBt(p,q)—p/_

In particular, if the integral of q is zero, we have

q(y) dyHl < Allergllit, t>0.

o0

1B(p; @)l < Allemgllit, > 0.

Lemma 3.11. Let p belong to Hy and let q be a density. If ¢ has finite mean,
then we have the inequality

|Be(p,q) — plly < P/l lerallat, ¢ > 0.

If p' is Li-Lipschitz with constant A and q has mean zero and finite variance,
then we have the inequality

1Be(p,a) = pll < Alldgllit?, t>0.
Let v be the function defined by
v(z) =(1+|z]), zeR.
This function satisfies the inequality
vz +y) <v(x)vly), z,yeR.

If vh is integrable, then we have

/_00 v(z)|h(z —t)|dx = /_OO v(x +t)|h(z)| de < v(t)||vh]1, teR.

From this we immediately derive the following result.

Lemma 3.12. Let vp and vq be integrable. Then, for every 0 < t < 1, vB(p,q)
1s integrable with

o0

lvBu(p, 9)ll1 < llopls / o(ty)la(w)] dy < [[opll1 vl

— 00
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Lemma 3.13. Let h belong to Hy with vh' integrable. Then ||vh| oo < ||[vR||1.

Proof. For negative x we have the bound
xT xr
w@)lb@)| <o) [ W@ldus [ @ik w)]du
—o0 —00
while for positive z we have the inequality
o@)lh@)| <o) [ W@l < [ ok )] d

These inequalities imply ||vh|eo < |JoR/]]1. O

We have seen that (A1) implies that [|vf’||; is finite. The stationary density
g equals B,(f,g) and therefore belongs to Hy with ¢’ = B,(f’,g) and ¢" =
By(f',9')/ 0, yielding

o'l < 1115 Mlvg'll < Toflllvgll - and  lg" [l < [£717/e.

Recall that v; denotes the density of Y; = Xo — o/e_; = > 72 1[i # jlo'e_;
for nonnegative integers j. Since Yy equals pX_1, we have vo(z) = g(z/0)/0.
Thus the density v belongs to Hy with v = ¢'(x/0)/0? and v/ (x) = ¢"(x/0)/ 0>
yielding the bounds

olls < l1f /e, ol < llof'lhllvgll/e and gl < [1£113/ 0%

For j > 1, the density -y, equals B,(f,~y,;—1) as is easily checked and thus belongs
to Ha with v; = B,(f',v;-1) and v} = Bo(f',7j_1)/e giving the bounds

il < 10 oville < Hlofllallvyi-alle - and 1yl < I vl /e

Note also the bounds [lvy;][1 = E[1+|Y;]] < 1+ > o0y o' ler f]| < |lvfll1 /(1= p)
and similarly ||vg|1 < ||vf]l1/(1—p). Consequently, we have the following result.

Corollary 3.2. Suppose (A1) holds. Then there are constants C1, Cy and Cs
such that the inequalities ||v;|l1 < C1, [[vyjll1 < C2 and ||77 |1 < C3 hold for all
J=0.

Let us now verify the integrability condition (2.3). The first inequality follows
from the moment inequality and Lemma 3.2. The finiteness of the integral

b= [ (e ) dy de

follows if we verify the inequality

7= /Rz(l +2%)(v5(z = @'y) — 9(@))* f(y) dwdy < Mg, j >0,
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for some finite constant M. Indeed, we first bound I by

S [+ aute = ) — gl (e - ') ~ 91 0) dyd

i=0 j=0

and then use the Cauchy—Schwarz inequality to obtain

X v = (L) <

The formula (2.2) yields the identity

oo

[ o=y - g war= [ e dniway- @, zer

— 00 —

Using the substitution z = u+ ¢’y and the fact that f has mean zero and finite
variance o2, we calculate

/ (1 +:c2)vjz(a: — Y fly)dydx = /00 (1+u?+ g2j02)7j2(u) du
R2

—00

and then, utilizing the inequality 1+ 22 < (1 + |z])? = v?(2),

7 :/_00 (1+2%) (7] () —92($))dx+92j02/%2‘(x)d”3

< (lvvsllse + llvgllso)llv(y; = 9)lls + ¢ %[5l -

Next we use the inequalities [|7;]loc < [[vYjllcc < [[v7]]l1 < C2 and

o] o] 1
o=l = [ @] [ [ e senelydssiwdy|da
—0o0 —o0 J0
1 o] o] ) ) )
<[ [ ] s sonie - sewlds ool i@ dyds
0 —00 J —00
< ol 0* £l
to conclude the exponential decay 7; < M 0.
Let us now verify the integrability condition (2.4). The first inequality follows

from the moment inequality and Lemma 3.2. The finiteness of the second integral
follows from (2.3) and the inequality

Jor@nriway = [ - ( [@nuiwa) /o
< [ @i
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4. Behavior of the innovation density estimators

Let f denote the kernel density estimator
1 n
:EZKb(Ifé“j), r €R,

based on the actual innovations, and let

:/ Kb(x—y)f(y)dy:/ flx —bu)K(u)du, x€R,
— 00 — o0
denote its expectation. We have

If = Fll = Op((nb)~*/?). (4.1)

Indeed we calculate, using Lemma 3.2 and the substitution z = y + bu,

Bl - 7 <= | T (11 PInbE[(f(x) — Fl@))?) de

— 00

<n /°O<1+m2>/°° DE2(x — ) [(y) dy de

—71'/ / (14 (y + bu)?) f(y) K*(u) dy du
(14 0®)|[K? |y + mb?|| (1 K)? |1

The following result was proved in [13] under stronger assumptions. In par-
ticular, we remove the assumption that the error density has a finite moment
of order 5/2.

Theorem 4.1. Suppose the bandwidth b = b,, satisfies nb: — 0 and nb3 — oo,
the kernel K is a symmetric density with finite variance and is continuously
differentiable with a bounded derwvative K' with [~ (1 + u?®)|K'(u)|du finite,

the estimator 9 is root-n consistent, i.e., /n(p — o) = Op(1), and the density f
1s L1-Lipschitz with constant A. Then we have the stochastic rates

| 1hte) - )l de =0 (55)

/_!fz flz) + 2f(z )\|dx70p( bla/z)'

Proof. The assumptions on K imply that K belongs to H;. Thus Lemma 3.9
implies that f = By(f, K) belongs to H; and f' = By(f, K')/b is L;-Lipschitz
with constant A[|K’||/b. It follows from Lemma 3.10 and [~° K'(u)du = 0
that ||/l < Aller K.

and
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The residuals are of the form
é\j:Xj*@Xj_l :é‘j*(@*Q)Xj_l, ]:1,,77,

This representation, the root-n consistency of ¢ and the stochastic rates

n

1 _ 1 _
ZZinl :OP(TL 1/2) and ZZEijil :OP(TL 1/2)
=1 j=1
yield
1 n A n
o 5]**25j+OP(1/n)
j=1 j=1
and

1 }n: €j —1/2 —~1/2
A - ﬁ - —2 +0P(Tl / ) = Op(n / ), (42)
j:
2 — 1/2
max €| = op(n'/?). (4.3)

A consequence of the above is the stochastic rate

1. N2
=y - =0p(n™" (4.4)
n j=1 1 + )\E]‘

which plays a role in comparing fz with fl.
We shall establish the following stochastic rates.

/_Oo | fo(z) — fi(2) + Aafi(x)| dz = Op(bn~1/?), (4.5)
11 = flln = Op(1/(nd*?)), (4.6)
[ 1elii@) - f@)]dz = 0p (6172, (4.7)

These stochastic rates together with A = Op(n~'/?) and nb* — 0 imply the
desired results.
To verify (4.5), we write

IS
&
|
~5
—
—
&
+
>
8
=
—~
8
~—
Il

. N A 1 & 1 N A
SN K (1 — (—A—l—i-)\é'%-)\x—é')

~

222

1O A%
ﬁjz_:le(x_é])<l +E);\jéj +)\(l'—éj))
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and then find that the left-hand side of (4.5) is bounded by

1 :\252 o ~1/2
EZ +|A\b/ lu|K (u) du = Op(1/n) + Op(bn~1/?),

P -

where we used (4.2) and (4.4) in the last step. This proves (4.5).
Next we prove (4.6). For this we write

n

fule) = Flo) = -3 (Ko 5 + (0 - 0)X;1) — il )

Jj=1

=H /m(p—)(@) + D(z) + (0 - 9)% > X f (@)

j=1
with
B %_ (1o == U&,—Zl) - Kifa = &) = o+ =22 + Fw).
%i —0)X; 1) — f(x) — (0 — 0)X; 1 f'(2)).
j=1

As f’ has norm ||f'||; < A|wrK’||; and is Li-Lipschitz with constant A||K’(1 /b,
we derive, utilizing Lemma 3.7 and setting B = A max{||K’||1, ||trK’||1},

1= flly < 1 H ymgo- Q)H1+B( Z 1+\@—9|‘%2Xg‘71‘)
j=1

= [1H /a(e-e) 1 + Op(1/(nb)).
Thus the desired (4.6) follows if we verify that the stochastic rate

sup || Hyllv = Op(1/(nb*?)) (4.8)

lt|l<C

holds for every large constant C. Fix such a C. Since max;<j<, |X; 1] is of
stochastic order Op(nl/ 2), we may replace H; by H; where

y(z) = %Z (Kb(x—sﬁ”%)—m(x—ej) f(HUf}l)Jrf( )W

with
Wj71:1[0|Xj,1‘§\/ﬁ], j:].,...,n.

We have Hy(z) = 0 for all 2, and for s and ¢ in [~C,C] we have

n

_ _ 1 Xi 4
Hy(z) — Hy(x) = = ) (t—s)—=W;_1V;(z)
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with
W“”:iﬁl@ﬁ(w—%+4s+vu—$>f%;)—f(w+@+mu_s»535))du

A martingale argument yields

El(Hy(x) - B.@)?) < T2 Bpxewovi @)

S

with My(x) = (1/b)M (x/b) and M = (K')2. Lemma 3.2 yields the bound

[ Helly = [|Hl[ [ < ([ He = Hl§ < W/ (1+a%)(Hi(x) — Hy(x))* da.
Combining the above yields the inequality
n*VE|| Helly — | Hs[l1]*] < 77/ (1+ 20V’ E[(H(z) — Hy(2))*] da

<m(t— 5)2/0 I(v)dv

I(v) = /O;(lerz)E[Xgl[qu < \/E]Mb(;c—sl + (s+v(t—5))%)] dx

which equals

/°° E[X21[C1Xo| < vl (1+ (61 — (s + v(t — 5))Xo/v/ + bu))] M (w) du

—00

and can be bounded as follows,

I(v) < /jo E[XZ1[C|Xo| < v/n]](1 + 3¢3 + 3b*u® + 3) M (u) du

< E[X]] / 4(1 + o + b*u?) M (u) du
— 00

<4(1+02+ b?)E[Xg]/ (1+ ) M) du, 0<v<l.

— 00

In the first inequality we used the Cauchy—Schwarz inequality and the fact that
s + v(t — s) belongs to the interval [-C, C] and is hence bounded by C. Note
that [|(1 +¢2)M]||; is finite by the assumptions on K’. In view of Theorem 12.3
in [1], the process {X, (t) = nb®/2||Hy|1, |t| < C} is tight and this implies (4.8).
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We are left to verify (4.7). Since f is L;-Lipschitz, the identity f=By(f, K)
and Lemma 3.10 yield ||f — |1 < Ab|ltgK||1. This, the rate nb> — oo, (4.1)
and (4.6) establish the stochastic rate

R R N o _ b3/2 b
1=l < 1= T+ 17 = Pl 1 = f = Op (S + (oyors +0) = Op @),

In view of Lemma 3.3 the desired result follows from this, the stochastic rate

/Oo 22 fi(x) de = %Zﬁ;éﬁ +/

— 00 = —

oo

b u? K (u) du = Op(1)

and the fact that f has a finite second moment. O

Corollary 4.1. Under the assumptions of Theorem 4.1 the estimator fl satisfies
Ifi = flli =0p(®) and |w(fi — f)lli = Op(b*/?),

and the estimator fy satisfies
Ifa— flli = Op() and |w(fz — f)ll1 = Op(b*/?).

Proof. The first two rates were established in the proof of (4.7). The third
rate follows from the first one and ||fo — fi]1 = Op(n='073/2) + Op(n~1/2) =
op(b%/?) which is a consequence of Theorem 4.1. From (4.2) and (4.3) we derive
the bound

/00 22fy(z) dz < max — /Oo 22fi(z) dz = Op(1).

e Ta<isn 4 dej oo

The argument used to prove (4.7) now yields ||tr(fo — f)|l1 = Op(b'/2). O

5. Behavior of the derivatives of the innovation density estimators

In this section we assume that the density f belongs to H; and show that the
derivatives of our kernel estimators estimate f’ consistently in the Li-norm.

Theorem 5.1. Suppose the bandwidth b = b,, satisfies nb: — 0 and nb3 — oo,
the kernel K is a symmetric density with finite variance and is twice continu-
ously differentiable with ||(14+:3)K'||1 and ||(1+:2)(K")?||1 finite, the estimator
0 s root-n consistent, and f belongs to Hy. Then we have the stochastic rates

Ifi = Flli=op(1) and | fz—f'l = op(1).

Proof. The assumptions on K imply that K belongs to Hy and meets the as-
sumptions of Theorem 4.1. Since f’ is integrable and f’ equals B,(f’, K), we
have

17 =7 < [ wp (K@ du— 0. (5.1)

— 00
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The desired result thus follows from the following stochastic rates:

I1f3s— Filli = Op(1/(bn1/?)), (5.2)
11 = 'l = Op(1/(nb/?)), (5.3)
If' = f'llh = Op(1/(nb*)'/?). (5.4)

Let us first establish (5.2). In view of A = Op(n~1/2), it suffices to show the
rates | fili = Op(1/b) and ||f5 — fi + Arfili = Op(n='/2). The former
follows from the inequality

. 1 e [ R

leafill < 2> [ lallEi (o - 25)ldo
j=17 -

L [ K ()
- 2 bu| 2 g
nZ/_oﬁ* ul

K’
< IE (L Z|J|+\g—g| Z| ) + e

For the latter we use the identity

IN

(@) = fi(@) + Aafi(x) = —ZKg(x—gj)( — 1438+ Mz — &)

:—ZKb T — € (

1+ X
)\2 A2
1+ /\5]

+ Az — éj))

to obtain the inequality

"N | K
I fo—fr—Nwfill < = Z j H b||1

Aty = 0 () +0r( =)

where we used (4.2) and (4.4) in the last step. This proves (5.2).
Let us now prove (5.3). We write

filw) = F@) = = 37 (Kiw = e+ (- 0X,1) — Ky —2,)

j=1
= H () (#) + D'(x) + (2 - e)% ZIXHf”(x)
i=
with
y X 5 X;_
Hi(x) = %Z (Kzl,<x g + t\/]ﬁl) Ko —e;) - /(x—|— t#) +f'(x)),
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n

:%Z flae+(0—0Xjm1) = f(@) = (06— 0)X;—1f"(x)).

Jj=1

By Lemma 3.9, f belongs to Hy and f” = By(f', K')/b has norm ||f”|; <
Ilf/ 1111 K"]|1/b and is Ly-Lipschitz with Lipschitz constant || f/||1 || K" |1 /b*. Using
this and Lemma 3.7 we obtain with B = || f’||; max{||K’||1, || K" |1},

1= Pl < 1 gl + B (0 Z L ple-dl Z =)

= 1H (5 gy 1 + Op(1/ (nd?)).
Thus the desired (5.3) follows if we verify that the stochastic rate

sup [[Hjll = Op(1/(nb*?)) (5.5)
[t|I<C

holds for every large constant C. Fix such a C. Since max;<;<n | X -1] is of
stochastic order op(n'/?), we may replace H/ by H} where

=150 (g (omey ) Kifa—e)) <P (a+ )+ F @) Wi

with W;_

1 = 1[CX; 4| </n], j =1,...,n, as in the proof of Theorem 4.1.
We haveH( ) =0 for all z, and for s and ¢ in [-C, C] we have
- 1 X 1
H; Hi(z)==) (t—s)==W;1V;
o) = Hi(e) = £ 30— 922 -V )
with
1
X\ - X, 4
V' — K// o~ t_ J gy t_ J d .
@) = [ (K (a=er rott=a) 222 ) = (et (rot—s) S22 ) ) o

A martingale argument yields

Bl(H(x) — B2 < 2 Bxewovi o))

n2
(t—s) [ 2 Xo
<X 2 _ _ 29
< /O E[XOWOM,, (g; e1 + (s +o(t s))\/ﬁ)} dv
with M (x) = (1/b)M(x/b) and M = (K”)?. Lemma 3.2 yields the bound
H Nl = H L < 12 = HlF < W/ (1 +2%)(Hy(w) — H())* dz.

—0Q0

Combining the above yields the inequality

n?O B[ Hylly = [ HL[?) < 7T/Oo (1 + 2®*)n°b*E[(H}(x) — H{(x))?] dz

— 00

< m(t— 8)2/0 I(v)dv
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with
I(v) = /_‘X’ (1+2*)E[X51[C|Xo| < v/n]]M, (:c —e1t+ (st - s))%) da
< 4(1 Lo bQ)E[Xg] /°° (1 n uQ)M(u) du, 0<v<l,

where the inequality is obtained as in the proof of Theorem 4.1. In view of
Theorem 12.3 in [1], the process {X/,(t) = nb®/2||H!||1, |t| < C} is tight and this
implies (5.5).

We are left to verify (5.4). Using Lemma 3.2 we calculate

o0

WPE(F — FI2) < / (1 + b E[(f(z) - F'(2))?] da

= [ [ A P ) ) dy
= (L4 o) (K21 + w2l (=K.

This shows || f — f'|l1 = Op(1/vVnb3).

6. Proof of Theorem 2.1

Let f denote either the estimator f1 or the estimator fg. In view of the properties
of k,, and b = b,,, Corollary 4.1 implies the stochastic rates

(kn + DIf = flln = op(n™'/*) (6.1)

and

lee(f = £)ll1 = Op(b*/?), (6.2)

while Theorem 5.1 yields
If" = f'llh = op(1). (6.3)

Recall that gy, can be expressed as

kn kn
i, () = /R e ) [T fw)dyy ()= e R (6.4)
i i=1 j=1

Corollary 3.1, assumption (A2) and the bound (2.1) yield

1 )
905 =99, Z¢(Xjf1,€j)H1 = op(n~1/?).
=1
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Thus we need to compare gy, with g, 5. For this we represent g, 7(z) as

9o, (@) :/Rw (w—ZQyz ot )lk:[ f(y;) dy; gs,5(z)dz. (6.5)

Replacing ¢*»+1 by oF»*1 and g, ¢(2) by g(z) yields

kn kn
gz,f(:c) Z/Rkn+1 ( z:: k +1 )1;[ (y;)dy; g(z)dz, =z €R.

Replacing §*»*! by oF»*1 and §(z) by g(z) in (6.4) yields

kn kn,
i@ = [, H- 2o du o) [y oy e
Rfn i=1 j=1
We begin by establishing the rates

gk, — 97, I = op(n='/?) (6.6)

and
lga.5 = 95,711 = op(n™'/?). (6.7)
We have the identities g, = Bsrnt+1(D, ) and g; = Bgen+1(p, g) with

kn kn
(o) = /%f(m_;@iyz)g ()dys, weR

It is easy to check that p is Hy-valued with

kn k
ﬁ’(m)=/w f’(w—Z@ﬁm)H (v;)dy;, z€R,
" =1 j=1

and that ||p]l1 < [|f'|li = Op(1) holds in view of (6.3). Using Lemma 3.11 we
obtain

13, = i, It < Ngw, = Pl + 19k, = Bl < 1511 (@ lezglls + ™+ lemgll)-

The desired (6.6) now follows from §*»+1 = op(n=1/2) and ||irg|l; = Op(1).
Indeed, the former follows from

2t = exp (~(h+ 1) (10801/0) — 5205 ) ) = 0r(1)

and the latter from

Ellergli] = B[l = lerg * K|l < lerglls + [erKollr = llerglly + O().



2904 A. Schick and W. Wefelmeyer
A similar argument yields (6.7).

We are left to compare g; and g ;. For this we express gj as Ly(f,..., f)
and g; ; as Ly(f, ..., f) where

kn kn
Lo(hor- . I, ) (&) = / o= vt = o) T o) dua(2) d=
ntt i=1 j=1

for integrable functions hy, ..., hr, and positive numbers r. One checks
k:'ll
1 (hos - b )l < TT A5 1 (6.8)
j=0

To simplify notation, we set

Lr,h = LT(hv EEEE h)
and, for a subset A of {0,...,k,},

p, 1€A,

=0, k.
g igA "

LT,A(pa Q) = Lr(h07 ceey hkn) with hz = {

We use the identity

o
[H@+e)=" > Tla I

3=0 AC{0,1,...kn} JEA  jEA°

to conclude

-Z/r,erq = Z Lr,A(p7 q)
AC{0,1,....kn}

Applying this with r = g, p = f— f and ¢ = f, and singling out the terms with
A of cardinality at most one, we obtain

kn
Loj=Los+ ) Lo (f = f.0) + R
§=0
with .
R]_: Z L@,A(f_faf)
AC{0,....k,}
card(A)>2
By (6.8), | Ly.a(p, q)|l1 is bounded by ||p||¢]lg|s» T ~* with a the cardinality of A.
Since there are (k";'l) < (kp 4 1)*/al subsets of cardinality a, we obtain

kel (4 1) s A )
1Bl < 30 T = F18 < (G DI = Sl et 01,

a=2
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In view of the rate (k, + 1)||f — f|l1 = op(n~1/4) given in (6.1), this establishes
kn
g, =955 =D Lo (F = £.9)]|, = or(72). (6.9)
=0
Our next goal is to verify
kn kn
> Loy (G =10 = Loy (F = 10|, =orn™2). (610)
3=0 7=0

To achieve this we derive bounds on the terms

Dl(h‘) = HL@,{Z}(h7 f) - Lg,{i}(hvf)”l) 1= 07 .. '7kna

for h € H; with ||egh|; finite. Using Lemma 3.7 we obtain

kn
Do(h) < W[l Y1 = [l flla
j=1
and

kn
Di(h) < [If'llx Z &7 = (17 # il llewfll + 1[5 = d][|lerhll1)

j=1

kn
<1l llemf Il D187 = 1+ 1 allewhl1]@® = &', i=1,. ., kn.
j=1
Using the inequality (3.1) with » = ¢ and s = o and taking h = f — f we obtain
that the left-hand side of (6.10) is bounded by

L = Flalleeflls + 1w = Pl + EF IS = Fllallee sl
- 10— al.
(1 — max{g, 0})?

This bound is of order op(n~'/?) because p — g is of order Op(n~'/?) and the
terms kn||f — fll1, lltr(f — f)llx and ||f" — f'||1 are of order op(1) in view of
(6.1)-(6.3).
Next we observe the identity
kn kn kn
Loi(f = 1. /) = Byi (75 _f): L(f -
j=0 j=0 =0

where, for an integrable function h, I'jh = B,; (v;, h) is the function defined by

Ljh(z) = /_°° vi(z — y)h(y) dy, =z €R.
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We have |[T;h|l1 < ||h]jx for all integrable h. Using this and Theorem 4.1 we

derive
k’!l

o IT (A = Dlls < (ko + DIlfr = Flls = Op(kn/(nb*/?))

=0

and

kn

S ITi(fa = ) + AT ()l < (ko + D2 = F+ M fll = Op(kn/(nb*?)).
=0

Since f has mean zero and finite variance, Lemma 3.10 and Corollary 3.2 yield
the inequalities

IT; ()l < Il fll < Cro®d, 5 >0.

This and the expansion (4.2) yield

kn n .
':\er(LRf) - % > % ZFJ'(LRf)Hl =op(n~'/?).
) i=1 =0
Since f has mean zero, we compute
L@ = [ (i =09 - @iy, v e,

and obtain the identity

Srh@ = [ i@y zeR
=0 —o0

In view of k2 /(nb3) — 0, we obtain

H AT S D)), =er 1)
j=0 §=0

and
kn kn 5 oo 1 n e
|3 Loty (B D=3 (=43 3 55| =op(n'72). (6.12)
j=0 j=0 §=0 i=1
For j =0,1,..., we compute
ij(x) = /ﬁj(x —bu)K (u)du, x€R,
with

¥(x) = %Zw(w —0e), zeR
=1
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By Corollary 3.2, 7; belongs to Hy with [|77[[1 < C3. This implies that 7; is
Hy-valued and [|7[1 < C3. Lemma 3.11, applied with ¢ = bo’, p = 7; and

q = K, yields the bound
IT5F =5l < Csb® 0™ iR K |-

Since I'; f = g, we derive

=

n

5506 = 1)~ 5= )|, < SSU0SF h = Opl0%) = ot~
j=0

Jj=0

Finally, using Corollary 3.2 we obtain the rate

E[Hj_gl% INES S e Eller - al) = O *) = op(n=V2).

J=Rn

From this we conclude

IS50,G -5 -1

=0

= op(n~1/?) (6.13)

with
_ 1 <
Ty = - 1<i)y eR.
0= 23 ot +

The first L;-Bahadur expansion follows from (6.6), (6.7), (6.9), (6.10), (6.11)
and (6.13), while the second follows from (6.6), (6.7), (6.9), (6.10), (6.12) and
(6.13).

7. Proof of Theorem 2.2
Corollary 3.1 and n'/?(p,, — 0) — t imply
172 (90,5 = o) — tglls = 0.
Thus we are left to show
17" (9,4 = Gon.s) — Ablly = 0. (7.1)

Recall that hf and (ghf integrate to zero, i.e.,
oo oo

/ h(y)f(y)dy =0 and / yh(y)f(y) dy = 0.
— 00 — 00

The second integral condition allows us to replace the function v* in the defini-
tion of Ah by -, and this leads to the representation

AR =3 TS (0)

=0



2908 A. Schick and W. Wefelmeyer

in view of the definition of v and the first integral condition, which gives

/ " (e — ) — g@))h(w) Fly) dy = / (@ — PR F) dy
=Tj(hf)(@).

It follows from Corollary 3.2 and Lemma 3.10 that |T;(hf)|l1 < Ci0?|ltrhf]1-
Using the definition of 7o, we have the identity T'o(hf) = B,(hf,g). Let k), be
a sequence of positive integers such that k, /(log(n))? — 1. This implies that
n'/2gFn — 0 and therefore Y1 1T (A = o(n=1/2). Thus we achieve
(7.1) by verifying

1n%(90,,5, = Gn) = Bo(hf, g)]1 — O (7.2)
and
kn
H Y2(Gn = ggu.p) = Y _Tj(hf H (7.3)
j=1
with
Fn o
éfin(f):/A +1f(x—zg,’1yj—9k"“ )H (y;)dyjg(z)dz, = €R.
REn -
j=1 j=1
Let us set

An = n1/2(fn - f) - hf
We begin by showing that (2.5) and (2.6) imply

|Anllt =0 and [wA,|1 — 0. (7.4)
For this we set 7 = $h\/f and write
02 (fu = 1) = hf =0 2o = O+ V) =20V F
= (n"*(Vfu = VD =)V + VD + 7o = V1)

This shows that ||A,]||1 is bounded by

102V Fo = VI) = T2l Fa + VEll2 + M2V Fa = V112

and ||t A, |1 is bounded by

102/ Fa = VD) = 7llzllow(VFa A+ VDll2 + 172w (V= VP2

These bounds converge to 0 because (2.5) implies that n'/2(y/f, —+/f) converges
in Ly to 7 and v/f, — +/f converges in Ly to 0, and because (2.6) implies that

ler(vFn = VFIIE < Mleflfn = flll = 0.
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As a consequence of (7.4), the bilinearity of B, and ||B,, (p,¢)|l1 < lIpll1ll¢ll
we obtain

||n1/2(BQn(f'fL7gn) - BQn(f? 9n)) — BQn(hf7gn)Hl <[Anfi =0 (7.5)

with g, = go,,.7,- For this g, we have

kn kn
BQn (fa gn)(x) = /]Rk f(l‘ - Z Q;yi - Qﬁn—i_lz) H fn(yj) dngn(z) dz
ntt i=1 j=1

and obtain by an argument similar to the one used to derive (6.6),

10 2(Bg, (f,9n) =gn)lln < I/ 1102 (05 T lemgnll + 0" [lemgll1) — 0. (7.6)

Now we use the representations

By, (hf,gn)(z) = E[(hf)(z — Sn)], = €R,
and
By(hf,g)(z) = E[(hf)(z = 5)], z€R,

with S,, = Zjoil o F7 1 (U;)) and S = Z;‘;l o F~1(U;)), where Uy, Us,... are
independent uniform random variables and F,; ! and F~! are the left-inverses
of the distribution functions F,, and F' with respective densities f, and f. We
verify

0o o0 1
B[S, =S <>l — & lllewfuli + ) / |EH(u) = F7H(u) [ du — 0
j=1 j=1 0
with the help of Lemma 3.1, properties (2.6) and the inequality

/O F ) — F ()| du = / \Fo() - F(a)) da

— 00

</ T ) — F)ldy 0

where the convergence to 0 follows from (7.4). An application of Lemma 3.4
yields

1Bo,, (0f; gn) = Bo(hf, g)lly = 0. (7.7)

The desired (7.2) follows from (7.5)—(7.7).
To verify (7.3) we begin by observing the identity g, = L, 03(f, fn). An
argument similar to the one that produced (6.9) yields

kn
n2)|G, =3 Lo iy (= £.9), = 0.
j=1
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now using k|| fn — fll1 = O(k,n~"/?). Next, mimicking the argument that led
to (6.10) yields

Cnnl/2|«9n - :Q|
1 — max{on, 0})

2—>0

| S L1~ 1.1~ 3 Ly~ 1 N, <
=1 = -

with Cp, = || f[l1 ([[er(fr — H)ll1 + kallf — fllillerf]l1) — 0. Finally, we have

0L, iy (Fa— 1, £)=T5(hf) = 02 By (vi, fa—F) =By (V. hf) = Bi (75, Ay),

and Lemma 3.10, Corollary 3.2 and (7.4) imply

kn kn
|3 Bt a0 <3 Il lewal — 0.
j=1 j=1

Here we used the fact that hf integrates to zero. This completes the proof of
(7.3).
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