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Abstract: In the famous least sum of trimmed squares (LTS) estimator
[21], residuals are first squared and then trimmed. In this article, we first
trim residuals – using a depth trimming scheme – and then square the
remaining of residuals. The estimator that minimizes the sum of trimmed
and squared residuals, is called an LST estimator.

Not only is the LST a robust alternative to the classic least sum of
squares (LS) estimator. It also has a high finite sample breakdown point-
and can resist, asymptotically, up to 50% contamination without breakdown
– in sharp contrast to the 0% of the LS estimator.

The population version of the LST is Fisher consistent, and the sample
version is strong, root-n consistent, and asymptotically normal. We propose
approximate algorithms for computing the LST and test on synthetic and
real data sets. Despite being approximate, one of the algorithms compute
the LST estimator quickly with relatively small variances in contrast to the
famous LTS estimator. Thus, evidence suggests the LST serves as a robust
alternative to the LS estimator and is feasible even in high dimension data
sets with contamination and outliers.
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1. Introduction

In the classical regression analysis, we assume that there is a relationship for a
given data set {(x′

i, yi)′, i ∈ {1, 2, . . . , n}}:

yi = (1,x′
i)β0 + ei, i ∈ {1, . . . , n} (1.1)

where yi ∈ R
1, ′ stands for the transpose, β0 = (β01, . . . , β0p)′ (the true unknown

parameter) in R
p and xi = (xi1, . . . , xi(p−1))′ in R

p−1 (p > 1), ei ∈ R
1 is called

an error term (or random fluctuation/disturbances, which is usually assumed to
have zero mean and variance σ2 in classic regression theory). That is, β01 is the
intercept term of the model. Write wi = (1,x′

i)′, then one has yi = w′
iβ0 + ei,

which will be used interchangeably with model (1.1).
One wants to estimate the β0 based on a given sample Z(n) := {(x′

i, yi)′, i ∈
{1, . . . , n}} from the model y = (1,x′)β0 + e. We call the difference between yi
and w′

iβ the ith residual, ri(β), for a candidate coefficient vector β (which is
often suppressed). That is,

ri := ri(β) = yi −w′
iβ. (1.2)

To estimate β0, the classic least squares (LS) minimizes the sum of squares of
residuals,

β̂ls = arg min
β∈Rp

n∑
i=1

r2
i .

Alternatively, one can replace the square above by the absolute value to obtain
the least absolute deviations estimator (the L1 estimator, in contrast to the L2
(LS) estimator).

The LS estimator is very popular in practice across a broader spectrum of
disciplines due to its great computability and optimal properties when the er-
ror ei follows a normal N (0, σ2) distribution. However, it can behave badly
when the error distribution departs even slightly from the normal distribution,
particularly when the errors are heavy-tailed or contain outliers.

Robust alternatives to the β̂ls have been present in the literature for a long
time. The most popular ones are, among others, the M-estimators [14], least
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median squares (LMS) and least trimmed squares (LTS) estimators [21], S-
estimators [27], MM-estimators [46], τ -estimators [47], and maximum depth
estimators ([22, 52], and [53]). For more related discussions, see Sects. 1.2 and
4.4 of [23], and Sect. 5.14 of [17].

I practice, the LTS is the most common estimator used across multiple dis-
ciplines. Its idea is simple, it orders the squared residuals and then trims the
larger ones keeping at least �n/2� squared residuals, where � � is the ceiling
function; finally, the minimizer of the sum of those trimmed squared residuals is
called the LTS estimator:

β̂lts := arg min
β∈Rp

h∑
i=1

(r2)i:n,

where (r2)1:n ≤ (r2)2:n ≤ . . . , (r2)n:n are the ordered squared residuals and
constant h satisfies �n/2� ≤ h ≤ n.

Naturally we wonder, what if we first trim (employing the scheme given in
Sect. 2) the residuals and then minimize the sum of squares of trimmed resid-
uals? Thus, the minimizer will be called LST. Is there any difference between
the two procedures? Outlying (large or small) original residuals are trimmed
after squaring in the LTS – those residuals are certainly trimmed in the LST.
However, the outlying residuals which have a small squared magnitude will not
be trimmed in the LTS and are trimmed in the LST (see (a) of Fig. 1). Before
formally introducing the LST in Sect. 2, let us first appreciate the difference
between the two procedures.

Example 1.1. We constructed a small data set in R
2 with x = (5, 5.5, 4, 3.5,

3, 2.5,−2) and y = (−.5,−.5, 6, 4, 2.4, 2, .5), they are plotted in the left panel
of the (a) of Fig. 1. We also provide two candidate regression lines β1
(y = 0) and β2 (y = x). Which better represents the overall pattern of the
data set?

If we use the number h = �n/2� + �(p + 1)/2� given on page 132 of [23] to
achieve the maximum possible breakdown point (see Sect. 3 for definition) for
the LTS estimator, or employing the four smallest squared residuals, then the
LTS prefers β1 (using residuals from points 1, 2, 6, and 7) to β2 (using points
4, 5, 6, and 7), whereas for the LST, β2 (using residuals from points 4, 5, 6,
and 7) is preferred. Some would argue that this is not representative since the
LTS searches all possible (not just two) lines and outputs the best one, but if one
utilized the R function ltsReg, then it produces the solid (black) line whereas
the line based on algorithms (see Sect. 5) for the LST is the dashed (red) one in
the right panel of the (a) of Fig. 1. For benchmark purposes, the LS line dotted
(green) is also given, which overlaps with the LTS line. From this instance, we
can appreciate the difference between trimming schemes of the LTS and the
LST. Of course, some might argue that the data set in (a) is purely synthetic
and fixed.

So, in (b) of Fig. 1, we generated seven highly correlated normal points (with
correlation 0.88 between x and y), when there is no contamination the LTS
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Fig 1. (a) Difference between the two procedures: the LST and the LTS. (b) Performance
difference between the LST and the LTS when there are contaminated points (x-axis leverage
points).

(identical to the LS again) and the LST pick out the linear pattern. If there
are two contaminated points (note that the LTS allows m := �(n − p)/2� = 2
contaminated points in this case in light of Theorem 6 on page 132 of [23]),
the LTS line changes drastically in this instance becoming identical to the LS
again.

For examples with an increased sample size, see Sect. 6. Incidentally, the
instability of the LMS (not the LTS) was already documented in [13].

The idea of trimming residuals and then doing regression has appeared in
the literature for quite some time. The trimming idea was first introduced in
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location setting and later extended to regression, see, [15, 2, 28, 44], and [23],
among others. The trimmed mean has been used in practice for more than
two centuries (see [8], page 34, and is attributed to “Anonymous” (1821) [1]
(Gergonne, see [33]), or [18]. Tukey [37, 4] was an outstanding advocator for the
trimmed mean in the last century.

However, trimming residuals based on depth or outlyingness employed in
this article (see Sect. 2) is novel and has never been utilized before. A more
recent study on the topic is given by Johansen and Nielsen (2013), where the
authors used an iterated one-step approximation to the Huber-skip estimator to
detect outliers in regression and theoretical justification for the approximation is
provided. Their Huber-skip estimator defined on page 56 is closely related to our
LST, but there are two essential differences (i) their estimator more resembles
the least winsorized squares regression (see page 135 of [23]), (ii) residuals in
their estimator are not centered by the median of residuals.

In light of [52], both the LTS and the LST could be regarded as the deepest
estimator (aka regression median) with respect to the corresponding objective
function type of regression depth (see Sect. 2.3.1 of [52] and Sect. 4).

The rest of the article is organized as follows. Section 2 introduces trimming
schemes and the least sum of squares of trimmed (LST) residuals estimator and
establishes the existence and equivariance properties. Section 3 investigates the
robustness of the LST in terms of its finite sample breakdown point and its
influence function. Section 4 establishes the Fisher as well as the strong and
the root-n consistency. The asymptotic normality is derived from stochastic
equicontinuity in Sect. 5. Section 6 introduces two approximate computation
algorithms of the LST. Section 7 presents examples of simulated and real data
and carries out a comparison against the leading regression estimators, the LTS
and the LMS. Section 8 consists of concluding discussions. Long proofs are
deferred to Appendix.

2. Least sum of squares of trimmed residuals estimator

2.1. Trimming schemes

Rank based trimming This scheme is based on the ranks of data points,
usually trimming an equal number of points at both tails of a data set (that
is, lower or higher rank points are trimmed) and can trim points one-sided if
needed (such as when all data points lie on the positive side of the number
axis).

This scheme is related to the trimmed mean, which keeps a good balance be-
tween robustness and efficiency, alleviating the extreme sensitivity of the sample
mean and enhancing the efficiency of the sample median.

Rank-based trimming focuses only on the relative position of points with
respect to others and ignores the magnitude of the point and the relative distance
between points. [49] and [45] discuss an alternative trimming scheme, which
catches these two important attributes (magnitude and relative distance). It
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orders data from a center (the median) outward and trims the points that are
far away from the center. This is known as depth-based trimming.

Depth (or outlyingness) based trimming In other words, the depth-based
trimming scheme trims points that lie on the outskirts (i.e. points that are less
deep, or outlying). The outlyingness (or, equivalently, depth) of a point x is
defined to be (strictly speaking, depth=1/(1+outlyingness) in [48])

D(x,X(n)) = |x− Med(X(n))|/MAD(X(n)), (2.1)

where X(n) = {x1, . . . , xn} is a data set in R
1, Med(X(n)) = median(X(n)) is

the median of the data points, and MAD(X(n)) = Med({|xi − Med(X(n))|, i ∈
{1, 2, . . . , n}}) is the median of absolute deviations to the center (median). It is
readily seen that D(x,X(n)) is a generalized standard deviation, or equivalent
to the one-dimensional projection depth/outlyingness (see [55] and [48, 49] for
a high dimensional version). For notion of outlyingness, cf. [32, 5], and [6].

The LTS essentially employs one-sided rank based trimming scheme (w.r.t.
squared residuals), whereas depth based trimming is utilized in the LST which
is introduced next.

2.2. Definition and properties of the LST

Definition. For a given sample Z(n) = {(x′
i, yi)′, i ∈ {1, 2, . . . , n}} in R

p from
y = w′β0 + e and a β ∈ R

p, define

mn(β) := m(Z(n),β) = Medi{ri}, (2.2)

σn(β) := σ(Z(n),β) = MADi{ri}, (2.3)

where operators Med and MAD are used for discrete data sets (and distributions
as well) and ri defined in (1.2). For a constant α in the depth trimming scheme,
consider the quantity

Q(Z(n),β, α) :=
n∑

i=1
r2
i 1

(
|ri −m(Z(n),β)|

σ(Z(n),β)
≤ α

)
, (2.4)

where 1(A) is the indicator of A (i.e., it is one if A holds and zero otherwise).
Namely, residuals with their outlyingness (or equivalently reciprocal of depth
minus one) greater than α will be trimmed. When there is a majority (≥ �(n+
1)/2�) of identical ris, we define σ(Z(n),β) = 1 (since those ri lie in the deepest
position (or are the least outlying points)).

Minimizing Q(Z(n),β, α), We get the least sum of squares of trimmed (LST)
residuals estimator,

β̂
n

lst := β̂lst(Z(n), α) = arg min
β∈Rp

Q(Z(n),β, α). (2.5)
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Does the right-hand side (RHS) of (2.5) always have a minimizer? If it exists,
is it unique? We treat this problem formally next.

Hereafter we will assume that α ≥ 1. That is, we will keep the residuals that
are no greater than one MAD away from the center (the median of residuals)
untrimmed. For a given α, β, and Z(n), define a set of indexes for 1 ≤ i ≤ n

I(β) =
{
i : |ri −m(Z(n),β)|

σ(Z(n),β)
≤ α

}
. (2.6)

Namely, the set of subscripts so that the outlyingness (see (2.1)) of the corre-
sponding residuals are no greater than α. It depends on Z(n) and α, which are
suppressed in the notation. Following the convention, we denote the cardinality
of set A by |A|. We have

Lemma 2.1. For any β ∈ R
p and the given Z(n) and α, |I(β)| ≥ �(n + 1)/2�.

Proof. By the definition of MAD (the median of the absolute deviations to the
center (median)), it is readily seen that

|I(β)| =
n∑

i=1
1

(
|ri −m(Z(n),β)|

σ(Z(n),β)
≤ α

)

≥
n∑

i=1
1

(
|ri −m(Z(n),β)|

σ(Z(n),β)
≤ 1

)
= �(n + 1)/2�,

This completes the proof.

The lemma implies that the RHS of (2.4) sums a majority of squared resid-
uals.

Properties of the objective function Write Di := D(ri,β) =
|ri −m(Z(n),β)|

/
σ(Z(n),β) for a given Z(n) and β. Let i1, . . . , iK be in I(β)

such that Di1 ≤ Di2 · · · ≤ DiK (i.e. ordered depth values of residuals), K :=
|I(β)|. Both ij and Dij clearly depend on β and Z(n).

Generally, the inequalities between the Di’s cannot be strict unless we assume
(A00): r(β) := y − w′β has a density for any β ∈ R

p. Hereafter, we assume
that (A00) holds, then the strict inequalities hold almost surely (a.s.), i.e.,
Di1 < Di2 · · · < DiK (a.s.). Define for any β1 ∈ R

p and a given Z(n)

Rβ1 = {β ∈ R
p : I(β) = I(β1), Di1(β) < Di2(β) · · · < DiK (β)}. (2.7)

That is, the set of all βs that share the same index set I(β1) of β1. If (A00)
holds, then Rβ1 
= ∅ (a.s.). For a fixed n, there are at most finitely many Rβks,
βk ∈ R

p, 1 ≤ k ≤ L :=
(

n
�(n+1)/2�

)
such that ∪L

k=1Rβk = R
p, where Rβk is

defined similarly to (2.7) and A stands for the closure of the set A. For any
β ∈ R

p, either there is Rη and β ∈ Rη or there is Rξ, such that β /∈ Rη ∪ Rξ

and β ∈ Rη ∩ Rξ. In the latter case, there are ik, il ∈ I(β) ik 
= il, such that
Dik = Dil .
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For a given sample Z(n), write Qn(β) for Q(Z(n),β, α), B(η, δ) for an open
ball in R

p centered at η with a radius δ > 0, and 1i, which depends on β, for
1
(
|ri −mn(β)|

/
σn(β) ≤ α

)
. Let Xn = (w1,w2, . . . ,wn)′, Yn = (y1, . . . , yn)′,

and Mn := M(Yn,Xn,β, α) =
∑n

i=1 wiw
′
i1i =

∑
i∈I(β) wiw

′
i. Assume (A0*):

Xn and any its K := |I(β)| sub-rows (K > p) have a full rank p.

Lemma 2.2. Assume that (A00) and (A0*) hold, then

(i) For a given Z(n) and α, for any 1 ≤ k ≤ L and any η ∈ Rβk , there exists
a B(η, δ) such that for any β ∈ B(η, δ), β ∈ Rβk , i.e.,

Qn(β) =
∑

i∈I(βk)

r2
i ,

(ii) For any 1 ≤ k ≤ L, Rβk is open,
(iii) Qn(β) is continuous in β ∈ R

p,
(iv) Over each Rβk , 1 ≤ k ≤ L, Qn(β) is twice differentiable and convex, and

strictly convex if the rank of Xn is p.

Proof. See the Appendix.

Remark 2.1. (i) By discussions above and Lemma 2.2, we see that the do-
main of Qn(β) (the parameter space) is partitioned into at most L pieces
and over each piece the graph of Qn(β) is that of the quadratic function
of the sum of squared residuals. Hence the graph of Qn(β) is composed of
at most L of those components.

(ii) The continuity deduced from Qn(β) being the sum of some squared residu-
als without (i) of Lemma 2.2 might not be flawless. The unified expression
for Qn(β) around the small neighborhood of β such as the one given in
(i) of the Lemma 2.2 is indispensable.

2.3. Existence, uniqueness and equivariance

Theorem 2.1. Assume that (A00) and (A0*) hold, then

(i) β̂
n

lst exists and is the unique local minimum of Qn(β) over Rβk0 for some
k0 (1 ≤ k0 ≤ L).

(ii) Over Rβk0 , β̂
n

lst is the solution of the system of equations

n∑
i=1

(yi −w′
iβ)wi1i = 0. (2.8)

(iii) Over Rβk0 , the unique solution is

β̂
n

lst = Mn(Yn,Xn, β̂
n

lst, α)−1
∑

i∈I(βk0 )

yiwi. (2.9)

Proof. See the Appendix.
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Note that (A0*) is sufficient for the matrix in the theorem to be invertible.
The existence could also be established as follows. In the sequel, we will assume
that

(A0) there is no vertical hyperplane which contains at least �(n+1)/2� points
of Z(n).

This holds true with probability one if (x′, y)′ has a joint density or holds if
Z(n) is in general position (see Sect. 3 for definition) (assume that n > 2p + 1
hereafter).

Theorem 2.2. The minimizer β̂
n

lst of Q(Z(n),β, α) defined in (2.4) over β∈R
p

always exists for a given Z(n) and an α provided that (A0) holds.

Proof. See the Appendix.

Equivariance A regression estimator T is called regression, scale, and affine
equivariant if, respectively (see page 116 of [23]) with i ∈ N := {1, 2, . . . , n}

T ({(w′
i, yi + w′

ib)′}) = T ({(w′
i, yi)′}) + b, ∀ b ∈ R

p

T ({(w′
i, syi)′}) = sT ({(w′

i, yi)′}) , ∀ s ∈ R
1

T ({(A′wi)′, yi)′}) = A−1T ({(w′
i, yi)′}) , ∀ nonsingular A ∈ R

p×p

Theorem 2.3. β̂
n

lst is regression, scale, and affine equivariant.

Proof. We have the identities

yi + w′
ib −w′

i(β + b) = yi −w′
iβ, ∀ b ∈ R

p

syi −w′
i(sβ) = s(yi −w′

iβ), ∀ s ∈ R
1

yi − (A′wi)′A−1β = yi −w′
iβ, ∀ nonsingular A ∈ R

p×p.

The desired result follows by these identities and the (regression, scale, and
affine) invariance (see page 148 of [52] for definition) of |ri−m(Z(n), β)|

σ(Z(n), β) .

3. Robustness of LST

3.1. Finite sample breakdown point

As an alternative to the least-squares, is the LST estimator more robust? The
most prevailing quantitative measure of global robustness of any location or
regression estimators in the finite sample practice is the finite sample breakdown
point (FSBP), introduced by [7].

Roughly speaking, the FSBP is the minimum fraction of ‘bad’ (or contami-
nated) data points that can force the estimator beyond any bound (becoming
useless). For example, in the context of estimating the center of a data set, the
sample mean has a breakdown point of 1/n (or 0%), because even one bad ob-
servation can change the mean by an arbitrary amount; in contrast, the sample
median has a breakdown point of �(n + 1)/2�/n (or 50%).
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Definition 3.1 ([7]). The finite sample replacement breakdown point (RBP) of
a regression estimator T at the given sample Z(n) = {Z1, Z2, . . . , Zn}, where
Zi := (x′

i, yi)′, is defined as

RBP(T,Z(n)) = min
1≤m≤n,m∈N

{
m

n
: sup
Z(n)

m

‖T(Z(n)
m ) − T(Z(n))‖ = ∞

}
, (3.1)

where Z(n)
m denotes an arbitrary contaminated sample by replacing m original

sample points in Z(n) with arbitrary points in R
p. Namely, the RBP of an

estimator is the minimum replacement fraction that could drive the estimator
beyond any bound. It turns out that both the L1 (least absolute deviations) and
the L2 (least squares) estimators have RBP 1/n (or 0%), the lowest possible
value whereas the LTS can have (�(n − p)/2� + 1)/n (or 50%), the highest
possible value for any regression equivariant estimators (see pages 124–125 of
[23]).

We shall say Z(n) is in general position when any p of observations in Z(n)

gives a unique determination of β. In other words, any (p-1) dimensional sub-
space of the space (x′, y)′ contains at most p observations of Z(n). When the
observations come from continuous distributions, the event (Z(n) being in gen-
eral position) happens with probability one.

Theorem 3.1. For β̂
n

lst defined in (2.5) and Z(n) in general position, we have

RBP(β̂
n

lst,Z(n)) =
{

�(n + 1)/2�
/
n, if p = 1,

(�n/2� − p + 2)
/
n, if p > 1.

(3.2)

Proof. See the Appendix.

Remark 3.1.

(i) The assumption that Z(n) is in general position seems to play a central role
in the proof. But actually, one can drop it and introduce an index: c(Z(n))
(which is the maximum number of observations from Z(n) contained in any
(p − 1) dimensional subspace/hyperplane) to replace p in the derivation
of the proof and the final RBP result (when p > 1).

(ii) Asymptotically speaking (i.e. as n → ∞), β̂
n

lst has the best possible
asymptotic breakdown point (ABP) 50%, the same as that of the LTS.
The RBP of β̂

n

lst, albeit very high (indeed as high as that of the LMS),
is slightly less than that of the LTS (with the best choice of h). How-
ever, it can be improved to attain the best possible value if one modifies
α so that it is the hth quantile of the n outlyingness of residuals with
h = �n/2�+ �(p+1)/2� to include exact h squares of residuals in the sum
of the RHS of (2.4).
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3.2. Influence function

Throughout Fz stands for the distribution of random vector z unless oth-
erwise stated. Write F(x′,y) for the joint distribution of x′ and y in (1.1),
r := r(F(x′,y),β) = y − (1,x′)β := y −w′β.

m := m(F(x′,y),β) = Med(Fr),
σ := σ(F(x′,y),β) = MAD(Fr),

hereafter we assume that m and σ exist uniquely. The population counterparts
of (2.4) and (2.5) are respectively:

Q(F(x′,y),β, α) :=
∫

(y −w′β)21
(
|y −w′β −m|

σ
≤ α

)
dF(x′,y), (3.3)

βlst(F(x′,y), α) := arg min
β∈Rp

Q(F(x′,y),β, α). (3.4)

The RBP gauges the global robustness of an estimator at finite sample prac-
tice. To assess the local robustness at the population setting, one can use the in-
fluence function approach (see [8]), which depicts the local robustness of a func-
tional with an infinitesimal point-mass contamination at a single point z ∈ R

p.
For a given distribution F defined on R

p and an ε > 0, the version of F
contaminated by an ε amount of an arbitrary distribution G on R

p is denoted
by F (ε,G) = (1 − ε)F + εG (an ε amount deviation from the assumed F ).
Hereafter it is assumed that ε < 1/2, otherwise F (ε,G) = G((1 − ε), F ), which
means we cannot distinguish which one is contaminated and which is not

Definition 3.2 ([8]). The influence function (IF) of a functional T at a given
point z ∈ R

p for a given F is defined as

IF(z;T , F ) = lim
ε→0+

T (F (ε, δz)) − T (F )
ε

, (3.5)

where δz is the point-mass probability measure at z ∈ R
p.

The function IF(z;T , F ) describes the relative influence on T of an infinites-
imal point-mass contamination at z and gauges the local robustness of T .

It is desirable that a regression estimating functional has a bounded influ-
ence function. This, however, does not hold for an arbitrary regression estimat-
ing functional (such as the classical least squares functional). Now we investi-
gate this for the functional of the least sum of squares of trimmed residuals,
βlst(F(x′,y), α). Put

Fε(z) := F (ε, δz) = (1 − ε)F(x′,y) + εδz,

mε(z) := m(Fε(z),β) = Med(FRε(z)),
σε(z) := σ(Fε(z),β) = MAD(FRε(z)),
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where Rε(z) = r(Fε(z),β) = t − (1, s′)β, and Fε(z) =: Fu(z) with a random
vector u = (s′, t)′ ∈ R

p, s ∈ R
p−1, and t ∈ R

1 (i.e., u is the random vector
that has the CDF Fε(z)). Hereafter we assume that mε(z) and σε(z) uniquely
exist. The versions of (3.3) and (3.4) at the contaminated distribution Fε(z) are
respectively

Q(Fε(z),β, α) :=
∫

(t− (1, s′)β)21
(
|(t− (1, s′)β) −mε(z)|

σε(z) ≤ α

)
dFu(s′, t),

(3.6)

βlst(Fε(z), α) := arg min
β∈Rp

Q(Fε(z),β, α). (3.7)

Lemma 3.1. βlst := βlst(F(x′,y), α) is regression, scale, and affine equivariant
(see [52] for definition).

Proof. It is trivial (analogous to that of Theorem 2.3).

To investigate the influence function of βlst especially the consistency of
its sample version in the next section, we first need to establish its existence
and uniqueness. We need assumptions: (A1) y has a density, and (A2) the
distribution Fr with r = y − w′β is non-flat around m = Med(Fr) and σ =
MAD(Fr) for any β ∈ R

p.
Write Q(β) for Q(F(x′,y),β, α) in (3.3). We have a population counterpart of

Lemma 2.2.

Lemma 3.2. Assume (A1)–(A2) hold. Then Q(β)

(i) is continuous in β ∈ R
p;

(ii) is twice differentiable in β ∈ R
p with (assume that E(xx′) exists)

∂2Q(β)
/
∂β2 = 2Eww′1

(
|y −w′β −m|

/
σ ≤ α

)
;

(iii) is convex in β ∈ R
p and strictly convex if Eww′1

(
|y −w′β −m|

/
σ ≤ α

)
is invertible.

Proof. See the Appendix.

Theorem 3.2. Assume that (A1)–(A2) hold and m(Fε(z),β) and σ(Fε(z),β)
are continuous in β around a small neighborhood of βlst((Fε(z), α). Write v′ =
(1, s′) and let u be the random variable with CDF Fε(z). We have

(i) βlts(F(x′,y), α) and βlts(Fε(z), α) exist.
(ii) Furthermore, they are the solution of system of equations, respectively∫

(y −w′β)w1
(
|y −w′β −m|

/
σ ≤ α

)
dF(x′,y)(x, y) = 0, (3.8)∫

(t− v′β)v1
(
|(t− v′β) −mε(z)|

/
σε(z) ≤ α

)
dFu(s, t) = 0. (3.9)
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(iii) βlts(F(x′,y), α) and βlts(Fε(z), α) are unique provided that∫
ww′1

(
|y −w′β −m|

/
σ ≤ α

)
dF(x′,y)(x, y), (3.10)∫

vv′1
(
|(t− v′)β) −mε(z)|

/
σε(z) ≤ α

)
dFu(s, t) (3.11)

are respectively invertible.

Proof. See the Appendix.

Theorem 3.3. If assumptions in theorem 3.2 hold, then for any z0 := (s′0, t0)′∈
R

p, we have

β̇lst(z0, F(x′,y)) =
{

0, if t0 − (1, s′0)βlst /∈ [m(βlst) ± ασ(βlst)]
(t0 − (1, s′0)βlst)M−1(1, s′0)′, otherwise,

where β̇lst(z0, F(x′,y)) stands for the IF(z0;βlst, F(x′,y)), M−1 stands for the in-
verse of the matrix E

(
ww′1

(
|r(β) −m(Fr(β))|

/
σ(Fr(β)) ≤ α

))
with β = βlst,

and [a± b] stands for [a− b, a + b].

Proof. See the Appendix.

Remark 3.2. See the Appendix.

Overall, we see that the LST is globally robust with the best possible ABP
of 50% and robust locally against point-mass contamination when there are
vertical and bad leverage outliers.

Besides robustness, does the βlst(F(x′,y), α) really catch the true parameter
(i.e. is it Fisher consistent)? Does the sample βlst(Z(n)) converge to βlst (or
the true parameter β0) (i.e. strong or root-n consistency), and how fast does it
converge? We answer these questions next.

4. Consistency

4.1. Fisher consistency

Before establishing strong or root-n consistency, we like to first show that the
population version of the LST, βlst(F(x′,y), α), is consistent with (or rather
identical to) the true unknown parameter β0 under some assumptions – which
is called Fisher consistency of the estimation functional. To that end, let us first
recall our general model:

y = (1,x′)β0 + e, (4.1)

with its sample version given in model (1.1). In addition to the assumptions
given in Theorem 3.2 for the existence and uniqueness of βlst, we need one
more assumption:
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(A3) x and e are independent and E(x′,y)
(
e1

(
|e−m(Fe)|

/
σ(Fe) ≤ α

))
= 0.

Hereafter we assume that m(Fe) and σ(Fe) exist uniquely.

The independence assumption between x and e is typical in the traditional
regression analysis. However, we can drop it here by modifying the integration
appropriately (see the proof below), and it is unnecessary for x to be non-
random covariate (carrier). The assumption that integration equals to zero is
very mild, and it automatically holds under the common assumption that the e

is symmetric with respect to 0 (that is, e d= −e). We have

Theorem 4.1. Under assumptions (A1)-(A3), βlst(F(x′,y), α) = β0 (i.e. it is
Fisher consistent) provided that Eww′1

(
|e−m(Fe)|

/
σ(Fe) ≤ α

)
is invertible.

Proof. Notice that y−w′β = w′(β0−β)+e. This in conjunction with equation
(3.8) yields,∫

(w′(β0 − β) + e)w1
(
|(w′(β0 − β) + e) −m|

/
σ ≤ α

)
dF(x′,y) = 0,

one sees that β = β0 indeed is one solution of the equation system by virtue of
(A3). In light of Theorem 3.2 and the uniqueness of the solution, the desired
result follows.

4.2. Strong consistency

To establish the strong consistency of β̂lst(Z(n), α) for the βlst(F(x′,y), α), write
β̂lst(Fn

Z ) := β̂lst(Z(n), α), βlst(FZ) :=βlst(F(x′,y), α), Q(Fn
Z ,β) :=Q(Z(n),β, α),

and Q(FZ,β) := Q(F(x′,y),β, α), for notation simplicity. where Fn
Z is the sample

version of FZ := F(x′,y), corresponding to Z(n) and α are suppressed.
We will follow the approach in [51] and treat the problem in a more general

setting. To that end, we introduce the regression depth functions D(Fn
Z ,β) =

(1 + Q(Fn
Z ,β))−1 and D(FZ,β) = (1 + Q(FZ,β))−1 (see page 144 of [52] for

the objective function approach). The original minimization issue becomes a
maximization problem.

Let Mn be stochastic processes indexed by a metric space Θ of θ, and M :
Θ → R be a deterministic function of θ which has its maximum at a point θ0.

The sufficient conditions for the consistency of this type of problem were
given in [38] and [39], they are:

C1: supθ∈Θ |Mn(θ) −M(θ)| = op(1);
C2: sup {θ: d(θ,θ0)≥δ} M(θ) < M(θ0), for any δ > 0 and the metric d
on Θ;

Then any sequence θn is consistent for θ0 providing that it satisfies

C3: Mn(θn) ≥ Mn(θ0) − op(1).

Lemma 4.1 ([38]). If C1 and C2 hold, then any θn satisfying C3 is consistent
for θ0.
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Remark 4.1.

(i) C1 requires that the Mn(θ) converges to M(θ) in probability uniformly
in θ. For the depth process D(Fn

Z ,β) and D(FZ,β), it holds true (the
convergence here is almost surely (a.s.) and uniformly in β as shown in
Lemma 4.2 below).

(ii) C2 essentially demands that the unique maximizer θ0 is well separated.
This holds true for D(FZ,β) as shown in Lemma 4.3 below.

(iii) C3 asks that θn is very close to θ0 in the sense that the difference of
images of the two at Mn is within op(1). In [10] and [39] a stronger version
of C3 is required:

C3*: Mn(θn) ≥ supθ∈Θ Mn(θ) − op(1), which implies C3. This
strong version mandates that θn nearly maximizes Mn(θ). Our max-
imum regression depth estimator β̂lst(Fn

Z , α)(:= θn) is defined to be
the maximizer of Mn(θ) := D(Fn

Z ,β), hence C3* (and thus C3)
holds automatically.

In light of above, we have

Corollary 4.1. β̂lst(Fn
Z ) induced from D(Fn

Z ,β) is consistent for βlst(FZ).

But, we can have more.
Based on the proofs of Theorems 2.2 and 3.2 and in light of Theorem 4.1,

under assumptions (A0)–(A3), we assume without loss of generality (w.l.o.g.)
that β̂lst(Fn

Z ) ∈ B(β0, r) and βlst(FZ) ∈ B(β0, r), where B(β0, r) is a ball
centered at β0 with radius r. Now B(β0, r) can serve, w.l.o.g., as out parameter
space Θ of β in the sequel.

Lemma 4.2. Under assumption (A2), (a) supβ∈Θ |Q(Fn
Z ,β) − Q(FZ,β)| =

o(1), a.s. and (b) supβ∈Θ |D(Fn
Z ,β) −D(FZ,β)| = o(1), a.s.

Proof. See the Appendix.

Lemma 4.3. Assume that a regression (or location) depth function D(β;FZ)
is continuous in β and β ∈ Θ is bounded. Let η ∈ Θ be the unique point with
η = arg maxβ∈Θ D(β;FZ) and D(η;FZ) > 0. Then supβ∈Nc

ε (η) D(β;FZ) <
D(η;FZ), for any ε > 0, where N c

ε (η) = {β ∈ Θ : ‖β − η‖ ≥ ε} and “Ac”
stands for “complement” of the set A.

Proof. See the Appendix.

Theorem 4.2. Under assumptions (A1)–(A3), β̂lst(Fn
Z ) is strongly consistent

for βlst(FZ) (i.e., β̂
n

lst − βlst = o(1) a.s.).

Proof. The proof for the consistency of Lemma 4.1 could easily extend to the
strong consistency with a strengthened version of C1

C1*: supθ∈Θ |Mn(θ) −M(θ)| = o(1), a.s.

In the light of the proof of Lemma 4.1, we need only verify the sufficient
conditions C1* and C2–C3. By (III) of Remark 4.1, C3 holds automatically,
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so we need to verify C1* and C2. C1* follows from Lemma 4.2. So the only
item left is to verify C2 for D(FZ ,β) which is guaranteed by Lemma 4.3.

Remark 4.2. (i) The approach utilizing a generalized Glivenko-Cantelli the-
orem over a class of functions with polynomial discrimination in the proof of
lemma 4.2 is very powerful and applicable to many regression estimators to ob-
tain the strong consistency result. It is certainly applicable to the least trimmed
squares (LTS).

(ii) The consistency (not the strong version in Theorem 4.2) of the LTS has
been obtained in [40] using standard analysis (under many assumptions on non-
random xi and on the distribution of e) which, is difficult, lengthy (an entire
article in it of itself), and tedious. The approach here is different, concise and
the estimator (LST) is, of course, different to the LTS.

Consistency does not reveal the speed of convergence of sample β̂lst(Fn
Z ) to

its population counterpart βlst(FZ). Standard speed of Op(1/
√
n) is desirable

and expected for β̂lst(Fn
Z ). We investigate this issue next.

4.3.
√
n-consistency

To establish the root-n consistency we need one more assumption:

(A4) E(e) = 0 and E(xx′) exists.

E(e) = 0 is commonly required in traditional regression analysis. The exis-
tence of covariance (and the mean) of x is sufficient for the existence of E(xx′).

In the following, we will employ big O and little o notations for the vectors
or matrices.

Definition 4.1. For a sequence of random vectors or matrices Xn, we say

Xn = op(1) means ‖Xn‖
p→ 0;

Xn = Op(1) means ‖Xn‖ = Op(1),

where norm of a matrix Am×n is defined as ‖A‖ := supx	=0∈Rn ‖Ax‖p
/
‖x‖p, p

could be 1, 2, or ∞ (see page 82 of [3]).

Theorem 4.3. Assume that assumptions in Theorem 4.1 and (A4) hold, then
β̂
n

lst − βlst = β̂
n

lst − β0 = Op(1/
√
n).

Proof. See the Appendix.

Remark 4.3. (i) The root-n consistency of an arg max estimator could be es-
tablished by a general approach given in [30, 31, Theorem 1]. With the depth
process introduced in the Sect. 4.2, we are unable to verify the second require-
ment in that theorem.

(ii) The approach here for the root-n consistency of the LST is analogous to
what is given in [41] for the LTS. However, the latter is lengthy and needs a
twenty-two pages article.
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5. Asymptotic normality

The root-n consistency above could be obtained as a by-product of the asymp-
totic normality which will be established in the following via stochastic equicon-
tinuity (see page 139 of [20], or the supplementary of [51]).

Stochastic equicontinuity refers to a sequence of stochastic processes {Zn(t) :
t ∈ T} whose shared index set T comes equipped with a semi metric d(·, ·).

Definition 5.1 (IIV. 1, Def. 2 of [20]). Call Zn stochastically equicontinuous
at t0 if for each η > 0 and ε > 0 there exists a neighborhood U of t0 for which

lim supP

(
sup
U

|Zn(t) − Zn(t0)| > η

)
< ε. (5.1)

If τn is a sequence of random elements of T that converges in probability to
t0, then

Zn(τn) − Zn(t0) → 0 in probability, (5.2)

because, with probability tending to one, τn will belong to each U . The form
above will be easier to apply, especially when behavior of a particular τn se-
quence is under investigation.

Suppose F = {f(·, t) : t ∈ T}, with T a subset of Rk, is a collection of real,
P-integrable functions on the set S where P (probability measure) lives. Denote
by Pn the empirical measure formed from n independent observations on P , and
define the empirical process En as the signed measure n1/2(Pn − P ). Define

F (t) = Pf(·, t),
Fn(t) = Pnf(·, t).

Suppose f(·, t) has a linear approximation near the t0 at which F (·) takes on
its minimum value:

f(·, t) = f(·, t0) + (t− t0)′∇(·) + |t− t0|r(·, t). (5.3)

For completeness set r(·, t0) = 0, where ∇ (differential operator) is a vector of
k real functions on S. We cite theorem 5 of IIV.1 of [20] (page 141) for the
asymptotic normality of τn.

Lemma 5.1. Suppose {τn} is a sequence of random vectors converging in prob-
ability to the value t0 at which F (·) has its minimum. Define r(·, t) and the
vector of functions ∇(·) by (5.3). If

(i) t0 is an interior point of the parameter set T ;
(ii) F (·) has a non-singular second derivative matrix V at t0;
(iii) Fn(τn) = op(n−1) + inft Fn(t);
(iv) the components of ∇(·) all belong to L 2(P );
(v) the sequence {Enr(·, t)} is stochastically equicontinuous at t0;
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then
n1/2(τn − t0)

d−→ N (O, V −1[P (∇∇′) − (P∇)(P∇)′]V −1).

Theorem 5.1. Assume that

(i) the uniqueness assumptions for β̂
n

lst and βlst in theorems 2.1 and 3.2 hold;
(ii) P (x2

i ) exists;

then

n1/2(β̂
n

lst − βlst)
d−→ N (O, V −1[P (∇∇′) − (P∇)(P∇)′]V −1),

where β in V and ∇ is replaced by βlst (which could be assumed to be zero).

Proof. See the Appendix.

Assume that z = (x′, y)′ follows elliptical distributions E(g;μ,Σ) with den-
sity

fz(x′, y) = g(((x′, y)′ − μ)′Σ−1((x′, y)′ − μ))√
det(Σ)

, (5.4)

where μ ∈ R
p and Σ a positive definite matrix of size p which is proportional

to the covariance matrix if the latter exists. We assume the function g to have
a strictly negative derivative, so that the fz is unimodal.

In light of Lemma 3.1 and under some transformations (see the Appendix
in the supplementary material), we can assume, w.l.o.g. that (x′, y) follows an
E(g;0, Ip×p) distribution and Ip×p is the covariance matrix of (x′, y) here-
after.

Corollary 5.1. Assume that

(i) assumptions of Theorem 5.1 hold;
(ii) e ∼ N (0, σ2) and x are independent.

Then

(1) P∇ = 0 and P (∇∇′) = 8σ2CIp×p, with C = Γ(1/2, 1)(αc/σ), where
c = σΦ−1(3/4), Γ(1/2, 1)(x) is the cumulative distribution function (CDF)
of random variable Γ(a, b) which has a pdf: ba

Γ(a)x
a−1e−bx, and Φ(x) is the

CDF of N (0, 1).
(2) V = 2C1Ip×p with C1 = 2 ∗ Φ(αc/σ) − 1.
(3) n1/2(β̂

n

lst − βlst)
d−→ N (0, 2Cσ2

C2
1

Ip×p).

Proof. By Theorem 4.1 and Lemma 3.1, we can assume, w.l.o.g., that βlst =
β0 = 0. Utilizing the independence between e and x and Theorem 5.1, a
straightforward calculation leads to the results.

6. Computation

Now we address one of the most important topics on robust regression estima-
tion, that is, the computation of the estimator. Unlike the LS estimator, which
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has an analytical formula for the computation, for the LST estimator, we do not
have such a formula. The formula given in (2.9) can not serve our purpose (due
to the circular dependency: the RHS depends on the LHS). For small sample
size n and dimension p, one can compute the LST exactly (the L in Theorem 2.1
is not a big number), but that is not affordable for large n and p. In general, we
use approximate algorithms (AAs).

6.1. A procedure based Theorem 2.1

In light of Theorem 2.1, if we discover all Rβks for 1 ≤ k ≤ L, then we can
get the exact result. But in practice, this might not be computationally afford-
able. However, we can simply search as many Rβks as possible to get a good
approximation of the estimate β̂

n

lst.
To identify Rβk is equivalent to identifying i1, . . . , iK so that Di1 < Di2 <

. . . ,DiK in light to (2.7), where K = |I(βk)|. The latter is equivalent to finding
a β ∈ Rβk , then we get the desired i1, . . . , iK . To find the desired β, one way
is to find a β on the common boundary of Rβk and Rβl so that there are i 
= j,
Di = Dj for some 1 ≤ l 
= k ≤ L and 1 ≤ i, j ≤ n. A small perturbation of the
coordinates of the β = (β1, . . . , βp)′ leads to more than one βs (β = (β1, . . . , βj±
δ, . . . , βp)′ (for some 1 ≤ j ≤ p and δ > 0) that belong to Rβk or Rβl .

Now we address the way to find out β. In light of (2.7), there are i 
= j,
Di = Dj for some 1 ≤ i, j ≤ n. The equality Di = Dj implies that (i) ri = rj
or (ii) (ri + rj)/2 = mn(β). Both equalities could lead to some βs, but the first
equality ri = rj is more convenient.

We focus on the first equality which amounts to yi − yj = (wi − wj)′β =
(xi − xj)′(β2, . . . , βp)′, where w′ = (1,x′), β = (β1, . . . , βp)′. Assume that
xi 
= xj for i 
= j. If yi = yj , then, β = (β1,0′

p−1)′ is one of solutions, oth-
erwise, from this equation, we see that (i) β1 could be any number in R

1,
(ii) the equation defines a (p − 1)-dimensional hyperplane. Consequently, all
β = (β1, 0, . . . , 0, yi−yj

xik−xjk
, 0, . . . , 0) ∈ R

p are solutions, where β1 ∈ R
1 and

xik 
= xjk, 1 ≤ k ≤ (p − 1). Simple choices for β1 could be 0 and 1 or any
constant. From here we obtain at least two βs that lie on the common boundary.

With the small perturbation (±δ) to the ith coordinate of the βs above
we could obtain 4p new βs. For each such β, we first obtain i1, . . . , iK with
K = |I(β)| and then check if the strict inequalities in (2.7) hold.

If they do not hold, then move to the next β. Otherwise, check if the K
indices already appear before, if it has, then do nothing, else update the data
structure that stores the indices, and obtain the least square solution βls-new
based on the sub-data set with the K subscripts (I(β)) and the sum of squared
residuals. If the latter is smaller than SS-min, then set it to be the SS-min and
update β̂

n

lst with βls-new. Increase Tls, which is the counter for the number of
LS calculations, by one. Move to the next β until all 4p βs are exhausted. Then
repeat the entire process with a new pair (i, j). Summarizing discussions so far,
we have
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AA1 – pseudocode for computing the LST based on Theorem 2.1

Input: A data set Z(n) = {(x′
i, yi)′, i = 1, 2, . . . , n}, a fixed α. Assume that

xi 
= xj if i 
= j.

(1) Sample two indices i and j from {1, . . . , n}, assume that xik 
= xjk, 1 ≤
k ≤ (p− 1) (i.e. the kth coordinates of xi and xj do not equal). Consider

β0 = (0, 0, . . . , 0, bk+1, 0, . . . , 0)′,β1 = (1, 0, . . . , 0, bk+1, 0, . . . , 0)′ in R
p

Both have the same (k + 1)th coordinate, bk+1 := (yi − yj)/(xik − xjk).
(2) Write βj(l,±δ) for the perturbed βj with its lth coordinate adding or

subtracting a δ > 0. Define a set

S(β) =
p⋃

l=1

{β0(l,±δ)}
p⋃

l=1

{β1(l,±δ)}.

(3) For each β of 4p βs in the set S(β),
(a) obtain i1, . . . , iK with K = |I(β)| and check to see if the strict in-

equalities in (2.7) hold.
(a1) If not, move to the next β; else
(a2) check if the K indices already appear in a structure Sind

(i) if yes, then move to the next β; else
(ii) update Sind by storing the K indices in the structure Sind

and calculate the LS estimate βls-new based on the sub-data
set with index in I(β) and obtain the sum of |I(β)| squared
residuals, SS(βls-new).

(iii) Update SSmin if it is greater than SS(βls-new) and update
β̂
n

lst with βls-new. Update the counter for the total number
Tls of LS calculations, if the latter is less than N (the total
number of LS calculations decided to perform), then continue
the loop (go to (3)), else break the stop.

(b) If Tls < N , then go to (1), else break the loop.

Output: β̂
n

lst

Remark 6.1. See the Appendix.

6.2. A subsampling procedure

Many robust regression estimators use subsampling procedures in practice (see
[23, 11, 12, 24, 43, 25, 26, 50, 54], among others).

The basic idea is straightforward: (1) draw a sub-sample of size m from
data set Z(n) = {(x′

i, yi)′ ∈ R
p,xi ∈ R

p−1, i ∈ {1, 2, . . . , n}}. (2) compute an
estimate based on the sub-sample and obtain the objective function value. (3) if



2436 Y. Zuo and H. Zuo

the objective function value can be further improved (reduced), then go to (1),
otherwise, stop and output the final step estimate.

Natural questions for the above procedure include (1) how do we guarantee
the convergence of the procedure and the final answer is the global minimum?
(2) what is the exact size m and what is the relationship with n and dimension
p? To better address these matters, we first propose the corresponding procedure
for our LST.

AA2 pseudocode for a sub-sampling procedure for LST

Input: A data set Z(n) = {Z1, . . . ,Zn} = {(x′
i, yi)′, i = 1, 2, . . . , n} ∈ R

p

(assume that p ≥ 2) and an α ≥ 1 (default is one).

(a) Initialization: N=min{
(
n
p

)
, 300(p − 1)}, R=0, Qold = 108, βold = 0 (or

an LS (or LTS) estimate).
(b) Iteration: while (R ≤ N)

keep sampling p indices {i1, . . . , ip} from {1, 2, . . . , n} (without re-
placement) until M ′

x := (wi1 , . . . ,wip) becomes invertible. Let βnew =
(Mx)−1(yi1 , . . . , yip)′.
(1) Calculate I(βnew) (based on (2.6)) and Qnew := Qn(βnew)

(based on (2.4)).
(2) ∗ If Qnew < Qold, then Qold = Qnew, βold = βnew. Get an LS

estimator βls based on the data points of Z(n) with subscripts
from I(βnew). Go to (1) with βnew = βls.

∗ Else if Qnew = Qold break
else R=R+1, go to (b)

Output: βnew.

Remark 6.2. See the Appendix.

7. Examples and comparison

This section investigates the performance of the AAs and compares it with that
of the benchmark LTS. First, we like to give some guidance for selection among
the two AAs.

Example 7.1 (Performance of the two AAs). There are two AAs, so which of
them should we recommend? This example tries to answer this by examining
the speed and accuracy of the two AAs.

We generate 1000 samples Z(n) = {(x′
i, yi)′, i ∈ {1, . . . , n},xi ∈ R

p−1} from
the standard Gaussian distribution for various sample size n and dimension p.
For the speed, we calculate the total time consumed for all 1000 samples (divid-
ing it by 1000, we get the average time consumed per sample) by different AAs.
For accuracy (or variance, or efficiency), we will compute their empirical mean
squared error (EMSE).
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Table 1

Total computation time for all 1000 samples (seconds) and empirical mean squared error
(EMSE) of different AAs for various ns and ps.

Table entries (a, b) are: a := empirical mean squared error, b := total time consumed
n p AA1 AA2

3 (0.3499, 566.49) (0.5290, 651.25)
50 5 (0.5817, 457.49) (0.7645, 861.75)

10 (0.5390, 682.41) (1.7177, 1016.6)

3 (0.1755, 573.07) (0.3619, 879.01)
100 5 (0.2023, 638.76) (0.4528, 1042.6)

10 (0.2576, 702.02) (0.7000, 1071.5)

3 (0.0825, 619.75) (0.3025, 1309.7)
200 5 (0.1055, 676.63) (0.3501, 1285.6)

10 (0.1283, 698.14) (0.4178, 1310.2)

For a general estimator T, if it is regression equivariant, then we can as-
sume w.l.o.g. that the true parameter β0 = 0 ∈ R

p. We calculate EMSE :=∑R
i=1 ‖Ti − β0‖2/R, the empirical mean squared error (EMSE) for T, where

R = 1000, β0 = (0, . . . , 0)′ ∈ R
p, and Ti is the realization of T obtained from

the ith sample with size n and dimension p. The EMSE and the total time
consumed (in seconds) by different AAs are listed in Table 1.

Inspecting Table 1 immediately reveals that (i) AA2 is not only the slowest
but is the most inaccurate (with the largest EMSEs) in all cases considered. (ii)
AA1 has both speed and accuracy advantages for all cases considered.

Overall, we recommend AA1. That does not exclude the potential of improve-
ment of AA2 via the idea in [26].

All R code for simulation and examples as well as figures in this article
(downloadable via https://github.com/left-github-4-codes/LST) were run
on a desktop Intel(R)Core(TM) 21 i7-2600 CPU @ 3.40 GHz.

The data points in the example above are standard normal and hence not
realistic. In the following, we will investigate the performance of AA1 versus the
LTS for contaminated standard normal data sets and for moderate as well as
large ns and ps.

Example 7.2 (Multiple regression with contaminated normal data sets). Now
we consider data with contamination, which is typical for big data sets in the
big-data era.

We consider the contaminated highly correlated normal data points scheme.
We generate 1000 samples Zi = (xi

′, yi)′ with various ns from the normal
distribution N (μ,Σ), where μ is a zero-vector in R

p, and Σ is a p by p matrix
with diagonal entries being 1 and off-diagonal entries being 0.9. Then ε% of
them are contaminated by normal points with μ being the p-vector with all
elements being 7 except the last one being −2 and the covariance matrix being
diagonal with diagonal being 0.1 and off-diagonal being zero. The results are
listed in Table 2.

Inspecting the table reveals that (i) in terms of EMSE, AA1 is the overall

https://github.com/left-github-4-codes/LST
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Table 2

Total computation time for all 1000 samples (seconds) and empirical mean squared error
(EMSE) of the LST(AA1) versus the LTS(ltsReg) for various ns, ps, and contaminations.

Normal data sets, each with ε% contamination
Table entries (a, b) are: a := empirical mean squared error, b := total time consumed

ε = 5% ε = 10%
p n AA1 ltsReg AA1 ltsReg

100 (0.2971, 9.6581) (0.3010, 22.867) (0.2843, 494.01) (0.2942, 25.289)
5 200 (0.2503, 26.045) (0.2650, 41.861) (0.2517, 26.629) (0.2630, 43.504)

300 (0.2396, 54.100) (0.2551, 63.639) (0.2366, 54.885) (0.2534, 63.522)

400 (0.1335, 1085.6) (0.1394, 181.18) (0.1340, 1056.2) (0.1382, 175.92)
10 500 (0.1280, 1207.7) (0.1321, 222.81) (0.1289, 1178.5) (0.1321, 218.94)

600 (0.1247, 1308.4) (0.1285, 152.47) (0.1253, 1273.6) (0.1276, 149.99)

700 (0.0815, 2044.9) (0.0885, 549.61) (0.0838, 1994.0) (0.0882, 547.53)
20 800 (0.0776, 2261.7) (0.0837, 620.63) (0.0796, 2177.0) (0.0837, 616.87)

900 (0.0748, 2436.1) (0.0804, 541.20) (0.0761, 2353.7) (0.0795, 538.43)

ε = 30% ε = 40%
300 (0.4347, 53.248) (1.9236, 1635.1) (0.4352, 56.430) (1.3517, 1712.8)

40 400 (0.3362, 100.04) (1.2604, 2401.5) (0.3314, 102.81) (0.8995, 2399.5)
500 (0.2594, 147.66) (0.9514, 2963.4) (0.2873, 146.67) (0.6851, 2787.7)

300 (0.5242, 58.736) (2.7826, 2861.8) (0.5700, 59.903) (1.9808, 2896.3)
50 400 (0.4085, 89.897) (1.7562, 3292.0) (0.4539, 108.88) (1.2547, 3925.5)

500 (0.3107, 145.84) (1.2870, 4510.5) (0.3406, 145.75) (0.9086, 4419.6)

winner (with the smallest EMSE in all cases considered), the LTS has the largest
EMSE in all the cases; (ii) in terms of speed, the LTS (or rather ltsReg) is the
winner when p = 10 or 20. The AA1 is the winner for all other p’s, except when
p = 5, n = 100 and ε = 10%. For the latter case, AA1 can still be faster by
tuning Tls to be 1, then we get (0.2986, 10.396) for AA1 versus (0.2948, 23.133)
for ltsReg (suffering a slight increase in EMSE).

The LTS (or lstReg) demonstrates its well-known speedy advantage, which
is partially due to its background computation via Fortran subroutine and the
computation scheme proposed in [26]. The AA1 (a pure R programming pro-
cedure), on the other hand, has the potential to speed up via Rcpp or even
Fortran.

Remark 7.1. (i) Parameters tuning. Two parameters in AA1 that can be
tuned. The Tls is set to 300 for better EMSE (as in the p = 5, n = 100, and
ε = 10% case). If tuning it to be 1, we get a much faster AA1 (as in the cases
p = 30 40, and p = 5, except when n = 100, and ε = 10%). For the α in the
definition of the LST, it is set to 1 (default value) in Table 1, it is set to 3 as
in Table 2 when there are contaminations (or outliers). Note that theoretically
speaking, both the LST and the LTS can resist 50% contamination without
breakdown. So the40% contamination rate in Table 2 is relevant and is also
employed in [26].

(ii) The LTS estimate is obtained via the R package ltsReg, h is the default
value �(n + p + 1)/2�, we could tune this h to get better performance from the
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LTS. However, this will decrease LTS’s finite sample breakdown value. This is
not the case for LST with the α (see Theorem 3.1).

So far we have assumed that the true β0 is the zero vector based on the
regression equivariance. One might not be used to this assumption.

Example 7.3 (Performance of the LST and the LTS with respect to a given
β0). Now we examine the performance of three regression estimators the LST,
the LTS, and LMS in a slightly different setting. We generate 1000 samples
{(x′

i, yi)′ ∈ R
p} with a fixed sample size 100 from an assumed model: yi =

β0
′xi + ei, where xi = (1, xi1, . . . , xip−1)′ and β0 = (β0, . . . , βp−1)′ are in R

p

and xij and ei are independently from either the Cauchy or N (0, 1) distribution.
We list the total time consumed (in seconds) and the EMSE (the same for-

mula as before but the true β0 is the given one no longer being the zero vector)
for the three methods with respect to different β0’s in Table 3.

Case I β0 = (−2, 0.1, 1)′, all xij and ei are from N (0, 1) distribution.

Case II β0 = (−2, 0.1, 1, 5)′, xi1, xi2, and ei are from N (0, 1) and xi3 is from
Cauchy distribution.

Case III β0 = (50, 0.1,−2, 15, 100)′, all xij and ei are from N (0, 1).

Table 3

Performance of the LST, the LTS, and the LMS for three true β0’s.
Replication 1000 times, n = 100

Performance criteria LST(AA1) LMS(lmsreg) LTS(ltsReg)
Case I p = 3

EMSE 3.525451 4.204053 3.806951
Total time consumed 11.53858 10.49865 17.81713

Case II p = 4

EMSE 29.91539 30.23814 29.97682
Total time consumed 9.919189 6.087584 10.31606

Case III p = 5

EMSE 12724.32 12726.87 12724.74

Total time consumed 14.54680 17.42145 22.08751

Inspecting the Table reveals that (i) in terms of EMSE, the LST (AA1) is
the overall winner (has the smallest EMSE in all cases) whereas the LMS is the
loser; (ii) in terms of speed, there is no overall winner. In two respective cases,
the LMS is the fastest whereas the LST is fastest in p = 5 case and the LTS is
the slowest in all cases.

Up to this point, we have dealt with synthetic data sets. Next we examine
the performance of the LST, the LTS and the LMS with respect to real data
sets in high dimensions.
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Example 7.4 (Textbook size real data sets). We first look at real data sets
with relatively small sample size n and moderate dimension p. For a description
of data sets, see [23]. Since some of methods might depend on randomness,
So we run the computation R = 1000 times to alleviate the randomness. We
then calculate the total time consumed (in seconds) by different methods for all
replications, and the EMSE (with true β0 being replaced by the sample mean
of 1000 β̂s), which is the sample variance of all β̂s up to a factor 1000/999.
The results are reported in Table 4, where the parameters α and Tls in AA1 are
tuned.

Table 4

Total time consumed (in seconds) and sample variance in 1000 replications by the LST
(AA1), the LTS (ltsReg), and the LMS (lmsreg) for various real data sets.

Table entries (a, b) are: a := empirical variance of β̂s, b := total time consumed
data set (n, p) AA1 ltsReg lmsreg
salinity (28, 4) (0.0, 2.3290) (0.0, 8.8385) (1.3719, 4.9425)

phosphor (18, 3) (0.0, 4.9218) (0.0, 8.3902) (0.0000, 1.5153)
wood (20, 6) (0.0, 4.8013) (0.0, 10.343) (2.6470, 8.3714)

coleman (20, 6) (0.0, 14.585) (0.0, 10.159) (243.11, 8.3560)

Inspecting the Table reveals that (i) in terms of the EMSE (or rather empir-
ical variance), AA1 and ltsReg are the overall winners for all cases considered
(no randomness) and LMS has the largest sample variance. (ii) in terms of com-
putation speed, there is no overall winner, but AA1 is faster than ltsReg in three
out of four cases. The LMS is the fastest in one case.

The limitation of this example is that the data sets are still relatively small
and not in high dimensions. We examine a high dimension and large sample
dataset next.

Example 7.5 (A large real data set). Boston housing is a famous data set
[9] and studied by many authors with different emphasizes (transformation,
quantile, nonparametric regression, etc.) in the literature. For a more detailed
description of the data set, see http://lib.stat.cmu.edu/datasets/.

The analysis reported here did not include any of the previous results, but
consisted of just a straight linear regression of the dependent variable (median
price of a house) on the thirteen explanatory variables as might be used in an
initial exploratory analysis of a data set. We have sample size n = 506 and
dimension p = 14.

We assess the performance of the LST, the LTS, and the LMS as follows:
(i) we sample m points (without replacement) (m = 506, entire data set, or
m = 200, 250, 300, 350) from the entire data set, and compute the β̂s with dif-
ferent methods, we do this RepN times, where replication number RepN varies
with respect to different ms. (ii) we calculate the total time consumed (in sec-
onds) by different methods for all replications, and the EMSE (with true β0
being replaced by the sample mean of RepN β̂s from (i)), which is the sample
variance of all β̂s up to a factor RepN/(RepN − 1). The results are reported in
Table 5.

http://lib.stat.cmu.edu/datasets/
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Table 5

Total time consumed (in seconds) and sample variance in RepN replications by the
LTS (ltsReg), the LST (AA1), and the LMS(lmsreg) for real data sets with various

sample size m’s and p = 14.
Table entries (a, b) are: a := empirical variance of β̂s, b := total time consumed

p m RepN LST(AA1) LTS(ltsReg) LMS(lmsreg)
200 104 (195.3379, 595.7677) (220.8644, 480.0612) (847.2457, 472.4671)
250 104 (164.4042, 723.5861) (169.5725, 597.2802) (791.2557, 555.3318)

14 300 104 (461.5653, 514.8522) (126.7703, 683.3362) (754.2416, 623.5828)
350 104 (453.3266, 695.9286) (97.86377, 821.1486) (724.2104, 732.2517)
506 103 (0.000000, 142.4225) (42.58697, 116.5830) (703.7999, 101.0454)

Inspecting the Table reveals that (i) the LMS has the largest EMSEs while
being faster than the LTS in all cases; (ii) the LST has smallest EMSE in
three cases among the five (in those cases it is slower than the LTS) (in the
other two cases the LTS is slower); (iii) in the entire data-set case, the LST
returned the same estimate every replication whereas the LTS and the LMS did
not.

8. Final discussions

The difference between the LTS and the LST The least sum of squares
of trimmed (LST) residuals estimator has the proven best asymptotic break-
down point of 50% and is another robust alternative to the classical least sum
of squares (LS) of residuals estimator. The latter keeps all squared residuals
whereas the former trims some residuals and then squares what is left. Trim-
ming is also utilized in the popular least sum of trimmed squares (LTS) of
the residuals estimator. However, the two trimming schemes are quite different,
the one used in the LTS is a one-sided trim (only large squared residuals are
trimmed, of course, it also might be regarded as a two-sided trim with respect to
the un-squared residuals) whereas the one utilized in the LST is a depth-based
(or outlyingness-based) trim (see [49] and [45] for more discussions on trimming
schemes) which can trim both ends of un-squared residuals and doess not trim
a fixed number of residuals.

Besides the trimming scheme difference, there is another difference between
the LTS and the LST, that is, the order of trimming and squaring. In the LTS,
squaring is first, followed by trimming whereas, in the LST, the order is reversed.
All these difference leads to an unexpected performance contrast between in the
LTS and the LST as demonstrated in the last section.

Fairness of performance criteria For comparison of the performance be-
tween the LST and the LTS, we have focused on the variance (accuracy, effi-
ciency, or EMSE) and the computation speed of the algorithms for the estima-
tors. The asymptotic efficiency (AE) of the LTS has been reported to be just
7% in [34] or 8% in [17] (page 132), the AE of the LST is yet to be discovered;
however, it is expected to be better than 8%. This assentation is supported by
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the experimental results in the last section (Tables 2, and 3 indicate that the
LST is more efficient than the LTS). Furthermore, this was also supported by
the results of [45] for various trimming schemes in the case of p = 1.

The computation speed comparison of the LTS versus the LST in the last
section is somewhat biased in favor of the LTS. It is essentially a speed com-
parison of pure R versus R plus Fortran since the Fortran subroutine (rfltsreg)
is called in ltsReg (similarly lmsreg also call a Fortran subroutine). Even with
that, ltsReg does not have an overwhelming advantage in speed over AA1. How-
ever, there is still room for improvement in AA1 by utilizing Fortran or better
Rcpp.

Parameters tuning and finite sample breakdown point There are two
parameters h in the LTS and α in the LST which can be tuned in the program for
computation. Their values have a connection with the finite sample breakdown
point. For example, when h takes its default value �(n + p + 1)/2�, then the
FSBP of the LTS is (n − h + 1)/n which will decrease from the best FSBP
result (�(n − p)/2� + 1)/n (see pages 125, 132 of [23]) when h increases. For
the parameter α in LST, as long as α ≥ 1 then the high FSBP in theorem 3.1
remains valid. This is due to the difference in the trimming schemes (see [45]).

Open and future problems By simply switching the order of trimming and
squaring and adopting a depth-based trimming scheme, the LTS and the LST
can have different performances. One naturally wonders what if one does the
same thing with respect to the famous the LMS introduced also by [21] (i.e. the
least square of the median (LSM) of residuals estimator). It turns out, this is not
a good idea since there is a universal solution, it is β̂ = (Med{yi}, 0, . . . , 0) ∈ Rp.

One interesting problem that remains is the investigation of the least sum
of squares of trimmed residuals with yet another trimming scheme such as the
winsorized version given in [45], that is, replacing the residuals beyond the cut-
off values at the two ends with just the cutoff values or even a more generalized
weighted (trimming) scheme which includes the hard 0 and 1 trimming scheme.
Other challenging open topics that deserve to be pursued elsewhere include (i)
providing a finite sample estimation error analysis (non-asymptotic analysis)
and (ii) regularized regression based on the LST to handle variable selection
and model interpretation issues when dimension p is much larger than sample
size n.
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