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Abstract: Network data have become increasingly prevalent in recent re-
search. For instance, network models have been proposed to improve the
quality of estimation and hypothesis testing when comparing the effects of
different types of treatment. In this paper, we focus on efficiently estimat-
ing the average treatment effect using an adaptive randomization procedure
in networks. We are working on models of causal frameworks in which the
outcome of a subject’s treatment is influenced not only by their own charac-
teristics but also by the characteristics of their neighbors. The experiment’s
designer does not observe these characteristics. We also consider situations
where only the existing subjects’ network is revealed when assigning treat-
ments to current subjects. Balancing the connections in the network among
different treatment groups can lessen the impact of unknown characteristics.
In network data, it is often difficult to obtain theoretical properties because
the numbers of nodes and connections increase simultaneously. Under mild
assumptions, our proposed procedure is closely related to a time-varying
inhomogeneous Markov chain. We utilize the technique of Lyapunov func-
tions to control the moments of the imbalance measure sequence in our
proposed approach. As a result, our theoretical analysis demonstrates that
our procedure is capable of decreasing the variability of the observed out-
come in the model. The advantages of the proposed procedures are also
demonstrated by extensive simulations and experiments on real network
data.
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1. Introduction

Evaluation of the effects of different types of treatment is gaining significant
attention in social media development, online advertising and clinical testing.
The outcome for each subject may depend not only on the treatment allocation,
but also the subjects’ covariates and the connections between subjects. Random
treatment assignment methods often generate unbalanced prognostic factors.
In the situation where the covariates are the observed categorical or numerical
variables in fixed dimensions, sequential treatment assignment is introduced
in [37] to address the issue of unbalancedness. In [47], the author generalizes
the idea of sequential design by proposing a marginal urn model. Adaptive
randomization methods are studied in [13, 14], and show promising performance
in categorical covariate balance with theoretical guarantees. Pairwise sequential
randomization is investigated in [39] to reduce the Mahalanobis distance of
continuous variables.

In the past decade, the presence of networks in social media, clinical tests
and biological experiments has received attention from statisticians [46, 6, 7, 5].
In causal inference studies, the behavior of one individual may be correlated
with the behaviors of other individuals, namely peer effects or social interac-
tion [28, 1, 9]. In online social media networks, the behavior of a given user
may be similar to his or her friends, as they might share correlated factors.
Hence, in causal inference and clinical studies, we assume that if two subjects
are connected in the network, then their hidden covariates affect each other’s
outcomes. To be more precise, we consider network-correlated outcomes, where
the network informs the correlations among potential outcomes because the po-
tential outcomes of subject i depend on both its own covariates and those of
its neighbors in the network [29, 4]. Furthermore, we assume the potential out-
come of a certain subject is not affected by the assignment of treatments to
other subjects [8]. That is, there is no interference between subjects [2]. In addi-
tion, we consider another realistic assumption, which is similar to that proposed
in [47]: we assume subjects appear singly and must be treated immediately. In
other words, when we decide the treatment assigned to the current subject,
only the connections between this subject and the previous subjects are ob-
served; we only observe the sub-adjacency matrix for those subjects observed
in the current stage. Rerandomization is proposed in [31] and generalized to
network data by [4]; however, their approach requires the whole network to be
revealed before deciding the treatment of the first subject. To resolve this is-
sue, here, we generalize adaptive design methods [13, 14] to decide treatment
allocation sequentially. The utilization of adaptive design methods in network
models is a novel contribution presented in this paper. Prior to the publication
of this paper, little attention had been given to this particular approach in the
context of network models. However, it is worth noting that during the publi-
cation process of this paper, some related works have emerged in the field, such
as [24, 45], which have also explored the application of adaptive design methods
in similar contexts. Moreover, the performance analysis of the existing adaptive
randomization method cannot be applied to the model considered in this paper.
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Assuming the observations are network-correlated and sequentially obtained,
this paper focuses on improving the estimation of treatment effects by reducing
the imbalance measurement. We still aim to reduce the effect of prognostic fac-
tors by the pairwise sequential randomization method proposed in [39]. Under
the assumption of network-correlated outcomes, and supposing the network is
observed sequentially, we first derive the formula for the variance of treatment
effects under certain statistical assumptions, then we show that our approach
reduces the imbalance measurement empirically and theoretically under some
reasonable assumptions on the network. Despite the popularity of the model
in [29, 4], no previous work has analytically evaluated the variance of the estima-
tor in this model with mathematical verification. To the best of our knowledge,
this paper is the first work to provide a theoretical verification for the per-
formance of randomization procedures on models assuming network-correlated
outcomes.

In the literature, it is assumed that covariates are identically and indepen-
dently distributed (i.i.d.), and the number of covariates is fixed, hence turning
the imbalance measurement of the adaptive randomization procedure into a
Markov process. It is shown in [13] that the Markov process is recurrent when
the covariates are categorical variables. To formulate a theoretical analysis of the
proposed procedure of this paper, we assume the observed network follows the
Erdős-Rényi random graph model. The analysis does not follow from previous
work on adaptive design, in the following sense. As we observe a network with
extra nodes, the number of possible neighbors of each individual increases simul-
taneously. Moreover, because the Erdős-Rényi random graph is a probabilistic
model for undirected graphs, the entries of the adjacency matrix are not inde-
pendent. To overcome these difficulties, we analyze this stochastic process as a
Lamperti problem [18] and further derive the upper bound of the expectation of
imbalance measurement by computing certain Lyapunov functions [30]. We will
explain the connection between our analysis method with Lyapunov functions
in Section 3. In our model, as more and more subjects join the experiments,
the dimension of states changes over time progresses. Thus, this process can be
approximated as a time-varying Markov process. The generalization from fixed
dimension to increasing dimension is a novel extension in Markov models.

This article is organized as follows. We introduce the network-correlated out-
come model and our proposed procedure in Section 2. Theoretical properties
under the Erdős-Rényi random graph model are presented in Section 3. In Sec-
tion 4, we discuss the theoretical properties that arise when we replace the
random graph model with a Gaussian orthogonal ensemble. Experiments on
simulated and real network data are presented in Section 5. We conclude in
Section 6, where possible future works are also discussed. Proofs of the main
theorems and auxiliary lemmas appear in Appendix A.

Here, we briefly introduce the notation used in this paper. Xn is the set of
vectors with entries belonging to X, where X can be any subset of real numbers.
Similarly, Xm×n is the set of m × n matrices with entries belonging to X. For
A ∈ Sm×n, Ai∗ ∈ Xn is the i-th row of matrix A. For vector a, ‖a‖ represents the
�2-norm of vector a. ai:j = (ai, ai+1, . . . , aj) for i < j. Similarly, for matrix A,
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Ai:j,k:l is the submatrix formed by rows i, i+1, . . . , j and columns k, k+1, . . . , l.
In particular, we write A(i) = A1:i,1:i as the upper-left submatrix.

2. Model assumptions

We assume the treatment outcome of a subject depends on three things.

1. The treatment assignment of the subject.
2. The neighbors of the subject in the network. If the i-th and the j-th sub-

jects are connected, then a covariate Zj will be added to the i-th outcome.
3. A random noise.

We focus on two treatment groups (treatment 0 and treatment 1) assigned to
a finite population of n subjects. Let T ∈ {0, 1}n be the treatment assignment
vector. Ti records the assignment of the i-th subject, that is, Ti = 0 for treatment
0 and Ti = 1 for treatment 1. The relationship between nodes is recorded by
an undirected network, or equivalently, a symmetric binary adjacency matrix
A ∈ {0, 1}n×n. We assume self loops always exist, i.e., Aii = 1 for i ∈ [n].
We recall that Ai∗ is the i-th row of adjacency matrix A. Given the treatment
assignment Ti, the observed outcome of the i-th subject follows the distribution

Xi = μ0(1 − Ti) + μ1Ti + Ai∗Z + εi (2.1)

where

Z and εi has zero mean, Cov(Z) = σ2
ZIn, and Cov((ε1, . . . εn)�) = σ2

εIn.

We assume εi are i.i.d. for i ∈ [n]. The observation is the summation of three
parts.

1. μ0(1 − Ti) + μ1Ti is the treatment effect, where μ0 and μ1 are the effect
sizes of the corresponding treatments. We note that the outcome has the
expectation E[Xi] = μ0 if Ti = 0, otherwise its expectation is μ1.

2. The outcome of the i-th observation is also affected by its unknown co-
variate Zi and the covariates of its neighbors in the network. To be pre-
cise, let Ni be the set of neighbors of i, and recall that Aii = 1, then
Ai∗Z = Zi +

∑
j:j∈Ni

Zj . We assume the covariates Z have zero mean, so
the outcome can be positively or negatively influenced by the covariates.

3. εi is random noise in each observation. They have zero mean, the same
variance, and they are uncorrelated.

Following previous studies, to ensure the treatment groups are unbiased, we
restrict T2m−1 + T2m = 1 for positive integer m. That is, (T2m−1, T2m) is ei-
ther (0, 1) or (1, 0). For notational convenience, we assume the total number of
subjects n is even. As a result,

n∑
i=1

Ti =
n∑

i=1
1 − Ti = n

2 .
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Hence we have an estimator of μ0 − μ1, defined as

W := 2
n

n∑
i=1

(1 − Ti)Xi − TiXi

= μ0 − μ1 + 2
n

n∑
i=1

(1 − Ti)(Ai∗Z + εi) − Ti(Ai∗Z + εi)

= μ0 − μ1 + 2
n

(1n − 2T )�(AZ + ε).

For a fixed adjacency matrix A and an allocation vector T , it is not difficult to
check that the estimator is unbiased, as Z and ε have zero means:

E[W ] = μ0 − μ1 + 2
n

(1n − 2T )�E[AZ + ε]

= μ0 − μ1 + 2
n

(1n − 2T )�A(E[Z] + E[ε])

= μ0 − μ1.

We can also compute the variance of W :

var[W ] = 4
n2 var[(1n − 2T )�(AZ + ε)] = 4

n2 ‖A(1n − 2T )‖2σ2
Z + 4

n
σ2
ε ,

where ‖ · ‖ denotes the �2-norm throughout this paper. We note that W is an
unbiased estimation and the term 4σ2

ε/n converges to 0 as n → ∞, so the best
strategy in this experiment is to reduce the term ‖A(1n−2T )‖2 by assigning an
appropriate treatment to each pair of subjects. As the variance of estimator W
decreases, the hypothesis testing on the effectiveness of the treatment becomes
more powerful. We assume each pair of subjects joins the experiment sequen-
tially, and we need to decide their treatment assignment soon after they join.
In pairwise sequential randomization [39, 27], we assign different treatments
to each pair of subjects simultaneously. In the m-th stage, we determine the
treatment assignments to the (2m − 1)-th and the 2m-th subjects, which may
depend on two factors. First, after the first 2m subjects join the experiment,
we only observe the connection between these subjects, while all other connec-
tions are concealed. In other words, we observe the (upper-left) sub-adjacency
matrix A(2m) := (Aij)1≤i,j≤2m. Second, when we determine the assignment to
the (2m − 1)-th and 2m-th subjects, we have the record of the assignments to
the first (2m− 2) subjects, although we cannot update them. Therefore, given
the submatrix A(2m) and T1, . . . T2m−2, we need to determine T2m−1 and T2m
to reduce the imbalance measurement, defined as

I2m = ‖A(2m)(12m − 2T1:2m)‖, (2.2)

where 12m ∈ R
2m with all entries equal to 1 and T1:2m consists of the first 2m

entries of T . To reduce the imbalance measurement, we propose the following
procedure:
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1. The first two subjects are randomly assigned to different treatments.
2. Suppose 2m− 2 patients have been assigned to treatments, we define the

imbalance measurement when (T2m−1, T2m) = (0, 1)

I
(0,1)
2m = ‖A(2m)(12m − 2(T�

1:(2m−2), 0, 1)�)‖,

and in the same manner, when (T2m−1, T2m) = (1, 0), we have

I
(1,0)
2m = ‖A(2m)(12m − 2(T�

1:(2m−2), 1, 0)�)‖.

3. We decide (T2m−1, T2m) according to the following probabilities,

P((T2m−1, T2m) = (0, 1)) =

⎧⎪⎨
⎪⎩
b, if I(0,1)

m < I
(1,0)
m ;

1 − b, if I(0,1)
m > I

(1,0)
m ;

0.5, otherwise.

Here b ∈ (1/2, 1] is a fixed biasing probability.
4. We repeat steps 2 and 3 until 2m ≥ n − 1. If 2m = n − 1, we arbitrarily

assign a treatment to subject n.

The general idea of this procedure can be summarized as follows. In each
stage, we consider two possible assignments to (T2m−1, T2m) and compute which
assignment minimizes the imbalance measurement. In pairwise sequential ran-
domization, the assignments are either (T2m−1, T2m) = (0, 1), or (1, 0). We use
the assignment that results in the smallest imbalance measurement with the
biasing probability b ∈ (1/2, 1]. It is clear that letting b = 1 would reduce the
expected imbalance measurement as far as possible, but we allow randomness
in the procedure for several practical reasons. We further discuss this biasing
probability in Remark 1. Notably, the proposed procedure does not require any
information on subjects joining the experiment in the future. To be more spe-
cific, the choice of treatment for subjects 2m− 1 and 2m only depends on their
connection with previous subjects and the current imbalance measurement. The
procedure can be applied to the case when n is odd, as long as we assign a ran-
dom treatment to the last subject. If b is a constant greater than 1/2, the
adaptive procedure can significantly reduce the imbalance measurement under
mild assumptions on the network.

Remark 1 (Biased coin design). Suppose we let b = 1 in our proposed procedure,
then each pair of assignments in the procedure reduces the imbalance measure-
ment as far as possible, and treatment allocation is completely determined by
the network. However, deterministic treatment assignment is not desirable from
the standpoint of (un)predictability and the principle of randomness [20]. The
authors of [20] mention “treatments are prepacked in accordance with a suitable
randomization schedule, . . . so that no one involved in the conduct of the trial
is aware of the specific treatment allocated to any particular subject”. Thus, an
appropriate allocation probability ∈ (1/2, 1) should be selected. The concept of
biased coin design was first proposed in [10] to ensure an equal distribution of
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different treatments, and the author recommended a value of b = 2/3. For the
purpose of balancing prognostic factors between treatment groups, the authors
of [12] suggest an allocation probability between 0.70 and 0.95 according to the
sample size. In [41], the authors simulate the effects of allocation probability. In
this paper, we assume that b can be any constant greater than 0.5 and no more
than 1.

Remark 2 (Binary Integer Programming). Suppose the whole network is ob-
served, the goal of reducing the imbalance measurement I = ‖A(1 − 2T )‖ with
unbiased treatment groups is equivalent to the following optimization problem:

min
x∈{−1,1}, 1�x=0

‖Ax‖ = min
x∈{−1,1}, 1�x=0

x�Hx,

where H = A�A = A2. It is not difficult to observe that Hij counts the number
of common neighbors of node i and j in the adjacency matrix A. The constrained
1�x = 0 can be converted to a penalty function:

min
x∈{−1,1}

x�Hx + λ(1�x)2 = min
x∈{−1,1}

x�(H + λ11�)x.

This formulation is summarized as an unconstrained binary programming prob-
lem (UBQP) in [17]. The authors of that survey also mention that the UBQP
is an NP-hard problem, whose proof is provided in [34], except for some special
cases with very strong assumptions on H [36, 3, 33]. H in these special cases
is restricted to be an adjacency matrix with certain regularization conditions,
so their results cannot apply to our case H = A2. In the general case, heuris-
tic methods such as the continuous approach [35, 32], tabu search algorithms
[25, 43], and semi-definite relaxation [42] have been proposed for finding inex-
act but high-quality solutions. However, it is worth noting that the setting we
consider here is very different from a UBQP problem. We have to determine xi

when only the upper-left i× i submatrix of A is observed.

3. Theoretical properties of the proposed design

In this section, we study the asymptotic property of the imbalance measurement
quantity of (2.2) under the following stochastic assumption on the symmetric
adjacency matrix A. We assume for some p ∈ (0, 1),

A− I ∼ G(n, p), (3.1)

where G(n, p) represents the Erdős-Rényi random graph model. In other words,
on the diagonal of A, we have determinant entries Aii = 1 for i ∈ [n], and

Aij = Aji ∼ Bernoulli(p) independently for 1 ≤ i < j ≤ n.

In the graph sense, the Erdős-Rényi random graph model indicates that an edge
between distinct nodes exists with probability p [11]. Under this assumption on
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A, we aim to analyze the asymptotic behavior of the imbalance measurement
I2m = ‖A(2m)(12m − 2T1:2m)‖ defined in (2.2). Let us also define the state after
the m-th iteration of the procedure:

S2m = A2m(12m − 2T1:2m)

so that I2m = ‖S2m‖. For convenience of notation, we let

I2m+1 = I2m for m ∈ N, (3.2)

so the imbalance measurement Ii can be defined for all positive integers i. Sup-
pose A were not symmetric, i.e., aij and aji were i.i.d., then {Si}i∈N would
be a time-varying Markov chain, where the randomness comes from entrywise
Bernoulli distribution and random assignments in step 3 of the procedure. In
the symmetric case, we still approximately have the following Markov property:

P(Si = x|S1, . . . , Si−1) ≈ P(Si = x|Si−1)

We will show that the imbalance measurement In is significantly reduced com-
pared with random design if we apply our proposed procedure.

A random design indicates that we assign (T2m−1, T2m) = (0, 1) or (1, 0) with
probability 1/2. In other words, we implement step 3 of our proposed design with
b = 1/2. We denote the resulting assignments by the vector Trandom, then for
fixed p ∈ (0, 1), we have the following theorem about random assignment.

Theorem 1. Suppose the n×n network follows the Erdős-Rényi random graph
model in (3.1) with Bernoulli parameter p, then using random assignment, the
imbalance measurement satisfies the following limit

lim
n→∞

E[‖A(1 − 2Trandom)‖2]
n2 = p(1 − p). (3.3)

The next theorem shows that our proposed design can significantly reduce
the imbalance measurement.

Theorem 2. Suppose the n×n network follows the Erdős-Rényi random graph
model in (3.1) with Bernoulli parameter p, then using our proposed design, the
imbalance measurement In satisfies the following upper bound:

lim sup
n→∞

E[I4
n]

n4 ≤ p2(1 − p)2 − 1
8(2b− 1)(2 −

√
2(2b− 1))3/2p5/2(1 − p)5/2.

(3.4)

Remark 3. Theorem 2 provides the upper bound of the fourth moments of
the imbalance measurement. Because E[I4

n] ≥ E[I2
n]2, we immediately obtain an

upper bound of the second moment E[I2
n]. For fixed p ∈ (0, 1) and b ∈ (1/2, 1],

lim sup
n→∞

E[I2
n]

n2 < p(1 − p).
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Hence the proposed procedure provides a strictly smaller imbalance measurement
than random design in expectation. Suppose b = 1/2, i.e., 2b − 1 = 0, then the
proposed method is identical to random design. As a result, the second term
of (3.4) vanishes. Meanwhile, suppose the network is very sparse, that is, p is
very small, then the reduction of imbalance measurement by the proposed design
is not very great, because p5/2 is much smaller than p2.

Proof overview of Theorem 2 We will use the notation:

S̃m := S2m = A(2m)T̃2m, Ĩm := I2m = ‖A(2m)T̃2m‖.

Our goal is to show that the expected value of Ĩm has a nontrivial upper bound.
However, the reduction achieved by applying our proposed method actually
depends on the lower bound of certain moments of Ĩm. More details are described
below:

1. It is easy to find a trivial upper bound for E[Ĩm], which is approximately
2n

√
p(1 − p) in Theorem 1.

2. Let Ym be the network connection data from the new units. Since Ym

is random, the expected value of cos(S̃m, Ym) cannot be too large. We
can choose the sign of Ym in a biased manner according to which sign can
reduce the norm of S̃m+1, so the reduction depends on |S̃�

mYm|. This reduc-
tion cannot be too large because Ĩm has an upper bound, and
E[cos(S̃m, Ym)] is not too large. Using this fact, we can show that E[Ĩ2

m]
has a lower bound, approximately 4 − cbm

2p(1 − p), with a constant cb
depending on b only.

3. ‖S̃m‖ = Ĩm has a lower bound, as does |S̃�
mYm|. Now we can find a lower

bound for the imbalance reduction for each step. Cumulatively, we find
the upper bound for the imbalance measurement.

In the proof, we utilized the concept of a Lyapunov function, as introduced
in [30], to bound ‖Sm‖. We achieved this by studying the conditional expected
increment

E[‖S̃m+1‖p − ‖S̃m‖p | Sm]

By bounding this conditional expectation, we can obtain the bound for ‖Sm‖p
by adding the conditional expected difference. It is important to note that ‖ · ‖p
serves as a Lyapunov function in the definition provided in [30].

4. Discussion on the Gaussian case

In previous sections, we assumed the network followed the Erdős-Rényi random
graph model. As discussed in Remark 3, Theorem 2 has not shown that the re-
duction of imbalance measurement is asymptotically smaller than the imbalance
measurement itself if p → 0. To discuss whether the reduction is rate optimal,
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we investigate a weighted adjacency matrix with Gaussian entries. Specifically,
in Wigner matrix A, we have determinant entries Aii = 1 for i ∈ [n], and

Aij = Aji ∼ N (0, σ2) independently for 1 ≤ i < j ≤ n.

In other words, we consider the Gaussian orthogonal ensemble (GOE) instead
of the Erdős-Rényi random graph model. This assumption corresponds to the
following scenario. We observe a weighted network in which the weights can
be either positive or negative. Under assumption (2.1), the observation Xi is
still well defined. In this case, the unknown covariate Zj can affect the i-th
observation Xi positively or negatively, depending on the weight Aij . Under
this assumption, the proposed procedure in Section 2 is still valid. If we adopt
the definition of imbalance measurement In, we have the following asymptotic
upper bound.

Theorem 3. Suppose the n×n weighted network follows the GOE with variance
σ2 where σ depends on n. Assuming σ = O(1) and nσ2 → ∞, then using our
proposed design, the imbalance measurement In satisfies the following upper
bound:

lim sup
n→∞

E[I4
n]

n4σ4 ≤ 1 − 1
4(2b− 1)

√
2/π(4 −

√
2/π(2b− 1))3/2.

In the Erdős-Rényi random graph model, the entrywise variance of the adja-
cency matrix is p(1− p). This quantity is comparable to σ2 in the GOE. When
σ → 0, the reduction of the imbalance measurement is still significantly large.
This is a stronger result than that in the Erdős-Rényi random graph model. An
essential technical reason is the lower bound of E[|x�Y |] for fixed subject vector
x and centered random vector Y ∈ R

m. If we only assume Y is a sub-Gaussian
vector, then for general x, we obtain the best lower bound by Khinchin-Kahane
inequality, see Lemma 1. If we further assume Yi ∼ N (0, σ2) independently,
then |x�Y | is a folded normal random variable and E[|x�Y |] = σ

√
n/π for all

subject vectors x. It is still an open problem whether the term p5/2 can be im-
proved to p2. An empirical comparison of these two cases can be found in the
next section.

5. Experiments

In this section, we empirically study the behavior of imbalance measurement
in (2.2). The experiments demonstrate that our proposed algorithm improves
the estimation of treatment effects for both simulated data and real network
data.

5.1. Experiments on simulated network data

The plots in Figure 1 show the result of the Erdős-Rényi random graph model
in (3.1). We fix p = 0.2 and simulate different sizes of random graphs. We
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Fig 1. Left: the standard deviation of W in Section 2 for different n. Right: the histogram of
W when μ0 = μ1 and σε = 1.

Fig 2. Left: the result when the graph is sparse. Right: the simulation on the Gaussian or-
thogonal ensemble.

consider random assignment and our proposed adaptive design algorithm with
b = 0.95. On the left plot, the shaded region is the 95% confidence interval for
100 iterations. All other plots with shaded regions in this section have confidence
intervals with the same confidence coefficient. The plot of random assignment
shows that the imbalance measurement concentrates around 0.8. This coincides
with the theoretical limit

√
4p(1 − p) = 0.8 suggested by Theorem 1. Applying

the proposed algorithm, the imbalance measurement decreases to approximately
0.6. The right plot shows the bias of estimation of μ0 − μ1 when n = 100. This
experiment is repeated 20000 times.

The left plot in Figure 2 considers the sparse Erdős-Rényi random graph
model. For an n×n network, we consider the density regime logn

n . In particular,
we generate random networks G

(
n, logn

5n
)
. The shaded region is the interquar-

tile range over 100 iterations. The imbalance measurement of random design
monotonically decreases because its maximum expectation is

√
4p(1 − p), which

converges to 0 as the network becomes more sparse. The right plot in Figure 2
considers the GOE instead. The entrywise variance remains the same. In other
words, for the network with n nodes, pn = logn

n , the corresponding variance
of the GOE is σ2

n = pn(1 − pn). The results of this simulation show that the
imbalance measures have very similar asymptotic behavior for both models.
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Fig 3. Comparison of the Erdős-Rényi random graph model with different density.

The plots in Figure 3 compare the performance of our proposed method on the
Erdős-Rényi random graph model. In the plots, we let p = 0.2, 0.02, and 0.002
and plot the imbalance measurement on different sizes of random graphs. The
result of this experiment is identical to that shown in the left plot in Figure 1,
but in different densities.

In Figure 4, we consider the GOE with different levels of variance. For the left,
center, and right plots, we let σ2 = p(1− p) for p = 0.2, 0.02, 0.002 respectively,
so that the entrywise variance is the same as that in the Erdős-Rényi random
graph model. As we can see in the plots, the empirical performances are very
similar for these two models.

Fig 4. Comparison of Gaussian orthogonal ensemble with different variance.

Figure 5 considers the stochastic block model. The subjects are randomly
divided into two groups. In our setting, if two subjects belong to the same group,
then the probability of connection between them is p1, and the between-group
probability is p2. The plots consider p1 = 0.3, 0.03, 0.003 and p2 = 0.1, 0.01, 0.001
from left to right respectively. The overall density is the same as the previous
experiment on the Erdős-Rényi random graph in Figure 3, and the empirical
performances of the two experiments are very similar. However, on the left plot,
we can observe that the confidence intervals are wider than those in Figure 3
and Figure 4.

5.2. Experiments on real network data

We implement our proposed algorithm on 11 real undirected network datasets
from SNAP [19]. For each network, we randomly sample a subnetwork with
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Fig 5. Comparison of stochastic block models with different density.

10000 nodes, then we apply both adaptive design and random design to the
subnetwork. We compare the imbalance measurement in (2.2) in each dataset.
Because theoretical analysis shows that the network density plays an important
role in imbalance measurement, the densities are recorded in the last column.
In our model, we always assume the existence of self loops. When we compute
the density of the subnetwork, we only consider the connections between dif-
ferent nodes. For example, the density of the network com-youtube.ungraph
is approximately 0.00076. In other words, the average degree of the graph is
approximately 8.6, including self loops.

Table 1

Comparison of adaptive random design applied to real network data from SNAP.
Dataset Adaptive Random Reduction Density

Email-Enron 212.4147 346.6583 39% 11.7178 × 10−4

com-youtube.ungraph 172.6210 269.6257 36% 7.6078 × 10−4

HR_edges 143.2271 212.1933 33% 3.4652 × 10−4

HU_edges 117.8813 174.4821 32% 1.9725 × 10−4

RO_edges 106.7895 157.6959 32% 1.4708 × 10−4

CA-GrQc 99.2774 117.0982 15% 0.3776 × 10−4

CA-HepPh 100.3494 113.8508 12% 0.3766 × 10−4

CA-AstroPh 100.2098 112.5256 11% 0.2304 × 10−4

CA-CondMat 97.8877 107.7311 9% 0.1720 × 10−4

CA-HepTh 99.1060 104.9667 6% 0.1200 × 10−4

The edges in these networks might have different meanings. We now explain
how our model and algorithm are applied on the network com-youtube.ungraph.
The nodes of this network represent users on YouTube. Two nodes are con-
nected in the network if they are friends on YouTube. Under the assumption
of a network-correlated outcome, friends share common unknown factors that
affect observations. To reduce the effect of a factor, we should propose treatment
allocation such that friends sharing the corresponding factor are divided into
two treatment groups. Suppose we apply our proposed adaptive design on this
network with b = 0.85 (see Remark 1 for the choice of b), then the imbalance
measurement is reduced by 36%.

We also implement the proposed adaptive design algorithm in the other real
networks. The result of the experiment is presented in Table 1. We observe
that the percentage of imbalance measurement reduction depends on the den-
sity of the network. For instance, the network of CA-HepTh has a low density
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of 0.1200 × 10−4, hence, our method can only reduce the imbalance measure-
ment by 6%. According to Remark 3, there is no evidence that our proposed
method can reduce the imbalance measurement significantly if the network is
very sparse.

In Figure 6, we implement both random and adaptive designs on different
sizes of the network com-youtube.ungraph. To repeat the experiments, we keep
the random graphs generated in the previous experiment. In this real dataset,
to obtain the confidence interval, we repeatedly sample subgraphs from the
network and apply the proposed algorithm on each subgraph. The empirical
results again show that our proposed method significantly reduces the imbalance
measurement and improves the accuracy of estimation of treatment effects.

Fig 6. These plots repeat the experiments in Figure 1 on the real dataset from YouTube.

6. Conclusion

In this paper, we consider the problem of estimating treatment effects under the
assumption that the outcomes are network-correlated. We propose an adaptive
randomization procedure to reduce the variance of the estimation. The algorithm
assigns different treatments to each pair of subjects sequentially. The biased
coin design enforces the assignments, with the result that a smaller imbalance
measurement will be chosen with higher probability. For theoretical analysis,
we assume the network is generated by the Erdős-Rényi random graph model.
As the number of subjects increases, the states of the Markov process have
different dimensions as time progresses. We provide a novel mathematical proof
that our adaptive randomization algorithm significantly reduces the imbalance
measurement. Our empirical results also show that this proposed algorithm
reduces the variance of the unbiased estimator in both simulated and real data.

One potential extension of our method is to balance both the network cor-
relation and observed covariates simultaneously. Previous works [13, 14] have
mainly focused on balancing the covariates alone. By incorporating both net-
work information and observed covariates, we can assign treatment to subjects
sequentially in a more effective manner.

The new procedure can still be generalized in several ways. To guarantee
a balanced treatment allocation, we consider pairwise sequential design, which
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determines treatments to two subjects simultaneously. Conventional adaptive
design [13] is still applicable in network data. The empirical results can be ex-
pected to be similar to the proposed method, but the theoretical analysis will be
different, and this is an interesting topic for future work. We have demonstrated
our theoretical results for networks generated by the Erdős-Rényi random graph
model. However, this assumption can be extended to other types of random net-
works as long as the connections are independent. This is due to the fact that
we rely solely on the fact that random vectors are almost perpendicular to other
vectors in high-dimensional Euclidean space.

In the methods described so far, uniform weights are assigned to subjects.
If different weights were allowed for different subjects, it might be possible to
further reduce the variance of estimation. If a subject has a high degree in the
network, its outcome is affected by many other subjects. As a result, the outcome
of this node has high variance. If we can reduce the weight of such nodes, the
performance of the algorithm will be further improved.

If we assume there is interference between subjects, i.e., the outcome of a
certain subject might be affected by the treatment of its neighbors, then the
analysis in this paper is no longer strictly applicable. However, the tools intro-
duced in this paper could still powerfully reduce the variance under such an
interference assumption. As long as we can define the variance after each step
sequentially, then we assign the desired assignment to the current subject with a
probability greater than 0.5. We believe this procedure at least performs better
than random assignment. We leave these as future research topics.

Last but not least, it is possible that the theoretical analysis in Theorem 2
can be further improved. As mentioned in Section 3, the result in Theorem 3
allows σ → 0. If p → 0 (sparse) in Theorem 2, the current analysis does not show
that the proposed design still achieves significant improvement. This could be a
very interesting problem for further research. In general, it has proven difficult
for researchers to obtain theoretical results on the designs of network data, due
to the complexity of the problem and the lack of technical tools. In this paper,
we introduce the technique of Lyapunov functions. This technique could provide
a feasible way of studying the properties of general designs in network data.

Appendix A: Proofs

A.1. Proof of Theorem 1

In this proof, we briefly denote T := Trandom. We have

‖A(1 − 2T )‖2 =
n∑

i=1
(Ai∗(1 − 2T ))2

and observe that the distributions of Ai∗(1 − 2Trandom) are identical for all
i ∈ [n]. Without loss of generality, we consider i = 1. By the definition of
random design, E[1 − 2T ] = 0. Furthermore, A and T are independent in the
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random design, so E[A1∗(1 − 2T )] = 0. Hence we have

E[(A1∗(1 − 2T ))2] = var[A1∗(1 − 2T )].

We recall that (T2m−1, T2m) = (0, 1) or (1, 0) with equiprobability. By indepen-
dence, we have

var[A1∗(1 − 2T )] =
n/2∑
m=1

var[A1,2m−1(1 − 2T2m−1) + A1,2m(1 − 2T2m)]

For m ∈ [[2, n/2]], the distributions of A1,2m−1(1− 2T2m−1) +A1,2m(1− 2T2m)
are identical. When m = 1, we are in the special case that A11 = 1. Hence, it
suffices to consider the cases when m = 1 and m = 2. When m = 1, we have

var[A11(1 − 2T1) + A12(1 − 2T2)] = E[(1 −A12)2] = 1 − p.

When m = 2, we have

var[A13(1 − 2T3) + A14(1 − 2T4)] = E[(A13 −A14)2] = 2p(1 − p).

Hence E[(A1∗(1 − 2T ))2] = np(1 − p) + (1 − 2p)(1− p), and E[‖A(1− 2T )‖2] =
n2p(1 − p) + n(1 − 2p)(1 − p). Taking the limit, we have

lim
n→∞

E[‖A(1 − 2Trandom)‖2]
n2 = p(1 − p)

as desired.

A.2. Proof of Theorem 2

Proof. For i ∈ [2m] and j ∈ m, let us define

Yij = Ai,2j −Ai,2j−1

If i �= 2j − 1 and i �= 2j, i.e., neither Ai,2j nor Ai,2j−1 is on the diagonal, we
have

Yij =

⎧⎪⎨
⎪⎩
−1, with probability p(1 − p);
0, with probability p2 + (1 − p)2;
1, with probability p(1 − p)

(A.1)

We recall that A(2m) is the 2m× 2m submatrix of A, T̃2m = 12m − 2T1:2m, and
define Ym = Y1:2m,m+1 ∈ R

2m. In this section, we use the notations

S̃m := S2m = A(2m)T̃2m, Ĩm := I2m = ‖A(2m)T̃2m‖.

Now, as we define I2m+1 = I2m = Ĩm in (3.2), it suffices to show

lim sup
n→∞

E[Ĩ4
n]

16n4 ≤ p2(1 − p)2 − 1
8(2b− 1)(2 −

√
2(2b− 1))3/2p5/2(1 − p)5/2,

(A.2)
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which is equivalent to (3.4). As the entries of Ym follow the distribution of (A.1)
independently, we have

E[‖Ym‖2] = 2m var[Y1,m+1] = 2mE[Y 2
1,m+1] = 4mp(1 − p).

We have E[‖Ym‖2] = 4mp(1 − p). We also define

Z2m+1 =
2m∑
i=1

A2m+1,iT̃i and Z2m+2 =
2m∑
i=1

A2m+2,iT̃i.

By definition, we have Z2m+2 − Z2m+1 = T̃�
2mYm. As (T2i−1, T2i) = (1, 0) or

(0, 1), we can write

Z2m+1 =
m∑
j=1

(A2m+1,2j −A2m+1,2j−1)T̃2i =
m∑
j=1

Y2m+1,j T̃2i.

By symmetry of Yij T̃2i, we have that Z2m+1 shares the same distribution as∑m
j=1 Y2m+1,j . It is also clear that Z2m+2 shares that same distribution. Hence

we have E[Z2m+1] = E[Z2m+2] = 0 and

E[Z2
2m+1] = E[Z2

2m+2] = E

[( m∑
j=1

Y2m+1,j

)2]

=
m∑
j=1

var[Y2m+1,j ] = mE[Y 2
2m+1,1] = 2mp(1 − p).

In the m + 1 step of our proposed procedure, we observe two new columns
and new rows of the adjacency matrix, which will change the imbalance mea-
surement. The square of the imbalance measurement in the m + 1 step will be
either

Um=‖S̃m + Ym‖2+(Z2m+1 − 1 + A2m+1,2m+2)2+(Z2m+2 + 1 −A2m+1,2m+2)2

or

Vm=‖S̃m − Ym‖2+(Z2m+1 + 1 −A2m+1,2m+2)2+(Z2m+2 − 1 + A2m+1,2m+2)2.

Step 3 of the procedure indicates that our new design will pick the smaller one
of the above two with probability b > 1/2, and choose the larger one otherwise.
By the symmetry of the distributions of Ym, one can observe that this these two
terms have the same expectation, and by direct calculation, we obtain

E[(Z2m+1 − 1 + A2m+1,2m+2)2] = E[(Z2m+2 + 1 −A2m+1,2m+2)2]
= 2mp(1 − p) + 1 − p.
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1. Upper bound of E[Ĩn] We have the conditional expectation of Ĩ2
m+1,

E[Ĩ2
m+1|S̃m]

≤ E[‖S̃m + Ym‖2 + (Z2m+1 − 1 + A2m+1,2m+2)2

+ (Z2m+2 + 1 −A2m+1,2m+2)2|S̃m]
= E[‖S̃m‖2 + 2S̃�

mYm + ‖Ym‖2 + (Z2m+2 + 1 −A2m+1,2m+2)2

+ (Z2m+2 + 1 −A2m+1,2m+2)2|S̃m]
= ‖S̃m‖2 + 4mp(1 − p) + 2mp(1 − p) + 1 − p + 2mp(1 − p) + 1 − p

= ‖S̃m‖2 + 8mp(1 − p) + 2(1 − p).

Therefore, E[Ĩ2
m+1 − Ĩ2

m|Ĩ2
m] = 8mp(1 − p) + 2(1 − p). Hence

E[Ĩ2
m+1 − Ĩ2

m] = E[E[Ĩ2
m+1 − Ĩ2

m|Ĩ2
m]] ≤ 8mp(1 − p) + 2(1 − p).

In the first stage, the imbalance measurement E[Ĩ2
1 ] = (1−A12)2 +(A21−1)2 =

2(1 − p). Thus

E[Ĩ2
n] ≤

n−1∑
m=0

8mp(1 − p) + 2(1 − p) = 4n(n− 1)p(1 − p) + 2n(1 − p)

≤
(
2n

√
p(1 − p) +

√
1 − p

4p

)2
.

By Jensen’s inequality,

E[Ĩn] ≤
√
E[Ĩ2

n] ≤ 2n
√
p(1 − p) +

√
1 − p

4p .

2. Lower bound of E[Ĩ2
n] With the upper bound of the first moment, we can

derive the lower bound of the second moment.

E[Ĩ2
m+1|S̃m] = E[B min(Um, Vm) + (1 −B)max(Um, Vm)|S̃m]

= E[Um|S̃m] − (2b− 1)E[|Um − Vm||S̃m]
= ‖S̃m‖2 + 8mp(1 − p) + 2(1 − p)
− (2b−1)E[|2S̃�

mYm + 2(1 −A2m+1,2m+2)(Z2m+1 − Z2m+2)||S̃m]

Now we aim to find an upper bound of E[|2S̃�
mYm+2(1−A2m+1,2m+2)(Z2m+1−

Z2m+2)||S̃m]. By Jensen’s inequality,

(E[|2S̃�
mYm + 2(1 −A2m+1,2m+2)(Z2m+1 − Z2m+2)||S̃m])2

≤ 4E[(S̃�
mYm + (1 −A2m+1,2m+2)(Z2m+1 − Z2m+2))2|S̃m]

= 4E[(S̃�
mYm)2|S̃m] + 8E[(1 −A2m+1,2m+2)(Z2m+1 − Z2m+2)S̃�

mYm|S̃m]
+ 4E[(1 −A2m+1,2m+2)(Z2m+1 − Z2m+2)2|S̃m]
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Now we will find the condition expectation of these three terms. As the entries
of Ym are i.i.d. with distribution (A.1) we have

E[(S̃�
mYm)2|S̃m] = ‖S̃m‖2

E[Y 2
21] = 2‖S̃m‖2p(1 − p).

For the second term, by the definition of Ym, Z2m+1 and Z2m+2, we have Z2m+2−
Z2m+1 = Y �

m T̃2m. Hence

E[(1 −A2m+1,2m+2)(Z2m+1 − Z2m+2)S̃�
mYm|S̃m]

= (1 − p)E[−Y �
m T̃2mS̃�

mYm|S̃m].

As the distributions of the (2i − 1)-th and 2i-th rows are identical, we have
P(T̃i = −1|S̃m) = P(T̃i = 1|S̃m) = 0.5. Hence for all i and m, Ti and S̃m

are independent. Ti and S̃m only depend on the submatrix A(2m), so they are
independent of Ym. Thus,

E[Y �
m T̃2mS̃�

mYm|S̃m] = 0,

which implies the second term vanishes. Using Z2m+2 −Z2m+1 = T̃�
2mYm again,

we have

E[(1 −A2m+1,2m+2)(Z2m+1 − Z2m+2)2|S̃m] = (1 − p)E[(T̃�
2mYm)2]

= (1 − p)‖T̃2m‖2
E[Y 2

21]
= 4mp(1 − p)2.

Therefore, using the fact that
√
x + y ≤ √

x + √
y for x, y ≥ 0, we have

E[|2S̃�
mYm + 2(1 −A2m+1,2m+2)(Z2m+1 − Z2m+2)||S̃m]

≤ 2
√

2‖S̃m‖2p(1 − p) + 2mp(1 − p)2

≤ 2‖S̃m‖
√

2p(1 − p) + 4√mp(1 − p).

As ‖S̃m‖ = Ĩm, we have

E[Ĩ2
m+1 − Ĩ2

m]
= E[E[Ĩ2

m+1 − Ĩ2
m|S̃m]]

≥ 8mp(1 − p) + 2(1 − p) − 2(2b− 1)(E[Ĩm]
√

2p(1 − p) + 2
√

2mp(1 − p))
= 8mp(1 − p) + 2(1 − p) − 4

√
2(2b− 1)mp(1 − p) −

√
2(2b− 1)p(1 − p)

− 4√mp(2b− 1)(1 − p)
= (8 − 4

√
2(2b− 1))mp(1 − p) − (4√mp(2b− 1) + 2 −

√
2(2b− 1)p)(1 − p).

Recalling that E[Ĩ2
1 ] = 2(1 − p), and using

∑n−1
m=1

√
m ≥ 2

3 (n− 1)3/2, we have

E[Ĩ2
n] = 2(1 − p) +

n−1∑
m=1

(8 − 4
√

2(2b− 1))mp(1 − p)
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− (4√mp(2b− 1) + 2 −
√

2(2b− 1)p)(1 − p)

≥ (4 − 2
√

2(2b− 1))n(n− 1)p(1 − p) − 8
3(2b− 1)√p(1 − p)(n− 1)3/2

− (2 −
√

2(2b− 1)p)(n− 1)(1 − p).

3. Lower bound of E[Ĩ3
n] Combining with Jensen’s inequality, we have

E[Ĩ3
n] ≥ E[Ĩ2

n]3/2 ≥ (4 − 2
√

2(2b− 1))n2p(1 − p) + O(n3/2)√p(1 − p))3/2.

Since (x + y)3/2 ≥ x3/2 + y3/2 for x, y ≥ 0, we have

E[Ĩ3
n] ≥ (4 − 2

√
2(2b− 1))3/2n3p3/2(1 − p)3/2 + O(n9/4p3/4(1 − p)3/2).

4. Upper bound of E[Ĩ4
n] Now we are ready to establish the upper bound of

the fourth moment of Ĩn. We have

E[Ĩ4
m+1] = E[B max(U2

m, V 2
m) + (1 −B)min(U2

m, V 2
m)]

= E[U2
m] − (2b− 1)E[|U2

m − V 2
m|].

(A.3)

where the first term

E[U2
m] = E[(‖S̃m + Ym‖2 + (Z2m+1 − 1 + A2m+1,2m+2)2

+ (Z2m+2 + 1 −A2m+1,2m+2)2)2].

As E[S̃m] = 0 and S̃m is independent of Ym, Z2m+1 and Z2m+2, all of the cross
terms containing S�

mYm have expectation 0. Using E[S̃�
mYm] = 0, it is easy to

check

E[(S̃�
mYm)2] = var(S̃�

mYm) = 2p(1 − p)E[‖S̃m‖2].

By independence again, we have

E[2‖S̃m‖2‖Ym‖2] = 2E[‖S̃m‖2]E[‖Ym‖2] = 8mp(1 − p)E[‖S̃m‖2],

and recalling that E[(Z2m+1−1+A2m+1,2m+2)2] = E[(Z2m+2+1−A2m+1,2m+2)2]
= 2mp(1 − p) + 1 − p, we have

E[2‖S̃m‖2(Z2m+1 − 1 + A2m+1,2m+2)2] = E[‖S̃m‖2(Z2m+2 + A2m+2,2m+1 − 1)2]
= 2(2mp + 1)(1 − p)E[‖S̃m‖2].

The other terms do not contain S̃m. We first compute the fourth moments:

E[‖Ym‖4] = E

[( 2m∑
i=1

Yi,m+1

)4]
=

2m∑
i=1

E[Y 4
i,m+1] +

∑
1≤i<j≤m

E[Y 2
i,m+1Y

2
j,m+1]

= 4mp(1 − p) + 2m(2m− 1)p2(1 − p)2,
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and we recall that Z2m+1 has the same distribution as
∑m

i=1 Y2m+1,i

E[Z4
2m+1] =

m∑
i=1

E[Y 4
2m+1,i] +

(
4
2

) ∑
1≤i<j≤m

E[Y 2
2m+1,iY

2
2m+1,j ]

= 2mp(1 − p) + 12m(m− 1)p2(1 − p)2.

We have E[Z4
2m+2] = 2mp(1 − p) + 12m(m− 1)p2(1 − p)2 in the same manner.

By symmetry of Z2m+1, we have E[Z2m+1] = E[Z3
2m+1] = 0, so

E[(Z2m+1 − 1 + A2m+1,2m+2)4]
= E[Z4

2m+1 + 6Z2
2m+1(A2m+1,2m+2 − 1)2 + (A2m+1,2m+2 − 1)4]

= 2mp(1 − p) + 12m(m− 1)p2(1 − p)2 + 6(2mp(1 − p))(1 − p) + 1 − p

≤ (14mp + 1)(1 − p) + 12m2p2(1 − p)2.

Applying these bounds, we have

E[U2
m]

= E[(‖S̃m + Ym‖2 + (Z2m+1 − 1 + A2m+1,2m+2)2

+ (Z2m+2 + 1 −A2m+1,2m+2)2)2]
= E[‖S̃m‖4 + (2S̃�

mYm)2 + ‖Ym‖4 + (Z2m+1 − 1 + A2m+1,2m+2)4

+ (Z2m+2 + 1 −A2m+1,2m+2)4

+ 2‖S̃m‖2‖Ym‖2 + 2‖S̃m‖2(Z2m+1 − 1 + A2m+1,2m+2)2

+ 2‖S̃m‖2(Z2m+2 + 1 −A2m+1,2m+2)2

+ 2‖Ym‖2(Z2m+1 − 1 + A2m+1,2m+2)2 + 2‖Ym‖2(Z2m+2+1 −A2m+1,2m+2)2

+ 2(Z2m+1 − 1 + A2m+1,2m+2)2(Z2m+2 + 1 −A2m+1,2m+2)2]
= E[‖S̃m‖4] + 4p(1 − p)E[‖S̃m‖2] + 4mp(1 − p) + 2m(2m− 1)p2(1 − p)2

+ 2(2mp(1 − p) + 12m(m− 1)p2(1 − p)2) + 2E[‖S̃m‖2](4mp(1 − p))
+ 4E[‖S̃m‖2](2mp(1 − p) + 1 − p) + 4(4mp(1 − p))(2mp(1 − p) + 1 − p)
+ 4(2mp(1 − p) + 1 − p)2

= E[‖S̃m‖4] + 16mp(1 − p)E[‖S̃m‖2] + O((m2p(1 − p) + E[‖S̃m‖2])
= E[‖S̃m‖4] + 16mp(1 − p)E[‖S̃m‖2] + O(m2p(1 − p)).

We denote as “high-order terms” those whose expected values have an order
of at most O((m2p(1 − p) + E[‖S̃m‖2])p(1 − p)). Now let us consider the terms
in U2

m − V 2
m with absolute value. The only term that does not belong to the

high-order terms is 4(2b− 1)E[‖S̃m‖2|S̃�
mYm|]. In other words,

|E[|U2
m − V 2

m|] − 4(2b− 1)E[‖S̃m‖2|S̃�
mYm|]| = O(m2p(1 − p)).

By Lemma 1, we have

E[‖S̃m‖2|S̃�
mYm|] = E[E[‖S̃m‖2|S̃�

mYm|]|S̃m] ≥ E[2p(1 − p)‖S̃m‖3]
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= 2p(1 − p)E[Ĩ3
m].

Applying this inequality to (A.3), we have

E[Ĩ4
m+1] ≤ E[Ĩ4

m] + 16mp(1 − p)E[Ĩ2
m] − 8(2b− 1)p(1 − p)E[Ĩ3

m]
+ O((m2p(1 − p) + E[Ĩ2

m])p(1 − p))
≤ E[Ĩ4

m] + 16mp(1 − p)(4m2p(1 − p) + 2m(1 − p)) + O(m2p(1 − p))
− 8(2b− 1)p(1 − p)[(4 − 2

√
2(2b− 1))3/2m3p3/2(1 − p)3/2

+ O(m9/4p3/4(1 − p)3/2)]
= E[Ĩ4

m] + 64m3p2(1 − p)2 − 8(2b− 1)(4 − 2
√

2(2b− 1))3/2

×m3p5/2(1 − p)5/2 + O(m9/4p(1 − p)).

In the first stage, the imbalance measurement E[Ĩ4
1 ] = (1−A12)4 +(A21−1)4 =

2(1 − p). Thus

E[Ĩ4
n] = 2(1 − p) +

n−1∑
m=1

E[Ĩ4
m+1 − Ĩ4

m]

= 2(1 − p) +
n−1∑
m=1

64m3p2(1 − p)2 − 8(2b− 1)(4 − 2
√

2(2b− 1))3/2

×m3p5/2(1 − p)5/2 + O(m9/4p(1 − p))
= (16p2(1 − p)2 − 2(2b− 1)(2 −

√
2(2b− 1))3/2p5/2(1 − p)5/2)n4

+ O(n13/4p(1 − p)).

Therefore,

lim sup
n→∞

E[Ĩ4
n]

n4 ≤ 16p2(1 − p)2 − 2(2b− 1)(2 −
√

2(2b− 1))3/2p5/2(1 − p)5/2,

which proves (A.2).

A.3. Proof of Theorem 3

The outline of the proof is very similar to that of Theorem 2. We adopt the
definitions of Ĩm, S̃m, Yij , Ym, Z2m+1 and Z2m+2, Um and Vm. As we replace
the Erdős-Rényi random graph model by the GOE, we have Aij ∼ (0, σ2) for
1 ≤ i ≤ j ≤ n and Aij = Aji if 1 ≤ i < j ≤ n. Then Yij ∼ N (0, 2σ2),
Z2m+1, Z2m+2 ∼ N (0, 2mσ2). Hence

‖Yij‖2 ∼ 2σ2χ2
2m and Z2

2m+1, Z
2
2m+2 ∼ 2mσ2χ2

1.

We need to replace the moments of these variables in the proof of Theorem 2.
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1. Upper bound of E[Ĩn] The conditional expectation of Ĩ2
m+1 is bounded

by

E[Ĩ2
m+1|S̃m]

≤ E[‖S̃m + Ym‖2 + (Z2m+1 − 1 + A2m+1,2m+2)2

+ (Z2m+2 + 1 −A2m+1,2m+2)2|S̃m]
= E[‖S̃m‖2 + 2S̃�

mYm + ‖Ym‖2 + (Z2m+2 + 1 −A2m+1,2m+2)2

+ (Z2m+2 + 1 −A2m+1,2m+2)2|S̃m]
= ‖S̃m‖2 + 4mσ2 + (2m + 1)σ2 + (2m + 1)σ2 + 2
= ‖S̃m‖2 + (8m + 2)σ2 + 2.

Therefore, E[Ĩ2
m+1 − Ĩ2

m|Ĩ2
m] ≤ (8m + 2)σ2 + 2. Hence

E[Ĩ2
m+1 − Ĩ2

m] = E[E[Ĩ2
m+1 − Ĩ2

m|Ĩ2
m]] ≤ (8m + 2)σ2 + 2.

In the first stage, E[Ĩ2
1 ] ≤ 2 + 2σ2. Thus,

E[Ĩ2
n] ≤ 2 + 2σ2 +

n−1∑
m=1

(8m + 2)σ2 + 2 ≤ 4n2σ2 + 2n ≤
(
2nσ + 1

2σ

)2
.

By Jensen’s inequality,

E[Ĩn] ≤
√
E[Ĩ2

n] ≤ 2nσ + 1
2σ .

Lower bound of E[Ĩ2
n] As we did in the proof of Theorem 2, to find the lower

bound of E[Ĩ2
m+1 − Ĩ2

m], we need to find the upper bound for

(E[|2S̃�
mYm + 2(1 −A2m+1,2m+2)(Z2m+1 − Z2m+2)||S̃m])2

≤ E[4(S̃�
mYm)2 + 8(1 −A2m+1,2m+2)(Z2m+1 − Z2m+2)S̃�

mYm

+ 4(1 −A2m+1,2m+2)(Z2m+1 − Z2m+2)2|S̃m].

The second term has expectation 0 for the same reason as in the proof of The-
orem 2. Since Ym ∼ N (0, 2σ2Ĩm), we have E[(S̃�

mYm)2|S̃m] = 2σ2‖S̃m‖2. We
recall that Z2m+1, Z2m+2 ∼ N (0, 2mσ2), so

E[(1 −A2m+1,2m+2)(Z2m+1 − Z2m+2)2|S̃m] = 4mσ2.

Applying Z2m+1 − Z2m+2 = 1�
2mYm, we have

E[|2S̃�
mYm + 2(1 −A2m+1,2m+2)(Z2m+1 − Z2m+2)||S̃m]

= 2E[(S̃m + (1 −A2m+1,2m+2)12m)�Ym|S̃m]

= 2
√

2/πE[‖S̃m + (1 −A2m+1,2m+2)12m‖|S̃m]
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≥ 2
√

2/π(‖S̃m‖ +
√

2m(1 + σ2))σ,

where in the last equality, we use if X ∼ N (0, σ2), then E[|X|] = σ
√

2/π. Using
the same definition of Um and Vm from the proof of Theorem 2, we have

E[Ĩ2
m+1|S̃m]

= E[B min(Um, Vm) + (1 −B)max(Um, Vm)|S̃m]
= E[Um|S̃m] − (2b− 1)E[|Um − Vm||S̃m]
= ‖S̃m‖2 + 8mσ2 + 2
− (2b− 1)E[|2S̃�

mYm + 2(1 −A2m+1,2m+2)(Z2m+1 − Z2m+2)||S̃m]

≥ ‖S̃m‖2 + 8mσ2 + 2 − 2(2b− 1)
√

2/π(‖S̃m‖ +
√

2m(1 + σ2))σ

≥ ‖S̃m‖2 + 8mσ2 + 2 − 2(2b− 1)
√

2/π(2mσ2 +
√

2m(1 + σ2)σ + 0.5)

= ‖S̃m‖2 + (8 − 4(2b− 1)
√

2/π)mσ2 + O(
√
mσ).

Using
∑n−1

m=1
√
m ≥ 2

3 (n− 1)3/2, we have

E[Ĩ2
n] = E[Ĩ2

1 ] +
n−1∑
i=1

E[E[Ĩ2
m+1 − Ĩ2

m|S̃m]]

≥ 2 + 2σ2 +
n∑

m=1
(8 − 4(2b− 1)

√
2/π)mσ2 + O(

√
mσ)

≥ (4 − 2
√

2/π(2b− 1))n2σ2 + O(n3/2σ).

Lower bound of E[Ĩ3
n] By Jensen’s inequality and the fact that (x+ y)3/2 ≥

x3/2 + y3/2, we have

E[Ĩ3
n] ≥ E[Ĩ2

n]3/2 ≥ (4 −
√

2/π(2b− 1))3/2n3σ3 + O(n9/4σ3/2).

Upper bound of E[Ĩ4
n] We have

E[Ĩ4
m+1] = E[B max(U2

m, V 2
m) + (1 −B)min(U2

m, V 2
m)]

= E[U2
m] − (2b− 1)E[|U2

m − V 2
m|],

from (A.3). Using the same arguments in the proof of Theorem 2, we have

E[U2
m] = E[‖S̃m‖4] + 16mσ2

E[‖S̃m‖2] + O(m2σ2),

and

E[|U2
m − V 2

m|] = 4(2b− 1)E[‖S̃m‖2|S̃�
mYm|] + O(m2σ2).

Using the expectation of a folded normal random variable again, we have

E[‖S̃m‖2|S̃�
mYm|] = E[‖S̃m‖2|S̃�

mYm|]
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= E[E[‖S̃m‖2|S̃�
mYm|]|S̃m]

=
√

2/πσE[Ĩ3
m].

We apply the upper bound of E[Ĩ2
m] and lower bound of E[Ĩ3

m], and have

E[Ĩ4
m+1] ≤ E[Ĩ4

m] + 64m3σ4 − 4(2b− 1)
√

2/π(4 −
√

2/π(2b− 1))3/2m3σ4

+ O(m9/4σ5/2 + m2σ2).

Therefore, we have

E[Ĩ4
n] = E[Ĩ4

1 ] +
n−1∑
m=1

E[Ĩ4
m+1 − Ĩ4

m]

≤ (16 − 4(2b− 1)
√

2/π(4 −
√

2/π(2b− 1))3/2)m4σ4

+ O(m13/4σ5/2 + m3σ2).

Assuming nσ2 → ∞, we have

O
(m13/4σ5/2 + m3σ2

m4σ4

)
= O((nσ2)−3/4 + (nσ2)−1) → 0.

Hence

lim sup
n→∞

E[Ĩ4
n]

m4σ4 ≤ (16 − 4(2b− 1)
√

2/π(4 −
√

2/π(2b− 1))3/2),

as desired.

A.4. Auxiliary lemmas

Lemma 1 (Khinchin-Kahane inequality). For i ∈ [n], let Yi = −1, 0, 1 with
probability pi, 1−2pi, pi identically and independently distributed for pi ∈ (0, 1/2).
Then we have

min
i∈[n]

2pi ≤ inf
x∈Sn−1

E[|x�Y |] ≤ sup
x∈Sn−1

E[|x�Y |] ≤ max
i∈[n]

√
2pi,

where Sn−1 = {x ∈ R
n : ‖x‖ = 1}.

Proof.

Upper bound For ‖x‖ = 1, we have

E[|x�Y |]2 ≤ E[|x�Y |2] =
n∑

i=1
x2
iE[|Yi|2] = ‖x‖2 max

i∈[n]
E[Y 2

i ] = max
i∈[n]

E[Y 2
i ].

Hence E[|x�Y |] ≤ maxi∈[n]
√
E[Y 2

i ] = maxi∈[n]
√

2pi.
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Lower bound Let us define Sn−1
+ = {x ∈ Sn−1 : ∀i ∈ [n], xi ≥ 0}. By

symmetry of Yi, we only need to consider the infimum for x over Sn−1
+ to avoid

loss of generality. We claim that if j = arg mini∈[n] 2pi, then the minimum is
achieved at x = ej . We will prove this by induction. The claim is clearly correct
when n = 1. Now let us consider the case n + 1, given the statement is true for
n. In other words, it suffices to show that

inf
x∈Sn

E[|x�Y |] = inf
x∈Sn−1

inf
θ∈[0,π/2]

E[|x�Y cos θ + Yn+1 sin θ|] ≥ min
i∈[n+1]

2pi,

given

inf
x∈Sn−1

E[|x�Y |] ≥ min
i∈[n]

2pi.

We note that for x ∈ Sn−1
+ , ‖(x cos θ, sin θ)‖2 = ‖x‖2 cos2 θ + sin2 θ = 1. We

have

E[|x�Y cos θ + Yn+1 sin θ|]

=
1∑

y=−1
E[|x�Y cos θ + Yn+1 sin θ||Yn+1 = y]P(Yn+1 = y)

= (1 − 2pn+1) cos θE[|x�Y |] + pn+1E[|x�Y cos θ + sin θ|]
+ pn+1E[|x�Y cos θ − sin θ|].

By symmetry of x�Y , we have

E[|x�Y cos θ − sin θ|] = E[| − x�Y cos θ − sin θ|] = E[|x�Y cos θ + sin θ|].

By Lemma 2, we have

E[|x�Y cos θ + sin θ|] = E[max{|x�Y | cos θ, sin θ}] ≥ max{E[|x�Y |] cos θ, sin θ}.

Therefore,

E[|x�Y cos θ + Yn+1 sin θ|]
= (1 − 2pn+1)E[|x�Y |] cos θ + 2pn+1E[|x�Y cos θ + sin θ|]
≥ (1 − 2pn+1)E[|x�Y |] cos θ + 2pn+1 max{E[|x�Y ] cos θ, sin θ}
= max{E[|x�Y |] cos θ, (1 − 2pn+1)E[|x�Y |] cos θ + 2pn+1 sin θ}.

The last line is a concave function corresponding to the variable θ ∈ [0, π/2].
For every x ∈ Sn−1

+ , it achieves the minimum when either θ = 0 or θ = 1. Thus
for every x ∈ Sn and θ ∈ [0, π/2],

E[|x�Y cos θ + Yn+1 sin θ|]
≥ min{max{E[|x�Y |], (1 − 2pn+1)E[|x�Y |]},max{0, 2pn+1}}
= min{E[|x�Y |], 2pn+1}.
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By the inductive assumption, E[|x�Y |] ≥ mini∈[n] 2pi, so

inf
x∈Sn

E[|x�Y |] = inf
x∈Sn−1

inf
θ∈[0,π/2]

E[|x�Y cos θ + Yn+1 sin θ|] ≥ min
i∈[n+1]

2pi,

which finishes the proof.

Lemma 2. Suppose Y is a symmetric random variable and x ≥ 0 is fixed, then

E[|Y + x|] ≥ max{E[|Y |], x}.

Proof. We assume Y is discrete. Other cases simply follow from the arguments
below.

E[|Y + x|]
=

∑
y

|y + x|P(Y = y) = xP(Y = 0) +
∑
y>0

(y + x + | − y + x|)P(Y = y)

≥ xP(Y = 0) +
∑
y>0

(y + x + y − x)P(Y = y) ≥
∑
y>0

2yP(Y = y) = E[|Y |].

Additionally,

E[|Y + x|] = xP(Y = 0) +
∑
y>0

(y + x + | − y + x|)P(Y = y)

≥ xP(Y = 0) +
∑
y>0

(y + x− x + y)P(Y = y) = x.

The proof is complete.
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