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Abstract

Let d ≥ 3 be a fixed integer, p ∈ (0, 1), and let n ≥ 1 be a positive integer such that dn
is even. LetG(n, d, p) be a (random) graph on n vertices obtained by drawing uniformly
at random a d-regular (simple) graph on [n] and then performing independent p-bond
percolation on it, i.e. we independently retain each edge with probability p and delete
it with probability 1− p. Let |Cmax| be the size of the largest component in G(n, d, p).
We show that, when p is of the form p = (d − 1)−1(1 + λn−1/3) for λ ∈ R, and A is
large,

P(|Cmax| > An2/3) � A−3/2e
−A3(d−1)(d−2)

8d2
+
λA2(d−1)

2d
−λ2A(d−1)

2(d−2) .

This improves on a result of Nachmias and Peres. We also give an analogous asymptotic
for the probability that a particular vertex is in a component of size larger than An2/3.
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1 Introduction

Let d ≥ 3 be a fixed integer, and let n ∈ N be such that dn is even. Let p ∈ (0, 1). We
let G(n, d) be a d-regular graph sampled uniformly at random from the set of all d-regular
graphs on [n], and then denote by G(n, d, p) the random graph obtained by performing
p-bond percolation on a realisation of G(n, d). That is, for each edge e of G(n, d), we
independently keep it with probability p and delete it with probability 1− p.

Alon, Benjamini and Stacey [2] showed that G(n, d, µ/(d − 1)) undergoes a phase
transition as µ passes 1: specifically, the size of the largest component |Cmax| is of order
log n when µ < 1, and of order n when µ > 1.
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Unusually large components for critical percolation on random regular graphs

A similar behaviour is shared by the Erdős-Rényi random graph G(n, p). Indeed,
it is well known (see e.g. the monographs [9], [19] or [24] for more details) that, if
p = p(n) = µ/n, then G(n, p) undergoes a phase transition as µ passes 1. Specifically, if
µ < 1 then |Cmax| is of order log n; if µ = 1 (the critical case), then |Cmax| is of order n2/3;
and if µ > 1, then |Cmax| is of order n.

Nachmias and Peres in [33] analysed the G(n, d, p) model near criticality. Amongst
other results they proved that, if p = (d− 1)−1(1 + λn−1/3) with λ ∈ R and d ≥ 3 fixed,
then there are positive constants c(λ, d) and C(λ, d) such that, for any A > 0 and all n,

P
(
|Cmax| > An2/3

)
≤ C(λ, d)

A
e−c(λ,d)A3

. (1.1)

Furthermore, they also proved that there exists a positive constant D(λ, d) such that for
δ > 0 small enough and all n,

P
(
|Cmax| < dδn2/3e

)
≤ D(λ, d)δ1/2, (1.2)

thus showing that the largest component in this model, within the critical window, has
size of order n2/3, as for the Erdős-Rényi random graph.

Partially motivated by studying a dynamical version of G(n, d, p) along the lines of
the dynamical Erdős-Rényi graph introduced by Roberts and Şengül [41], our goal with
this paper consists of determining the correct asymptotic order for the probability of
observing maximal components containing significantly more than n2/3 vertices. That is,
we will prove a sharper version of (1.1) and a matching (up to a constant factor) lower
bound.

We do this by adapting the methodology introduced in [14] to study component sizes
in the near-critical Erdős-Rényi random graph, thus showing that the argument used
there is robust and adaptable to other models of random graphs at criticality.

The main result of this paper is the following theorem. The reader may wish to begin
by thinking of λ as a constant in R, or even taking λ = 0.

Theorem 1.1. Let d ≥ 3 be fixed. Suppose that p = p(n) = (1 + λn−1/3)(d− 1)−1 where
λ = λ(n) ∈ R is allowed to depend on n. Then there exists A0 ∈ N such that if A = A(n)

satisfies 3|λ|(d−1)
1−2/d ∨A0 ≤ A� n1/30, then for all sufficiently large n,

c1
A1/2n1/3

e−Gλ(A,d) ≤ P(|C(Vn)| > An2/3) ≤ c2
A1/2n1/3

e−Gλ(A,d)

and
c1
A3/2

e−Gλ(A,d) ≤ P(|Cmax| > An2/3) ≤ c2
A3/2

e−Gλ(A,d),

where

Gλ(A, d) :=
A3(d− 1)(d− 2)

8d2
− λA2(d− 1)

2d
+
λ2A(d− 1)

2(d− 2)

and c1 = c1(d) > 0 and c2 = c2(d) > 0 are two finite constants that depend only on d.

We remark that our proof of the upper bounds in Theorem 1.1 is relatively straightfor-
ward. A key part of the argument will be a simple ballot-type result, established in [14]
and also used in [12] to provide simple (polynomial) upper bounds for the probability
of observing unusually large maximal components in other critical models of random
graphs.

Our proof of the lower bounds in Theorem 1.1 will be more complicated than that
for the upper bound, although it still relies only on robust tools such as Brownian
approximations to random walks, again along the lines of [14].
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Unusually large components for critical percolation on random regular graphs

1.1 Related work

Nachmias and Peres [33], as well as showing that the largest component within the
critical window is of order n2/3 as mentioned above, also considered the behaviour of
the G(n, d, p) random graph outside the scaling window; see Theorems 3 and 4 in [33].
Moreover they established general upper bounds on the size of the largest component
which are valid for all d-regular graphs; see Proposition 1 in in [33]. They also studied
diameters and mixing times for this model within the critical window—see Corollary 6
in [33]—and established a distributional convergence for the sizes of all components,
Theorem 5 in [33].

The work of Nachmias and Peres was extended to all d ∈ {3, 4, . . . , n− 1} by Joos and
Perarnau [25], including again results on the diameter of the largest component and
the mixing time of lazy random walk on that component. Their techniques also required
an exploration process but further introduced the switching method. As we mention in
Section 1.2 below, our results are also consistent with the case d = n and it would be
interesting to investigate whether they can also be extended to other values of d.

Pittel [36] is perhaps the earliest paper dealing with the problem of determining the
probability of observing unusually large maximal components in critical random graphs.
Pittel showed—among other results—that in the near-critical Erdős-Rényi random graph
G(n, p) with p = 1/n+ λ/n4/3 and λ ∈ R fixed,

P(|Cmax| > An2/3) ∼ c

A3/2
e−

A3

8 +λA2

2 −
λ2A
2

where c is stated to equal (2π)−1/2 but should be (8/9π)1/2 due to a small oversight in
the proof. More details, and a stronger result that allows A and λ to depend on n, are
available in [40].

More recently, with the purpose of obtaining a simple probabilistic proof of the
behaviour of the Erdős-Rényi random graph near criticality, Nachmias and Peres [34]
introduced an argument using an exploration process and an associated martingale.
With their method they did not obtain the correct asymptotic order of P(|Cmax| > An2/3)

identified by Pittel, but their argument had the advantage of being very robust and
adaptable, and has subsequently been used to analyse other models of random graphs at
criticality; see e.g. [33, 18], and more recently [13].

The current authors attempted to combine the advantages of the precise Pittel
asymptotic, with a robust and adaptable probabilistic proof à la Nachmias and Peres, in
[14]. That paper constitutes the main source of inspiration for the proofs in the present
paper.

See also Van der Hofstad, Kliem and Van Leeuwaarden [23], where similar results
to those established by Pittel [36] are proved in the context of inhomogeneous random
graphs whose degrees obey a power law.

1.2 Open problems

Our main result, Theorem 1.1, does not identify the exact asymptotic expansion for
the probability of observing unusually large components, but gives bounds which are
optimal up to multiplicative constants. The precise constant factor appearing in the
asymptotic expansion is known for the Erdős-Rényi graph (as mentioned above). One
open problem is therefore to derive an exact asymptotic for the model studied in this
paper, i.e. to identify specific γ = γ(d) such that when |λ| ∨ 1� A� n1/30,

P(|C(Vn)| > An2/3) ∼ γ

A1/2n1/3
e−Gλ(A,d)

and
P(|Cmax| > An2/3) ∼ γ

A3/2
e−Gλ(A,d).
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Unusually large components for critical percolation on random regular graphs

In the Erdős-Rényi case, corresponding to d = n− 1, the correct value is γ = (8/9π)1/2

[40].
We also remark that, in this paper, the parameter d is considered fixed, and our

proofs rely on this fact; but Theorem 1.1 is consistent with the Erdős-Rényi case, in that
if we formally substitute d = n − 1 into Theorem 1.1 then we recover the analogous
result for Erdős-Rényi graphs [14, Theorem 1.1]. Another open problem is therefore to
determine whether Theorem 1.1 holds when 1� d < n− 1, in line with the work of Joos
and Perarnau [25].

In another direction, it is interesting to notice that only a polynomial (upper) bound
is available for the complementary probability of observing an unusually small maximal
component P(|C(Vn)| < n2/3/A); see [33]. In a forthcoming article, UDA will give a simple
method to derive an exponential upper bound for the above probability when p = (d−1)−1,
and show that the same argument can be used to bound the same probability in other
random graph models when considered at criticality of their parameters. However,
providing precise bounds remains open. We note that in the case of Erdős-Rényi graphs,
Pittel [36] was able to obtain the correct asymptotics within the critical window, showing
for example that when p = 1/n, as n→∞,

P(|Cmax| < n2/3/A) ∼ C exp(−cA3/2)

for some constants c, C > 0.

1.3 Graph-theoretic terminology and general notation

Given an arbitrary set S, we denote by |S| the number of elements contained in
it. Let G = (V,E) be any (undirected) graph. Given two vertices u, v ∈ V , we write
u ∼ v if {u, v} ∈ E and say that vertices u and v are neighbours. We often write uv

as shorthand for the edge {u, v}. We write u ↔ v if there exists a path of edges in E

connecting vertices u and v, where we adopt the convention that v ↔ v for every v ∈ V .
We denote by C(v) := {u ∈ V : u↔ v} the component containing vertex v ∈ V . We define
the largest component Cmax to be some cluster C(v) for which |C(v)| is maximal, so that
|Cmax| = maxv∈V |C(v)|.

Given any k ∈ N = {1, 2, . . . } we write [k] := {1, . . . , k}. We denote by N0 the set of
all non-negative integers. If (xn)n and (yn)n are two sequences of real numbers, we
write xn = O(yn) if there exists a finite constant C > 0 (independent of n) such that
xn ≤ Cyn for all large enough n. We write xn = Θ(yn) or xn � yn if xn = O(yn) and
yn = O(xn). Sometimes we write Od(·) and Θd(·) to highlight the fact that the constants
involved depend on the parameter d. Moreover, we write xn = o(yn) or xn � yn if
xn/yn → 0 as n → ∞, and xn ∼ yn if xn/yn → 1 as n → ∞. We write Binm,p for a
binomial random variable with parameters m and p, and U ∼ U([0, 1]) for a random
variable having a uniform distribution on [0, 1]. When talking about random variables,
the notation i.i.d. stands for independent and identically distributed. We will often write
c, and sometimes C or c′, to denote a finite, strictly positive constant which depends on
the parameter d, and use c many times in a single proof even though the constant may
change from line to line.

1.4 The configuration model

The configuration model, which we describe below and which is due to Bollobás
[8], gives us a way of choosing a graph G(n, d) uniformly at random from the set of all
d-regular graphs on n vertices, provided that dn is even.

Start with dn stubs, labelled (v, i) for v ∈ [n] and i ∈ [d]. Choose a stub (V0, I0)

in some way (the manner of choosing may be deterministic or random) and pair it
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Unusually large components for critical percolation on random regular graphs

uniformly at random with another stub (W0, J0). Say that these two stubs are matched
and put {V0,W0} ∈ E. Then at each subsequent step k ∈ {1, . . . , nd/2− 1}, choose a stub
(Vk, Ik) in some way from the set of unmatched stubs, and pair it uniformly at random
with another unmatched stub (Wk, Jk). Say that these two stubs are matched and put
{Vk,Wk} ∈ E.

At the end of this process, the resulting object G = ([n], E) is uniformly chosen
amongst all d-regular multigraphs on [n], i.e. it may have multiple edges or self-loops.
However, with probability converging to exp((1 − d2)/4) it is a simple graph, and con-
ditioning on this event, it is uniformly chosen amongst all d-regular (simple) graphs
on [n].

1.5 Structure of the paper

The rest of the paper is organized as follows. In Section 2 we provide a constructive
description of our model through an exploration process, which is a useful algorithmic
procedure for revealing the component structure of the graph. We will then show how to
relate the analysis of this exploration process to the size of C(Vn), where Vn represents a
vertex selected uniformly at random from [n]. Then, in Section 3, we prove the upper
bounds in Theorem 1.1, while the lower bounds are proved in Section 4.

2 The exploration process

We now specify a method for exploring the components of the graph G(n, d, p), which
we recall is the random graph obtained by performing bond percolation with parameter
p on a realisation G(n, d) of a d-regular graph sampled uniformly at random from the
set of all d-regular (simple) graphs on [n]. In fact, our exploration process will use
the configuration model (see Section 1.4) to generate components of G′(n, d, p), the
p-percolated version of a uniformly random d-regular multigraph G′(n, d). When we
talk about whether an edge of G′(n, d) is retained, we mean whether it is present in
G′(n, d, p).

Our exploration process essentially follows the one given in [33], although we do
not explicitly keep track of how many vertices have 0 ≤ k ≤ d unseen stubs after each
random pairing, as is done in [33]. In this sense, our description is initially somewhat
simpler. However, these quantities will be a key element of our analysis and they will be
introduced in due course.

During our exploration process, each stub (or half-edge) of G′(n, d) is either active,
unseen or explored, and its status changes during the course of the process. We write
At, Ut and Et for the sets of active, unseen and explored stubs at the end of the t-th step
of the exploration process, respectively.

Given a stub h of G′(n, d), we denote by v(h) the vertex incident to h (in other words,
if h = (u, i) for some i then v(h) = u) and we write S(h) for the set of all stubs incident
to v(h) in G′(n, d) (that is, S(h) = {(v(h), i) : i ∈ [d]}; note in particular that h ∈ S(h)).

The exploration process works as follows. Let Vn be a vertex selected uniformly at
random from [n]. At step t = 0 we declare active all stubs incident to Vn, while all the
other d(n−1) stubs are declared unseen. Therefore we have that |A0| = d, |U0| = d(n−1)

and |E0| = 0. For every t ≥ 1, we proceed as follows.

(a) If |At−1| ≥ 1, we choose (in an arbitrary way) one of the active stubs, say et, and
we pair it with a stub ht picked uniformly at random from [dn] \ (Et−1 ∪ {et}), i.e.
from the set of all unexplored stubs after having removed et.

(a.1) If ht ∈ Ut−1 and the edge etht is retained in the percolation (the latter event
occurs with probability p, independently of everything else), then all the

EJP 28 (2023), paper 94.
Page 5/55

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP982
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Unusually large components for critical percolation on random regular graphs

unseen stubs in S(ht) \ {ht} are declared active, while et and ht are declared
explored. Formally we update

* At := (At−1 \ {et}) ∪ (Ut−1 ∩ S(ht) \ {ht});
* Ut := Ut−1 \ S(ht);

* Et := Et−1 ∪ {et, ht}.
(a.2) If ht ∈ Ut−1 but the edge etht is not retained in the percolation, then we

simply declare et and ht explored while the status of all other stubs remain
unchanged. Formally we update

* At := At−1 \ {et};
* Ut := Ut−1 \ {ht};
* Et := Et−1 ∪ {et, ht}.

(a.3) If ht ∈ At−1, then we simply declare et and ht explored while the status of all
other stubs remain unchanged. Formally we update

* At := At−1 \ {et, ht};
* Ut := Ut−1;

* Et := Et−1 ∪ {et, ht}.

(b) If |At−1| = 0 and |Ut−1| ≥ 1, we pick (in an arbitrary way) an unseen stub et, we
declare active all the unseen stubs in S(et) (thus et at least is declared active), so
that the number of active stubs is non-zero, and then we proceed as in step (a).

(c) Finally, if |At−1| = 0 and |Ut−1| = 0, then all the stubs have been paired and we
terminate the procedure.

For t ≥ 1 we define the event Rt := {etht ∈ G′(n, d, p)} that the edge etht revealed during
the t-th step of the exploration process is retained in the percolation.

Observe that, if |At−1| ≥ 1, then we can write

ηt := |At| − |At−1| = 1{ht∈Ut−1}1Rt |S(ht) ∩ Ut−1 \ {ht}| − 1{ht∈At−1} − 1. (2.1)

In words, assuming |At−1| ≥ 1, the number of active stubs at the end of step t decreases
by two if ht is an active stub; it decreases by one if ht is unseen and the edge etht is
not retained in the percolation, or if ht is the unique unseen stub incident to v(ht) and
the edge etht is retained in the percolation; and it increases by m− 2 ∈ {0, 1, . . . , d− 2}
if v(ht) has m ∈ {2, . . . , d} unseen stubs at the end of step t − 1 and the edge etht is
retained in the percolation.

2.1 Relating the exploration process to component sizes

In order to describe the relationship between |C(Vn)| and the exploration process that
we have just illustrated, we need to introduce a few quantities.

For t ≥ 0, let us denote by V(m)
t the set of vertices that have m ∈ {0, 1, . . . , d} unseen

stubs after the completion of step t in the exploration process. Since vertices with d

unseen stubs play an important role in our analysis, we give them a name: we say that a
vertex is fresh if it possesses d unseen stubs, i.e. is an element of V(d)

t . We then define:

(i) τ := inf{t ≥ 1 : |At| = 0}, the first time at which the set of active stubs is empty;

(ii) σUR := |{t ∈ [τ ] : ht ∈ Ut−1, etht ∈ G′(n, d, p)}|, the number of steps t ≤ τ in which
the stub ht picked uniformly at random (from the set of unexplored stubs) is unseen
and the edge etht is retained in the percolation;

(iii) σUNR := |{t ∈ [τ ] : ht ∈ Ut−1, etht /∈ G′(n, d, p)}|, the number of steps t ≤ τ in which
the stub ht is unseen and the edge etht is not retained in the percolation;

(iv) σA := |{t ∈ [τ ] : ht ∈ At−1}|, the number of steps t ≤ τ in which the stub ht is active;
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(v) σNF :=
∣∣∣{t ∈ [τ ] : v(ht) ∈

⋃d−1
m=0 V

(m)
t−1

}∣∣∣, the number of steps t ≤ τ in which the stub

ht is incident to a vertex with m ≤ d− 1 unseen stubs, i.e. is not fresh.

The relationship between the size of C(Vn) and the random variables we have just defined
is illustrated in the following result, which corresponds to Lemma 10 in [33]. Since our
terminology is different from that in [33] and because we only use part of their argument,
we include a proof here for the reader’s convenience.

Lemma 2.1 (Nachmias and Peres [33]). We have that |C(Vn)| = σUR + 1 and, moreover,

τ − d
d− 1

≤ τ + σA − d
d− 1

≤ σUR ≤
τ + σA

d− 1
+ σNF.

Proof. First we observe that at each step t in which ht is unseen and the edge etht is
retained in the percolation, we add one vertex to our currently explored component,
and this is the only way in which vertices can be added to the current component. Thus
|C(Vn)| = σUR + 1 (the +1 comes from counting Vn).

Denote by Nm the number of steps t ≤ τ in which ht is incident to a vertex having m
unseen stubs at the end of step t− 1, and the edge etht is retained in the percolation;
formally,

Nm :=
∣∣∣{t ∈ [τ ] : v(ht) ∈ V(m)

t−1 , etht ∈ G′(n, d, p)
}∣∣∣ .

Since at each step t ∈ [τ ] in which ht is active we remove two half-edges from the set of
active stubs, whereas at each step t ∈ [τ ] in which ht is unseen and etht is not retained
in the percolation we remove one half-edge from the set of active stubs, we see that

0 = |Aτ | = d− 2σA − σUNR +

d∑
m=1

(m− 2)Nm. (2.2)

Next observe that

d∑
m=1

(m− 2)Nm ≤ (d− 2)

d∑
m=1

Nm ≤ (d− 2)σUR, (2.3)

where the second inequality in (2.3) is due to the fact that, if ht is in V(m)
t−1 for some

m ∈ [d], then ht must be unseen (as if ht is active then all the stubs adjacent to v(ht)

must be active or explored). Combining (2.2) and (2.3) together with the identity
τ = σUNR + σUR + σA, which holds since at each step t ∈ [τ ] we have either ht ∈ Ut−1 or
ht ∈ At−1, yields

0 ≤ d− 2σA − σUNR + (d− 2)σUR = d− σA − τ + (d− 1)σUR

whence
σA + τ − d
d− 1

≤ σUR.

Since σA ≥ 0 we arrive at σUR ≥ (τ − d)/(d − 1), and we have proved the first two
inequalities in the statement of our lemma.

To establish the upper bound for σUR, we start by observing that

d∑
m=1

(m− 2)Nm ≥ (d− 2)Nd −
d−1∑
m=1

Nm ≥ (d− 2)σUR − (d− 1)σNF. (2.4)

Combining (2.2) and (2.4) we obtain

0 ≥ d− 2σA − σUNR + (d− 2)σUR − (d− 1)σNF,
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which together with the identity τ = σUNR + σUR + σA mentioned above gives

(d− 2)σUR ≤ −d+ 2σA + σUNR + (d− 1)σNF = −d+ σA + τ − σUR + (d− 1)σNF.

Rearranging and ignoring the −d term, we have

(d− 1)σUR ≤ σA + τ + (d− 1)σNF,

and dividing both sides by d− 1 yields the required upper bound on σUR.

Let k = kn ∈ N. Thanks to Lemma 2.1 we can write

P(|C(Vn)| > k) = P(σUR ≥ k) ≥ P(τ ≥ (d− 1)k + d) = P(τ > (d− 1)(k + 1)). (2.5)

Consequently, in order to bound from below the probability that C(Vn) contains more
than k vertices, it suffices to provide a lower bound for the probability that the number
of active stubs stays positive for all times t ≤ (d− 1)(k + 1).

To establish un upper bound for the probability that |C(Vn)| is larger than k in terms of
the stopping time τ , the argument is slightly more involved. Recall that, by Lemma 2.1,

|C(Vn)| − 1 = σUR ≤
τ + σA

d− 1
+ σNF.

The idea is that the random variables σNF and σA, which appear in the upper bound for
σUR, are of much smaller order than τ , so that we expect P(σUR ≥ k) to be of the same
order as the probability that |At| stays positive for roughly (d−1)k steps. Our next result
makes this precise.

Lemma 2.2. Let k = kn ∈ N and ` = `n ∈ N be such that max{k, n1/2} � `� n. Then

P(σUR ≥ k) ≤ 2P

(
τ ≥ (d− 1)k − 4(d− 1)`2

n

)
+ exp

(
−c`

2

n

)
(2.6)

for some constant c > 0.

Remark 2.3. When we apply this lemma, we will choose `2/n� k, so that the quantity
(d− 1)k − 4`2/n which appears within the probability on the right-hand side of (2.6) is
asymptotically equivalent to (d− 1)k, thus making sense of our previous claim that we
expect P(σUR ≥ k) � P(τ ≥ (d− 1)k).

Proof. Observe that, using the upper bound for σUR established in Lemma 2.1, we have

P(σUR ≥ k) ≤ P(τ ≥ (d− 1)k − [σA + (d− 1)σNF]).

Recall that, by definition,

σNF =

∣∣∣∣∣
{
t ∈ [τ ] : v(ht) ∈

d−1⋃
m=1

V(m)
t−1

}∣∣∣∣∣ and σA = |{t ∈ [τ ] : ht ∈ At−1}| .

By Lemma 16 in [33] (whose proof only uses elementary bounds) we know that, setting

X` :=

{
t ∈ [`] : ht ∈ At−1 or v(ht) ∈

d−1⋃
m=1

V(m)
t−1

}
,

provided that ` > 4n1/2 we have

P(|X`| > 4`2/n) ≤ e−c`
2/n (2.7)
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Unusually large components for critical percolation on random regular graphs

for some constant c > 0. Note that |X`| is almost equal to σNF + σA, the only difference
being that in the definition of X` we consider the first ` steps of the exploration process,
while in the definitions of σNF and σA we look at all steps until time τ . With the purpose
of replacing the random variables σNF and σA with |X`| (which we know how to control),
we write

P(τ ≥ (d− 1)k − [σA + (d− 1)σNF])

≤ P(τ ≥ (d− 1)k − [σA + (d− 1)σNF], τ ≤ `) + P(τ > `).

Observe that, on the event where τ ≤ `, we have that

σNF ≤

∣∣∣∣∣
{
t ∈ [`] : v(ht) ∈

d−1⋃
m=1

V(m)
t−1

}∣∣∣∣∣ =: σ̂NF and σA ≤ |{t ∈ [`] : ht ∈ At−1}| =: σ̂A.

Therefore we can bound

P(τ ≥ (d− 1)k − [σA + (d− 1)σNF], τ ≤ `) ≤ P(τ ≥ (d− 1)k − [σ̂A + (d− 1)σ̂NF])

and hence we obtain

P(σUR ≥ k) ≤ P(τ ≥ (d− 1)k − [σ̂A + (d− 1)σ̂NF]) + P(τ > `).

Note that

P(τ ≥ (d− 1)k − [σ̂A + (d− 1)σ̂NF])

≤ P(τ ≥ (d− 1)k − 4(d− 1)`2/n) + P(σ̂A + (d− 1)σ̂NF > 4(d− 1)`2/n).

Now since σ̂A + σ̂NF = |X`| we can use (2.7) to conclude that

P(σ̂A + (d− 1)σ̂NF > 4(d− 1)`2/n) ≤ P
(
σ̂A + σ̂NF >

4`2

n

)
≤ e−c`

2/n

and hence we obtain

P(σUR ≥ k) ≤ P(τ ≥ (d− 1)k − 4(d− 1)`2/n) + e−c`
2/n + P(τ > `).

The proof of the lemma is completed after noticing that, since `� k,

P(τ > `) ≤ P(τ ≥ (d− 1)k − 4(d− 1)`2/n)

for all large enough n.

We now apply this lemma and combine with (2.5) to obtain our desired relationship
between the size of C(Vn) and the time τ at which the number of active stubs in our
exploration process hits zero for the first time.

Corollary 2.4. For n1/2 � k � n3/4 and sufficiently large n, we have

P(τ > (d− 1)(k + 1)) ≤ P(|C(Vn)| > k) ≤ 2P(τ ≥ (d− 1)k − n1/2) + e−cn
1/2

for some constant c > 0 depending only on d.

Proof. As noted in (2.5), the first inequality follows from Lemma 2.1. For the second
inequality, applying Lemma 2.2 with ` = bn3/4/2

√
d− 1c we obtain that for k � n1/2,

P(σUR ≥ k) ≤ 2P(τ ≥ (d− 1)k − n1/2) + e−cn
1/2

.

Recalling that P(|C(Vn)| > k) = P(σUR ≥ k), the proof is complete.
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Unusually large components for critical percolation on random regular graphs

Corollary 2.4 has translated the problem of studying the probability that C(Vn) is
larger than k, for n1/2 � k � n3/4, to that of studying the probability that the number of
active vertices |At| = d+

∑t
i=1 ηi stays positive for all times 1 ≤ t ≤ (d− 1)k + o(k).

The goal is then to bound from above and below the sequence of ηi with sequences of
random variables which are sufficiently close to the ηi and that, at the same time, are
easier to analyse.

We introduce here three events which appear very often in the following sections.
Specifically, we denote by Fi the event that vertex v(hi) is fresh (i.e. has d unseen stubs)
at the end of step i− 1, while we write F ′i for the event that v(hi) has d− 1 unseen stubs
at the end of step i− 1 and F−i for the event that v(hi) has m ∈ [d− 2] unseen stubs at
the end of step i− 1. More formally, for i ≥ 1 we set

Fi = {v(hi) ∈ V(d)
i−1}, F ′i = {v(hi) ∈ V(d−1)

i−1 } and F−i =

{
v(hi) ∈

d−2⋃
m=1

V(m)
i−1

}
.

We note that for each i these three sets, Fi, F ′i and F−i , form a partition.

2.2 Proof ideas

We concentrate first on establishing our result for C(Vn). We will then deduce from
this the result for Cmax. We begin by applying Corollary 2.4, thanks to which our
problem reduces to establishing upper and lower bounds for the probability that the
integer-valued random process (d+

∑t
i=1 ηi)t stays positive up to time T ≈ (d− 1)An2/3.

For the upper bound, one of our main tools is a ballot-type estimate introduced in
[14], which allows us to bound from above the probability that a random walk started
at d stays positive up to time T and finishes at some level j � T 1/2. Hence our main
task for the upper bound consists of approximating the ηi, which are not independent or
identically distributed, with i.i.d. random variables, and then applying the ballot-type
result to the new sequence.

For the lower bound, the analysis is more involved. Since the ηi are not i.i.d., we
again have to approximate—this time from below—to turn the process (d+

∑t
i=1 ηi)t∈[T ]

into a random walk over the whole interval [T ].

However, this time we split the time interval [T ] into two disjoint intervals [T ′] and
[T ] \ [T ′], where T ′ � T , and then use different techniques to control the process on
these intervals. We use a rougher approximation over the first interval [T ′], and then use
known bounds to estimate the probability that the resulting random walk stays positive
up to time T ′ and finishes at distance of order (T ′)1/2 from the origin. We then use a
more accurate random walk approximation to ηi on the second interval, and estimate
the probability that this random walk stays positive by comparing it with a Brownian
motion. We must also show that the two approximating random walks are constructed
in such a way that the probability that (d+

∑t
i=1 ηi)t stays positive for all times t ∈ [T ]

can be split into a product of two terms, the probability that the first random walk stays
positive and finishes in a certain region, multiplied by the probability that the second
random walk stays positive starting from within that region.

Notation summary

In order to facilitate reading the rest of the paper, we summarize here the quantities
and events that have been introduced in this section.

1. At represents the set of active stubs at the end of the t-th step of the exploration
process;
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2. Ut represents the set of unseen stubs at the end of the t-th step of the exploration
process;

3. Et = [dn] \ (At ∪ Ut) represents the set of explored stubs at the end of the t-th step
of the exploration process;

4. given a stub s, we denote by v(s) the vertex incident to s;

5. given a stub s, we denote by S(s) the set of all stubs incident to v(s) (note that
s ∈ S(s) according to our definition);

6. Rt is the event that the edge etht is retained in the percolation.

7. V(m)
t denotes the set of vertices with m ∈ [d] unseen stubs after the completion of

step t in the exploration process;

8. vertices in V(d)
t are called fresh;

9. Ft is the event that v(ht) is fresh after the completion of step t−1 (i.e. v(ht) ∈ V(d)
t−1);

10. F ′t is the event that v(hi) has d− 1 unseen stubs at the end of step t− 1;

11. F−t is the event that v(hi) has m ∈ [d− 2] unseen stubs at the end of step t− 1.

3 Proof of Theorem 1.1: upper bounds

Let T = b(d− 1)An2/3c − dn1/2e − 1. Throughout this section, the letter c denotes a
(positive) numerical constant that might depend on d and can change from line to line.

Recalling Corollary 2.4 and the definition of τ as the first time at which the set of
active stubs becomes empty, here we want to bound from above the probability

P(|C(Vn)| > An2/3) ≤ 2P(τ > T ) + e−cn
1/2

. (3.1)

We also recall that

{τ > T} =

{
d+

t∑
i=1

ηi > 0 ∀t ∈ [T ]

}
. (3.2)

As a first step in bounding (3.1), we introduce a new sequence of random variables,
larger than the ηi and easier to analyse.

Recalling the definition of the random variable ηi given in (2.1) we see that, if
|Ai−1| ≥ 1, then

ηi ≤ 1Ri(d− 2) + 1Ri1Fi − 1 =: η′i. (3.3)

(This bound does not hold if |Ai−1| = 0, but since we are evaluating the probability that
the number of active stubs remains positive at all times t ∈ [T ], this does not concern
us.) To see why (3.3) is true, first of all notice that if hi ∈ Ai−1 (i.e. hi is active) then
ηi = −2 < −1 ≤ η′i. If hi ∈ Ui−1 (i.e. hi is unseen) but the edge eihi is not retained

in the percolation, then ηi = −1 = η′i. If v(hi) ∈
⋃d−1
m=1 V

(m)
i−1 (whence hi ∈ Ui−1) and

eihi is retained in the percolation, then ηi = (m − 1) − 1 ≤ (d − 2) − 1 = d − 3 = η′i.

Finally, if v(hi) ∈ V(d)
i−1 (whence hi ∈ Ui−1) and eihi is retained in the percolation, then

ηi = d− 2 = η′i.

In practice, working with η′i is like assuming that all non-fresh vertices are in V(d−1)
i−1 ,

or equivalently that all vertices have either d or d− 1 unseen stubs.
Combining (3.1), (3.2) and (3.3), we see that

P(|C(Vn)| > An2/3) ≤ 2P

(
d+

t∑
i=1

ηi > 0 ∀t ∈ [T ], τ > T

)
+ e−cn

1/2

≤ 2P

(
d+

t∑
i=1

η′i > 0 ∀t ∈ [T ], τ > T

)
+ e−cn

1/2

. (3.4)
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Unusually large components for critical percolation on random regular graphs

Although η′i is simpler than ηi, in order to bound from above the probability on the
right-hand side of (3.4), it would be convenient to turn the η′i into (larger) independent
random variables. To achieve this, the idea is to substitute the dependent indicators 1Fi
that appear in the definition of η′i with other, independent {0, 1}-valued random variables.
To this end notice that, conditional on everything that occurred up to the end of step
i− 1 in the exploration process, vertex v(hi) is fresh with probability

d
∣∣V(d)
i−1

∣∣
dn− 2(i− 1)− 1

.

This is because hi is chosen uniformly from amongst all unexplored stubs, of which there
are exactly dn− 2(i− 1)− 1 at the end of step i− 1. Thus, in order to substitute the 1Fi
with (larger) independent indicator random variables, we need an upper bound for the
number of fresh vertices that we expect to observe at each step i ∈ {0} ∪ [T − 1] of the
exploration process.

Our next result, whose proof is postponed to Section 3.4, states that it is very unlikely
to have more than n − 1 − i + i2/2n fresh vertices at the i-th step of the exploration
process, for all i ∈ [T − 1], provided that τ > T .

Lemma 3.1. Suppose that A = o(n1/12) as n → ∞, and let an(i) := n − 1 − i + i2/2n.
Then, for every m ≥ 1 and all large enough n, we have that

P
(
τ > T, ∃i ∈ [T − 1] : |V(d)

i | > an(i) +m
)
≤ cTe−mn

1/2/T (3.5)

where c = c(d) is some finite constant that depends only on d.

Remark 3.2. Since T ∼ (d− 1)An2/3, the exponent in (3.5) is of order m/An1/6. Thus,
since in the statement of our main Theorem 1.1 we have assumed that A� n1/30, taking
m = m(n) = An4/15 we see that the quantity on the right-hand side of (3.5) is much
smaller than the (upper) bounds stated in Theorem 1.1, provided n is large enough.
We also remark that (3.5) is not the best possible upper bound, but for our purpose it
suffices.

In line with the remark above, the reader should think of m = m(n) = An4/15 in what
follows. Keeping in mind that, by Lemma 3.1, if τ > T then the number of fresh vertices
satisfies |V(d)

i | ≤ an(i) +m for all i ∈ [T − 1] with high probability, we bound

P

(
d+

t∑
i=1

η′i > 0 ∀t ∈ [T ]

)

≤ P

(
d+

t∑
i=1

η′i > 0 ∀t ∈ [T ], |V(d)
i | ≤ an(i) +m ∀i ∈ {0} ∪ [T − 1]

)
(3.6)

+ P
(
∃i ∈ {0} ∪ [T − 1] : |V(d)

i | > an(i) +m
)

and we can focus on the probability in line (3.6).
Observe that, if |V(d)

i | ≤ an(i) +m for all i ∈ {0} ∪ [T − 1], then we can write

η′i = 1Ri(d− 2) + 1Ri1Fi1
{
|V(d)
i−1|≤an(i−1)+m

} − 1 (3.7)

for all i ∈ [T ]. Conditional on everything that has occurred up to the end of step i− 1 in
the exploration process, the random variable 1Ri1Fi1

{
|V(d)
i−1|≤an(i−1)+m

} which appears

in (3.7) equals 1 with probability

p1{|V(d)
i−1|≤an(i−1)+m

} d|V(d)
i−1|

dn− 2(i− 1)− 1
≤ p d(an(i− 1) +m)

dn− 2(i− 1)− 1
.
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Thus, if (Ui)i≥1 is an i.i.d. sequence of U([0, 1]) random variables, also independent from
all other random quantities involved, then

µi := 1Ri(d− 2) + 1Ri1{Ui≤ d(an(i−1)+m)
dn−2(i−1)−1 } − 1 (3.8)

defines a sequence of independent random variables that, intuitively at least, should
be larger than the η′i. Thus, heuristically, the random process (d+

∑t
i=1 µi)t∈[T ] should

be more likely to remain positive over the whole interval [T ] than the process (d +∑t
i=1 η

′
i)t∈[T ].

Our next result, whose proof is postponed to Section 3.1, establishes this rigorously.

Proposition 3.3. Let (Ui)i be a sequence of i.i.d random variables, also independent
from all other random variables involved, with U1 ∼ U([0, 1]). For each i ∈ [T ] let µi be
as in (3.8) above. Then we have that

P

(
d+

t∑
i=1

η′i > 0 ∀t ∈ [T ], |V(d)
i | < an(i) +m ∀i ∈ {0} ∪ [T − 1]

)

≤ P

(
d+

t∑
i=1

µi > 0 ∀t ∈ [T ]

)
.

Thanks to Lemma 3.1 and Proposition 3.3, we can focus on the probability

P

(
d+

t∑
i=1

µi > 0 ∀t ∈ [T ]

)
. (3.9)

In order to provide an upper bound for the above quantity we would like to turn the
(independent but not identically distributed) µi into i.i.d. random variables ξi. To this
end, keeping in mind the definition of µi given in (3.8), define

µ′i := 1Ri1{Ui> d(an(i−1)+m)
dn−2(i−1)−1 } (3.10)

and set (for all i ∈ [T ])

ξi := µi + µ′i = 1Ri(d− 2) + 1Ri − 1 = 1Ri(d− 1)− 1.

(Recall that the 1Ri are independent Bernoulli random variables with parameter p.) By
adding the (random) sums

∑t
i=1 µ

′
i to the

∑t
i=1 µi we can rewrite the probability in (3.9)

as

P

(
d+

t∑
i=1

ξi >

t∑
i=1

µ′i ∀t ∈ [T ]

)
. (3.11)

Since each µ′i is non-negative, we have that
∑t
i=1 µ

′
i ≥ 0 for all t ∈ [T ]. Therefore we can

bound from above the probability in (3.11) by

P

(
d+

t∑
i=1

ξi > 0 ∀t ∈ [T ], d+

T∑
i=1

ξi >

T∑
i=1

µ′i

)
. (3.12)

In order to control the (random) sum
∑T
i=1 µ

′
i (which depends on m, see its definition

given in (3.10)) we use the following result, whose proof is postponed to Section 3.4.

Lemma 3.4. Let h ≥ 1. Suppose that A = o(n1/2) and let m = mn = O(n1/2). Define

q(T ) = qn,d(T ) := p

(
1− 2

d

)
T (T − 1)

2n
. (3.13)
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Then, for all large enough n, we have that

P

(
T∑
i=1

µ′i ≤ q(T )− h

)
≤ cTe−hn

1/2

T , (3.14)

where c = c(d) is a finite constant that depends on d.

Remark 3.5. Analogously to what we said in Remark 3.2, the quantity which appears
within the exponential term in (3.14) is of order h/An1/6. Thus, if the reader thinks of h
as h = hn = An4/15, then the right-hand side in (3.14) is much smaller than our desired
bound and h� q(T ).

For t ∈ [T ], we bound from above the probability in (3.12) by

(3.12) ≤ P

(
d+

t∑
i=1

ξi > 0 ∀t ∈ [T − 1], d+

T∑
i=1

ξi > q(T )− h

)

+ P

(
T∑
i=1

µ′i ≤ q(T )− h

)
. (3.15)

Thanks to Lemma 3.4 we know that we do not have to worry about the probability that∑T
i=1 µ

′
i is smaller than q(T ) − h, provided h is sufficiently large. Hence we can focus

our attention on finding an upper bound for the first term on the right-hand side above.
Observe that, since d+

∑T
i=1 ξi is at most d+ T (d− 2) (as ξi ≤ d− 2 for every i), we can

write

P

(
d+

t∑
i=1

ξi > 0 ∀t ∈ [T ], d+

T∑
i=1

ξi > q(T )− h

)

≤
d+T (d−2)∑

k=bq(T )−hc+1

P

(
d+

t∑
i=1

ξi > 0 ∀t ∈ [T ], d+

T∑
i=1

ξi = k

)
. (3.16)

To estimate the probabilities within the last sum we use Lemma 3.6 below, whose proof,
postponed to Section 3.2, relies on a ballot-type estimate that was introduced in [14].

Lemma 3.6. For any t, k ∈ N, if d ≥ 4, then

P

(
d+

j∑
i=1

ξi > 0 ∀j ∈ [t], d+

t∑
i=1

ξi = k

)
≤ k + d− 4

p2(t+ 2)
P

(
t+2∑
i=1

ξi = k + d− 4

)
and if d = 3, then

P

(
d+

j∑
i=1

ξi > 0 ∀j ∈ [t], d+

t∑
i=1

ξi = k

)
≤ k

p3(t+ 3)
P

(
t+3∑
i=1

ξi = k

)
.

Noting that the two inequalities in Lemma (3.6) are almost identical (the main
difference being an extra factor of 1/p � 1 in the case d = 3), we concentrate on the case
d ≥ 4. Applying Lemma 3.6, we bound from above the sum in (3.16) by

(3.16) ≤ 1

p2(T + 2)

d+T (d−2)∑
k=bq(T )−hc+1

(k + d− 4)P

(
T+2∑
i=1

ξi = k + d− 4

)
.

Note from the definition of ξi that

T+2∑
i=1

ξi = (d− 1)BT+2,p − (T + 2)
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where BT+2,p ∼ Bin(T + 2, p). Thus

(3.16) ≤ 1

p2(T + 2)

d+T (d−2)∑
k=bq(T )−hc+1

(k + d− 4)P

(
BT+2,p =

T + 2 + k + d− 4

d− 1

)
and, rewriting the last fraction on the right-hand side to isolate the expected value of
BT+2,p, recalling that p = (1 + λn−1/3)(d− 1)−1, we have that (3.16) is at most

1

p2(T + 2)

d+T (d−2)∑
k=bq(T )−hc+1

(k + d− 4)P

(
BT+2,p = (T + 2)p+

k + d− 4− λ(T + 2)n−1/3

d− 1

)
.

To summarise, if we let

xd,n(k, λ, T ) =
k + d− 4− λ(T + 2)n−1/3

d− 1
, (3.17)

then we have shown that

P

(
d+

t∑
i=1

ξi > 0 ∀t ∈ [T ], d+

T∑
i=1

ξi > q(T )− h

)

≤ 1

p2(T + 2)

d+T (d−2)∑
k=bq(T )−hc+1

(k + d− 4)P
(
BT+2,p = (T + 2)p+ xd,n(k, λ, T )

)
. (3.18)

To analyse the right-hand side of (3.18), we will need to split the sum into two parts,
one for k ≤ T 2/3 and the other for k > T 2/3. Recall the definition of Gλ(A, d) from
Theorem 1.1.

Lemma 3.7. Provided that h ≤ An4/15 and A = o(n1/30), there exists a finite constant c
depending on d such that

1

p2(T + 2)

bT 2/3c∑
k=bq(T )−hc+1

(k+d−4)P
(
BT+2,p = (T+2)p+xd,n(k, λ, T )

)
≤ c

A1/2n1/3
e−Gλ(A,d).

Lemma 3.8. Provided that |λ| = o(n1/30), there exists a constant c > 0 depending on d
such that

1

p2(T + 2)

d+T (d−2)∑
k=bT 2/3c+1

(k + d− 4)P
(
BT+2,p = (T + 2)p+ xd,n(k, λ, T )

)
≤ exp(−cA1/3n2/9).

We will prove both Lemmas 3.7 and 3.8 in Section 3.3. With these in hand, we are
now in a position to establish the upper bounds stated in Theorem 1.1.

Proof of the upper bounds in Theorem 1.1. Note that of the two quantities on the right-
hand sides of Lemmas 3.7 and 3.8, the fact that A = o(1/30) ensures that the one from
Lemma 3.7 is the larger. Thus, substituting the bounds from these lemmas into (3.18)
gives that

P

(
d+

t∑
i=1

ξi > 0 ∀t ∈ [T ], d+

T∑
i=1

ξi > q(T )− h

)
≤ c

A1/2n1/3
e−Gλ(A,d). (3.19)

To complete the proof, we now briefly recall the main points of the argument laid out so
far. Combining (3.4), Lemma 3.1 with m = An4/15, and Proposition 3.3, we obtain that

P(|C(Vn)| > An2/3) ≤ P

(
d+

t∑
i=1

µi > 0 ∀t ∈ [T ]

)
+ cTe−c

′n1/10

.
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Equations (3.11), (3.12) and (3.15) then show that

P(|C(Vn)| > An2/3) ≤ P

(
d+

t∑
i=1

ξi > 0 ∀t ∈ [T − 1], d+

T∑
i=1

ξi > q(T )− h

)

+ P

(
T∑
i=1

µ′i ≤ q(T )− h

)
+ cTe−c

′n1/10

.

Applying Lemma 3.4 with h = An4/15, and (3.19) together with the fact that A = o(n1/30)

we see that
P(|C(Vn)| > An2/3) ≤ c

A1/2n1/3
e−Gλ(A,d). (3.20)

This is precisely the first upper bound in Theorem 1.1, except that we have been
working throughout via the exploration process described in Section 2, which (as we
mentioned in that section) generates a multigraph G′(n, d, p), whereas Theorem 1.1
concerns the (simple) graph G(n, d, p). Writing Sn for the event that the multigraph
G′(n, d) underlying G′(n, d, p) (that is, the multigraph chosen uniformly at random from
all d-regular multigraphs on n vertices, before we carry out p-bond percolation) is simple,
we have

P
(
|C(Vn)| > An2/3

∣∣ Sn) =
P(|C(Vn)| > An2/3, Sn)

P(Sn)
≤ P(|C(Vn)| > An2/3)

P(Sn)
.

Since, as mentioned in Section 1.4, P(Sn)→ e(1−d2)/4 (depending only on d, not n), the
first upper bound in Theorem 1.1 follows.

For the second upper bound, concerning the size of the largest component, we
proceed in a standard way (see e.g. [34]). Given any k ∈ N, we denote by Nk :=∑n
i=1 1{|C(i)|>k} the number of vertices located in components containing more than k

nodes. Then, by Markov’s inequality, we obtain

P(|Cmax| > An2/3) = P(NbAn2/3c > An2/3) ≤
E
[
NbAn2/3c

]
An2/3

=
n

An2/3
P(|C(Vn)| > An2/3)

≤ c

A3/2
e−Gλ(A,d),

completing the proof of the upper bounds in Theorem 1.1.

The remainder of Section 3 is devoted to the proofs of those auxiliary results that
have been used in our proof of the upper bounds in Theorem 1.1. Specifically, we start
by proving Proposition 3.3 in Section 3.1, and we proceed by establishing Lemma 3.6
in Section 3.2. Subsequently we prove, in Section 3.3, the two lemmas which give us
the upper bound stated in Theorem 1.1, namely Lemmas 3.7 and 3.8. We finish with
Section 3.4 where we prove the concentration bounds stated in Lemmas 3.1 and 3.4.

3.1 Creating independent random variables: proof of Proposition 3.3

Recall that η′i = 1Ri(d− 2) +1Ri1Fi , where Ri is the event that the edge eihi revealed
during the i-th step of the exploration process is retained in the percolation, while Fi is
the event that the vertex v(hi) is fresh after the completion of step i− 1. Also recall that
an(i) = n− 1− i− i2/2m. As in Proposition 3.3, let (Ui)i≥1 be a sequence of i.i.d. random
variables, also independent from all other random variables involved, with U1 ∼ U([0, 1]),
and let

µi = 1Ri(d− 2) + 1Ri1{Ui≤ d(an(i−1)+m)
dn−2(i−1)−1

} − 1.
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We now define, for t ≥ 0,

Vt :=

t⋂
i=0

{V(d)
i ≤ an(i) +m},

the event that the number of fresh vertices is at most an(i) +m for each step i ≤ t. Let
Ft be the σ-algebra generated by the exploration process up to step t. We begin with a
simple observation, comparing η′j to µj on the event Vj−1.

Lemma 3.9. For any j ≥ 1, the random variables η′j and µj take values in {−1, d−3, d−2}.
They satisfy

P(η′j = −1 | Fj−1) = P(µj = −1 | Fj−1),

P(η′j = d− 3 | Fj−1)1Vj−1
≥ P(µj = d− 3 | Fj−1)1Vj−1

,

and
P(η′j = d− 2 | Fj−1)1Vj−1

≤ P(µj = d− 2 | Fj−1)1Vj−1
.

In other words, µj stochastically dominates η′j on the event Vj−1, given Fj−1.

Proof. The first display is trivial since Rj (the event that the edge ejhj is retained) is
independent of Fj−1; both sides equal 1− p. Since the random variables can only take
three possible values, it suffices to show one of the other two displays. Again since Rj is
independent of Fj−1,

P(η′j = d− 2 | Fj−1) = P(Rj ∩ Fj | Fj−1) = pP(Fj |Fj−1).

Now, on the event Vj−1, since hj is chosen uniformly from the set of all unexplored stubs
after step j − 1, of which there are exactly dn− 2(i− 1)− 1, we have

P(Fj |Fj−1)1Vj−1
≤ d(an(i− 1) +m)

dn− 2(i− 1)− 1
1Vj−1

= P
(
Uj ≤

d(an(i− 1) +m)

dn− 2(i− 1)− 1

∣∣∣Fj−1

)
1Vj−1

,

where the last equality uses the independence of Uj from Fj−1. Combining the last two
displays gives the result.

For j, t ≥ 0, we define

S
(j)
t = d+

j∧t∑
i=1

η′i +

t∑
i=(j∧t)+1

µi.

The idea is that S(j)
t interpolates between summing η′i and summing µi; we can change

j by one increment at a time to move gradually from one sum to the other. The key
ingredient in proving Proposition 3.3 is the following lemma.

Lemma 3.10. For any j ∈ [T ],

P
(
S

(j)
t > 0 ∀t ∈ [T ]

∣∣Fj−1

)
1Vj−1

≤ P
(
S

(j−1)
t > 0 ∀t ∈ [T ]

∣∣Fj−1

)
1Vj−1

.

Proof. Take j ∈ [T ]. Since η′i is Fj−1-measurable for every i ≤ j − 1, and therefore S(j)
j−1

is Fj−1-measurable, we can split the probability of interest over the possible values of

S
(j)
j−1 to give

P
(
S

(j)
t > 0 ∀t ∈ [T ]

∣∣Fj−1

)
=

∞∑
s=1

1{S(j)
j−1=s}1{S(j)

i >0 ∀i∈[j−1]}P

(
s+ η′j +

t∑
i=j+1

µi > 0 ∀t ∈ [T ] \ [j − 1]

∣∣∣∣Fj−1

)
.
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(In fact, S(j)
j−1 can take a maximum value of d+ (j − 1)(d− 2) so the sum above has only a

finite number of positive summands.) Now observe that µi is independent of Fj−1 for
every i ≥ j + 1. Further splitting the probability on the right-hand side above over the
possible values Q = {−1, d− 2, d− 3} of η′j , we therefore have

P
(
S

(j)
t > 0 ∀t ∈ [T ]

∣∣Fj−1

)
=

∞∑
s=1

1{S(j)
j−1=s}1{S(j)

i >0 ∀i∈[j−1]}

·
∑
q∈Q

P

(
s+ q +

t∑
i=j+1

µi > 0 ∀t ∈ [T ] \ [j − 1]

)
P(η′j = q | Fj−1).

(3.21)

We further note that, by exactly the same argument, (3.21) holds also for S(j−1)
t , provided

that η′j is replaced by µj . That is,

P
(
S

(j−1)
t > 0 ∀t ∈ [T ]

∣∣Fj−1

)
=

∞∑
s=1

1{S(j−1)
j−1 =s}1{S(j−1)

i >0 ∀i∈[j−1]}

·
∑
q∈Q

P

(
s+ q +

t∑
i=j+1

µi > 0 ∀t ∈ [T ] \ [j − 1]

)
P(µj = q | Fj−1).

(3.22)

We now apply Lemma 3.9, which tells us that µj stochastically dominates η′j on the
event Vj−1, given Fj−1. Since

P
(
s+ q +

t∑
i=j+1

µi > 0 ∀t ∈ [T ] \ [j − 1]
)

is increasing in q, we deduce that

∑
q∈Q

P
(
s+ q +

t∑
i=j+1

µi > 0 ∀t ∈ [T ] \ [j − 1]
)
P(η′j = q | Fj−1)1Vj−1

≤
∑
q∈Q

P
(
s+ q +

t∑
i=j+1

µi > 0 ∀t ∈ [T ] \ [j − 1]
)
P(µj = q | Fj−1)1Vj−1 .

The result follows by combining this with (3.21) and (3.22).

The proof of Proposition 3.3 is now a straightforward application of the above lemma
together with the tower property.

Proof of Proposition 3.3. For any j ∈ [T ], by Lemma 3.10,

P
(
S

(j)
t > 0 ∀t ∈ [T ], Vj−1

)
= E

[
P
(
S

(j)
t > 0 ∀t ∈ [T ]

∣∣Fj−1

)
1Vj−1

]
≤ E

[
P
(
S

(j−1)
t > 0 ∀t ∈ [T ]

∣∣Fj−1

)
1Vj−1

]
= P

(
S

(j−1)
t > 0 ∀t ∈ [T ], Vj−1

)
.

Since Vt =
⋂t
i=0{V

(d)
i ≤ an(i) + m} is decreasing in t, and interpreting V−1 to be the

empty intersection (i.e. the whole sample space), we have

P
(
S

(j)
t > 0 ∀t ∈ [T ], Vj−1

)
≤ P

(
S

(j−1)
t > 0 ∀t ∈ [T ], Vj−2

)
.
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Repeating T times, we have

P
(
S

(T )
t > 0 ∀t ∈ [T ], VT−1

)
≤ P

(
S

(0)
t > 0 ∀t ∈ [T ], V−1

)
= P

(
S

(0)
t > 0 ∀t ∈ [T ]).

But for any t ≤ T , we have S(T )
t = d+

∑t
i=1 ν

′
i and S(0)

t = d+
∑t
i=1 µi, and therefore the

line above is exactly the statement of the proposition.

3.2 The probability of staying positive and finishing above q(T ): proof of
Lemma 3.6

Recall that we are trying to bound from above the probability

P

(
d+

j∑
i=1

(ξi − 1) > 0 ∀j ∈ [t], d+

t∑
i=1

(ξi − 1) = k

)
. (3.23)

We wish to use the following result, which is Corollary 2.3 in [14].

Lemma 3.11. Let (Xi)i≥1 be i.i.d. random variables taking values in Z, whose distribu-
tion may depend on t. Let h ∈ N, and suppose that P(X1 = h) > 0. Then for any t, k ∈ N
we have

P

(
h+

j∑
i=1

Xi > 0 ∀j ∈ [t], h+

t∑
i=1

Xi = k

)
≤ 1

P(X1 = h)

k

t+ 1
P

(
t+1∑
i=1

Xi = k

)
.

Observe that we can’t directly apply Lemma 3.11 with h = d and Xi = ξi− 1 to bound
the probabilities in (3.23), because P(ξi−1 = d) = P(ξi = d+1) = 0 (since ξi ∈ {0, d−1}).
To solve this issue, we use the following simple tactic.

Let ξ0 be a random variable independent from (ξi)i≥1, such that ξ0
d
= ξ1. Note that,

by independence,

P

(
d+

j∑
i=1

(ξi − 1) > 0 ∀j ∈ [t], d+

t∑
i=1

(ξi − 1) = k

)

=
1

P(ξ0 − 1 = d− 2)
P

(
d+

j∑
i=1

(ξi − 1) > 0 ∀j ∈ [t], d+

t∑
i=1

(ξi − 1) = k, ξ0 − 1 = d− 2

)

≤ 1

p
P

(
2 +

j∑
i=0

(ξi − 1) > 0 ∀j ∈ [t], 2 +

t∑
i=0

(ξi − 1) = k

)
.

Now, since (ξi)i≥0 has the same distribution as (ξi)i≥1, the above equals

1

p
P

(
2 +

j∑
i=1

(ξi − 1) > 0 ∀j ∈ [t+ 1], 2 +

t+1∑
i=1

(ξi − 1) = k

)
. (3.24)

Now suppose that d ≥ 4. Then we have 2 ≤ d− 2, and therefore the above is at most

1

p
P

(
d− 2 +

j∑
i=1

(ξi − 1) > 0 ∀j ∈ [t+ 1], d− 2 +

t+1∑
i=1

(ξi − 1) = k + d− 4

)
.

We can now apply Lemma 3.11 to conclude that this is bounded from above by

k + d− 4

p2(t+ 2)
P

(
t+2∑
i=1

ξi = k + d− 4

)
,

which establishes Lemma 3.6 in the case d ≥ 4.
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When d = 3 we need to apply the same trick once more: returning to (3.24), first
using independence of ξ0 and then the equality in distribution we have

(3.24) =
1

p2
P

(
2 +

j∑
i=1

(ξi − 1) > 0 ∀j ∈ [t+ 1], 2 +

t+1∑
i=1

(ξi − 1) = k, ξ0 − 1 = 1

)

≤ 1

p2
P

(
1 +

j∑
i=0

(ξi − 1) > 0 ∀j ∈ [t+ 1], 1 +

t+1∑
i=0

(ξi − 1) = k

)

=
1

p2
P

(
1 +

j∑
i=1

(ξi − 1) > 0 ∀j ∈ [t+ 2], 1 +

t+2∑
i=1

(ξi − 1) = k

)
.

Applying Lemma 3.11 now gives the result in the case d = 3, completing the proof.

3.3 The upper bound in Theorem 1.1 appears: proof of Lemmas 3.7 and 3.8

To approximate the sum in Lemma 3.7, we use the following result from [9].

Lemma 3.12 (Theorem 1.2 of [9]). Let BinN,P be a binomial random variable of param-
eters N and p. Suppose that PN ≥ 1 and 1 ≤ x(1 − P )N/3. Then if j ≥ PN + x, we
have

P(BinN,P = j) <
1√

2πP (1− P )N
exp

(
− x2

2P (1− P )N
+

x

(1− P )N
+

x3

P 2N2

)
.

We can now proceed with our proof of Lemma 3.7. Recall that

xd,n(k, λ, T ) =
k + d− 4− λ(T + 2)n−1/3

d− 1
.

Proof of Lemma 3.7. Applying Lemma 3.12 with N = T + 2, P = p, x = xd,n(k, λ, T ) and
j = (T + 2)p+ xd,n(k, λ, T ), we have

P
(
BT+2,p = (T + 2)p+ xd,n(k, λ, T )

)
<

c

T 1/2
exp

(
− xd,n(k, λ, T )2

2p(1− p)(T + 2)
+

xd,n(k, λ, T )

(1− p)(T + 2)
+
xd,n(k, λ, T )3

p2(T + 2)2

)
.

When k ≤ T 2/3, the last two terms in the exponent are O(1), and so

P
(
BT+2,p = (T + 2)p+ xd,n(k, λ, T )

)
<

c

T 1/2
exp

(
− xd,n(k, λ, T )2

2p(1− p)(T + 2)

)
.

We deduce that

1

p2(T + 2)

bT 2/3c∑
k=bq(T )−hc+1

(k + d− 4)P
(
BT+2,p = (T + 2)p+ xd,n(k, λ, T )

)

≤ c

T 3/2

bT 2/3c∑
k=bq(T )−hc+1

(k + d− 4) exp

(
− xd,n(k, λ, T )2

2p(1− p)(T + 2)

)
, (3.25)

and the right-hand side above is easily seen to be at most

c

T 3/2

∫ ∞
bq(T )−hc

(y + d− 4) exp

(
− xd,n(y, λ, T )2

2p(1− p)(T + 2)

)
dy.
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Recalling from (3.17) that xd,n(y, λ, T ) = y+d−4−λ(T+2)n−1/3

d−1 , in order to bound the inte-
gral by one that can be calculated exactly, it is useful to note that for y ≥ bq(T )− hc,

y + d− 4 � y + d− 4− λ(T + 2)n−1/3;

this follows from the condition on |λ| in Theorem 1.1. Thus (3.25) is bounded above by

c

T 3/2

∫ ∞
bq(T )−hc

(y + d− 4− λ(T + 2)n−1/3) exp

(
− (y + d− 4− λ(T + 2)n−1/3)2

2(d− 1)2p(1− p)(T + 2)

)
dy

=
c

T 3/2
(d− 1)2p(1− p)(T + 2) exp

(
− (bq(T )− hc+ d− 4− λ(T + 2)n−1/3)2

2(d− 1)2p(1− p)(T + 2)

)
≤ c

A1/2n1/3
exp

(
− (bq(T )− hc+ d− 4− λ(T + 2)n−1/3)2

2(d− 1)2p(1− p)(T + 2)

)
. (3.26)

Concentrating on the exponent in (3.26), since h ≤ An4/15 and A = o(n1/30) and
therefore hq(T )� T , we have

(bq(T )− hc+ d− 4− λ(T + 2)n−1/3)2

2(d− 1)2p(1− p)(T + 2)
=

(q(T )− λTn−1/3)2

2(d− 1)(1− 1
d−1 )T

+ o(1)

=
q(T )2 − 2q(T )λTn−1/3 + λ2T 2n−2/3

2(d− 2)T
+ o(1).

Recalling from Lemma 3.4 that q(T ) = p(1− 2/d)T (T−1)
2n , we see that the above is

(d− 2)2T 4

4(d− 1)2d2n2 · 2(d− 2)T
− (d− 2)T 2 · λTn−1/3

(d− 1)dn · 2(d− 2)T
+
λ2T 2n−2/3

2(d− 2)T
+ o(1)

and since T = (d− 1)An2/3 +O(n1/2), this equals

A3(d− 1)(d− 2)

8d2
− A2λ(d− 1)

2d
+
Aλ2(d− 1)

2(d− 2)
+ o(1).

Combining the above calculations with (3.25) and (3.26), we have shown that

1

p2(T + 2)

bT 2/3c∑
k=bq(T )−hc+1

(k + d− 4)P
(
BT+2,p = (T + 2)p+ xd,n(k, λ, T )

)
≤ c

A1/2n1/3
exp

(
−A

3(d− 1)(d− 2)

8d2
+
A2λ(d− 1)

2d
− Aλ2(d− 1)

2(d− 2)

)
.

The exponent above is exactly −Gλ(A, d) and the proof is complete.

To prove Lemma 3.8, we will need a Chernoff bound for the Binomial distribution.
The following version comes from [24].

Lemma 3.13 ([24, Theorem 2.1]). Let BN,P be a binomial random variable of parameters
N and p. Then for every x ≥ 0 we have

P(BN,P ≥ NP + x) ≤ exp

(
− x2

2(NP + x/3)

)
.

We now apply this elementary bound to prove Lemma 3.8.
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Proof of Lemma 3.8. We first bound the factor of k+ d− 4 by a constant times T , so that

1

p2(T + 2)

d+T (d−2)∑
k=bT 2/3c+1

(k + d− 4)P
(
BT+2,p = (T + 2)p+ xd,n(k, λ, T )

)
≤ cP

(
BT+2,p ≥ (T + 2)p+ xd,n(bT 2/3c+ 1, λ, T )

)
.

Now note that since |λ| = o(n1/30), for sufficiently large n we have

xd,n(bT 2/3c+ 1, λ, T ) ≥ pT 2/3

2
.

Thus, by Lemma 3.13,

P
(
BT+2,p ≥ (T + 2)p+ xd,n(bT 2/3c+ 1, λ, T )

)
≤ P

(
BT+2,p ≥ (T + 2)p+ pT 2/3/2

)
≤ exp

(
− p2T 4/3

8((T + 2)p+ pT 2/3/6)

)
.

Since T is of order An2/3, the above is at most exp(−cA1/3n2/9) for some c > 0 depending
on d, and the result follows.

3.4 Concentration bounds: proofs of Lemmas 3.1 and 3.4

Proof of Lemma 3.1. Recall that an(i) = n− 1− i− i2/2n. A union bound gives us

P
(
∃ i ∈ {0} ∪ [T − 1] : |V(d)

i | > an(i) +m
)
≤
T−1∑
i=0

P
(
τ > i, |V(d)

i | ≥ an(i) +m
)
.

Next we bound the probabilities on the right-hand side. Notice that, since |V(d)
0 | = n− 1

and an(0) = n − 1, we have that P
(
|V(d)

0 | ≥ an(0) + m
)

= 0 and hence we can assume
throughout that i ≥ 1. Now observe that, if τ > i, then we have that

|V(d)
i | = |V

(d)
0 | −

i∑
j=1

1Fj = n− 1−
i∑

j=1

(1− 1F cj ) = n− 1− i+

i∑
j=1

1F cj . (3.27)

Thus recalling the definition of an(i), we can write

P
(
τ > i, |V(d)

i | ≥ an(i) +m
)

= P

(
τ > i,

i∑
j=1

1F cj ≥ i
2/2n+m

)
.

Now, given any r > 0, by Markov’s inequality we have

P

(
τ > i,

i∑
j=1

1F cj ≥ i
2/2n+m

)
≤ e−r(i

2/2n+m)E
[
1{τ>i}e

r
∑i
j=1 1Fcj

]
. (3.28)

Next we bound from above the expectation in (3.28). We write

E
[
1{τ>i}e

r
∑i
j=1 1Fcj

]
= E

[
e
r
∑i−1
j=1 1Fcj E

[
1{τ>i}e

r1Fc
i

∣∣∣Fi−1

]]
(3.29)

and observe that

E
[
1{τ>i}e

r1Fc
i

∣∣∣Fi−1

]
≤ 1{τ>i−1} + P({τ > i} ∩ F ci |Fi−1)(er − 1).
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We claim that, provided that τ > i, the number of unexplored stubs that are incident to
vertices which are no longer fresh at the end of step i− 1 is at most di. Indeed, at each
step before τ the number of non-fresh vertices can increase by at most one, and this
vertex contributes at most d stubs to the count. Since hi is picked uniformly at random
from the set of unexplored stubs at the end of step i − 1, of which there are exactly
dn− 2(i− 1)− 1, we can therefore bound

P({τ > i} ∩ F ci |Fi−1) ≤
di1{τ>i−1}

dn− 2(i− 1)− 1
.

Thus

E
[
1{τ>i}e

r1Fc
i

∣∣∣Fi−1

]
≤ 1{τ>i−1}

(
1 +

di

dn− 2(i− 1)− 1
(er − 1)

)
,

from which it follows that (see (3.29))

E
[
1{τ>i}e

r
∑i
j=1 1Fcj

]
≤
(

1 +
di

dn− 2(i− 1)− 1
(er − 1)

)
E

[
1{τ>i−1}e

r
∑i−1
j=1 1Fcj

]
.

Iterating the above argument and using the standard inequality 1 + x ≤ ex (valid for all
x ∈ R) we obtain

E
[
1{τ>i}e

r
∑i
j=1 1Fcj

]
≤

i∏
j=1

(
1 +

dj

dn− 2(j − 1)− 1
(er − 1)

)

≤
i∏

j=1

exp

(
dj

dn− 2(j − 1)− 1
(er − 1)

)

= exp

(
(er − 1)d

i∑
j=1

j

dn− 2(j − 1)− 1

)
.

A simple calculation shows that, for i ≤ T � n,

i∑
j=1

j

dn− 2(j − 1)− 1
=

i∑
j=1

j

dn

(
1− 2(j − 1) + 1

dn

)−1

≤ i2

2dn
(1 +O(T/dn))

and hence we obtain

E
[
e
r
∑i
j=1 1Fcj

]
≤ exp

(
(er − 1)

i2

2n
(1 +O(T/dn))

)
.

Combining this with (3.28), we have shown that

P

(
τ > i,

i∑
j=1

1F cj ≥ i
2/2n+m

)
≤ e−r(i

2/2n+m) exp

(
(er − 1)

i2

2n
(1 +O(T/dn))

)
. (3.30)

Taking r ≤ (d− 1)−1 we can write er − 1 ≤ r + r2 and hence for i ≤ T the expression in
(3.30) is bounded from above by

exp

(
−rm+ r2T

2

2n
+ rO

(
T 3

n2

))
.

Taking r = n1/2/T (� 1/An1/6) and using the fact that, as n→∞,

n1/2

T
O

(
T 3

n2

)
= O

(
T 2

n3/2

)
= O

((
A

n1/12

)2
)

= o(1),
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we see that

(3.30) ≤ c exp

(
−mn

1/2

T

)
,

completing the proof.

Proof of Lemma 3.4. Recall that, for each i ∈ [T ],

µ′i = 1Ri1{Ui> d(an(i−1)+m)
dn−2(i−1)−1 }.

By Markov’s inequality we see that, for every r > 0,

P

(
T∑
i=1

µ′i ≤ q(T )− h

)
≤ e−rh+rq(T )E

[
e−r

∑T
i=1 µ

′
i

]
.

Since the 1Ri are independent, the Ui are independent and (1Ri)i is independent of (Ui)i
we see that

E
[
e−r

∑T
i=1 µ

′
i

]
=

T∏
i=1

E
(
e−rµ

′
i

)
=

T∏
i=1

[
1− p

(
1− d(an(i− 1) +m)

dn− 2(i− 1)− 1

)
(1− e−r)

]

≤
T∏
i=1

exp

{
−p(1− e−r)

(
1− d(an(i− 1) +m)

dn− 2(i− 1)− 1

)}

= exp

{
−p(1− e−r)

T∑
i=1

(
1− d(an(i− 1) +m)

dn− 2(i− 1)− 1

)}
.

(3.31)

Recalling that an(i− 1) = n− 1− (i− 1) + (i− 1)2/2n we obtain

d(an(i− 1) +m)

dn− 2(i− 1)− 1
=

(
1− i− 1

n
+

(i− 1)2

2n2
+
m− 1

n

)
1

1− 2(i−1)+1
dn

.

An elementary computation then shows that

d(an(i− 1) +m)

dn− 2(i− 1)− 1
≤ 1− i− 1

n

(
1− 2

d

)
+O

(
(i− 1)2

2n2

)
+O

(m
n

)
.

Therefore, recalling the definition of q(T ) = p(1 − 2/d)(2n)−1T (T − 1) and using the
bound 1− e−x ≤ x, we see that for r > 0 the expression in (3.31) is at most

exp

{
−p(1− e−r)

[
(1− 2/d)

T (T − 1)

2n
−O

(
T 3

n2

)
−O

(
Tm

n

)]}
≤ exp

{
−(1− e−r)q(T ) + rO

(
T 3

n2

)
+ rO

(
Tm

n

)}
.

Hence, using the bound 1 − e−x ≥ 1 − (1 − x + x2/2) = x − x2/2 (valid for all x ≥ 0)
together with the fact that q(T ) ≤ T 2/2n, we obtain

P

(
T∑
i=1

µ′i ≤ q(T )− h

)
≤ exp

{
−rh+ r2T

2

4n
+ rO

(
T 3

n2

)
+ rO

(
Tm

n

)}
.

Taking r = n1/2/T we see that

rO

(
T 3

n2

)
+ rO

(
Tm

n

)
= O

((
A

n1/12

)2
)

+O
( m

n1/2

)
= o(1)
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and hence

exp

{
−rh+ r2T

2

4n
+ rO

(
T 3

n2

)
+ rO

(
Tm

n

)}
≤ ce−hn

1/2

T

for some positive constant c, completing the proof of the lemma.

4 Proof of Theorem 1.1: lower bounds

We begin by recalling that our exploration process potentially creates multiple edges
or self-loops, and that to produce the simple graph G(n, d, p) we condition on the event
Sn that the d-regular multigraph G′(n, d) produced by the exploration process (including
both retained and unretained edges) is simple. For the upper bounds in Theorem 1.1, we
worked for the most part with the multigraph and then deduced the result conditional
on Sn at the very last step; this worked because for any event B, we have

P(B | Sn) = P(B ∩ Sn)/P(Sn) ≤ P(B)/P(Sn) ≤ cP(B).

For the lower bound this does not work, and we must be aware of the conditioning on Sn
throughout. It turns out that our proof does not depend much on whether we condition
on Sn or not, and a version of Theorem 1.1 for the multigraph G′(n, d, p) could be given
by following our proof and ignoring any appearance of Sn.

By Lemma 2.1, we are tasked with bounding from below the probability

P(|C(Vn)| > An2/3 |Sn) = P(σUR > An2/3 − 1 |Sn)

≥ P(τ > (d− 1)An2/3 + 1 |Sn)

= P

(
d+

t∑
i=1

ηi > 0 ∀t ∈
[
b(d− 1)An2/3c+ 1

] ∣∣∣∣Sn), (4.1)

where we recall that, if i ≤ τ , then

ηi = 1{hi∈Ui−1}1Ri |S(hi) ∩ Ui−1 \ {hi}| − 1{hi∈Ai−1} − 1. (4.2)

To simplify the notation, we set T := b(d− 1)An2/3c+ 1, noting that this new definition of
T is not quite the same as the one of Section 3.

Recall that Fi is the event that vertex v(hi) is fresh, i.e. that v(hi) has d unseen stubs,
at the end of step i− 1; we also defined F ′i to be the event that v(hi) has d− 1 unseen
stubs at the end of step i− 1, and F−i to be the event that v(hi) has m ∈ [d− 2] unseen

stubs at the end of step i−1. In other words, recalling also that V(m)
i−1 is the set of vertices

with m unseen stubs at the end of step i− 1, we have

Fi = {v(hi) ∈ V(d)
i−1}, F ′i = {v(hi) ∈ V(d−1)

i−1 } and F−i =

{
v(hi) ∈

d−2⋃
m=1

V(m)
i−1

}
.

Since we want to bound the probability in (4.1) from below, we need to approximate
the ηi with smaller random variables, sufficiently close to the ηi but easier to deal with.
To this end, define

δi := 1Ri1Fi(d− 1) + 1Ri1F ′i (d− 2)− 1{hi∈Ai−1} − 1 (4.3)

and
δ′i := 1Ri1Fi(d− 1)− 1{hi∈Ai−1} − 1 (4.4)

and note that for each i ≤ τ we have

ηi ≥ δi ≥ δ′i. (4.5)
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Indeed, we note that ηi = δi unless Ri ∩ F−i occurs, in which case ηi equals the number
of unseen stubs in S(hi) \ {hi} minus one, whereas δi = −1. Furthermore, δi = δ′i unless
Ri ∩ F ′i occurs, in which case δi = d− 3 and δ′i = −1.

The less precise approximation given by δ′i will be useful when i is small, when almost
all vertices will have d unseen stubs. However, approximating ηi with δ′i over the whole
time interval [T ] turns out to be insufficient to obtain lower bounds that match the upper
bounds established in Section 3, and the closer approximation given by δi will be needed
when i is larger and a substantial number of vertices have d− 1 unseen stubs.

Once we have replaced ηi with δ′i or δi as appropriate, our next step is to replace the
process formed by summing the δi with a random walk with increments

Di := 1Ri(d− 1)− 1.

The random variables δi tend to get smaller as i increases, since fewer vertices have d or
d− 1 unseen stubs, whereas the Di are (independent and) identically distributed. This
means that we must substitute the event that the process

∑t
i=1 δi stays above −d with

the event that the process
∑t
i=1Di stays above the increasing curve

q(t) = qA,n,d(t) := p(1− 2/d)
t2

2n
+An4/15. (4.6)

The next result shows that this is the right curve to use. Define

τδ := min

{
t ≥ 1 : d+

t∑
i=1

δi ≤ 0

}
and note that τδ ≤ τ , where we recall that τ is the first time at which the set of
active stubs becomes empty. To see this observe that, since δi ≤ ηi for all i ≤ τ , then
d+

∑τ
i=1 δi ≤ d+

∑τ
i=1 ηi ≤ 0.

Proposition 4.1. Suppose that A� n1/30. Then for all large enough n, we have that

P

(
∃t ∈ [T ∧ τδ] :

t∑
i=1

(Di − δi) > q(t)

∣∣∣∣Sn) ≤ CTe−cn1/10

.

where C is a finite constant and c = c(d) > 0 is a constant that depends on d.

This result will be proved in Section 4.1. We now apply this result to show that the
right-hand side of (4.1) can be roughly split into the product of two terms, each of which
is easier to analyse.

Lemma 4.2. For any 0 < T ′ < T and ε > 0 we have

P

(
d+

t∑
i=1

ηi > 0 ∀t ∈ [T ]

∣∣∣∣Sn)

≥ P
( t∑
i=1

δ′i > −d ∀t ∈ [T ′],

T ′∑
i=1

δ′i ≥ ε
√
T ′
∣∣∣∣Sn)

· P
( t∑
i=T ′+1

Di > q(t)− ε
√
T ′ ∀t ∈ [T ] \ [T ′]

)
− CTe−cn

1/10

where C is a finite constant and c = c(d) > 0 is a constant that depends on d.

Proof. Define τδ′ := min
{
t ≥ 1 : d+

∑t
i=1 δ

′
i ≤ 0

}
and note that, since δ′i ≤ δ for all i, we

must have τδ′ ≤ τδ. Since we also have τδ ≤ τ we obtain that

{τ ∈ [T ]} ⊂ {τδ ∈ [T ]} ⊂ {τδ′ ∈ [T ′]} ∪ {τδ′ /∈ [T ′], τδ ∈ [T ]}
= {τδ′ ∈ [T ′]} ∪ {τδ′ /∈ [T ′], τδ ∈ [T ] \ [T ′]}. (4.7)
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Now observe that if
∑t
i=1 δi ≤ −d, then either

∑t
i=1Di ≤ q(t), or

∑t
i=1Di > q(t) and∑t

i=1(Di − δi) > q(t) + d > q(t). Therefore we have the inclusion

{
τδ ∈ [T ] \ [T ′]

}
⊂
{
∃t ∈ [T ] \ [T ′] :

t∑
i=1

Di ≤ q(t)
}

∪
{
∃t ∈ [T ∧ τδ] \ [T ′] :

t∑
i=1

(Di − δi) > q(t)

}
.

Substituting this inclusion into (4.7) we obtain

{
τ ∈ [T ]

}
⊂
{
τδ′ ∈ [T ′]

}
∪
{
τδ′ /∈ [T ′], ∃t ∈ [T ] \ [T ′] :

t∑
i=1

Di ≤ q(t)
}

∪
{
∃t ∈ [T ∧ τδ] \ [T ′] :

t∑
i=1

(Di − δi) > q(t)

}
.

Consequently we deduce that

P
(
τ 6∈ [T ]

∣∣Sn) ≥ P(τδ′ /∈ [T ′]
∣∣Sn)− P(τδ′ /∈ [T ′],∃t ∈ [T ] \ [T ′] :

t∑
i=1

Di ≤ q(t)
∣∣∣∣Sn)

− P
(
∃t ∈ [T ∧ τδ] \ [T ′] :

t∑
i=1

(Di − δi) > q(t) + d

∣∣∣∣ Sn)

= P

(
τδ′ /∈ [T ′],

t∑
i=1

Di > q(t) ∀t ∈ [T ] \ [T ′]

∣∣∣∣ Sn)

− P
(
∃t ∈ [T ∧ τδ] \ [T ′] :

t∑
i=1

(Di − δi) > q(t) + d

∣∣∣∣ Sn).
Recalling that {τ 6∈ [T ]} is equivalent to {d +

∑t
i=1 ηi > 0 ∀t ∈ [T ]}, and similarly

{τδ′ /∈ [T ′]} is equivalent to {
∑t
i=1 δ

′
i > −d ∀t ∈ [T ′]}, and applying Proposition 4.1 we

obtain that

P

(
d+

t∑
i=1

ηi > 0 ∀t ∈ [T ]

∣∣∣∣Sn)

≥ P
( t∑
i=1

δ′i > −d ∀t ∈ [T ′],

t∑
i=1

Di > q(t) ∀t ∈ [T ] \ [T ′]

∣∣∣∣Sn)− CTe−cn1/10

.

Since δ′i ≤ Di for each i, and therefore
∑T ′

i=1 δ
′
i ≤

∑T ′

i=1Di, we also have

P

( t∑
i=1

δ′i > −d ∀t ∈ [T ′],

t∑
i=1

Di > q(t) ∀t ∈ [T ] \ [T ′]

∣∣∣∣ Sn)

≥ P
( t∑
i=1

δ′i > −d ∀t ∈ [T ′],

T ′∑
i=1

δ′i ≥ ε
√
T ′,

t∑
i=1

Di > q(t) ∀t ∈ [T ] \ [T ′]

∣∣∣∣Sn)

≥ P
( t∑
i=1

δ′i > −d ∀t ∈ [T ′],

T ′∑
i=1

δ′i ≥ ε
√
T ′,

t∑
i=T ′+1

Di > q(t)− ε
√
T ′ ∀t ∈ [T ] \ [T ′]

∣∣∣∣ Sn).
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Since Dj is independent of
∑t
i=1 δ

′
i whenever j > t, and the sequence (Dj) is also

independent of Sn, the last probability equals

P

( t∑
i=1

δ′i > −d ∀t ∈ [T ′],

T ′∑
i=1

δ′i ≥ ε
√
T ′
∣∣∣∣Sn)P( t∑

i=T ′+1

Di > q(t)− ε
√
T ′ ∀t ∈ [T ] \ [T ′]

)
,

as desired.

To bound from below the first probability on the right-hand side of Lemma 4.2, the
idea is to substitute the process (

∑t
i=1 δ

′
i)t∈[T ′] with a random walk having (i.i.d.) mean

zero increments, and then to use known results about random walks to bound from
below the probability that such a random walk stays positive up to time T ′ and finishes
above level ε

√
T ′ at time T ′.

On the other hand, to bound from below the second probability on the right-hand
side of Lemma 4.2, the idea is to approximate the random walk (

∑t
i=T ′ Di)t∈[T ]\[T ′] with

(standard) Brownian motion, and then to bound from below the probability that Brownian
motion stays above the curve q(t) by the probability that it stays above two straight lines
which lie above the curve q(t).

The details are carried out in the following two propositions, whose proofs can be
found in Subsections 4.2 and 4.3, respectively.

Proposition 4.3. Let T ′ := bn2/3/A2c. Then there exists ε > 0 such that for all large n,

P

( t∑
i=1

δ′i > −d ∀t ∈ [T ′],

T ′∑
i=1

δ′i ≥ ε
√
T ′
∣∣∣∣ Sn) ≥ c A

n1/3
,

where c = c(d) > 0 is a finite constant that depends on d.

Proposition 4.4. Let T ′ := bn2/3/A2c and ε > 0. Then, for all large enough n, we have
that

P

( t∑
i=T ′+1

Di > q(t) − ε
√
T ′ ∀t ∈ [T ] \ [T ′]

)
≥ c

A3/2
e−

A3(d−1)(d−2)

8d2
+
λA2(d−1)

2d −λ
2A(d−1)
2(d−2) ,

where c = c(d, ε) > 0 is a finite constant that depends on d and ε.

We are now in a position to prove the lower bounds stated in Theorem 1.1, subject to
completing the proofs of Propositions 4.1, 4.3 and 4.4 above.

Proof of the lower bounds in Theorem 1.1. It follows from (4.1) and Lemma 4.2 that for
any 0 < T ′ < T ,

P(|C(Vn)| > An2/3 |Sn) ≥ P
( t∑
i=1

δ′i > −d ∀t ∈ [T ′],

T ′∑
i=1

δ′i ≥ ε
√
T ′
∣∣∣∣Sn)

· P
( t∑
i=T ′+1

Di > q(t)− ε
√
T ′ ∀t ∈ [T ] \ [T ′]

)
− CTe−cn

1/10

.

Propositions 4.3 and 4.4 then tell us that when T ′ = bn2/3/A2c this is at least

c′

A1/2n1/3
exp

(
− A3(d− 1)(d− 2)

8d2
+
λA2(d− 2)2

2d(d− 1)
− λ2A(d− 1)

2(d− 2)

)
− CTe−cn

1/10

.

Since A� n1/30 and |λ| = O(A), the first term above is dominant when n is large, and
the required bound on P(|C(Vn)| > An2/3) follows.
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To obtain the lower bound for the probability that |Cmax| is larger than An2/3, we
follow exactly the same argument elaborated in [14], which we recall here for the
reader’s convenience. First of all we remark that, for any (non-trivial) N0-valued random
variable X,

P(X ≥ 1 |Sn) ≥ E[X|Sn]2

E[X2|Sn]
; (4.8)

this simple fact can be proved by applying the Cauchy-Schwarz inequality to X1{X≥1}.
Denote by X =

∑n
i=1 1{|C(i)|∈[T,2T ]} the number of vertices contained in components

of size between T and 2T . Observe that X ≥ 1 implies |Cmax| ≥ T . Therefore, using (4.8)
we obtain

P (|Cmax| ≥ T |Sn) ≥ P(X ≥ 1 |Sn) ≥ E[X|Sn]2

E[X2|Sn]
. (4.9)

For the numerator, since Vn is a vertex selected uniformly at random from the set of
vertices we have

E[X|Sn]2 = n2P ( |C(Vn)| ∈ [T, 2T ] | Sn)
2
. (4.10)

Next we bound the denominator from above, ignoring the conditioning on Sn for now.
Given vertices i, j ∈ [n], recall that we write i↔ j if there exists a path of open edges
(that is, edges in G(n, d, p)) between i and j. Denote by V ′n a vertex sampled uniformly at
random from [n], independently of Vn. Then we can write

E[X2] = n2P (|C(Vn)| ∈ [T, 2T ], |C(V ′n)| ∈ [T, 2T ])

= n2P (|C(Vn)| ∈ [T, 2T ], V ′n ∈ C(Vn))

+ n2P (|C(Vn)| ∈ [T, 2T ], |C(V ′n)| ∈ [T, 2T ], Vn = V ′n) . (4.11)

Since V ′n is uniformly chosen independently of Vn, we have

n2P (|C(Vn)| ∈ [T, 2T ], V ′n ∈ C(Vn)) ≤ n2 2T

n
P (|C(Vn)| ∈ [T, 2T ])

= 2TnP (|C(Vn)| ∈ [T, 2T ]) . (4.12)

For the second term on the right-hand side of (4.11), we observe that once we have
run the exploration process until step τ and explored C(Vn), if we then observe that V ′n is
not in C(Vn) then we may choose (in part (b) of the exploration process) one of the stubs
incident to V ′n to begin the next phase. We may then repeat the argument in Section 3
for the exploration of this second component, to discover that the probability that it is
larger than T is again at most

c

A1/2n1/3
e−Gλ(A,d).

Thus we have

P (|C(Vn)| ∈ [T, 2T ], |C(V ′n)| ∈ [T, 2T ], Vn = V ′n)

≤ E
[
1{|C(Vn)|∈[T,2T ],Vn=V ′n}P ( |C(V ′n) ≥ T | Fτ , V ′n)

]
≤ c

A1/2n1/3
e−Gλ(A,d)P (|C(Vn)| ∈ [T, 2T ]) .

Substituting this and (4.12) into (4.11), we obtain

E[X2] ≤ 2TnP (|C(Vn)| ∈ [T, 2T ]) +
cn5/3

A1/2
e−Gλ(A,d)P (|C(Vn)| ∈ [T, 2T ])

≤ 3TnP (|C(Vn)| ∈ [T, 2T ])

for large n, and then by our usual argument,

E[X2|Sn] =
E[X21Sn ]

P(Sn)
≤ E[X2]

P(Sn)
≤ cE[X2] ≤ 3cTnP (|C(Vn)| ∈ [T, 2T ])
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for some finite constant c. In turn substituting this and (4.10) into (4.9), we have for
large n

P ( |Cmax| ≥ T | Sn) ≥ n2P ( |C(Vn)| ∈ [T, 2T ] | Sn)
2

3cTnP (|C(Vn)| ∈ [T, 2T ])
≥ c′n1/3

A

P ( |C(Vn)| ∈ [T, 2T ] | Sn)
2

P (|C(Vn)| ∈ [T, 2T ])

for some constant c′ > 0.
Now applying the lower bound

P ( |C(Vn)| ≥ T | Sn) ≥ c1
A1/2n1/3

e−Gλ(A,d)

obtained in the first part of this proof, together with the upper bounds

P (|C(Vn)| ∈ [T, 2T ]) ≤ P (|C(Vn)| ≥ T ) ≤ c2
A1/2n1/3

e−Gλ(A,d)

which follows from (3.20) and

P ( |C(Vn)| ≥ 2T | Sn) ≤ c3
(2A)1/2n1/3

e−Gλ(2A,d)

which follows from the upper bound in Theorem 1.1 proved in Section 3 we obtain

P ( |Cmax| ≥ T | Sn) ≥ c′n1/3

A

(
c1e
−Gλ(A,d)

A1/2n1/3
− c3e

−Gλ(2A,d)

(2A)1/2n1/3

)2(
c2e
−Gλ(A,d)

A1/2n1/3

)−1

.

Provided that A is large enough, the second term inside the first set of parentheses is
smaller than 1/2 times the first, and the result follows.

The remainder of Section 4 is devoted to the proofs of the results used above. We
start by proving Proposition 4.1 in Section 4.1, and then we establish our two main tools,
namely Propositions 4.3 and 4.4, in Sections 4.2 and 4.3 respectively. In Section 4.3 we
will use two lemmas whose proofs we delay until Section 4.4. The most substantial of
these is Lemma 4.18, where we use a strong Brownian approximation to estimate the
probability that a random walk remains above the curve q(t) seen above.

4.1 Proof of Proposition 4.1

Recall that we defined

Fi = {v(hi) ∈ V(d)
i−1}, F ′i = {v(hi) ∈ V(d−1)

i−1 } and F−i =

{
v(hi) ∈

d−2⋃
m=1

V(m)
i−1

}
(4.13)

and also

δi = 1Ri1Fi(d− 1) + 1Ri1F ′i (d− 2)− 1{hi∈Ai−1} − 1, (4.14)

whereas

Di = 1Ri(d− 1)− 1. (4.15)

We want to quantify the difference between δi and Di. There are essentially three ways
in which the two objects can differ: if Ri∩F−i occurs, then δi = −1 whereas Di = d−2; if
hi ∈ Ai−1, then δi = −2 whereas Di could either equal d− 2 or −1; and if Ri ∩ F ′i occurs,
then δi = d − 3 whereas Di = d − 2. The first two of these events occur infrequently,
which we show in Section 4.1.1. The third event, Ri ∩ F ′i , is then the main contribution
to the difference between δi and Di, and we control how often this event occurs in
Section 4.1.2.
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4.1.1 The events Ri ∩ F−i and {ht ∈ At−1} rarely occur for t ∈ [T ]

We begin this section by showing that the number of vertices with at most d− 2 unseen
stubs is unlikely to be too large. The bound provided—using a straightforward Chernoff
estimate—is not the best possible, but will suffice for our purposes.

Lemma 4.5. Let i ∈ [T − 1]. Then, for all l > 0 and sufficiently large n ∈ N, we have that

P

(∣∣∣∣∣
d−2⋃
m=1

V(m)
i

∣∣∣∣∣ > i2

n
+ l

)
≤ Ce−n

1/2l
T

for some finite constant C.

Proof. Note that, for every r > 0 we have

P

(∣∣∣∣∣
d−2⋃
m=1

V(m)
i

∣∣∣∣∣ > i2

n
+ l

)
≤ e−ri

2/n−rlE

[
e
r
∣∣∣⋃d−2

m=1 V
(m)
i

∣∣∣]
. (4.16)

Observe that |
⋃d−2
m=1 V

(m)
i−1 | can only increase during step i if vertex v(hi) has d− 1 unseen

stubs (and we do not keep the edge eihi in the percolation). Thus we can write∣∣∣∣∣
d−2⋃
m=1

V(m)
i

∣∣∣∣∣ ≤
∣∣∣∣∣
d−2⋃
m=1

V(m)
i−1

∣∣∣∣∣+ 1{
v(hi)∈V(d−1)

i−1

}.
Therefore, recalling that Ft is the σ-algebra generated by the exploration process up to
step t, we have that

E
[
e
r
∣∣∣⋃d−2

m=1 V
(m)
i

∣∣∣∣∣∣Fi−1

]
≤ er

∣∣∣⋃d−2
m=1 V

(m)
i−1

∣∣∣ (
1 + P

(
v(hi) ∈ V(d−1)

i−1

∣∣∣Fi−1

)
(er − 1)

)
.

Furthermore, at the end of step i−1, we can have at most i−1 vertices with d−1 unseen
stubs; indeed, this can only happen if at each step j ∈ [i− 1] we pick a stub incident to a
fresh vertex and we do not keep the edge ejhj . Thus

P
(
v(hi) ∈ V(d−1)

i−1

∣∣∣Fi−1

)
≤ (d− 1)(i− 1)

dn− 2(i− 1)− 1
,

and combining these two inequalities we obtain

E
[
e
r
∣∣∣⋃d−2

m=1 V
(m)
i

∣∣∣]
= E

[
E
(
e
r
∣∣∣⋃d−2

m=1 V
(m)
i

∣∣∣∣∣∣Fi−1

)]
≤
(

1 +
(d− 1)(i− 1)

dn− 2(i− 1)− 1
(er − 1)

)
E

[
e
r
∣∣∣⋃d−2

m=1 V
(m)
i−1

∣∣∣]
.

Iterating and using the inequality 1 + x ≤ ex valid for all x ∈ R, we see that

E

[
e
r
∣∣∣⋃d−2

m=1 V
(m)
i

∣∣∣] ≤ i−1∏
j=1

(
1 +

(d− 1)j

dn− 2j − 1
(er − 1)

)
≤ exp

(
(er − 1)

i−1∑
j=1

j

n(1− 2j+1
dn )

)
.

Finally, since for large n and j ≤ i ≤ T we have 2j+1
dn ≤ 1/2, the above is at most

exp((er − 1)i2/n), and using the inequality ex ≤ 1 + x + x2 valid for x ∈ [0, 1], provided
r ∈ (0, 1] we have

E

[
e
r
∣∣∣⋃d−2

m=1 V
(m)
i

∣∣∣] ≤ exp

(
ri2

n
+
r2i2

n

)
.
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Substituting this into (4.16), we have for r ∈ (0, 1],

P

(∣∣∣∣∣
d−2⋃
m=1

V(m)
i

∣∣∣∣∣ > i2

n
+ l

)
≤ e−ri

2/n−rl exp

(
r
i2

n
+ r2 i

2

n

)
= e−rl+r

2i2/n.

Taking r = n1/2/T � 1 we thus see that

P

(∣∣∣∣∣
d−2⋃
m=1

V(m)
i

∣∣∣∣∣ > i2

n
+ l

)
≤ Ce− ln

1/2

T

for some finite constant C, which completes the proof.

By a similar method we show that the number of active stubs is unlikely to be too
large. The idea here is that we can upper bound |At| by d + (d − 1) Bint,1/(d−1)−t and
use standard large deviations methods that are accurate up to a constant multiple of
t/(d− 1), hence the restriction on ω in the lemma below.

Lemma 4.6. For any t ∈ N and ω ≤ 3t/(d− 1),

P(∃i ∈ [t ∧ τ ] : |Ai| > ω) ≤ C exp

(
− ω2

4p(d− 1)t
+
ω

2

(
1− 1

p(d− 1)

))
where C = C(d) is a finite constant which depends on d.

Proof. We note first that for i ≤ τ ,

|Ai| = d+

i∑
j=1

ηj ≤ d+

i∑
j=1

(
1Rj (d− 1)− 1

)
= d+

i∑
j=1

Dj

and therefore, for any r > 0,

P(∃i ∈ [t∧τ ] : |Ai| > ω) ≤ P
(

max
i≤t∧τ

er
∑i
j=1Dj > er(ω−d)

)
≤ P

(
max
i≤t

er
∑i
j=1Dj > er(ω−d)

)
.

Since the left-hand side above is monotone increasing in λ, we may without loss of
generality suppose that λ ≥ 0, so that p ≥ 1/(d− 1). Then the process (

∑i
j=1Dj , i ≥ 0)

is a submartingale, and therefore so is exp(r
∑i
j=1Dj) for any r > 0. From Doob’s

submartingale inequality we obtain

P(∃i ∈ [t ∧ τ ] : |Ai| > ω) ≤ E
[
er
∑t
j=1Dj

]
e−r(ω−d). (4.17)

Now observe that

E[er
∑t
j=1Dj ] =

t∏
i=1

(
er(d−2)p+ e−r(1− p)

)
= e−rt

t∏
i=1

(1 + p(er(d−1) − 1))

≤ exp
(
−rt+ pt(er(d−1) − 1)

)
.

Choosing r = ω
2p(d−1)t , since ω ≤ 3t/(d − 1) we note that r(d − 1) ≤ 3/2 and therefore

er(d−1) − 1 ≤ r(d− 1) + r2(d− 1)2. Combining this with (4.17), we have

P(∃i ∈ [t ∧ τ ] : |Ai| > ω) ≤ exp
(
−rt+ pt(r(d− 1) + r2(d− 1)2)− rω + rd

)
which, after simplifying, gives the desired result.
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We can then apply the above two lemmas to show our main result for this section,
which says that

∑t
i=1(1Ri∩F−i

+ 1{ht∈At−1}) is likely to be small when t ∈ [T ]. Again we
use a straightforward Chernoff bound.

Corollary 4.7. Suppose that h = hn satisfies A3/2 � h� T 1/2. Then for all sufficiently
large n ∈ N, we have that

P

(
∃t ∈ [T ∧ τ ] :

t∑
i=1

(1Ri∩F−i
+ 1{ht∈At−1}) >

4t3

3dn2
+

(
8T 1/2t

n
+ 1

)
h

)
≤ CTe−h+C ′e−ch

2

for some finite constant C and C ′ = C ′(d), c = c(d) > 0 finite constants that depend only
on d.

Proof. Define the event

Vt,h =

t−1⋂
i=1

{∣∣∣∣∣
d−2⋃
m=1

V(m)
i

∣∣∣∣∣ ≤ i2

n
+

Th

n1/2
, |Ai| ≤ T 1/2h

}
and also let At = {ht ∈ At−1}. We split the probability that we want to bound depending
on whether or not VT∧τ,h occurs. That is, we have

P

(
∃t ∈ [T ∧ τ ] :

t∑
i=1

1(Ri∩F−i )∪Ai >
4t3

3dn2
+

(
8T 1/2t

n
+ 1

)
h

)

≤
T∑
t=1

P

(
t ≤ τ,

t∑
i=1

1(Ri∩F−i )∪Ai >
4t3

3dn2
+

(
8T 1/2t

n
+ 1

)
h, VT∧τ,h

)
+ P(V cT∧τ,h)

≤
T∑
t=1

E

[
e
∑t
i=1 1(Ri∩F

−
i

)∪Ai1Vt,h

]
exp

(
− 4t3

3dn2
−
(

8T 1/2t

n
+ 1

)
h

)
+ P(V cT∧τ,h) (4.18)

Applying Lemma 4.5 with l = Th/n1/2 and taking a union bound over i = 1, . . . , T − 1,
and also applying Lemma 4.6 with t = T and ω = T 1/2h (note the condition h � A3/2

ensures that the ω term is of smaller order than the ω2 term in the exponent), we see
that

P
(
V cT∧τ,h

)
≤ C(T − 1)e−h + C ′e−ch

2

. (4.19)

For the remaining term on the right-hand side of (4.18), we will apply Markov’s
inequality to exp(

∑t
i=1 1(Ri∩F−i )∪Ai). To this end, recalling that Ft is the σ-algebra

generated by the exploration process up to step t, we now focus on bounding

E

[
e
∑t
i=1 1(Ri∩F

−
i

)∪Ai1Vt,h

]
= E

[
E
[
e
1
(Rt∩F

−
t )∪At

∣∣∣Ft−1

]
e
∑t−1
i=1 1(Ri∩F

−
i

)∪Ai1Vt,h

]
. (4.20)

Note that

E
[
e
1
(Rt∩F

−
t )∪At

∣∣∣Ft−1

]
= 1 + P((Rt ∩ F−t ) ∪At|Ft−1)(e− 1)

= 1 + pP(F−t |Ft−1)(e− 1) + P(At|Ft−1)(e− 1)

≤ 1 + 2pP(F−t |Ft−1) + 2P(At|Ft−1)

and on the event Vt,h,

2pP(F−t |Ft−1) + 2P(At|Ft−1) ≤
2p(d− 2)

∣∣∣⋃d−2
m=1 V

(m)
t−1

∣∣∣
dn− 2(t− 1)− 1

+
2 |At−1|

dn− 2(t− 1)− 1

≤
2p(d− 2)

(
(t−1)2

n + Th
n1/2

)
dn− 2(t− 1)− 1

+
2T 1/2h

dn− 2(t− 1)− 1
.
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When n is large, we have 2(t− 1) + 1 ≤ dn/2, p(d− 2) ≤ 1 and T ≤ n, and therefore

E
[
e
1
(Rt∩F

−
t )∪At

∣∣∣Ft−1

]
≤ 1 +

4

dn2

(
(t− 1)2 + Thn1/2

)
+

4T 1/2h

dn

≤ 1 +
4

dn2

(
(t− 1)2 + 2T 1/2hn

)
.

Substituting this estimate into (4.20), we obtain that

E

[
e
∑t
i=1 1(Ri∩F

−
i

)∪Ai1Vt,h

]
≤ E

[(
1 +

4

dn2

(
(t− 1)2 + 2T 1/2hn

))
e
∑t−1
i=1 1(Ri∩F

−
i

)∪Ai1Vt,h

]
≤
(

1 +
4

dn2

(
(t− 1)2 + 2T 1/2hn

))
E

[
e
∑t−1
i=1 1(Ri∩F

−
i

)∪Ai1Vt−1,h

]
.

Iterating, and then using the inequality 1 + x ≤ ex valid for all x ∈ R, we have

E

[
e
∑t
i=1 1(Ri∩F

−
i

)∪Ai1Vt,h

]
≤

t∏
i=1

(
1 +

4

dn2

(
(i− 1)2 + 2T 1/2hn

))
≤ exp

(
4

dn2

(
t3

3
+ 2T 1/2hnt

))
.

Substituting this and (4.19) into (4.18), we obtain

P

(
∃t ∈ [T ] :

t∑
i=1

1(Ri∩F−i )∪Ai >
4t3

3dn2
+

(
4

d
+ 1

)
h

)
≤

T∑
t=1

e−h + C(T − 1)e−h + e−ch
2

and the result follows.

4.1.2 Controlling how often Ri ∩ F ′i occurs

The purpose of our next result, proved in Subsection 4.6, is to control the (random) sums∑t
i=1 1Ri1F ci over the interval [T ] \ [T ′]. Specifically, in Lemma 4.8 below we substitute

the process (
∑t
i=1 1Ri1F ci )t∈[T ]\[T ′] with a deterministic function of t, which will be of

great importance in order to obtain the correct exponential term in our lower bounds
stated in Theorem 1.1.

Lemma 4.8. Let θ > 0. Then, for all sufficiently large n, we have that

P

(
∃t ∈ [T ] :

t∑
i=1

1Ri1F ci > p(1− 2/d)
t2

2n
+

2T 3

n2
+ θ

)
≤ CTe−n

1/2θ/T (4.21)

for some finite constant C.

Proof. Note that for any x > 0 and r > 0,

P

(
t∑
i=1

1Ri1F ci > x

)
≤ E

[
e
r
∑t
i=1 1Ri1Fci

]
e−rx. (4.22)

Now since V(d)
0 consists of all vertices except Vn, and at most one vertex can be removed

from V(d)
i at each step i of the exploration process, we have∣∣∣V(d)

i

∣∣∣ ≥ n− 1− i
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and therefore, recalling that Ft is the σ-algebra generated by the exploration process up
to time t,

E
[
er1Rt1F

c
t

∣∣∣Ft−1

]
= 1 + pP(F ct |Ft−1)(er − 1)

= 1 + p (1− P(Ft|Ft−1)) (er − 1)

= 1 + p

(
1−

d|V(d)
t−1|

dn− 2(t− 1)− 1

)
(er − 1)

≤ 1 + p

(
1− d(n− 1− (t− 1))

dn− 2(t− 1)− 1

)
(er − 1).

Thus

E
[
e
r
∑t
i=1 1Ri1Fci

]
≤
(

1 + p

(
1− d(n− 1− (t− 1))

dn− 2(t− 1)− 1

)
(er − 1)

)
E
[
e
r
∑t−1
i=1 1Ri1Fci

]
and iterating we obtain

E
[
e
r
∑t
i=0 1Ri1Fci

]
≤
t−1∏
i=1

(
1 + p

(
1− d(n− 1− i)

dn− 2i− 1

)
(er − 1)

)

≤ exp

(
p(er − 1)

t−1∑
i=0

(
1− d(n− 1− i)

dn− 2i− 1

))
.

Now

t−1∑
i=0

(
1− d(n− 1− i)

dn− 2i− 1

)
=

t∑
i=1

(
1− n− 1− i

n

1

1− 2i+1
dn

)

≤
t−1∑
i=0

(
1−

(
1− i+ 1

n

)(
1 +

2i+ 1

dn

))

=

t−1∑
i=0

(
(d− 2)i

dn
+
d− 1

n
+

(i+ 1)(2i+ 1)

dn2

)
≤ (1− 2/d)

t2

2n
+
dt

n
+

2t3

dn2
.

Bounding dt/n+ 2t3/dn2 ≤ T 3/n2 for large n, and using the inequalities er ≤ 1 + r + r2

and er ≤ 1 + 2r for r ≤ 1, we deduce that for r ≤ 1,

E
[
e
r
∑t
i=1 1Ri1Fci

]
≤ exp

(
p(er − 1)

(
(1− 2/d)

t2

2n
+
T 3

n2

))
≤ exp

(
rp(1− 2/d)

t2

2n
+ r2p(1− 2/d)

t2

2n
+

2rT 3

n2

)
.

Therefore, substituting into (4.22), if n is large enough then (provided r ≤ 1) we obtain

P

(
t∑
i=1

1Ri1F ci ≥ p(1− 2/d)
t2

2n
+

2T 3

n2
+ θ

)
≤ er

2p(1−2/d)t2/2n−rθ ≤ er
2T 2/2n−rθ.

The desired conclusion follows by taking r = n1/2/T and using a union bound.

We now have the ingredients to complete the proof of Proposition 4.1.
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Proof of Proposition 4.1. Recalling again the definitions (4.14) and (4.15) of δi and Di

respectively, and also (4.13), we observe that

0 ≤ Di − δi = 1Ri∩F ′i + (d− 1)1Ri∩F−i
+ 1{hi∈Ai−1}(1 + (d− 1)1Ri)

≤ 1Ri∩F ci + d(1Ri∩F−i
+ 1{hi∈Ai−1}).

and therefore, since τδ ≤ τ ,

P

(
∃t ∈ [T ∧ τδ] :

t∑
i=1

(Di − δi) > p(1− 2/d)
t2

2n
+An4/15

)

≤ P

(
∃t ∈ [T ] :

t∑
i=1

1Ri∩F ci > p(1− 2/d)
t2

2n
+

2An4/15

3

)

+ P

(
∃t ∈ [T ∧ τ ] :

t∑
i=1

(1Ri∩F−i
+ 1{hi∈Ai−1}) >

An4/15

3d

)
.

(4.23)

We now apply Corollary 4.7 with h = An1/10. This tells us that for all sufficiently large n
we have

P

(
∃t ∈ [T ∧ τ ] :

t∑
i=1

(1Ri∩F−i
+ 1{ht∈At−1}) >

4t3

3dn2
+

(
8T 1/2t

n
+ 1

)
An1/10

)
≤ CTe−An

1/10

+ e−cA
2n1/5

,

and since for t ≤ T we have

4t3

3dn2
+

(
8T 1/2t

n
+ 1

)
An1/10 = o(An2/5)

we deduce that for large n,

P

(
∃t ∈ [T ∧ τ ] :

t∑
i=1

(1Ri∩F−i
+ 1{ht∈At−1}) >

An2/5

3d

)
≤ CTe−An

1/10

. (4.24)

Next we apply Lemma 4.8 with θ = An4/15/2, which tells us that for all sufficiently
large n we have

P

(
∃t ∈ [T ] :

t∑
i=1

1Ri1F ci > p(1− 2/d)
t2

2n
+

2T 3

n2
+An4/15/2

)
≤ C ′Te−An

23/30/2T .

Since 2T 3/n2 = o(An4/15) and An23/30/2T = Θd(n
1/10), combining this with (4.24) and

substituting the estimates into (4.23) we obtain that

P

(
∃t ∈ [T ∧ τδ] :

t∑
i=1

(Di − δi) > p(1− 2/d)
t2

2n
+An4/15

)
≤ CTe−An

1/10

+ C ′Te−cn
1/10

.

This completes the proof.

4.2 The probability of staying positive and finishing above ε
√
T ′: proof of Propo-

sition 4.3

Here we aim to show that for a sufficiently small constant ε > 0,

P

( t∑
i=1

δ′i > −d ∀t ∈ [T ′],

T ′∑
i=1

δ′i ≥ ε
√
T ′
∣∣∣∣Sn) ≥ cA

n1/3
, (4.25)
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where we recall that
δ′i = 1Ri1Fi(d− 1)− 1{hi∈Ai−1} − 1.

We do this in two parts: we show that, if we replace δ′i with the simpler

δ′′i := 1Ri1Fi(d− 1)− 1,

then for any γ ∈ [0, 1/2),

P

( t∑
i=1

δ′′i ≥ tγ ∀t ∈ [T ′],

T ′∑
i=1

δ′′i ≥ 2ε
√
T ′
∣∣∣∣Sn) ≥ cA

n1/3
, (4.26)

and then we show that for γ ∈ (0, 1/2),

P

(
∃t ∈ [T ′ ∧ τ ] :

t∑
i=1

1{hi∈Ai−1} ≥ t
γ

∣∣∣∣Sn) ≤ c

n1/2
� A

n1/3
, (4.27)

where we recall that

τ = min{t ∈ N : |At| = 0} = min

{
t ∈ N : d+

t∑
i=1

ηi = 0

}
.

We will then combine (4.26) and (4.27) to obtain (4.25), proving Proposition 4.3. We note
that the choice of γ is not important above; one may choose, for example, γ = 1/4 in
both (4.26) and (4.27). We retain the general γ in the proofs since this is no extra work.

To prove (4.26), we will use a coupling and a change of measure to replace (δ′′i )i≥1

with i.i.d. Bernoulli random variables whose parameter does not depend on n, and then
apply a theorem of Ritter [39]. We will prove (4.27) by applying Lemma 4.6 to show that
the number of active stubs is never too large; then we will break [T ′] up into two smaller
intervals, replace the barrier (tγ)t≥1 with a constant barrier on each of these smaller
intervals, and use simple Markov and Chernoff bounds to complete the proof.

4.2.1 Proof of (4.26), step 1: removing the conditioning on Sn

We begin by removing the conditioning on Sn. The idea boils down to the fact that the
probability of creating a non-simple edge before step T ′ of the exploration process is
at most c

A2n1/3 , and the probability of creating a non-simple edge after step T ′ is of the
same order as the probability that we create a non-simple edge anywhere in the graph,
regardless of what happens in the first T ′ steps.

Lemma 4.9. For large n,

P

( t∑
i=1

δ′′i ≥ tγ ∀t ∈ [T ′],

T ′∑
i=1

δ′′i ≥ 2ε
√
T ′
∣∣∣∣Sn)

≥ 1

2
P

( t∑
i=1

δ′′i ≥ tγ ∀t ∈ [T ′],

T ′∑
i=1

δ′′i ≥ 2ε
√
T ′
)
− c

A2n1/3

where c = c(d) is a finite constant that depends only on d.

In order to prove this result, we need the following lemma that appears in [33].

Lemma 4.10 ([33, Lemma 23]). Let d ≥ 3 be fixed and let d̄1, d̄2 ∈ {1, . . . , d}m be degree
sequences of length m such that each sequence sums to an even number. Let P1 be the
distribution of a uniform perfect matching on

∑m
i=1 d̄1(i) vertices, divided into m tuples
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such that the i-th tuple has d̄1(i) vertices in it. Let S be the event that contracting each
tuple into a single vertex yields a simple graph. Assume m→∞. If d̄1 = (d, . . . , d) and
d̄2 has (1− o(1))m entries with the value d then

P2(S) = (1 + o(1))P1(S).

We now return to the proof of our lemma.

Proof of Lemma 4.9. Let Sn(t) be the event that the multigraph produced by the first
t steps of the exploration process (including both retained and non-retained edges) is
simple. We first claim that

P(Sn|FT ′) = (1− o(1))P(Sn)1Sn(T ′). (4.28)

This follows from Lemma 4.10 above, since |V(d)
T ′ | ≥ n− 1− T ′ = (1− o(1))n (indeed, at

most one vertex can be removed from the set of fresh vertices at each step). Next we
claim that for large n,

P(Sn(T ′)c) ≤ 2d

A2n1/3
. (4.29)

Indeed, at each step t of the exploration process, to create a non-simple edge, et has
to pair either with one of its sister stubs (i.e. those associated to its own vertex), of
which there are d− 1, or with a sister stub of a stub that one of its sisters has already
been paired with, of which there are at most (d− 1)2. Thus the probability of creating a
non-simple edge at step t is at most

(d− 1) + (d− 1)2

dn− 2(t− 1)− 1
,

which is at most 2d/n for t ≤ T ′ when n is large. Our claim (4.29) then follows by taking
a union bound over all t ≤ T ′.

Now, writing V for the event of interest,

V :=

{ t∑
i=1

δ′′i ≥ tγ ∀t ∈ [T ′],

T ′∑
i=1

δ′′i ≥ 2ε
√
T ′
}
,

we have
P(V ∩ Sn) = E [P(V ∩ Sn|FT ′)] = E [1V P(Sn|FT ′)] .

By (4.28), this equals

(1 + o(1))P(Sn)P(V ∩ Sn(T ′)) = (1 + o(1))P(Sn)
(
P(V )− P(V ∩ Sn(T ′)c)

)
,

and we deduce that

P(V |Sn) = (1 + o(1))
(
P(V )− P(V ∩ Sn(T ′)c)

)
≥ (1 + o(1))

(
P(V )− P(Sn(T ′)c)

)
.

The result now follows from (4.29).

4.2.2 Proof of (4.26), step 2: replacing δ′′i with i.i.d. random variables

Lemma 4.9 ensures that we do not need to include the conditioning on Sn in order to
prove (4.26). The next step in the proof is to compare δ′′i with

∆′′i := 1Ri1{Ui≤1−T ′/n}(d− 1)− 1,

where (Ui)i≥0 is a sequence of U([0, 1]) random variables, independent of everything
else. We would like to show the following.
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Proposition 4.11. For any γ ≥ 0 and ε > 0 we have

P

( t∑
i=1

δ′′i ≥ tγ ∀t ∈ [T ′],

T ′∑
i=1

δ′′i ≥ ε
√
T ′
)
≥ P

( t∑
i=1

∆′′i ≥ tγ ∀t ∈ [T ′],

T ′∑
i=1

∆′′i ≥ ε
√
T ′
)
.

The proof of Proposition 4.11 is almost identical to that of Proposition 3.3. We first
note that, since |V(d)

i | ≥ n − 1 − i for each i ≥ 1 (indeed, at most one vertex can be
removed from the set of fresh vertices at each step), the probability that hj is fresh when
j ∈ [T ′] is

d|V(d)
j−1|

dn− 2(j − 1)− 1
≥ d(n− j)

dn
= 1− j/n ≥ 1− T ′/n.

Thus
P(δ′′j = d− 2 | Fj−1) ≥ 1− T ′/n = P(∆′′j = d− 2 | Fj−1).

Since δ′′j and ∆′′j can only take the same two possible values, this is the same as saying
that δ′′j stochastically dominates ∆′′j , given Fj−1. This is the equivalent of Lemma 3.9.

We apply this fact to prove the following lemma, which is the equivalent of Lemma 3.10
and the main ingredient in proving Proposition 4.11.

Lemma 4.12. Let

S̄
(j)
t = d+

j∧t∑
i=1

δ′′i +

t∑
i=(j∧t)+1

∆′′i .

For any γ ≥ 0, ε > 0 and j ∈ [T ′],

P
(
S̄

(j)
t ≥ tγ ∀t ∈ [T ′], S̄

(j)
T ′ ≥ ε

√
T ′
∣∣∣ Fj−1

)
≥ P

(
S̄

(j−1)
t ≥ tγ ∀t ∈ [T ′], S̄

(j−1)
T ′ ≥ ε

√
T ′
∣∣∣ Fj−1

)
.

Proof. We proceed almost exactly as in the proof of Lemma 3.10, and therefore leave
out some of the details. By summing over the possible values of S̄(j)

j−1 and using the

Fj−1-measurability of (S̄
(j)
i )j−1

i=1 , we have

P
(
S̄

(j)
t ≥ tγ ∀t ∈ [T ′], S̄

(j)
T ′ ≥ ε

√
T ′
∣∣Fj−1

)
=

∞∑
s=1

1{S̄(j)
j−1=s}1{S̄(j)

i ≥iγ ∀i∈[j−1]}

· P
(
s+ δ′′j +

t∑
i=j+1

∆′′i ≥ tγ ∀t ∈ [T ′] \ [j − 1], s+ δ′′j +

T ′∑
i=j+1

∆′′i ≥ ε
√
T ′
∣∣∣∣Fj−1

)
.

Then summing further over the possible values Q := {−1, d − 2} of δ′′j , and using the

independence of (∆i)
T ′

i=j+1 from Fj−1, we have

P
(
S̄

(j)
t ≥ tγ ∀t ∈ [T ′], S̄

(j)
T ′ ≥ ε

√
T ′
∣∣∣ Fj−1

)
=

∞∑
s=1

1{S̄(j)
j−1=s}1{S̄(j)

i ≥iγ ∀i∈[j−1]}

·
∑
q∈Q

P

(
s+ q +

t∑
i=j+1

∆′′i ≥ tγ ∀t ∈ [T ′] \ [j − 1], s+ q +

T ′∑
i=j+1

∆′′i ≥ ε
√
T ′
)

· P
(
δ′′j = q

∣∣Fj−1

)
.

(4.30)
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We also observe that exactly the same argument holds for S̄(j−1)
t if we replace δ′′j with

∆′′j ; that is,

P
(
S̄

(j−1)
t ≥ tγ ∀t ∈ [T ′], S̄

(j−1)
T ′ ≥ ε

√
T ′
∣∣∣ Fj−1

)
=

∞∑
s=1

1{S̄(j−1)
j−1 =s}1{S̄(j−1)

i ≥iγ ∀i∈[j−1]}

·
∑
q∈Q

P

(
s+ q +

t∑
i=j+1

∆′′i ≥ tγ ∀t ∈ [T ′] \ [j − 1], s+ q +

T ′∑
i=j+1

∆′′i ≥ ε
√
T ′
)

· P
(
∆′′j = q

∣∣Fj−1

)
.

(4.31)

Now since

P

(
s+ q +

t∑
i=j+1

∆′′i ≥ tγ ∀t ∈ [T ′] \ [j − 1], s+ q +

T ′∑
i=j+1

∆′′i ≥ ε
√
T ′
)

is increasing in q, and δ′′j stochastically dominates ∆′′j given Fj−1 (as shown above), we
see that (4.30) ≥ (4.31), completing the proof.

Proof of Proposition 4.11. Using the notation in Lemma 4.12 and taking expectations,
we have

P
(
S̄

(j)
t ≥ tγ ∀t ∈ [T ′], S̄

(j)
T ′ ≥ ε

√
T ′
)
≥ P

(
S̄

(j−1)
t ≥ tγ ∀t ∈ [T ′], S̄

(j−1)
T ′ ≥ ε

√
T ′
)
.

Iterating, we obtain

P
(
S̄

(T ′)
t ≥ tγ ∀t ∈ [T ′], S̄

(T ′)
T ′ ≥ ε

√
T ′
)
≥ P

(
S̄

(0)
t ≥ tγ ∀t ∈ [T ′], S̄

(0)
T ′ ≥ ε

√
T ′
)
.

However S(T ′)
t = d+

∑t
i=1 δ

′′
i and S(0)

t = d+
∑t
i=1 ∆′′i , so the above is exactly the result

we are trying to prove.

4.2.3 Proof of (4.26), step 3: replacing ∆′′i with mean-zero random variables
that do not depend on n

Although the random variables (∆′′i )T
′

i=1 are i.i.d. and therefore easier to work with than
(δ′′i )T

′

i=1, their distribution depends on n and has a small but non-zero drift. We now
replace ∆′′i with mean-zero random variables that do not depend on n.

Lemma 4.13. Let (D′′i )T
′

i=0 be a sequence of i.i.d. random variables with P(D′′i = d−2) =
1
d−1 = 1− P(D′′i = −1). Suppose that |λ| = O(A). Then for any γ ≥ 0 and ε > 0,

P

( t∑
i=1

∆′′i ≥ tγ ∀t ∈ [T ′],

T ′∑
i=1

∆′′i ≥ ε
√
T ′
)

≥ cP
( t∑
i=1

D′′i ≥ tγ ∀t ∈ [T ′],

T ′∑
i=1

D′′i ∈
[
ε
√
T ′,
√
T ′/ε

])
.

where c = c(d, ε) > 0 is a constant depending only on d and ε.

The fact that we ask
∑T ′

i=1D
′′
i to be in [ε

√
T ′,
√
T ′/ε] rather than simply to be larger

than ε
√
T ′ is a matter of convenience in the proof; we will use a change of measure to
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remove the drift on ∆′′, and in this step we will need some control on
∑T ′

i=1 ∆′′ from
above under the new measure. The easiest way to do this is simply to restrict the sum to

a finite interval; and at any rate
∑T ′

i=1D
′′
i should be of order

√
T ′ with high probability,

so we will not get a significantly worse lower bound by doing this.
To prove Lemma 4.13 we will use an exponential change of measure with a specific

parameter ν. We first calculate some asymptotics for quantities involving ν.

Lemma 4.14. Let

ν =
1

d− 1
log(1− p(1− T ′/n))− 1

d− 1
log((d− 2)p(1− T ′/n)). (4.32)

Then

ν =
T ′

n(d− 2)
− λ

n1/3(d− 2)
+O

(
λ2

n2/3
+
λT ′

n4/3
+

(T ′)2

n2

)
. (4.33)

and

E
[
eν∆′′1

]
= exp

(
O

(
λ2

n2/3
+
λT ′

n4/3
+

(T ′)2

n2

))
. (4.34)

Proof. Note that, since p = (1 + λn−1/3)(d− 1)−1, we have

1

d− 1
log(1− p(1− T ′/n))

=
1

d− 1
log

(
1− 1

d− 1
+

T ′

n(d− 1)
− λ

n1/3(d− 1)
+

λT ′

n4/3(d− 1)

)
=

1

d− 1
log

(
d− 2

d− 1

)
+

1

d− 1
log

(
1 +

T ′

n(d− 2)
− λ

n1/3(d− 2)
+

λT ′

n4/3(d− 2)

)
.

Since log(1 + x) = x− x2/2 +O(x3) for x ∈ (−1, 1), we have

log

(
1 +

T ′

n(d− 2)
− λ

n1/3(d− 2)
+

λT ′

n4/3(d− 2)

)
=

T ′

n(d− 2)
− λ

n1/3(d− 2)
−O

(
λ2

n2/3
+
λT ′

n4/3
+

(T ′)2

n2

)
.

Therefore we have shown that

1

d− 1
log(1− p(1− T ′/n))

=
1

d− 1
log

(
d− 2

d− 1

)
+

1

(d− 1)(d− 2)

(
T ′

n
− λ

n1/3

)
−O

(
λ2

n2/3
+
λT ′

n4/3
+

(T ′)2

n2

)
.

Very similar calculations lead to

1

d− 1
log((d− 2)p(1− T ′/n))

=
1

d− 1
log

(
d− 2

d− 1

)
− 1

d− 1

(
T ′

n
− λ

n1/3

)
−O

(
λ2

n2/3
+
λT ′

n4/3
+

(T ′)2

n2

)
.

Combining these two estimates leads to (4.33).
For (4.34), since ∆′′1 := 1R11{U1≤1−T ′/n}(d− 1)− 1, we see that

E
[
eν∆′′1

]
= e−ν

(
eν(d−1)p(1− T ′/n) + 1− p(1− T ′/n)

)
= e−ν

(
1 + p(1− T ′/n)(eν(d−1) − 1)

)
.
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Using the definition (4.32) of ν it is easy to see that

1 + p(1− T ′/n)(eν(d−1) − 1)

= 1 +
T ′

n(d− 2)
− λ

n1/3(d− 2)
+

λT ′

n4/3(d− 2)

= exp

(
T ′

n(d− 2)
− λ

n1/3(d− 2)
+O

(
λ2

n2/3
+
λT ′

n4/3
+

(T ′)2

n2

))
.

Combining this with (4.33) gives (4.34) and completes the proof.

Equipped with these estimates, we can now return to the proof of our main result for
this section.

Proof of Lemma 4.13. Define a new probability measure Q by setting

dQ

dP

∣∣∣
Ft

:=
eν
∑t
i=1 ∆′′i

E[eν
∑t
i=1 ∆′′i ]

for each t ≥ 0; since the sequence (∆′′i )i≥1 is i.i.d., the right-hand side of the definition
forms a martingale and the definition is consistent. One may easily check that under Q,
the sequence (∆′′i )T

′

i=1 is i.i.d. with

Q(∆′′i = d− 2) =
1

d− 1
= 1−Q(∆′′i = −1).

Now, we have

P

( t∑
i=1

∆′′i ≥ tγ ∀t ∈ [T ′],

T ′∑
i=1

∆′′i ≥ ε
√
T ′
)

≥ P
( t∑
i=1

∆′′i ≥ tγ ∀t ∈ [T ′],

T ′∑
i=1

∆′′i ∈
[
ε
√
T ′,
√
T ′/ε

])
= EQ

[
e−ν

∑T ′
i=1 ∆′′i 1{∑t

i=1 ∆′′i ≥tγ ∀t∈[T ′],
∑T ′
i=1 ∆′′i ∈[ε

√
T ′,
√
T ′/ε]}

]
EP
[
eν
∑T ′
i=1 ∆′′i

]
≥ e−|ν|

√
T ′/εQ

( t∑
i=1

∆′′i ≥ tγ ∀t ∈ [T ′],

T ′∑
i=1

∆′′i ∈
[
ε
√
T ′,
√
T ′/ε

])
E[eν∆′′1 ]T

′

By (4.34) and the fact that T ′ = bn2/3/A2c we see that

E[eν∆′′1 ]T
′
≥ exp

(
−O

(
λ2

A2
+

λ

A4
+

1

A6

))
,

and since |λ| = O(A) the expression on the right-hand side is bounded away from zero

for sufficiently large A. By (4.33) we also see that e−|ν|
√
T ′/ε is bounded away from zero

for any fixed ε > 0, and therefore

P

( t∑
i=1

∆′′i ≥ tγ ∀t ∈ [T ′],

T ′∑
i=1

∆′′i ≥ ε
√
T ′
)

≥ cQ
( t∑
i=1

∆′′i ≥ tγ ∀t ∈ [T ′],

T ′∑
i=1

∆′′i ∈
[
ε
√
T ′,
√
T ′/ε

])
.

Since (∆′′i )T
′

i=1 under Q have the same distribution as the random variables (D′′i )T
′

i=1 under
P from the statement of the lemma, this completes the proof.
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4.2.4 Proof of (4.26), step 4: bounding the probability that
∑t
i=1D

′′
i stays above

tγ and finishes in [ε
√
T ′,
√
T ′/ε]

We have now reduced our problem to working with the straightforward random walk∑t
i=1D

′′
i , and can apply known results about random walks to gain our desired bound.

The following lemma, when combined with Proposition 4.11 and Lemma 4.13, completes
the proof of (4.26).

Lemma 4.15. Let (D′′i )T
′

i=0 be a sequence of i.i.d. random variables with P(Di = d− 2) =
1
d−1 = 1− P(Di = −1), as in Lemma 4.13. Then for any γ ∈ [0, 1/2) there exist ε > 0 and
c > 0 depending only on d such that

P

( t∑
i=1

D′′i ≥ tγ ∀t ∈ [T ′],

T ′∑
i=1

D′′i ∈
[
ε
√
T ′,
√
T ′/ε

])
≥ cA

n1/3
.

Proof. The probability that a mean-zero random walk with finite variance remains
positive for k steps is of order 1/

√
k; see e.g. Spitzer [43]. Thus, if we define the

event

Pk =

{ t∑
i=1

D′′i > 0 ∀t ∈ [k]

}
,

we have

P

( t∑
i=1

D′′i ≥ tγ ∀t ∈ [T ′],

T ′∑
i=1

D′′i ∈
[
ε
√
T ′,
√
T ′/ε

])

≥ P
( t∑
i=1

D′′i ≥ tγ ∀t ∈ [T ′],

T ′∑
i=1

D′′i ∈
[
ε
√
T ′,
√
T ′/ε

] ∣∣∣∣PT ′)P(PT ′)

≥ c√
T ′

(
P

( t∑
i=1

D′′i ≥ tγ ∀t ∈ [T ′]

∣∣∣∣PT ′)− P( T ′∑
i=1

D′′i 6∈
[
ε
√
T ′,
√
T ′/ε

] ∣∣∣∣PT ′)
)

We now claim that for any γ < 1/2, there exists α > 0 such that

P

( t∑
i=1

D′′i ≥ tγ ∀t ∈ [T ′]

∣∣∣∣PT ′) ≥ α;

and for any α > 0, there exists ε > 0 such that

P

( T ′∑
i=1

D′′i 6∈
[
ε
√
T ′,
√
T ′/ε

] ∣∣∣∣PT ′) < α/2. (4.35)

The first statement follows from a result of Ritter [39]; see [37, Lemma 8] for details.
The second statement follows from results of Durrett [17], specifically Theorem 3.10 (a
general theorem on convergence of conditioned Markov processes) together with the
results of Section 4.2 (where it is shown that finite variance, mean-zero random walks
satisfy the conditions of the earlier theorem).

We briefly give more details of how (4.35) follows from [17, Theorem 3.10], tem-
porarily using n not as the number of vertices in our graph but as a scaling parameter
for a random walk, for consistency with [17]. Durrett [17] defines a Markov process
(vk, k ≥ 0), which for us is the random walk vk =

∑k
i=1D

′′
i . He assumes the existence of

cn → ∞ with cn+1/cn → 1 such that the process rescaled by n in time and cn in space
converges weakly to some non-degenerate Markov process V ; for us cn =

√
n and V is

Brownian motion. It is well-known that Durrett’s conditions (ii)–(v) are then satisfied, and
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indeed Durrett verifies them in significantly more generality (when the increments of the
random walk do not necessarily have finite variance) in his Section 4.2. The condition
limh↓0 lim infn→∞P(V +

n (t) > h) = 1 for all t > 0 in Durrett’s Theorem 3.10 follows from
the central limit theorem, and the limit as x ↓ 0 of Brownian motion started from x

and conditioned to stay positive to time 1 is known to be the Bessel-3 process started
from 0. Durrett’s Theorem 3.10 therefore entails the convergence of the conditional law
of ( bntc∑

i=1

D′′i /
√
n, t ∈ [0, 1]

)
conditioned on

∑k
i=1D

′′
i > 0 for all k ∈ [n], to the Bessel-3 process started from

0. In particular taking n = T ′ gives that the left-hand side of (4.35) converges to
P(Bess1 6∈ [ε, 1/ε]), which may be made arbitrarily small by choosing ε > 0 small. This
completes the proof.

Combining Proposition 4.11, Lemma 4.13 and Lemma 4.15 tells us that

P

( t∑
i=1

δ′′i ≥ tγ ∀t ∈ [T ′],

T ′∑
i=1

δ′′i ≥ 2ε
√
T ′
)
≥ cA

n1/3
,

which is (4.26) without the conditioning on Sn; then applying Lemma 4.9 we de-
duce (4.26).

4.2.5 Proof of (4.27) : hi is not active too often

Fix γ ∈ (0, 1/2). We first note that, since the number of active stubs can increase by at
most d at each step, |Ai| ≤ di for each i. Since hi is chosen uniformly at random from
the set of unexplored edges after step i− 1, of which there are exactly dn− 2(i− 1)− 1,
a union bound gives

P
(
∃i ∈

[
dn1/4e ∧ τ

]
: hi ∈ Ai−1

)
≤
dn1/4e∑
i=1

d(i− 1)

dn− 2(i− 1)− 1
≤
dn1/4e∑
i=1

i

2n/3
≤ 1

n1/2
. (4.36)

This gives us our desired bound up to dn1/4e. For t > n1/4, we observe that

P

( T ′∧τ∑
i=1

1{hi∈Ai−1} ≥ n
γ/4

)

≤ P
( T ′∧τ∑

i=1

1{hi∈Ai−1} ≥ n
γ/4, |At| ≤ n1/3+γ/4 ∀t ∈ [T ′ ∧ τ ]

)
+ P

(
∃t ∈ [T ′ ∧ τ ] : |At| > n1/3+γ/4

)
. (4.37)

By Lemma 4.6, the last term above satisfies, for some finite constant C,

P
(
∃t ∈ [T ′ ∧ τ ] : |At| > n1/3+γ/4

)
(4.38)

≤ C exp

(
− n2/3+γ/2

4p(d− 1)T ′
+
n1/3+γ/4

2

(
1− 1

p(d− 1)

))
≤ C exp

(
− A2nγ/2

4(1 + λn−1/3)
+
n1/3+γ/4

2

(
1− 1

1 + λ
n1/3

))
= C exp

(
−A2nγ/2/4 +O

(
A2λnγ/2−1/3 + λnγ/4

))
≤ c exp

(
−A2nγ/2/8

)
. (4.39)
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On the other hand, the first term on the right-hand side of (4.37) satisfies

P

( T ′∧τ∑
i=1

1{hi∈Ai−1} ≥ n
γ/4, |At| ≤ n1/3+γ/4 ∀t ∈ [T ′ ∧ τ ]

)
≤ E

[
e
∑T ′∧τ
i=1 1{hi∈Ai−1}1{|At|≤n1/3+γ/4 ∀t∈[T ′∧τ ]}

]
e−n

γ/4

. (4.40)

For i ∈ [T ′ ∧ τ ], on the event {|Ai−1| ≤ n1/3+γ/4} we have

P(hi ∈ Ai−1 | Fi−1) ≤ n1/3+γ/4

dn− 2(i− 1)− 1
≤ n−2/3+γ/4

and therefore

E

[
e
∑T ′∧τ
i=1 1{hi∈Ai−1}1{|At|≤n1/3+γ/4 ∀t∈[T ′∧τ ]}

]
≤ E

[
e
∑T ′∧τ−1
i=1 1{hi∈Ai−1}1{|At|≤n1/3+γ/4 ∀t∈[T ′∧τ−1]}E

[
e1{hT ′∧τ∈Ai−1}

∣∣∣ FT ′∧τ]]
≤
(
1 + (e− 1)n−2/3+γ/4

)
E

[
e
∑T ′∧τ−1
i=1 1{hi∈Ai−1}1{|At|≤n1/3+γ/4 ∀t∈[T ′∧τ−1]}

]
≤ . . . ≤

(
1 + (e− 1)n−2/3+γ/4

)T ′
.

Using the inequality 1 + x ≤ ex valid for all x ∈ R, we deduce that

(4.40) ≤ exp
(

(e− 1)n−2/3+γ/4T ′ − nγ/4
)
≤ c exp

(
−nγ/4/2

)
.

Substituting this and (4.39) into (4.37), we have shown that

P

( T ′∧τ∑
i=1

1{hi∈Ai−1} ≥ n
γ/4

)
≤ ce−A

2nγ/2/8 + ce−n
γ/4/2 ≤ ce−n

γ/4/2.

Finally, combining this with (4.36), we obtain

P

(
∃t ∈ [T ′ ∧ τ ] :

t∑
i=1

1{hi∈Ai−1} ≥ t
γ

)
≤ 1

n1/2
+ ce−n

γ/4/2.

We also have

P

(
∃t ∈ [T ′ ∧ τ ] :

t∑
i=1

1{hi∈Ai−1} ≥ t
γ

∣∣∣∣Sn)

≤ 1

P(Sn)
P

(
∃t ∈ [T ′ ∧ τ ] :

t∑
i=1

1{hi∈Ai−1} ≥ t
γ

)
and since P(Sn)→ exp((1− d2)/4) > 0 we deduce (4.27).
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4.2.6 Combining (4.26) and (4.27) to deduce (4.25) and prove Proposition 4.3

We note that since ηi ≥ δ′i for all i ≤ τ , if
∑t
i=1 δ

′
i > −d for all t ∈ [T ′], then τ ≥ T ′. Thus

P

( t∑
i=1

δ′i > −d ∀t ∈ [T ′],

T ′∑
i=1

δ′i ≥ ε
√
T ′
∣∣∣∣Sn)

= P

( t∑
i=1

δ′i > −d ∀t ∈ [T ′ ∧ τ ],

T ′∑
i=1

δ′i ≥ ε
√
T ′
∣∣∣∣Sn)

≥ P
( t∑
i=1

δ′′i > tγ ∀t ∈ [T ′ ∧ τ ],

T ′∑
i=1

δ′′i ≥ 2ε
√
T ′,

t∑
i=1

1{hi∈Ai−1} < tγ ∀t ∈ [T ′ ∧ τ ]

∣∣∣∣ Sn)

≥ P
( t∑
i=1

δ′′i > tγ ∀t ∈ [T ′ ∧ τ ],

T ′∑
i=1

δ′′i ≥ 2ε
√
T ′
∣∣∣∣Sn)

− P
(
∃t ∈ [T ′ ∧ τ ] :

t∑
i=1

1{hi∈Ai−1} ≥ t
γ

∣∣∣∣Sn)
≥ (4.26)− (4.27) ≥ cA

n1/3
.

This establishes (4.25) and therefore completes the proof of Proposition 4.3.

4.3 The probability of staying above a curve: proof of Proposition 4.4

Here we want to bound from below the probability

P

( t∑
i=T ′+1

Di > q(t)− ε
√
T ′ ∀t ∈ [T ] \ [T ′]

)
(4.41)

where we recall that q(t) = p(1−2/d) t
2

2n+An4/15 andDi = 1Ri(d−1)−1. In order to bound

the probability (4.41), the idea is to approximate the random walk (
∑t
i=T ′+1Di)

T
t=T ′ with

(standard) Brownian motion and then to carry on the analysis using estimates for
Brownian motion.

As a first step in this direction, let us rewrite (4.41) in a way that helps simplifying
the calculations to come. Since A� n1/30 we see that An4/15 � (T ′)1/2 ∼ n1/3/A. Thus,
if n is large enough, we can bound

P

( t∑
i=T ′+1

Di > q(t)− ε
√
T ′ ∀t ∈ [T ] \ [T ′]

)

≥ P
( t∑
i=T ′+1

Di > p(1− 2/d)
t2

2n
− 3εn1/3

4A
∀t ∈ [T ] \ [T ′]

)

= P

( t∑
i=1

Di > p(1− 2/d)
(t+ T ′)2

2n
− 3εn1/3

4A
∀t ∈ [T − T ′]

)
,

where the last equality follows from the fact that (Di)i≥1 are i.i.d.. We also note that for
any t ∈ [T − T ′] and sufficiently large n,

p(1− 2/d)
(t+ T ′)2

2n
≤ 1

(d− 1)
(1− 2/d)

(
t2 + 2tT ′

2n

)
+
λn−1/3T 2

2(d− 1)n
+

(T ′)2

2n

≤ (d− 2)

d(d− 1)

(
t2 + 2tT ′

2n

)
+
εn1/3

4A
.
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We therefore have

P

( t∑
i=T ′+1

Di > q(t)− ε
√
T ′ ∀t ∈ [T ] \ [T ′]

)

≥ P
( t∑
i=1

Di >
(d− 2)

d(d− 1)

(
t2 + 2tT ′

2n

)
− εn1/3

2A
∀t ∈ [T − T ′]

)
. (4.42)

Note that the increments Di satisfy

P (Di = d− 2) = p =
1 + λn−1/3

d− 1
= 1− P (Di = −1) .

As we said earlier, we would like to approximate
∑t
i=1Di with Brownian motion, following

the strategy in [14]. However, we first need to turn the Di into random variables whose
distribution does not depend on n, and moreover we want Di to have mean zero and
unit variance. This is accomplished in the following lemma, whose proof is postponed to
Section 4.4. Note that this lemma is very similar to Lemma 4.13, but because we now
run our random walk for a longer time T − T ′ rather than T ′, we see a factor relating to
λ appear. With (4.42) in mind, we define

f(t) = fn,A,ε,d(t) =
(d− 2)

d(d− 1)

(
t2 + 2tT ′

2n

)
− εn1/3

2A

and let T ′′ = T − T ′ = b(d− 1)An2/3c+ 1− bn2/3/A2c.
Lemma 4.16. Let (D′i)

T ′′

i=0 be a sequence of i.i.d. random variables withP(D′i =
√
d− 2) =

1
d−1 = 1− P(D′i = −1/

√
d− 2). There exists a constant c = c(d) > 0 depending on d such

that, for any ` > 0 and any large enough n ∈ N,

P

( t∑
i=1

Di > f(t) ∀t ∈ [T ′′]

)

≥ ce
λA2(d−1)

2d −λ
2A(d−1)
2(d−2)

−2|λ|n−1/3`
P

( t∑
i=1

D′i >
f(t)√
d− 2

∀t ∈ [T ′′],

T ′′∑
i=1

D′i ≤
f(T ′′) + `√

d− 2

)
.

We will prove this result in Section 4.4. For now we proceed with the proof of
Proposition 4.4, noting that E[D′i] = 0 and Var(D′i) = 1. We will use the following
powerful approximation result. The precise phrasing used below is taken from Chatterjee
[11].

Theorem 4.17 (Komlós, Major, Tusnády [28]). Let (ξi)i≥1 be a sequence of i.i.d. random
variables with E[ξ1] = 0 and E[ξ2

1 ] = 1. Suppose that there exists θ > 0 such that
E
[
eθ|ξ1|

]
<∞. Then for every N ∈ N it is possible to construct a version of (ξi)

N
i=0 and a

standard Brownian Motion (Bs)s∈[0,N ] on the same probability space such that, for every
x ≥ 0,

P

(
max
k≤N

∣∣∣∣∣
k∑
i=1

ξi −Bk

∣∣∣∣∣ > H logN + x

)
≤ ae−bx

where H, a and b > 0 do not depend on N .

We next use Theorem 4.17 with ξi = D′i to bound from below the probability appearing

in Lemma 4.16. Taking ` = n1/3
√
d− 2/A and x = εn1/3

8A
√
d−2

, and noting then that for large
n we have

H log T ′′ + x ≤ εn1/3

4A
√
d− 2

and
`√
d− 2

−H log T ′′ − x ≥ n1/3

2A
,
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we deduce that

P

( t∑
i=1

D′i >
f(t)√
d− 2

∀t ∈ [T ′′],

T ′′∑
i=1

D′i ≤
f(T ′′) + `√

d− 2

)
≥ P

(
Bt >

f(t)√
d− 2

+H log T ′′ + x ∀t ∈ [T ′′], BT ′′ ≤
f(T ′′) + `√

d− 2
−H log T ′′ − x

)
− ae−bx

≥ P
(
Bt >

f(t)√
d− 2

+
εn1/3

4A
√
d− 2

∀t ∈ [T ′′], BT ′′ ≤
f(T ′′)√
d− 2

+
n1/3

2A

)
− ae−bεn

1/3/8A.

(4.43)

Our final lemma in this section bounds the probability on the right-hand side above.

Lemma 4.18. For any ε ∈ (0, 1) there exists a finite constant c = c(d, ε) > 0 depending
on d and ε such that, if n is large enough,

P

(
Bt >

f(t)√
d− 2

+
εn1/3

4A
√
d− 2

∀t ∈ [T ′′], BT ′′ ≤
f(T ′′)√
d− 2

+
n1/3

2A

)
≥ c

A3/2
e−

A3(d−1)(d−2)

8d2 .

We will prove this in Section 4.4; for now we use it to finish our main proof for this
section.

Proof of Proposition 4.4. Putting the steps above together, we combine (4.42) with
Lemma 4.16 (again with ` = n1/3

√
d− 2/A) and apply (4.43) to obtain

P

( t∑
i=T ′+1

Di > q(t)− ε
√
T ′ ∀t ∈ [T ] \ [T ′]

)
≥ ce

λA2(d−1)
2d −λ

2A(d−1)
2(d−2)

· P
(
Bt >

f(t)√
d− 2

+
εn1/3

4A
∀t ∈ [T ′′], BT ′′ ≤

f(T ′′)√
d− 2

+
n1/3

2A

)
− ae−bεn

1/3/8A.

Lemma 4.18 then says that this is at least

c

A3/2
e−

A3(d−1)(d−2)

8d2
+
λA2(d−1)

2d −λ
2A(d−1)
2(d−2) ,

completing the proof of Proposition 4.4.

4.4 Auxiliary results for Proposition 4.4: proofs of Lemmas 4.16 and 4.18

We begin with Lemma 4.16, which requires us to bound from below the probability

P

( t∑
i=1

Di > f(t) ∀t ∈ [T ′′]

)
,

in terms of i.i.d. random variables (D′i)
T ′′

i=1 satisfying P(D′i =
√
d− 2) = 1

d−1 = 1−P(D′i =

−1/
√
d− 2). We recall that Di = (d − 1)1Ri − 1. The definition of the function f is

unimportant for this lemma.

Proof of Lemma 4.16. We note that if λ = 0 then there is nothing to prove; we may
simply let D′i = Di/(d− 2)1/2. If λ 6= 0, however, then Di has a small drift, which we use
a change of measure to remove. Let

γ =
1

d− 1
log

(
1− p
p(d− 2)

)
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and define a new probability measure P̂, with expectation operator Ê, through

dP̂

dP

∣∣∣∣
FT ′′

:=
eγ
∑T ′′
i=1Di

E
[
eγ
∑T ′′
i=1Di

] .
One may check that, by our choice of γ, under P̂ the sequence (Di)

T ′′

i=1 is i.i.d. with

P̂(Di = d− 2) =
1

d− 1
= 1− P̂(Di = −1).

In particular we have

Ê[D1] = 0 and Ê[D2
1] = d− 2.

Now, for any ` > 0 we have

P

( t∑
i=1

Di > f(t) ∀t ∈ [T ′′]

)

≥ P
( t∑
i=1

Di > f(t) ∀t ∈ [T ′′],
T ′′∑
i=1

Di ≤ f(T ′′) + `

)
= Ê

[
e−γ

∑T ′′
i=1Di1{∑t

i=1Di>f(t) ∀t∈[T ′′],
∑T ′′
i=1Di≤f(T ′′)+`}

]
E
[
eγ
∑T ′′
i=1 ξi

]
≥ e−γf(T ′′)−|γ|`E

[
eγ
∑T ′′
i=1Di

]
P̂

( t∑
i=1

Di > f(t) ∀t ∈ [T ′′],

T ′′∑
i=1

Di ≤ f(T ′′) + `

)
. (4.44)

Some elementary computations reveal that

γ = −λn
−1/3

d− 2
+

(d− 3)λ2n−2/3

2(d− 2)2
+O(λ3n−1) (4.45)

and

f(T ′′) =
(d− 1)(d− 2)

2d
A2n1/3 +O(n1/3/A).

Thus

γf(T ′′) = − (d− 1)

2d
A2λ+O(1). (4.46)

Further simple algebra shows that

E[eγD1 ] = e−γ
(

1− λn−1/3

d− 2

)
,

and since 1− x = exp(−x− x2/2 +O(x3)), using (4.45) we have

E[eγD1 ] = exp

(
−γ − λn−1/3

d− 2
− λ2n−2/3

2(d− 2)2
+O(λ3n−1)

)
= exp

(
−λ

2n−2/3

2(d− 2)
+O(λ3n−1)

)
.

Thus, using the fact that |λ| = O(A),

E
[
eγ
∑T ′′
i=1Di

]
= E

[
eγD1

]T ′′
= exp

(
−λ

2n−2/3T ′′

2(d− 2)
+O(λ3n−1T ′′)

)
= exp

(
− (d− 1)λ2A

2(d− 2)
+O(1)

)
.
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Substituting this and (4.46) into (4.44) gives that

P

( t∑
i=1

Di > f(t) ∀t ∈ [T ′′]

)

≥ ce
(d−1)

2d A2λ− (d−1)λ2A
2(d−2)

−|γ|`
P̂

( t∑
i=1

Di > f(t) ∀t ∈ [T ′′],

T ′′∑
i=1

Di ≤ f(T ′′) + `

)
.

Note also that |γ| ≤ 2|λ|n−1/3 when n is large. Finally we observe that
(

Di√
d−2

)T ′′
i=1

under

P̂ has the same distribution as (D′i)
T ′′

i=1 under P from the statement of the lemma. This
completes the proof.

We now begin our preparations for the proof of Lemma 4.18. Recall that

f(t) =
(d− 2)

d(d− 1)

(
t2 + 2tT ′

2n

)
− εn1/3

2A

and to reduce the notation in what follows, let

φ(t) =
f(t)√
d− 2

+
εn1/3

4A
√
d− 2

=

√
d− 2

d(d− 1)

(
t2 + 2tT ′

2n

)
− εn1/3

4A
√
d− 2

.

We can then bound the probability in the statement of the lemma as follows.

P := P

(
Bt >

f(t)√
d− 2

+
εn1/3

4A
√
d− 2

∀t ∈ [T ′′], BT ′′ ≤
f(T ′′)√
d− 2

+
n1/3

2A

)
≥ P

(
Bt > φ(t) ∀t ∈ [T ′′], BT ′′ ≤ φ(T ′′) + n1/3/4A

)
≥ P

(
Bs > φ(s) ∀s ∈ [0, T ′′], BT ′′ ≤ φ(T ′′) + n1/3/4A

)
, (4.47)

where we note that in the last line we have moved from a discrete set of times t ∈ [T ′′] to
a continuous interval s ∈ [0, T ′′].

Following closely the argument developed in [14], we approximate the curve φ(s)

with two straight lines defined, for s ∈ [0, T ′′/2], by

`1(s) = φ(0) +
(φ(T ′′/2)− φ(0)

T ′′/2

)
s

= − εn1/3

4A
√
d− 2

+

√
d− 2

d(d− 1)

(
T + 3T ′

4n

)
s

and

`2(s) = φ(T ′′/2) +
(φ(T ′′)− φ(T ′′/2)

T ′′/2

)
s

=

√
d− 2

d(d− 1)

(T + 3T ′)(T − T ′)
8n

− εn1/3

4A
√
d− 2

+

√
d− 2

d(d− 1)

(
3T ′′ + 4T ′

4n

)
s.

Also define

I1 =

[
φ(T ′′)

2
+
n1/3

8A
−A1/2n1/3,

φ(T ′′)

2
+
n1/3

8A

]
and

I2 =

[
φ(T ′′) +

n1/3

8A
, φ(T ′′) +

n1/3

4A

]
.
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Figure 1: We want our Brownian motion to stay above the blue curve, and the two green
lines `1 and `2 show linear approximations to this curve on the two half-intervals [0, T ′′/2]

and [T ′′/2, T ′′]. The dashed red line shows roughly where we expect our Brownian motion
to be, given that it stays above the curve. This is a caricature of the true picture, and not
to scale.

Note that for all large enough n, the intervals I1 and I2 both fall entirely above the curve
φ(s). (See Figure 1 for reference.)

Since φ is convex, the straight lines `1 and `2 fall above the curve and therefore we
can bound

P
(
Bs > φ(s) ∀s ∈ [0, T ′′], BT ′′ ≤ φ(T ′′) + n1/3/4A

)
≥ P

(
Bs > `1(s) ∀s ∈

[
0, T

′′

2

]
, Bs > `2

(
s− T ′′

2

)
∀s ∈

[
T ′′

2 , T
′′], BT ′′ ≤ `2(T ′′) + n1/3

4A

)
.

Since we are proving a lower bound, we may also insist that at times T ′′/2 and T ′′ our
Brownian motion falls within the intervals I1 and I2 respectively; putting this together
with (4.47), we obtain that

P ≥
∫
I1

P0

(
Bs > `1(s) ∀s ∈

[
0, T

′′

2

]
, BT ′′/2 ∈ dw

)
· Pw

(
Bs > `2(s) ∀s ∈

[
0, T

′′

2

]
, BT ′′/2 ∈ I2

)
, (4.48)

where here Pw denotes a probability measure under which our Brownian motion starts
from w rather than 0.

To complete our proof we need to bound the probabilities that appear within the last
integral. Our next lemma, whose proof simply involves applying a Girsanov transform to
remove the drift and then applying the reflection principle, gives us a general formula
that we will then apply to gain the desired bounds. For the details of the proof we refer
to [14].

Lemma 4.19 ([14, Lemma 4.12]). For any µ, y ∈ R, t > 0, x > y and z > y + µt,

Px(Bs > y + µs ∀s ≤ t, Bt ∈ dz) =
1√
2πt

exp
(
− (z − x)2

2t

)(
1− e2(x−y)(µt+y−z)/t) dz.

We now use Lemma 4.19 to obtain a lower bound for the probability that our Brownian
motion stays above the line l1(s) and finishes near w ∈ I1 at time T ′′/2, i.e. for the first
probability in (4.48).
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Corollary 4.20. There exists a constant c = c(d, ε) > 0 such that for any w ∈ I1,

P0

(
Bs > `1(s) ∀s ∈ [0, T ′′/2], BT ′′/2 ∈ dw

)
≥ c√

T ′′
e−w

2/T ′′ dw.

Proof. We apply Lemma 4.19 with x = 0, z = w ∈ I1, t = T ′′/2,

y = φ(0) = − εn1/3

4A
√
d− 2

and µ =
φ(T ′′/2)− φ(0)

T ′′/2
=

√
d− 2

d(d− 1)

(
T + 3T ′

4n

)
.

Note that, with these parameters,

µt+ y − z ≤
(
φ(T ′′/2)− φ(0)

)
+ φ(0)−

(
φ(T ′′)/2 + n1/3/8A−A1/2n1/3

)
∼ φ(T ′′/2)− φ(T ′′)/2

∼ −
√
d− 2(d− 1)

d

A2n1/3

8
< 0.

We may therefore apply Lemma 4.19, and noting that at most

2(x− y)(µt+ y − z)/t ∼ 2

(
εn1/3

4A
√
d− 2

)(
−
√
d− 2(d− 1)

d

A2n1/3

8

)(
2

(d− 1)An2/3

)
= −ε/8d

the last factor in Lemma 4.19 reduces to a positive constant and the result follows.

Next we bound from below the second probability that appears in the integral (4.48),
again by means of Lemma 4.19.

Corollary 4.21. There exists a constant c = c(d, ε) > 0 such that for any w ∈ I1 and n

and A sufficiently large,

Pw
(
Bs > `2(s) ∀s ∈ [0, T ′′/2], BT ′′/2 ∈ I2

)
≥ c√

T ′′

∫
I2

e−(z−w)2/T ′′ dz.

Proof. We now apply Lemma 4.19 with x = w ∈ I1, y = `2(0) = φ(T ′′/2), t = T ′′/2 and

µ =
φ(T ′′)− φ(T ′′/2)

T ′′/2
.

We also have z ∈ I2 = [φ(T ′′) + n1/3/8A, φ(T ′′) + n1/3/4A]; thus

µt+ y − z ≤
(
φ(T ′′)− φ(T ′′/2)

)
+ φ(T ′′/2)−

(
φ(T ′′) + n1/3/8A) = −n1/3/8A.

Simple estimates show that

x− y ∼
√
d− 2

d(d− 1)

T 2

4
−
√
d− 2

d(d− 1)

T 2

8
∼
√
d− 2(d− 1)

d

A2n1/3

8
,

and therefore

(x− y)(µt+ y − z)/t ≤ −
√
d− 2

32d
+ o(1).

We then deduce the result from Lemma 4.19.

The two corollaries above, combined with (4.48), are the ingredients needed to
complete our proof of Lemma 4.18.
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Proof of Lemma 4.18. Substituting Corollaries 4.20 and 4.21 into (4.48), we obtain that

P ≥ c

T ′′

∫
I2

∫
I1

e−w
2/T ′′−(z−w)2/T ′′ dw dz.

Let Φ = φ(T ′′) + n1/3/4A, so that

I1 = [Φ/2−A1/2n1/3, Φ/2] and I2 = [Φ− n1/3/8A,Φ].

Using the substitutions u = w − Φ/2 and v = z − Φ, we have

P ≥ c

T ′′

∫ 0

−n1/3/8A

∫ 0

−A1/2n1/3

e−(u+Φ/2)2/T ′′−(v−u+Φ/2)2/T ′′ du dv

which, after multiplying out the quadratic terms in the exponent, becomes

P ≥ c

T ′′

∫ 0

−n1/3/8A

∫ 0

−A1/2n1/3

e−2u2/T ′′+2uv/T ′′−Φ2/2T ′′−v2/T ′′−vΦ/T ′′ du dv.

Since u, v ≤ 0, we have 2uv/T ′′ ≥ 0 and, removing this term, we may otherwise separate
the two integrals, giving

P ≥ c

T ′′
e−Φ2/(2T ′′)

(∫ 0

−A1/2n1/3

e−2u2/T ′′ du

)(∫ 0

−n1/3/8A

e−v
2/T ′′−vΦ/T ′′ dv

)
.

Since A1/2n1/3 = O(
√
T ′′), we have∫ 0

−A1/2n1/3

e−2u2/T ′′ du ≥ cA1/2n1/3 ≥ c
√
T ′′,

and since n1/3/8A = o(
√
T ′′), we have∫ 0

−n1/3/8A

e−v
2/T ′′−vΦ/T ′′ dv ∼

∫ 0

−n1/3/8A

e−vΦ/T ′′ dv =
T ′′

Φ

(
exp

(
n1/3Φ

8AT ′′

)
− 1

)
.

We deduce that

P ≥ c
√
T ′′

Φ
e−Φ2/(2T ′′)

(
exp

(
n1/3Φ

8AT ′′

)
− 1

)
. (4.49)

Finally, we note that

Φ = φ(T ′′) +
n1/3

4A
=

√
d− 2

d(d− 1)

(
T 2 − (T ′)2

2n

)
+
n1/3

4A

=

√
d− 2(d− 1)A2n1/3

2d
+O

(
n1/3

A

)
so that

Φ2 =
(d− 2)(d− 1)2A4n2/3

4d2
+O(An2/3);

and also
T ′′ = (d− 1)An2/3 +O(n2/3/A2).

Substituting these estimates into (4.49) gives

P ≥ c

A3/2
exp

(
− (d− 2)(d− 1)A3

8d2

)
,

and the proof is complete.
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