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Abstract

Two-sided sharp Green function estimates are obtained for second order uniformly
elliptic operators in non-divergence form with Dini continuous coefficients in bounded
C1,1 domains, which are shown to be comparable to that of the Dirichlet Laplace
operator in the domain. The first and second order derivative estimates of the Green
functions are also derived. Moreover, boundary Harnack inequality with an explicit
boundary decay rate and interior Schauder’s estimates for these differential operators
are established, which may be of independent interest.
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1 Introduction

Consider the following elliptic operator in non-divergence form on Rd with d ≥ 3:

Lf(x) =

d∑
i,j=1

aij(x)
∂2

∂xi∂xj
f(x), (1.1)

where (aij(x))1≤i,j≤d is a symmetric d× d matrix-valued function on Rd that is uniform
bounded and elliptic; that is, there exists a constant λ0 ≥ 1 such that for all x ∈ Rd and
ξ ∈ Rd,

λ−1
0 |ξ|2 ≤

d∑
i,j=1

aij(x)ξiξj ≤ λ0|ξ|2. (1.2)
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Green function estimates for second order elliptic operators with Dini coefficients

Throughout this paper, we assume that the entries aij(x), 1 ≤ i, j ≤ d, are Dini
continuous in the sense that

d∑
i,j=1

|aij(x)− aij(y)| ≤ `(|x− y|) for all x, y ∈ Rd and 1 ≤ i, j ≤ d. (1.3)

Here `(·) : [0,∞) → [0,∞) is an increasing continuous function with `(0) = 0 and∫ 1

0
`(t)/t dt <∞ such that there are positive constants c0 and α ∈ (0, 1] so that

`(R)/`(r) ≤ c0(R/r)α for all 0 < r < R ≤ 1. (1.4)

Examples of such functions include `(t) := logβ(2/(t ∧ 1)) for any β < −1. Here and
in what follows, we use := as a way of definition. For a, b ∈ R, a ∨ b := max{a, b} and
a ∧ b := min{a, b}.

The main purpose of this paper is to establish sharp two-sided estimates as well as
first and second order derivative estimates with explicit boundary decay rates for Green
functions of such an L in bounded C1,1 domains in Rd. In particular, we are interested in
whether the Green function of L in a bounded C1,1 domain D is comparable to that of
the Laplacian in D.

1.1 Prior results

In analysis and PDE, the Green function of an elliptic operator L in D is the fun-
damental solution of the elliptic Poisson equation Lu = −f in D with zero boundary
condition, while in probability theory, the Green function is the occupation density of
the diffusion process associated with L stayed in D before exiting. Many times in the
literature, one of these two notions of the Green function is used but without being
properly and rigorously identified to the other. There is an extensive literature on Green
functions of elliptic differential operators, for instance, [34] and the references therein.
Here we concentrate on those related to pointwise bounds of Green functions, which are
the main topics of of this paper.

When A(x) := (aij(x)) is the identity matrix, that is, when L is the Laplace operator ∆,
upper and lower bound estimates of the Green function for ∆ on a bounded C1,1 domain
are derived in Grüter and Widman [23] and Zhao [39], respectively. These estimates
are sharp in the sense that the upper bound is a constant multiple of the lower bound,
and the boundary decay rates are given explicitly in terms of the distance function to
the boundary. Sharp two-sided Green function estimates for the Laplacian in bounded
Lipschitz domains are derived in [6], where the boundary decay rate function is implicit
and is given in terms of the Green function itself with one variable fixed.

In fact, in Grüter and Widman [23, Theorems 1.1 and 3.3], the existence of Green
function is established for any divergence form operator L(s) on any bounded domain
in Rd for d ≥ 3 with measurable coefficients that is uniformly elliptic and bounded.
The following upper bound estimate is obtained in [23] for such L(s) with coefficients
satisfying Dini condition (1.3)-(1.4) in a bounded domain satisfying a uniform exterior
sphere condition:

GD(x, y) ≤ c

|x− y|d−2

(
1 ∧ δD(x)

|x− y|

)(
1 ∧ δD(y)

|x− y|

)
for x, y ∈ D, (1.5)

where δD(x) = inf{|x−z| : z ∈ Dc} is the Euclidean distance from x to Dc. Upper bounds
for the derivatives of GD(x, y) up to the second order are also given in [23, Theorem
3.3]. These results improve an earlier well-known result of Littman, Stampacchia and
Weinberger [33]. When L(s) = ∆, its Green function GD in a bounded C1,1-domain D, as
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Green function estimates for second order elliptic operators with Dini coefficients

mentioned above, is in fact comparable to the function on the right hand side of (1.5).
However, this comparable lower bound estimate in general does not hold for the Green
function of L(s), even on smooth domains such as balls. In other words, the Green
function GL

(s)

D for L(s) is in general not comparable to that of G∆
D even when D is a ball.

This is because were it true, then the harmonic measures of L(s) and the Laplacian ∆ on
∂D would be mutually absolutely continuous to each other; see the proof of Proposition
7.3 in Ancona [1] or [9, Theorem 2.2]. The latter is true if and only if the coefficients of
L(s) are globally continuous and the modulus of continuity along some non-tangential
direction at each boundary point of the ball is bounded uniformly by a function η that
satisfies the Dini-type condition

∫ 1

0
η(t)2t−1dt < ∞; see [8, 20]. Thus for a divergence

form elliptic operator L(s), if its Green function in a ball is comparable to the classical
Green function (of the Laplacian), then the diffusion coefficients of L(s) should at least
be globally continuous and satisfy certain Dini-continuity condition.

We also mention that for a divergence form elliptic operator L(s), under a certain local
energy condition (LH) with parameters µ0 ∈ (0, 1] and Rmax > 0 on weak L-harmonic
functions in D vanishing on part of the boundary, it is shown in [27, Theorem 3.13] that

GD(x, y) ≤ c

|x− y|d−2

(
1 ∧ δD(x)

|x− y|

)µ0
(

1 ∧ δD(y)

|x− y|

)µ0

for x, y ∈ D with |x− y| ≤ Rmax.

(1.6)
This estimate is weaker than that of (1.5). No information is given in [27] on the optimal
value of µ0 in the condition (LH) even when D is C2-smooth. According to [27, Corollary
4.4], the (LH) condition holds for L in those bounded domains D that there exist some
constants C and R > 0 so that

|B(z, r) \D| ≥ C |B(z, r)| for all z ∈ ∂D and r ∈ (0, R).

Here B(z, r) denotes the open ball with radius r cenerted at z, and for a Lebesgue
measurable A ⊂ Rd, we use |A| to denote its Lebesgue measure.

Unlike the case of divergence form operators, the Green function GLD(x, y) for non-
divergence form operator L on Rd in a smooth domain D can be locally unbounded
away from the pole even when A(x) is uniformly continuous, bounded and elliptic; see
Bauman [5]. Consequently, without additional regularity assumption on A(x), GLD(x, y)

may not be bounded by c|x− y|2−d. When A(x) satisfying (1.2) is Hölder continuous, it is
shown in Hueber and Sieveking [24] that the Green functions of the non-divergence form
operator L on bounded C1,1 domains are comparable to that of the Laplace operator.
This comparability result fails on bounded Lipschitz domains even for elliptic operators
with constant coefficients. Indeed, it is illustrated in [24, Section 4.2] that when D is a
unit square, there is an elliptic operator L on R2 having constant coefficients so that GLD
is not comparable to G∆

D.
Recently, Hwang and Kim [25] showed that the non-divergence form elliptic operator

L of (1.1) with coefficients satisfying a Dini mean oscillation condition admits a non-
negative function GLD(x, y) on D ×D \ diag for any bounded C1,1 domain D ⊂ Rd with
d ≥ 3 as the fundamental solution to its adjoint operator L∗ in D so that

GLD(x, y) ≤ c|x− y|2−d and |∇xGLD(x, y)| ≤ c|x− y|1−d (1.7)

on any bounded C1,1 domain D and |D2
xG
L
D(x, y)| ≤ c|x − y|−d on any bounded C2,Dini

domain D. Here diag stands for the diagonal set {(x, x) : x ∈ D} of D × D, and for

a function f , ∇xf := ( ∂
∂x1

f, · · · , ∂
∂xd

f) denotes its gradient, D2
xf =

(
∂2

∂xi∂xj
f
)

1≤i,j≤d

is the Hessian matrix of second derivatives and |D2
xf | =

(∑d
i,j=1 |

∂2

∂xi∂xj
f |2
)1/2

. Here

the diffusion coefficients (aij(x))1≤i,j≤d of L is said to satisfy a Dini mean oscillation
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condition if ∫ 1

0

ωaij (r)

r
dr <∞ for every 1 ≤ i, j ≤ d, (1.8)

where

ωaij (r) := sup
x∈Rd

1

|B(x, r)|

∫
B(x,r)

∣∣∣aij(y)− 1

|B(x, r)|

∫
B(x,r)

aij(z)dz
∣∣∣dy.

Dini mean oscillation condition is weaker than Dini condition but stronger than the
uniform continuity. In fact, by [25, Lemma A.1], there are continuous functions a∗ij(x) so
that a∗ij(x) = aij(x) for a.e. on Rd and

d∑
i,j=1

|a∗ij(x)− a∗ij(y)| ≤ ρ(|x− y|) for all x, y ∈ Rd, (1.9)

where

ρ(r) := c

d∑
i,j=1

∫ r

0

ωaij (s)

s
ds.

Note that ∫ 1

0

ρ(r)

r
dr = c

d∑
i,j=1

∫ 1

0

ωaij (s) ln(1/s)

s
ds. (1.10)

If the right hand side is integrable, then the functions {a∗ij(x), 1 ≤ i, j ≤ d} are Dini
continuous. The above function GLD(x, y) from [25] is the Green function of L in D

in the sense that for any f ∈ Lp(D) with p > d/2, GLDf(x) :=
∫
D
GLD(x, y)f(y)dy is in

W 2,p(D) ∩W 1,p
0 (D) and is a strong solution for Lu = −f in D with zero boundary value

on ∂D; see [25, Remark 1.14]. Its relation to the occupation density in D of the diffusion
process associated with L is not given in [25]. Similar results have been obtained in
Dong and Kim [18] for Green functions of L on bounded C1,1 domains D in R2 but with
1 + log diam(D)

|x−y| in place of |x − y|2−d for the upper bound estimate of GLD(x, y). These

upper bounds on GLD(x, y) are not sharp as they do not give boundary decay information
near ∂D. We remark that from the gradient estimate in (1.7) for bounded C1,1-domain D
in Rd with d ≥ 3 and the property that x 7→ GLD(x, y) vanishes on ∂D from Theorem 2.3(i)
below, one can deduce that

GLD(x, y) ≤ c

|x− y|d−2

(
1 ∧ δD(x)

|x− y|

)
for x, y ∈ D (1.11)

for some constant c that depends on d, `, λ0 and D; see Remark 2.1(iii).
As one can see from the above, obtaining sharp two-sided Green functions of elliptic

operators either with less regular coefficients or in less smooth domains is a challenging
and delicate problem. In this paper, we are concerned with sharp two-sided Green
function estimates for non-divergence form elliptic operators with less regular coef-
ficients in bounded C1,1-domains. A natural and interesting question is whether for
non-divergence form elliptic differential operator L with Dini-continuous coefficients,
GLD(x, y) is comparable to that of the Laplacian in every bounded C1,1 domain D ⊂ Rd. In
this paper, we give an affirmative answer to this question. As an important consequence,
we show that the harmonic measure for such an operator L is comparable to that of
classical harmonic measure (of the Laplacian) in any bounded C1,1 domain. We further
derive its derivative estimates that contain the explicit boundary decay information; see
Theorem 1.1 below. The crux of the study is on deriving boundary decay of GLD(x, y) in
y-variable and the comparable lower bounds of GLD(x, y) as well as the dependence of
the comparison constants.
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1.2 Main results of this paper

Throughout this paper, we assume for simplicity that the dimension d ≥ 3. The
approach of this paper works for d = 2 as well but one needs to replace the Newtonian
potential kernel |x − y|2−d for d ≥ 3 by a suitable logarithm potential kernel in d = 2.
Hereafter, unless otherwise specified, L is the non-divergence form operator of (1.1) on
Rd with Dini continuous diffusion coefficients {aij(x); 1 ≤ i, j ≤ d} satisfying (1.2)-(1.3).
Since A(x) is uniformly continuous, bounded and uniformly elliptic, it is well known
(see [37, Theorem 7.2.4]) that the martingale problem for (L, C∞c (Rd)) is well posed and
its solution forms a conservative strong Markov process X that has continuous sample
paths and strong Feller property. Moreover, by [37, Lemma 9.2.2], X has a transition
density function p(t, x, y) with respect to the Lebesgue measure on Rd. For any open set
D, define τD := inf{t > 0 : Xt /∈ D} the first exit time from D by the process X. Denote
by XD the subprocess of X killed upon leaving D. We show that for any bounded C1,1

domain D in Rd, there is a unique jointly continuous non-negative function GD(x, y) on
D ×D \ diag so that for any non-negative f ∈ Cc(D),

Ex

[∫ τD

0

f(Xs)ds

]
=

∫
D

GD(x, y)f(y)dy for every x ∈ D. (1.12)

We call GD(x, y) the Green function of X in D. It is shown in Theorem 2.3 that GD(x, y)

is the same as the Green kernel GLD(x, y) defined analytically in [25]. Thus, GD(x, y) can
also be called the Green function of L in D.

Recall that an open set D in Rd is said to be C1,1 if there exist a localization radius
R0 > 0 and a constant Λ0 > 0 such that for every Q ∈ ∂D, there exist a C1,1 function
φ = φQ : Rd−1 → R satisfying φ(0) = ∇φ(0) = 0, ‖∇φ‖∞ ≤ Λ0, |∇φ(x)−∇φ(y)| ≤ Λ0|x−y|,
and an orthonormal coordinate system CSQ : y = (y1, · · · , yd−1, yd) =: (ỹ, yd) ∈ Rd−1 ×R
with its origin at Q such that

B(Q,R0) ∩D = {y = (ỹ, yd) ∈ B(0, R0) in CSQ : yd > φ(ỹ)}.

The pair (R0,Λ0) is called the characteristics of the C1,1 open set D. Without loss of
generality, throughout this paper, we assume that the characteristics (R0,Λ0) of a C1,1

open set satisfies R0 ≤ 1 and Λ0 ≥ 1. An open connected set will be called a domain in
this paper.

Suppose D is a bounded C1,1 domain in Rd with C1,1 characteristics (R0,Λ0). We
denote by G∆

D(x, y) the Green function of the Laplacian ∆ in D. It is shown in [23,
Theorem 3.3] and [39, Theorem 1] that there is a constant C = C(d,D) > 1 such that for
x 6= y in D,

C−1

|x− y|d−2

(
1∧ δD(x)

|x− y|

)(
1∧ δD(y)

|x− y|

)
≤G∆

D(x, y)≤ C

|x− y|d−2

(
1∧ δD(x)

|x− y|

)(
1∧ δD(y)

|x− y|

)
.

(1.13)
In fact, the constant C = C(d,D) above can be taken to be dependent on D through
d,Λ0, R0 and diam(D) only. Here diam(D) stands for the diameter of the domain D. We
state this as Theorem 5.1 and give a proof in the Appendix of this paper.

The following is the main result of this paper, which is the summary of Theo-
rems 3.7, 4.4 and 4.8.

Theorem 1.1. Let L be a second order differential operator on Rd of non-divergence
form (1.1) satisfying the conditions (1.2)-(1.3), and X the diffusion process associated
with it. Suppose D is a bounded C1,1 domain in Rd with characteristics (R0,Λ0). There is
a unique jointly continuous non-negative function GD(x, y) on D×D \ diag so that (1.12)
holds for any f ∈ Cc(D). Moreover, the following holds.
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(i) GD(x, y) is jointly continuous in D ×D \ diag, and for each y ∈ D, x 7→ GD(x, y) is
C2 in D \ {y}.

(ii) There exists K1 = K1(d, λ0, `,Λ0, R0,diam(D)) > 1 such that for every x 6= y in D,

K−1
1

|x− y|d−2

(
1 ∧ δD(x)

|x− y|

)(
1 ∧ δD(y)

|x− y|

)
≤ GD(x, y) ≤ K1

|x− y|d−2

(
1 ∧ δD(x)

|x− y|

)(
1 ∧ δD(y)

|x− y|

)
.

(1.14)

(iii) There exists K2 = K2(d, λ0, `,Λ0, R0,diam(D)) such that

|∇xGD(x, y)| ≤ K2

|x− y|d−1

(
1 ∧ δD(y)

|x− y|

)
for any x 6= y in D. (1.15)

(iv) There exists K3 = K3(d, λ0, `,Λ0, R0,diam(D)) such that for any 1 ≤ i, j ≤ d,∣∣∣∣ ∂2

∂xi∂xj
GD(x, y)

∣∣∣∣ ≤ K3

|x− y|d

(
1 ∧ δD(y)

|x− y|

)(
1 ∧ δD(x)

|x− y|

)−1

for any x 6= y in D.

(1.16)

Remark 1.1. We point out that the dependence of the above coefficients Ki, 1 ≤ i ≤ 3,
on diam(D) (as well as in other places and cases throughout the paper) is on an upper
bound of diam(D) rather than on the exact value of diam(D). This can be seen through

the following scaling argument. For each λ > 0, let X(λ)
t := λXt/λ2 . It is easy to check

that the infinitesimal generator of X(λ) is

L(λ) :=

d∑
i,j=1

aij(x/λ)
∂2

∂xi∂xj
.

Denote by G(λ)
D the Green function of X(λ) in the domain D. Then the Green function

GD(x, y) satisfies the following scaling property

GD(x, y) = λd−2G
(λ)
λD(λx, λy), x, y ∈ D.

For any bounded C1,1 domain D1 with characteristics (R0,Λ0) and diam(D1) ≤ diam(D),
let λ1 := diam(D)

diam(D1) . It follows from the scaling formula above with D1 in place of D that

GD1(x, y) = λd−2
1 G

(λ1)
λ1D1

(λ1x, λ1y), x, y ∈ D1. (1.17)

Note that λ1 ≥ 1, then aij(·/λ1) satisfies the conditions (1.2)-(1.3) with the same modulo
of continuity function `, and λ1D1 is a bounded C1,1 domain with characteristics (R0,Λ0)

and diam(λ1D1) = diam(D). Applying (1.14)-(1.16) to G
(λ1)
λ1D

(λ1x, λ1y) and together
with (1.17), this yields that the constants Ki, i = 1, 2, 3 in Theorem 1.1 hold uniformly for
any bounded C1,1 domain D1 with characteristics (R0,Λ0) and diam(D1) ≤ diam(D) in
Rd.

The following is an immediate consequence of Theorem 1.1(i) by the proof of [1,
Proposition 7.3] or [9, Theorem 2.2]; see Theorem 3.8 and its proof for more details.
Other implications of the Green function estimate (1.14) are given below in Corollary 3.9
and Theorem 3.10.

Corollary 1.2. Under the setting of Theorem 1.1, the harmonic measure of X in D is
comparable to that of Brownian motion in D. More specifically, there is a constant
C0 = C0(d, λ0, `,Λ0, R0,diam(D)) > 1 such that for every x ∈ D,

C−1
0

δD(x)

|x− z|d
σ(dz) ≤ Px(XτD ∈ dz) ≤ C0

δD(x)

|x− z|d
σ(dz) on ∂D,

where σ is the Lebesgue surface measure on ∂D.
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The Green function estimates in Theorem 1.1 significantly improve the results in
Hwang and Kim [25], where some upper bounds on GD(x, y) and its derivatives are
derived but without the boundary decay factor, at the expense of assuming a slightly
stronger Dini continuous condition on the diffusion coefficients {aij(x)}1≤i,j≤d here. It
also extends the main result of Hueber and Sieveking [24], where the two-sided Green
function estimates (1.14) are obtained for non-divergence form operator L with Hölder
continuous coefficients under the framework of Brelot spaces and harmonic sheafs. Our
estimates give sharp pointwise two-sided global bounds of Green functions, up to the
boundary. In order to get precise boundary decay rates, our current approach use the
pointwise Dini condition (1.3) on the diffusion coefficients {aij(x)}1≤i,j≤d in a crucial
way; see, for example, the proof of Lemmas 2.6, 2.7 and 2.9. It is an open problem
whether the main results of this paper can be extended to non-divergence form elliptic
operators whose coefficients satisfy Dini mean oscillation condition. As mentioned
earlier, for second order elliptic operators of divergence form with Dini continuous
coefficients, the corresponding Green function upper bound estimates as well as the
derivative estimates have been obtained in Grüter and Widman [23, Theorem 3.3] on
bounded domains satisfying uniform exterior sphere condition.

1.3 Methodology and novelties of our approach

In this paper, we employ both analytic and probabilistic methods, including Levi’s
freezing coefficient method. We first show in Theorem 2.3 that the Green function
GD(x, y) of L constructed analytically in [25] coincides with the occupation density of
the L-diffusion X in D as given in (1.12). This identification enables us to study the
properties of GD(x, y) by both analytic and probabilistic techniques.

The Levi’s freezing coefficient method is an effective tool in the heat kernel analysis
for non-divergence elliptic operators in Rd; see [21]. But it seems that this method has
rarely been used in the study of sharp Green function estimates in bounded domains.
Different from heat kernel in the parabolic case, the Green function G

(z)
D (x, y) of the

differential operator
∑d
i,j=1 aij(z)

∂2

∂xi∂xj
in D with z frozen and its derivatives blow

up along the diagonal of D × D. This causes challenges in identifying the kernel
constructed by the Levi’s freezing coefficient method in the elliptic case with the Green
function defined as the fundamental solution for the elliptic operator L. We overcome
this difficulty by first considering C1,1 domains λD for small λ > 0 and carrying out
an approximation scheme by smoothing out the singularity along the diagonal and
establishing a weak convergence locally in the Sobolev space W 2,p(λD). We are then
able to identify the kernel obtained via the Levi’s freezing coefficient method with the
analytic notation of the Green function GλD in Theorem 2.8 for sufficiently small λ > 0.
The Levi’s freezing coefficient method combined with a testing function method and
a probabilistic argument allows us to obtain in Theorem 2.12 sharp two-sided Green
function estimates on λD for sufficiently small λ > 0.

To obtain the two-sided estimates of GD(x, y) of L in a general bounded C1,1 domain
D, we patch the “interior” Green function estimate with the boundary decay rate of
GD(x, y) in x and y. We mainly use a suitable dual process of the subprocess XD of X
in D, together with the two sided Green function estimates in C1,1 domains with small
diameters to establish that GD(x, y) is comparable to the Green function of Brownian
motion in D. Moreover, the two-sided Green function estimates enable us to obtain a
Poisson integral representation for non-negative L-harmonic functions in a bounded
C1,1 domain, to directly establish the boundary Harnack principle for L with explicit
boundary decay rate, and to identify the Martin boundary and minimal Martin boundary
with the Euclidean boundary for any bounded C1,1 domain; see Theorems 3.8-3.10.

Derivative estimates of Green functions with an explicit boundary decay rate play
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a crucial role in the study of sharp two-sided Green function estimates with explicit
boundary decay rates of diffusion operators under drift perturbations and non-local
perturbations; see, e.g. [15] and [11]. As x 7→ GD(x, y) is L-harmonic in D \ {y},
when A(x) is Hölder continuous, derivative estimates on x 7→ GD(x, y) can be deduced
from the upper bound of GD(x, y) and the interior Schauder’s estimates for L-harmonic
functions (see [22, Theorem 6.2]). However, to the best of the authors’ knowledge, there
is no readily available literature on the interior Schauder’s estimates for L with Dini-
continuous coefficients. We derive the gradient estimate on GD(x, y) through the identity
from Levi’s freezing coefficient method. But this method does not work for deriving
the second order derivative estimates on GD(x, y) as some integrals involved become
divergent. To overcome this difficulty, we use a variant of the integral representation of
the Green function GB(x, y) of L on small balls in terms of the Poisson kernel of Brownian
motion starting from y in a C1,1 subdomain of B in Lemma 4.5. This combined with the
second derivative estimate |∇2

xGB(x, y)| ≤ c|x − y|−d on balls from [25] enables us to
obtain the second order derivative estimates on GD(x, y). Along the way, we establish
the interior Schauder’s estimates for harmonic functions of L in Theorem 4.9, which
extends the known results in literature for non-divergence form elliptic operators with
Hölder coefficients to those with Dini coefficients.

The rest of the paper is organized as follows. Let D be a bounded C1,1 domain in Rd.
In Section 2, we identify the Green kernel GLD(x, y) defined analytically in [25] with the
occupation density function GD(x, y) of the L-diffusion process in D. We next show that
the Green function can also be constructed recursively by the Levi’s freezing method on
λD with sufficiently small λ > 0. This property together with a testing function method
and a probabilistic argument enables us to obtain in Theorem 2.12 sharp two-sided Green
function estimates on λD for sufficiently small λ > 0. In Section 3, we derive two-sided
estimates on the Green function GD(x, y) of L in any bounded C1,1 domain D. Using
this estimates, we derive a Poisson integral representation for non-negative L-harmonic
functions on bounded C1,1 domains and establish the boundary Harnack principle for L
with explicit boundary decay rate. We further identify the Martin boundary and minimal
Martin boundary of L in D with its Euclidean boundary for any bounded C1,1 domain
D. In Section 4, we derive the first and second derivative estimates of GD(x, y), and
establish interior Schauder’s estimates for harmonic functions of L with Dini coefficients.

Notation. Throughout this paper, we use the capital letters C1, C2, · · · to denote
constants in the statement of the results, and their labeling will be fixed. The lowercase
constants c1, c2, · · · will denote generic constants used in the proofs, whose exact values
are not important and can change from one appearance to another. For any open set
D ⊂ Rd, Cc(D) and C2

c (D) denotes the space of continuous functions with compact in D
and the space of C2 smooth functions with compact support in D. For p ≥ 1, Lp(D) (resp.
Lploc(D)) denotes the space of Lp-integrable (resp. locally Lp-integrable) functions on D
with respect to the Lebesgue measure on D. For integer k ≥ 1 and real number p ≥ 1,
W k,p(D) (resp. W k,p

loc (D)) is the space of all Lp-integrable (resp. locally Lp-integrable)
functions on D whose distributional derivatives up to and including order k are also
Lp-integrable (resp. locally Lp-integrable). We use diag to denote the diagonal of the
product domain D ×D.

2 Green function estimates for small C1,1 domains

Let D be a bounded C1,1 domain inRd. In this section, we first identify the Green func-
tion GLD(x, y) analytically constructed in [25] with the Green function GD(x, y) defined
as the occupation density of the diffusion process X associated with L in D. We then
use the Levi’s freezing coefficient method and a testing function method together with a
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probabilistic approach to derive sharp estimates on GλD(x, y) uniformly for sufficiently
small λ > 0.

The next two lemmas holds for any non-divergence form operator L of (1.1) with
bounded, continuous and uniformly elliptic diffusion coefficients. Recall that there is
a conservative diffusion process X = {Xt, t ≥ 0;Px, x ∈ Rd} associated with L, as the
unique solution to the martingale problem (L, C∞c (Rd)). For an open set D ⊂ Rd, denote
by τD := inf{t > 0 : Xt /∈ D} the first exit time from D by X. We first prepare two lemmas
that will be needed later. These two lemmas hold for any uniformly elliptic operators L
with continuous diffusion coefficients A(x). Recall that λ0 ≥ 1 is the ellipticity constant
in (1.2).

Lemma 2.1. For each x0 ∈ Rd and any ball B(x0, r) in Rd with radius r > 0,

Ex
[
τB(x0,r)

]
≤ λ0r

2 for every x ∈ B(x0, r).

Proof. This result is well known. For reader’s convenience, we provide a proof here. Fix
x0 ∈ Rd and r > 0. Define f ∈ C2

b (Rd) so that f(x) = |x− x0|2 on B(x0, r) and f(x) ≥ r2

on B(x0, r)
c. Since X is the solution to the martingale problem (L, C∞c (Rd)), we have

by (1.2) that for every x ∈ B(x0, r) and t > 0,

Ex

[
f(Xt∧τB(x0,r)

)
]
≥ Ex

[
f(Xt∧τB(x0,r)

)
]
− f(x)

= Ex

[∫ t∧τB(x0,r)

0

Lf(Xs)ds

]
≥ λ−1

0 Ex
[
t ∧ τB(x0,r)

]
.

Taking t→∞, it follows from the monotone convergence theorem that

Ex
[
τB(x0,r)

]
≤ λ0 lim inf

t→∞
Ex

[
f(Xt∧τB(x0,r)

)
]
≤ λ0r

2.

Lemma 2.2. Let D be a bounded C1,1 domain in Rd. Then for any f ∈ Cc(D) and
ϕ ∈ C(∂D) and for every p > d/2,

u(x) := Ex [ϕ(XτD )] + Ex

[∫ τD

0

f(Xs)ds

]
, x ∈ D, (2.1)

is the unique function in W 2,p
loc (D) ∩ C(D) so that Lu = −f a.e. in D and u = ϕ on ∂D.

When ϕ = 0, the above unique solution is in W 2,p(D) ∩ C(D) with u = 0 on ∂D.

Proof. For any f ∈ Cc(D), ϕ ∈ C(∂D) and every p > d/2, by [22, Corollary 9.18],
Lu = −f in D and u = ϕ on ∂D has a unique strong solution u ∈ W 2,p

loc (D) ∩ C(D). Let
ψ ∈ C∞c (Rd) be non-negative with support in B(0, 1) and

∫
Rd
ψ(x)dx = 1. For ε > 0,

define for x ∈ Dε := {x ∈ D : δD(x) > ε},

uε(x) :=

∫
D

ε−dψ((x− y)/ε)u(y)dy =

∫
D

ε−dψ(y/ε)u(x− y)dy

and

fε(x) :=

∫
D

ε−dψ((x− y)/ε)f(y)dy =

∫
D

ε−dψ(y/ε)f(x− y)dy.

Note that uε, fε ∈ C∞(Dε) ∩ C(Dε) and Luε = −fε on Dε. Let ε0 > 0 be fixed and small.
For any ε ∈ (0, ε0) and t > 0, by Ito’s formula,

Ex

[
uε(Xt∧τDε0

)
]
− uε(x) = Ex

[∫ t∧τDε0

0

Luε(Xs)ds

]
= −Ex

[∫ t∧τDε0

0

fε(Xs)ds

]
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for every x ∈ Dε0 . Note that fε converges uniformly to f on Dε0 as ε → 0. In view of
Lemma 2.1, we have by taking t → ∞ and then letting ε approaching to zero along a
decreasing sequence in the above display,

u(x) = Ex

[∫ τDε0

0

f(Xs)ds

]
+ Ex

[
u(XτDε0

)
]

for every x ∈ Dε0 .

Now letting ε0 → 0 along a decreasing sequence shows that

u(x) = Ex [u(XτD )] + Ex

[∫ τD

0

f(Xs)ds

]
= Ex [ϕ(XτD )] + Ex

[∫ τD

0

f(Xs)ds

]
for every x ∈ D.

When ϕ = 0, it is known (see [22, Theorem 9.15]) that the Dirichlet problem Lu = −f
has a unique solution in W 2,p(D) ∩W 1,p

0 (D) for any p > 1. Since D is a bounded C1,1

domain in Rd, W 2,p(D) ⊂ C(D) for any p > d/2 by the Sobolev embedding theorem [22,
Theorem 7.26]. It follows that u is continuous on D with u = 0 on ∂D. So this solution
has a representation (2.1) with ϕ = 0.

Denote by L∗ the adjoint operator of L. A solution of L∗v = f in D is defined to be a
function v in L1

loc(D) such that for any ϕ ∈ C∞c (D),∫
D

v(y)Lϕ(y) dy =

∫
D

f(y)ϕ(y) dy.

Theorem 2.3. Suppose the diffusion coefficient (aij(x))1≤i,j≤d of L is of Dini mean
oscillation, and D is a bounded C1,1 domain in Rd with characteristics (R0,Λ0). There is
a unique jointly continuous function GD(·, ·) on D ×D \ diag so that

Ex

[∫ τD

0

f(Xs)ds

]
=

∫
D

GD(x, y)f(y)dy, x ∈ D, (2.2)

for every f ∈ Cc(D). Moreover, GD(x, y) has the following properties.

(i) For each z ∈ ∂D and y ∈ D, lim x→z
x∈D

GD(x, y) = 0.

(ii) For each subdomain V with D \ V 6= ∅,

GD(x, y) = ExGD [(XτV , y)] for every x ∈ V and y ∈ D \ V . (2.3)

(iii) There exists C = C(d, λ0, `, R0,Λ0,diam(D)) > 0 such that

GD(x, y) ≤ C|x− y|2−d for x, y ∈ D. (2.4)

(iv) For each fixed x, y ∈ D,

LGD(·, y) = −δ{y} and L∗GD(x, ·) = −δ{x} (2.5)

in the sense that for every φ ∈ Lp(D) with p > d/2, GDφ(x) :=
∫
D
GD(x, y)φ(y)dy

is in W 2,p
loc (D) for every p > d/2 satisfying LGDφ = −φ a.e. in D, and G∗Dφ(y) :=∫

D
GD(x, y)φ(x)dx satisfies L∗G∗Dφ = −φ a.e. in D.

(v) GD(x, y) = GLD(x, y) for any x 6= y ∈ D, where GLD(x, y) is the Green function of L
in D defined analytically in [25].

EJP 28 (2023), paper 36.
Page 10/54

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP925
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Green function estimates for second order elliptic operators with Dini coefficients

Proof. Since A(x) = (aij(x)) is uniformly elliptic and bounded, and is of Dini mean
oscillation, by [25, Theorem 1.9 and p.34], there is a unique non-negative function
GLD(x, y) that is jointly continuous on D × D \ diag so that for each f ∈ Lp(D) with
p > d/2,

u(y) =

∫
D

GLD(x, y)f(x) dx. (2.6)

is the unique solution of

L∗u = −f in D with lim
y→z∈∂D

u(y) = 0. (2.7)

Moreover, GLD(x, y) has the following property: there is a constant c = c(d, λ0, `,D) > 0

so that

GLD(x, y) ≤ c|x− y|2−d and |∇xGLD(x, y)| ≤ c|x− y|1−d for every x, y ∈ D with x 6= y,

(2.8)
and when D is C2,Dini,

|D2
xG
L
D(x, y)| ≤ c|x− y|−d for x, y ∈ D with x 6= y. (2.9)

(The continuity of GLD(·, y) in D \ {y} and GLD(x, ·) in D \ {x} are shown in [25, p.34 and
p.36], which combined with (2.8) yields thatGLD(x, y) is jointly continuous onD×D\diag.)

By [25, Remark 1.14], for each g ∈ Lq(D) with q > d,

v(x) := GLDg(x) :=

∫
D

GLD(x, y)g(y) dy

is in W 2,q(D) ∩W 1,q
0 (D) and is a strong solution of

Lv = −g a.e. in D with lim
x→z∈∂D

v(x) = 0. (2.10)

Note that by the Sobolev embedding theorem (see, e.g., [22, Theorem 7.10]), W 1,q
0 (D) ⊂

C∞(D), the space of continuous functions on D that vanishes on ∂D. This together with
Lemma 2.2 yields that for any f ∈ Cc(D),∫

D

GLD(x, y)f(y) dy = Ex

[∫ τD

0

f(Xs)ds

]
for every x ∈ D. (2.11)

When D is a bounded C1,1 domain. Let B be an open ball in Rd with radius diam(D)

that contains D and define

GD(x, y) = GLB(x, y)− Ex
[
GLB(XτD , y)

]
for x, y ∈ D with x 6= y. (2.12)

By Lemma 2.2, for each fixed y ∈ D, x 7→ v(x, y) := Ex
[
GLB(XτD , y)

]
is a function in

W 2,p
loc (D) ∩ C(D) with Lxv(x, y) = 0 in D and v(x, y) = GLB(x, y) on ∂D. Hence x 7→

GD(x, y) is continuous on D \ {y} and for each z ∈ ∂D and y ∈ D, lim x→z
x∈D

GD(x, y) = 0.

That is, x 7→ GD(x, y) is continuous on D \ {y} after we set GD(x, y) = 0 for x ∈ ∂D. In
view of (2.8), there is a constant c = c(d, λ0, `,diam(B)) > 0 so that

GD(x, y) ≤ GLB(x, y) ≤ c|x− y|2−d for every x 6= y ∈ D.

Since GLB(x, y) is jointly continuous on B × B \ diag, by the dominated convergence
theorem, y 7→ Ex

[
GLB(XτD , y)

]
is continuous on D \ {x}. It follows that y 7→ GD(x, y) is

continuous on D \ {x}.
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We next identify GD with GLD and show that GD(x, y) has the property (2.3). For
every f ∈ Cc(D), it follows from the strong Markov property of X and property (2.11)
with B in place of D that for every x ∈ D,∫

D

GLB(x, y)f(y)dy = Ex

[∫ τD

0

f(Xs)ds+

∫ τB

τD

f(Xs)ds

]
= Ex

[∫ τD

0

f(Xs)ds

]
+ Ex

[
EXτD

∫ τB

0

f(Xr)dr

]
= Ex

[∫ τD

0

f(Xs)ds

]
+ Ex

∫
D

GLB(XτD , y)f(y)dy.

That is,

Ex

[∫ τD

0

f(Xs)ds

]
=

∫
D

GD(x, y)f(y)dy for every x ∈ D.

We conclude from (2.11) that

GD(x, y) = GLD(x, y) pointwise on D ×D \ diag (2.13)

as both functions are continuous in y there. Thus we have established that GD(x, y) has
all the desired properties stated in the theorem except (ii).

Suppose V is a subdomain of D with D \ V 6= ∅. For any f ∈ Cc(D \ V ), we have
by (2.2), the strong Markov property of X and the Fubini theorem,∫

D

GD(x, z)f(z)dz = Ex

[∫ τD

0

f(Xs)ds

]
= Ex

[∫ τD

τV

f(Xs)ds

]
= Ex

[
EXτV

∫ τD

0

f(Xs)ds

]
= Ex

[∫
D

GD(XτV , z)f(z)dz

]
=

∫
D

Ex [GD(XτV , z)] f(z)dz.

Consequently, GD(x, z) = Ex [GD(XτV , z)] for a.e. and hence for every z ∈ D \ V as the
functions z 7→ GD(x, z) and Ex [GD(XτV , z)] are both continuous in z ∈ D \ V in view
of the upper bound estimate of GLD(x, y) in (2.8). Taking z = y establishes (2.3). This
completes the proof of the theorem.

In the following, we will use Levi’s freezing coefficient method to derive Green
function estimates on GλD(x, y) uniformly for sufficiently small λ > 0. For this, define
for each fixed z ∈ Rd,

L(z) :=

d∑
i,j=1

aij(z)
∂2

∂xi∂xj
. (2.14)

Let U be a connected open subset of Rd. For each fixed z ∈ Rd, denote by G(z)
U the Green

function of L(z) in U . We search for Green function GU (x, y) of L in U of the following
form

GU (x, y) = G
(y)
U (x, y) +

∫
U

G
(z)
U (x, z)gU (z, y)dz (2.15)

for some function gU (x, y). Formally applying L on both sides in x, we have

−δ{y}(x) = L(x)G
(y)
U (·, y)(x) +

∫
U

L(x)G
(z)
U (·, z)(x)gU (z, y)dy

= −δy(x) + (L(x) − L(y))G
(y)
U (·, y)(x)− gU (x, y)

+

∫
U

(L(x) − L(z))G
(z)
U (·, z)(x)gU (z, y)dy.
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Here δ{y} stands for the Dirac measure concentrated at y. Setting

g
(0)
U (x, y) := (L(x) − L(y))G

(y)
U (·, y)(x), (2.16)

we see that gU (x, y) should satisfy the following integral equation

gU (x, y) = g
(0)
U (x, y) +

∫
U

g
(0)
U (x, z)gU (z, y)dz. (2.17)

Applying the above equation recursively, it indicates that gU (x, y) is given by

gU (x, y) =

∞∑
k=0

g
(k)
U (x, y) (2.18)

whenever it converges, where

g
(k+1)
U (x, y) :=

∫
U

g
(0)
U (x, z)g

(k)
U (z, y)dz for k ≥ 0. (2.19)

We will show in Lemma 2.6 and Theorem 2.8 that for U = λD when λ is sufficiently
small, gλD defined by (2.18) is convergent absolutely, and the function defined by the
right hand side of (2.15) is indeed the Green function of L in λD.

Recall that

Pr(x, z) :=
r2 − |x|2

ωdr |x− z|d
, x ∈ B(0, r), z ∈ ∂B(0, r),

is the Poisson kernel of the Laplacian (or equivalently, of Brownian motion) in the ball
B(0, r) in Rd, where ωd is the surface area of the unit sphere in Rd.

Lemma 2.4. Let x0 ∈ Rd and r > 0 and h be a harmonic function with respect to ∆ in
B(x0, r), then there exist positive constants ck = ck(d) ≥ 1, k = 1, 2 such that

|∇h(x)| ≤ c1h(x)/r and |D2
xh(x)| ≤ c2h(x)/r2 for x ∈ B(x0, r/2).

Proof. Without loss of generality, we assume x0 = 0. There are ck = ck(d) ≥ 1, k = 1, 2

such that for x ∈ B(0, r/2) and z ∈ ∂B(0, 3r/4),

|∇xP3r/4(x, z)| ≤ c1
Pr(x, z)

3r/4− |x|
, |D2

xP3r/4(x, z)| ≤ c2
Pr(x, z)

(3r/4− |x|)2
. (2.20)

Note that h(x) =
∫
∂B(0,3r/4)

P3r/4(x, z)h(z)σ(dz), where σ(·) is the surface measure of

∂B(0, 3r/4). Hence, by (2.20), the conclusion is obtained.

Suppose D is a bounded C1,1 domain in Rd with characteristics (R0,Λ0). By the
Brownian scaling, it is well known that for any λ > 0,

G∆
λD(x, y) = λ2−dG∆

D(x/λ, y/λ) for every x, y ∈ λD, x 6= y. (2.21)

By Theorem 5.1 and (2.21), there is a constant C = C(d,Λ0, R0,diam(D)) > 1 such that
for any λ > 0

C−1

|x− y|d−2

(
1 ∧ δλD(x)

|x− y|

)(
1 ∧ δλD(y)

|x− y|

)
≤ G∆

λD(x, y)

≤ C

|x− y|d−2

(
1 ∧ δλD(x)

|x− y|

)(
1 ∧ δλD(y)

|x− y|

) (2.22)

for all x 6= y in λD.
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Lemma 2.5. Suppose D is a bounded C1,1 domain in Rd with characteristics (R0,Λ0).

For each z ∈ D, the Green function G
(z)
D (x, y) of L(z) exists and is a smooth function

in D × D \ diag. Moreover, there exist constants Ck = Ck(d, λ0,Λ0, R0,diam(D)) ≥ 1,
k = 1, 2, 3, such that for every λ > 0, z ∈ Rd and x 6= y in λD,

C−1
1

|x− y|d−2

(
1 ∧ δλD(x)

|x− y|

)(
1 ∧ δλD(y)

|x− y|

)
≤ G(z)

λD(x, y)

≤ C1

|x− y|d−2

(
1 ∧ δλD(x)

|x− y|

)(
1 ∧ δλD(y)

|x− y|

)
;

(2.23)

and

|∇xG(z)
λD(x, y)| ≤ C2

|x− y|d−1

(
1 ∧ δλD(y)

|x− y|

)
; (2.24)

∣∣∣∣ ∂2

∂xi∂xj
G

(z)
λD(x, y)

∣∣∣∣ ≤ C3

|x− y|d

(
1 ∧ δλD(y)

|x− y|

)(
1 ∧ δλD(x)

|x− y|

)−1

. (2.25)

Proof. Denote by A(x) = (aij(x)) and A1/2(x) its symmetric square root. Let W be a
standard Brownian motion in Rd. Fix z ∈ Rd. It is easy to prove that the generator of the
affined transform A1/2(z)W of W is L(z). Let Dz := {A−1/2(z)y : y ∈ D}. Then

G
(z)
λD(x, y) := |A(z)|−d/2G∆

λDz (A
−1/2(z)x,A−1/2(z)y), x, y ∈ λD, (2.26)

is the Green function of L(z) in D. Note that Dz is a C1,1 domain in Rd whose C1,1-
characteristics depend only on R0,Λ0 and the uniform ellipticity constant λ0 of the
matrix A(z), while the bounds on the diameter of Dz depend only on that of the diameter
of D and λ0. the desired estimate (2.23) follows from (2.26) and (2.22) for G∆

λDz
.

For each fixed y ∈ λDz, x 7→ G∆
λDz

(x, y) is harmonic with respect to ∆ inB(x, (δλDz(x)∧
|x − y|)/2). Hence, for x, y ∈ λDz with x 6= y, we have by (2.22) and Lemma 2.4 with
r = (δλDz (x) ∧ |x− y|)/2 and x0 = x that

|∇xG∆
λDz (x, y)| ≤ c2

|x− y|d−1

(
1 ∧ δλDz (y)

|x− y|

)
, x 6= y ∈ λDz; (2.27)

∣∣∣∣ ∂2

∂xi∂xj
G∆
λDz (x, y)

∣∣∣∣ ≤ c3
|x− y|d

(
1 ∧ δλDz (y)

|x− y|

)(
1 ∧ δλDz (x)

|x− y|

)−1

, x 6= y ∈ λDz, (2.28)

where ck = ck(d, λ0,Λ0, R0,diam(D)) for k = 2, 3. The estimates (2.24)-(2.25) then follow
from (2.26) and (2.27)-(2.28).

Let g(0)
D , g(k)

D and gD be defined by (2.16), (2.19) and (2.18). In the following, we
assume the diffusion coefficients (aij(x))1≤i,j≤d of the non-divergence form operator L
of (1.1) are `-Dini continuous satisfying condition (1.3). Recall that `(·) : [0,∞)→ [0,∞)

is an increasing continuous function with `(0) = 0 and
∫ 1

0
`(t)/t dt <∞ such that there

are positive constants c0 and α ∈ (0, 1] satisfying (1.4).

Lemma 2.6. Suppose D is a bounded C1,1 domain in Rd with characteristics (R0,Λ0).
There exist positive constants θ1 = θ1(d, λ0, `,Λ0, R0,diam(D)) ∈ (0, 1

2diam(D) ) and C4 =

C4(d, λ0, `,Λ0, R0,diam(D)) such that for any λ ∈ (0, θ1], gλD(x, y) :=
∑∞
k=0 g

(k)
λD(x, y)

converges absolutely and locally uniformly on (λD)× (λD) \ diag with

|gλD(x, y)| ≤
∞∑
k=0

|g(k)
λD(x, y)| ≤ C4

`(|x− y|)
|x− y|d

δλD(y)

δλD(x)
for x 6= y ∈ λD. (2.29)
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In particular, gλD(x, y) is jointly continuous on (λD)× (λD) \ diag. Moreover,

gλD(x, y) = g
(0)
λD(x, y) +

∫
λD

g
(0)
λD(x, z)gλD(z, y)dz for x 6= y ∈ λD, (2.30)

where g(0)
λD(x, y) = (L(x) − L(y))G

(y)
λD(·, y)(x).

Proof. Let rλD(x, y) := δλD(x) + δλD(y) + |x− y|. Then

rλD(x, y) � |x− y|+ δλD(x) � |x− y|+ δλD(y) (2.31)

and
δλD(y) + |x− y| ≤ rλD(x, y) ≤ 2(δλD(y) + |x− y|) for every x, y ∈ λD.

Note that since for a, b > 0,
a

a+ b
≤ 1 ∧ a

b
≤ 2a

a+ b
, (2.32)

we have by (2.25) that∣∣∣∣ ∂2

∂xi∂xj
G

(y)
λD(·, y)(x)

∣∣∣∣ ≤ 4C3

|x− y|d
δλD(y)

rλD(x, y)
· rλD(x, y)

δλD(x)
= 4C3|x− y|−d

δλD(y)

δλD(x)
, (2.33)

where C3 is the positive constant in (2.25). Hence,

|g(0)
λD(x, y)| = |(L(x) − L(y))G

(y)
λD(·, y)(x)|

=

d∑
i,j=1

|aij(x)− aij(y)|
∣∣∣∣ ∂2

∂xi∂xj
G

(y)
λD(·, y)(x)

∣∣∣∣
≤ 4C3

`(|x− y|)
|x− y|d

δλD(y)

δλD(x)
.

(2.34)

For simplicity, let c1 := 4C3. We claim that for n ≥ 0,

|g(n)
λD(x, y)| ≤ c1 2−n

`(|x− y|)
|x− y|d

δλD(y)

δλD(x)
, x 6= y ∈ λD. (2.35)

Suppose that (2.35) holds for n = k ≥ 0. Note that by (1.4), we have for |x1| < |x2| < 1,

|x1|d

|x2|d
≤ |x1|α

|x2|α
≤ c0

`(|x1|)
`(|x2|)

;

that is,
|x1|d

`(|x1|)
≤ c0

|x2|d

`(|x2|)
for |x1| < |x2| < 1. (2.36)

Thus, we have for x, y, z ∈ λD with diam(λD) < 1/2,

|x− y|d

`(|x− y|)
≤ c0

(|x− z|+|z − y|)d

`(|x− z|+|z − y|)
≤c0

(2|x− z| ∨ 2|z − y|)d

`(2|x− z| ∨ 2|z − y|)
≤c02d

(
|x− z|d

`(|x− z|)
+
|z − y|d

`(|z − y|)

)
.

Hence, for x, y, z ∈ λD with diam(λD) < 1/2,

`(|x− z|)
|x− z|d

· `(|z − y|)
|z − y|d

≤ c02d
(
`(|x− z|)
|x− z|d

+
`(|z − y|)
|z − y|d

)
`(|x− y|)
|x− y|d

. (2.37)

By (2.34), (2.35) with n = k, and (2.37), for λ < 1/(2diam(D)),

|g(0)
λD(x, z)g

(k)
λD(z, y)| ≤ c21 2−k

`(|x− z|)
|x− z|d

δλD(z)

δλD(x)

`(|z − y|)
|z − y|d

δλD(y)

δλD(z)

≤ c21 2−kc02d
`(|x− y|)
|x− y|d

δλD(y)

δλD(x)

(
`(|x− z|)
|x− z|d

+
`(|z − y|)
|z − y|d

)
.(2.38)
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Hence,

|g(k+1)
λD (x, y)| ≤

∫
λD

|g(0)
λD(x, z)g

(k)
λD(z, y)| dz

≤ ωdc21c02d+1−k `(|x− y|)
|x− y|d

δλD(y)

δλD(x)

∫ λdiam(D)

0

`(r)

r
dr

Let θ1 be small enough such that for λ ≤ θ1 ∧ 1
2diam(D) ,

ωdc1c02d+2

∫
0<r<λdiam(D)

`(r)

r
dr < 1.

Then for λ ∈ (0, θ1],

|g(k+1)
λD (x, y)| ≤ c12−(k+1) `(|x− y|)

|x− y|d
δλD(y)

δλD(x)
, x 6= y ∈ λD. (2.39)

Thus (2.35) holds for n = k+1. In view of (2.34) and the mathematical induction, we have
proved the claim (2.35), which holds for any bounded C1,1 domain D with characteristics
(Λ0, R0) and λ ∈ (0, θ1]. Consequently,

|gλD(x, y)| ≤
∞∑
k=0

|g(k)
λD(x, y)| ≤ 2c1

`(|x− y|)
|x− y|d

δλD(y)

δλD(x)
for x 6= y ∈ λD.

This proves (2.29) with C4 := 2c1 = 8C3.
Note that in view of (2.16), g(0)

λD(x, y) := (L(x) − L(y))G
(y)
λD(·, y)(x) is jointly continuous

on (λD) × (λD) \ diag. Fix x0, y0 ∈ λD. Let ε0 = (δλD(x0) ∧ δλD(y0) ∧ |x0 − y0|)/8 and
δ ∈ (0, ε0). By (2.38),

sup
x∈B(x0,ε0)

y∈B(y0,ε0)

∫
λD∩B(x,δ)

|g(0)
λD(x, z)g

(k)
λD(z, y)| dz

≤c21 2−kc02d sup
x∈B(x0,ε0)

y∈B(y0,ε0)

(
`(|x− y|)
|x− y|d

δλD(y)

δλD(x)

∫
λD∩B(x,δ)

(
`(|x− z|)
|x− z|d

+
`(|z − y|)
|z − y|d

)
dz

)

≤c21c02d−k
`(2|x0−y0|)
(|x0−y0|/2)d

δλD(y)

δλD(x0)
sup

x∈B(x0,ε0)

(∫
B(x,δ)

`(|x− z|)
|x− z|d

dz+

∫
B(x,δ)

`(2|x0 − y0|)
(|x0 − y0|/2)d

dz

)

≤c21c022d−k `(2|x0 − y0|)
|x0 − y0|d

δλD(y)

δλD(x0)

(
ωd

∫ δ

0

`(s)

s
ds+ 2d

`(2|x0 − y0|)
|x0 − y0|d

|B(0, δ)|

)
(2.40)

converges to 0 as δ → 0, where the second inequality holds due to |x0 − y0|/2 ≤ |w− y| ≤
2|x0 − y0| for w ∈ B(x0, ε0) and y ∈ B(y0, ε0). In the same way, we can show that

lim
δ→0

sup
x∈B(x0,ε0)

y∈B(y0,ε0)

∫
λD∩B(y,δ)

|g(0)
λD(x, z)g

(k)
λD(z, y)| dz = 0. (2.41)

Moreover, in view of (2.35),

lim
δ→0

sup
x∈B(x0,ε0)

y∈B(y0,ε0)

∫
{z∈λD:δλD(z)≤δ}

|g(0)
λD(x, z)g

(k)
λD(z, y)| dz = 0. (2.42)

On the other hand, it follows from (2.35), Hölder’s inequality and the bounded conver-
gence theorem that for any w ∈ B(x0, ε0) and δ ∈ (0, ε0),

lim
x→w

∫
B(x,δ)c∩B(y,δ)c

1{δλD(z)>δ}g
(0)
λD(x, z)g

(k)
λD(z, y) dz

=

∫
B(w,δ)c∩B(y,δ)c

1{δλD(z)>δ}g
(0)
λD(w, z)g

(k)
λD(z, y) dz

(2.43)
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uniformly in y ∈ B(y0, ε0). Since g(0)
λD(x, y) is jointly continuous on (λD) × (λD) \ diag,

we conclude from (2.40)-(2.43) by mathematical induction that g(k+1)
λD (x, y) is continuous

in x ∈ B(x0, ε0) uniformly in y ∈ B(y0, ε0) for every k ≥ 0. Similarly, one can prove

by induction that g(k+1)
λD (x, y) is continuous in y ∈ B(y0, ε) uniformly in x ∈ B(x0, ε) for

every k ≥ 0. Consequently, g(n)
λD(x, y) is jointly continuous on (λD)× (λD) \ diag for every

n ≥ 0. As
∑∞
k=0 g

(k)
λD(x, y) converges to gλD(x, y) locally uniformly on (λD)× (λD) \ diag

by (2.39), gλD(x, y) is jointly continuous on (λD) × (λD) \ diag. Identity (2.30) follows

directly from the estimate (2.39) and recursive definition (2.19) of g(k+1)
λD (x, y).

Lemma 2.7. Suppose D is a bounded C1,1 domain in Rd with characteristics (R0,Λ0).
Let θ1 be the positive constant in Lemma 2.6. There exists a positive constant C5 =

C5(d, λ0, `,Λ0, R0,diam(D)) such that for any λ ∈ (0, θ1],∫
λD

G
(z)
λD(x, z)|gλD(z, y)| dz ≤ C5

|x− y|d−2

(
1 ∧ δλD(y)

|x− y|

)
on (λD)× (λD) \ diag. (2.44)

Moreover,
∫
λD

G
(z)
λD(x, z)gλD(z, y) dz is jointly continuous in (x, y) ∈ (λD) × (λD) \ diag

and for each y ∈ λD,

lim
x→∂(λD)

∫
λD

G
(z)
λD(x, z)gλD(z, y) dz = 0.

Proof. Let rλD(x, y) := δλD(x) + δλD(y) + |x− y|. Note that

δλD(x) + |x− y| ≤ rλD(x, y) ≤ 2(δλD(x) + |x− y|) for every x, y ∈ λD. (2.45)

By (2.31)-(2.32), (2.23) and Lemma 2.6, for λ ∈ (0, θ1],

G
(z)
λD(x, z)|gλD(z, y)| ≤ 4C1C4

1

|x− z|d−2

δλD(z)

rλD(x, z)

`(|z − y|)
|z − y|d

δλD(y)

δλD(z)

≤ 4C1C4

|x− y|d−2

δλD(y)

rλD(x, y)

(
|x− y|d−2

|x− z|d−2

`(|z − y|)
|z − y|d

rλD(x, y)

rλD(x, z)

) (2.46)

Note that by (2.45)

|x− y|d−2

|x− z|d−2

`(|z − y|)
|z − y|d

rλD(x, y)

rλD(x, z)

≤ 2
|x− y|d−2

|x− z|d−2

`(|z − y|)
|z − y|d

|x− z|+ |z − y|+ δλD(x)

|x− z|+ δλD(x)

≤ 4
(2 max{|x− z|, |z − y|})d−2

|x− z|d−2

`(|z − y|)
|z − y|d

|x− z|+ |z − y|
|x− z|

≤ 4
(2 max{|x− z|, |z − y|})d−1

|x− z|d−1

`(|z − y|)
|z − y|d

≤ 2d+1`(|z − y|)
(

1

|z − y|d
+

1

|x− z|d−1|z − y|

)
≤ 2d+1

(
2`(|z − y|)
|z − y|d

+ 1{|z−y|>|x−z|]}
`(|x− z|)
|x− z|d

`(|z − y|)
`(|x− z|)

|x− z|
|z − y|

)
≤ 2d+1

(
2`(|z − y|)
|z − y|d

+ 1{|z−y|>|x−z|]}c0
`(|x− z|)
|x− z|d

(
|z − y|
|x− z|

)α |x− z|
|z − y|

)
≤ 2d+1

(
2`(|z − y|)
|z − y|d

+ c0
`(|x− z|)
|x− z|d

)
,

(2.47)
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where the second to the last inequality is due to (1.4). Hence, we have by (2.46)
and (2.47),∫
λD

G
(z)
λD(x, z)|gλD(z, y)| dz ≤ 2d+3C1C4

|x− y|d−2

δλD(y)

rλD(x, y)

∫
λD

(
2
`(|z − y|)
|z − y|d

+ c0
`(|x− z|)
|x− z|d

)
dz

≤ 2d+3(2 + c0)C1C4

|x− y|d−2

δλD(y)

rλD(x, y)

∫ λdiam(D)

0

ωd
`(r)

r
dr

≤ 2d+3(2 + c0)C1C4

|x− y|d−2

δλD(y)

rλD(x, y)

∫ 1

0

ωd
`(r)

r
dr for x 6=y ∈ λD.

(2.48)
This establishes (2.44).

It follows from (2.46) and (2.47) that

G
(z)
λD(x, z)|gλD(z, y)| ≤ 2d+3(2 + c0)C1C4

|x− y|d−2

δλD(y)

rλD(x, y)

(
`(|z − y|)
|z − y|d

+
`(|x− z|)
|x− z|d

)
≤ 2d+3(2 + c0)C1C4

|x− y|d−2

(
`(|z − y|)
|z − y|d

+
`(|x− z|)
|x− z|d

) (2.49)

By a similar argument as that for (2.40)-(2.43), one can show that
∫
λD

G
(z)
λD(x, z)gλD(z,

y) dz is jointly continuous in (x, y) ∈ (λD)× (λD) \ diag.
Finally, we prove that for each y ∈ λD and Q ∈ ∂(λD),

lim
x→Q

∫
λD

G
(z)
λD(x, z)gλD(z, y) dz = 0 (2.50)

Fix y ∈ λD and Q ∈ ∂(λD). Let ε ∈ (0, δλD(y)/2). By (2.49) and the dominated conver-
gence theorem,

lim
λD∩B(Q,ε/2)3x→Q

∫
λD\B(Q,ε)

G
(z)
λD(x, z)gλD(z, y) dz

=

∫
λD\B(Q,ε)

lim
x→Q

G
(z)
λD(x, z)gλD(z, y) dz = 0.

(2.51)

On the other hand, by (2.49),

sup
x∈λD∩B(Q,ε)

∫
λD∩B(Q,ε)

G
(z)
λD(x, z)|gλD(z, y)|dz

≤ sup
x∈λD∩B(Q,ε)

2d+3(2 + c0)C1C4

|x− y|d−2

∫
λD∩B(Q,ε)

`(|x− z|)
|x− z|d

+
`(|z − y|)
|z − y|d

dz

≤ 2d+3(2 + c0)C1C4

(
δλD(y)

2

)2−d

sup
x∈λD∩B(Q,ε)

∫
|x−z|<2ε

`(|x− z|)
|x− z|d

dz

+ 2d+3(2 + c0)C1C4

(
δλD(y)

2

)2−d ∫
λD∩B(Q,ε)

`(|z − y|)
|z − y|d

dz

≤ 2d+3(2 + c0)C1C4

(
δλD(y)

2

)2−d(∫ 2ε

0

ωd
`(s)

s
ds+

`(diam(λD))

(δλD(y)/2)d
|B(Q, ε)|

)
→ 0

as ε→ 0. This combined with (2.51) establishes (2.50).

The following result is a key step of this paper. It shows that the kernel obtained via
Levi’s freezing coefficient method defined on the right hand side of (2.15) through (2.16)-
(2.19) with λD in place of U is indeed the Green function GλD when λ > 0 is sufficiently
small.
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Theorem 2.8. Suppose D is a bounded C1,1 domain in Rd with characteristics (R0,Λ0).
Let θ1 be the positive constant in Lemma 2.6. Then for any λ ∈ (0, θ1], the Green function
GλD of L in λD satisfies equation (2.15) with λD in place of U ; that is,

GλD(x, y) = G
(y)
λD(x, y) +

∫
λD

G
(z)
λD(x, z)gλD(z, y)dz for x 6= y ∈ λD. (2.52)

Proof. For λ ∈ (0, θ1], define

G̃λD(x, y) := G
(y)
λD(x, y) +

∫
λD

G
(z)
λD(x, z)gλD(z, y)dz, x 6= y ∈ λD. (2.53)

The crux of this proof is to show that for each C∞c (λD) function ψ, G̃λDψ(x) :=
∫
λD

G̃λD(x,

y)ψ(y)dy is in W 2,p
loc (λD) for any p > 1 and LG̃λDψ = −ψ a.e. on λD. Once this is estab-

lished, we can use mollifier and Ito’s formula to show that G̃λD(x, y) is the occupation
density of the diffusion process X associated with L in λD and hence identify it with the
Green function GλD(x, y). However, due to the singularity of the second derivative of

G
(z)
λD(x, z) along the diagonal and the intertwined z in the second derivative of G(z)

λD(x, z),

it is difficult to show directly the weak differentiability of G̃λDψ(x) and to establish the
property LG̃λDψ = −ψ a.e. on λD. To overcome these difficulties, we use an approxi-
mation procedure to smooth out the singularity of G(z)

λD(x, z) along the diagonal. Some
ideas of this approximation are motivated by those from [22, Lemma 4.2] which is for
the C2-derivatives of the Newtonian potentials of the Laplace operator. But in our case,
since the differential operator L has less smooth coefficients and the form of G̃λD(x, y)

is much more involved, our argument is significantly different from that of [22, Lemma
4.2] and the proof here is much more delicate.

The proof of this theorem is pretty long. We divided it into three parts and part (I) is
further divided into three steps. Let η ∈ [0, 2] be a C∞(R) function satisfying

η(t) = 0 for t ≤ 1, and η(t) = 1 for t ≥ 2

and 0 ≤ d
dtη(t) ≤ 2, | ddt2 η(t)| ≤ 4 for t ∈ R. We define for ε ∈ (0, 1), ηε(x, y) := η(|x− y|/ε)

in Rd ×Rd. Let (G
(y)
λDηε)(x, y) := G

(y)
λD(x, y)ηε(x, y). Then (G

(y)
λDηε)(x, y) = 0 for |x− y| < ε

and (G
(y)
λDηε)(x, y) = G

(y)
λD(x, y) for |y − x| > 2ε. Define

G̃
(ε)
λD(x, y) := (G

(y)
λDηε)(x, y) +

∫
λD

(G
(z)
λDηε)(x, z)gλD(z, y)dz, x 6= y ∈ λD.

(I) We claim that for any φ, ψ ∈ C∞c (λD),

lim
ε→0

∫
λD

φ(x)LxG̃(ε)
λDψ(x) dx = −

∫
λD

φ(x)ψ(x) dx. (2.54)

We prove this through the following three steps.

Step 1 : We prove that for any ψ, φ ∈ C∞c (λD),

lim
ε→0

∫
λD

Lx
(∫

λD

(G
(y)
λDηε)(x, y)ψ(y) dy

)
φ(x) dx

=

∫
λD

∫
λD

(L(x)
x − L(y)

x )G
(y)
λD(x, y)ψ(y) dyφ(x) dx−

∫
λD

ψ(x)φ(x) dx.

(2.55)

Note that by the estimates (2.23)-(2.24) and (2.33), there exists c1 = c1(d, λ0, R0,Λ0,
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diam(D)) > 1 such that for each x, y ∈ λD,

sup
|h|<δλD(x)/4

d∑
i,j=1

|Dij(G
(y)
λD · ηε)(x+ h, y)|

= sup
|h|<δλD(x)/4

d∑
i,j=1

|(DijG
(y)
λD · ηε)(x+ h, y) +DiG

(y)
λD(x+ h, y) ·Djηε(x+ h, y)

+G
(y)
λD(x+ h, y) ·Dijηε(x+ h, y)|

≤c1 sup
|h|<δλD(x)/4

(
|x+h−y|−d δλD(y)

δλD(x+h)
+

2

ε
|x+h−y|1−d+

4

ε2
|x+h−y|2−d

)
1|x+h−y|>ε/2

≤2dc1ε
−d
(

2
δλD(y)

δλD(x)
+ 2

)
.

Thus, by the dominated convergence theorem,

Dij

∫
λD

(G
(y)
λDηε)(x, y)ψ(y) dy =

∫
λD

Dij(G
(y)
λDηε)(·, y)(x)ψ(y) dy.

Hence, Lx
∫
λD

G
(y)
λDηε(x, y)ψ(y) dy =

∫
λD
Lx(G

(y)
λDηε)(x, y)ψ(y) dy. We divide the integral

into two parts ∫
λD

∫
λD

Lx(G
(y)
λDηε)(x, y)ψ(y) dyφ(x) dx

=

∫
λD

∫
λD

(L(x)
x − L(y)

x )(G
(y)
λDηε)(x, y)ψ(y) dyφ(x) dx

+

∫
λD

∫
λD

L(y)
x (G

(y)
λDηε)(x, y)ψ(y) dyφ(x) dx

=:I1 + I2

(2.56)

For the first term, by the Dini condition (1.3) of aij , (2.23)-(2.24) and (2.33), there exists
c2 = c(d, λ0, R0,Λ0,diam(D)) such that∫

λD

|(L(x)
x − L(y)

x )((G
(y)
λDηε)(x, y)−G(y)

λD(x, y))||ψ(y)| dy

≤
d∑

i,j=1

∫
λD∩{|y−x|≤2ε}

|aij(x)− aij(y)| · |Dij(G
(y)
λDηε)(x, y)−DijG

(y)
λD(x, y)| · |ψ(y)| dy

≤
d∑

i,j=1

‖ψ‖∞
∫
λD∩{|y−x|≤2ε}

`(|x− y|)(|Dij(G
(y)
λDηε)(x, y)|+ |DijG

(y)
λD(x, y)|) dy

≤
d∑

i,j=1

‖ψ‖∞
∫
λD∩{|y−x|≤2ε}

`(|x− y|)(|Dijηε(x, y)|G(y)
λD(x, y)+|Diηε(x, y)||DiG

(y)
λD(x, y)|) dy

+ 2

d∑
i,j=1

‖ψ‖∞
∫
λD∩{|y−x|≤2ε}

`(|x− y|)|DijG
(y)
λD(x, y)|) dy

≤c2‖ψ‖∞
∫
λD∩{|y−x|≤2ε}

`(|x− y|)
(

4ε−2|x− y|2−d + 2ε−1|x− y|1−d+|x−y|−d δλD(y)

δλD(x)

)
dy

≤c2
(

20 +
1

δλD(x)

)
‖ψ‖∞

∫
{|x−y|≤2ε}

`(|x− y|)
|x− y|d

dy

≤c2
(

20 +
1

δλD(x)

)
‖ψ‖∞

∫
{0≤s≤2ε}

ωd
`(s)

s
ds,

(2.57)

EJP 28 (2023), paper 36.
Page 20/54

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP925
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Green function estimates for second order elliptic operators with Dini coefficients

which converges to 0 as ε→ 0 uniformly on any compact subset of λD, where the second
to the last inequality holds due to δλD(y) ≤ diam(λD) ≤ 1. Hence, for each φ ∈ C∞c (λD),

lim
ε→0

∫
λD

∫
λD

(L(x)
x − L(y)

x )(G
(y)
λDηε)(x, y)ψ(y) dyφ(x) dx

=

∫
λD

∫
λD

(L(x)
x − L(y)

x )G
(y)
λD(x, y)ψ(y) dyφ(x) dx.

(2.58)

Next, we consider I2 in (2.56). For any ψ, φ ∈ C∞c (λD), by Fubini theorem and
integration by parts,

lim
ε→0

∫
λD

∫
λD

L(y)
x (G

(y)
λDηε)(x, y)ψ(y) dyφ(x) dx

= lim
ε→0

∫
λD

(∫
λD

L(y)
x (G

(y)
λDηε)(x, y)φ(x) dx

)
ψ(y) dy

= lim
ε→0

∫
λD

(∫
λD

L(y)
x φ(x)(G

(y)
λDηε)(x, y)dx

)
ψ(y) dy

=

∫
λD

(∫
λD

L(y)
x φ(x)G

(y)
λD(x, y)dx

)
ψ(y) dy

=

∫
λD

lim
ε→0

1

|B(y, ε) ∩ (λD)|

(∫
λD

L(y)
x φ(x)G

(y)
λD1B(y,ε)(x)dx

)
ψ(y) dy

=

∫
λD

lim
ε→0

1

|B(y, ε) ∩ (λD)|

(∫
λD

φ(x)(−1B(y,ε))(x)dx

)
ψ(y) dy

= −
∫
λD

φ(y)ψ(y)dy. (2.59)

In the fourth equality we used the dominated convergence theorem and the fact that for
y 6= x ∈ λD, limε→0

1
|B(y,ε)∩(λD)|G

(y)
λD1B(y,ε)(x) = G

(y)
λD(x, y) and

1

|B(y, ε) ∩ (λD)|
G

(y)
λD1B(y,ε)(x) ≤ c1

|B(y, ε) ∩ (λD)|

∫
λD

1

|x− w|d−2
1B(y,ε)(w)dw ≤ c2

|x− y|d−2
,

by considering two cases separately: (i) when |x − y| > 2ε, then |x − w| � |x − y| for
w ∈ B(y, ε); (ii) when |x− y| ≤ 2ε, then B(y, ε) ⊂ B(x, 3ε) and so

c1
|B(y, ε) ∩ (λD)|

∫
λD

1

|x− w|d−2
1B(y,ε)(w)dw

≤ c1
|B(y, ε) ∩ (λD)|

∫
B(x,3ε)∩λD

1

|x− w|d−2
dw

≤ c2
|B(y, ε) ∩ (λD)|

ε2 ≤ c3
εd−2

≤ c4
|x− y|d−2

.

In the fifth equality, we used the fact that for f ∈ Lp(λD), G(y)
λDf is a weak solution to

L(y)u = −f in λD. Combing (2.58) with (2.59) yields the desired property (2.55).
Step 2 : We prove that for any ψ, φ ∈ C∞c (λD),

lim
ε→0

∫
λD×λD

Lx
[∫

λD

(G
(z)
λDηε)(x, z)gλD(z, y)dz

]
ψ(y)φ(x) dy dx

=

∫
λD×λD

[∫
λD

(L(x)
x − L(z)

x )G
(z)
λD(x, z)gλD(z, y)dz

]
ψ(y)φ(x) dy dx

−
∫
λD

∫
λD

gλD(x, y)ψ(y) dyφ(x) dx.

(2.60)
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By a similar argument in (2.57),∫
λD

∫
λD

|(L(x)
x − L(z)

x )((G
(z)
λDηε)(x, z)−G

(z)
λD(x, z))| · |gλD(z, y)||ψ(y)| dz dy

≤‖ψ‖∞
∫
λD

∫
λD∩{|z−x|≤2ε}

`(|x− z|)
(

4

ε2
G

(z)
λD(x, z) +

2

ε
|DiG

(z)
λD(x, z)|+ 2|DijG

(z)
λD(x, z)|

)
· |gλD(z, y)| dz dy

(2.61)
Let rλD(x, y) := δλD(x) + δλD(y) + |x−y|. In view of (2.23), (2.32), (2.45) and Lemma 2.6,
for any ε ∈ (0, (δλD(x) ∧ |x− y|)/4), the first integral in the right side of (2.61) satisfies∫

λD

∫
λD∩{|z−x|≤2ε}

`(|x− z|) 4

ε2
G

(z)
λD(x, z)|gλD(z, y)| dz dy

≤16

ε2
C1C4

∫
λD

∫
λD∩{|z−x|≤2ε}

`(|x− z|)|x− z|2−d δλD(z)

rλD(x, z)

`(|z − y|)
|z − y|d

δλD(y)

δλD(z)
dz dy

≤C1C4
16

ε2

1

δλD(x)

∫
λD

∫
λD∩{|z−x|≤2ε}

|x− z|2 `(|x− z|)
|x− z|d

`(|z − y|)
|z − y|d

dz dy

≤64C1C4
1

δλD(x)

∫
λD∩{|z−x|≤2ε}

`(|x− z|)
|x− z|d

(∫
λD

`(|z − y|)
|z − y|d

dy

)
dz

≤64C1C4
1

δλD(x)

∫ 1

0

ωd
`(r)

r
dr

∫ 2ε

0

ωd
`(s)

s
ds,

where the second inequality is due to rλD(x, z) ≥ δλD(x) and δλD(y) ≤ diam(λD) ≤ 1.
Similarly, by (2.24) and Lemma 2.6, the second integral in the right side of (2.61) satisfies
for any ε ∈ (0, (δλD(x) ∧ |x− y|)/4),∫

λD

∫
λD∩{|z−x|≤2ε}

`(|x− z|)2

ε
|DiG

(z)
λD(x, z)||gλD(z, y)| dz dy

≤8

ε
C2C4

∫
λD

∫
λD∩{|z−x|≤2ε}

`(|x− z|)|x− z|1−d δλD(z)

rλD(x, z)

`(|z − y|)
|z − y|d

δλD(y)

δλD(z)
dz dy

≤C2C4
8

ε

δλD(y)

δλD(x)

∫
λD

∫
λD∩{|z−x|≤2ε}

|x− z|`(|x− z|)
|x− z|d

`(|z − y|)
|z − y|d

dz dy

≤16C2C4
1

δλD(x)

∫ 1

0

ωd
`(r)

r
dr

∫ 2ε

0

ωd
`(s)

s
ds.

By (2.33) and Lemma 2.6, the third therm in the right side of (2.61) satisfies for any
ε ∈ (0, (δλD(x) ∧ |x− y|)/4),∫

λD

∫
λD∩{|z−x|≤2ε}

`(|x− z|)|DijG
(z)
λD(x, z)gλD(z, y)| dz dy

≤ C3C4

∫
λD

∫
λD∩{|z−x|≤2ε}

`(|x− z|)
|x− z|d

δλD(z)

δλD(x)

`(|z − y|)
|z − y|d

δλD(y)

δλD(z)
dzdy

≤ C3C4
δλD(y)

δλD(x)

∫
λD

∫
λD∩{|z−x|≤2ε}

`(|x− z|)
|x− z|d

`(|z − y|)
|z − y|d

dz dy

≤ C3C4
1

δλD(x)

∫ 1

0

ωd
`(r)

r
dr

∫ 2ε

0

ωd
`(s)

s
ds.

Hence, by the three inequalities above and (2.61),

lim
ε→0

∫
λD

∫
λD

(L(x)
x − L(z)

x )(G
(z)
λDηε)(x, z)gλD(z, y)ψ(y) dz dy

=

∫
λD

∫
λD

(L(x)
x − L(z)

x )G
(z)
λD(x, z)gλD(z, y)ψ(y) dz dy
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uniformly on any compact set of λD. Therefore,

lim
ε→0

∫
λD

[∫
λD

∫
λD

(L(x)
x − L(z)

x )(G
(z)
λDηε)(x, z)gλD(z, y)ψ(y) dz dy

]
φ(x) dx

=

∫
λD

[∫
λD

∫
λD

(L(x)
x − L(z)

x )G
(z)
λD(x, z)gλD(z, y)ψ(y) dz dy

]
φ(x) dx.

(2.62)

By a similar argument of (2.59), for any φ, ψ ∈ C∞c (λD),

lim
ε→0

∫
λD

∫
λD

∫
λD

L(z)
x (G

(z)
λDηε)(x, z)gλD(z, y)dzψ(y) dyφ(x) dx

= lim
ε→0

∫
λD

∫
λD

(∫
λD

L(z)
x (G

(z)
λDηε)(x, z)φ(x) dx

)
gλD(z, y)dzψ(y) dy

= lim
ε→0

∫
λD

∫
λD

(∫
λD

L(z)
x φ(x)(G

(z)
λDηε)(x, z)dx

)
gλD(z, y)ψ(y) dzdy

=

∫
λD

∫
λD

(∫
λD

L(z)
x φ(x)G

(z)
λD(x, z)dx

)
gλD(z, y)ψ(y) dzdy

=

∫
λD

∫
λD

lim
ε→0

1

|B(z, ε) ∩ (λD)|

(∫
λD

L(z)
x φ(x)G

(z)
λD1B(z,ε)(x)dx

)
gλD(z, y)ψ(y) dzdy

=

∫
λD

∫
λD

lim
ε→0

1

|B(z, ε) ∩ (λD)|

(∫
λD

φ(x)(−1B(z,ε))(x)dx

)
gλD(z, y)ψ(y) dzdy

= −
∫
λD

(∫
λD

φ(z) gλD(z, y)dz

)
ψ(y)dy. (2.63)

The desired property (2.60) follows from (2.62) and (2.63).
Step 3 : Recall that

G̃
(ε)
λD(x, y) = (G

(y)
λDηε)(x, y) +

∫
λD

(G
(z)
λDηε)(x, z)gλD(z, y)dz, x 6= y ∈ λD.

By Steps 1 and 2 and the definition of gλD(x, y), for any ψ, φ ∈ C∞c (λD),

lim
ε→0

∫
λD

φ(x)LG̃(ε)
λDψ(x)dx (2.64)

= lim
ε→0

∫
λD

Lx
∫
λD

G̃
(ε)
λD(x, y)ψ(y) dyφ(x) dx

= lim
ε→0

∫
λD

Lx
∫
λD

(G
(y)
λDηε)(x, y)ψ(y) dyφ(x) dx

+ lim
ε→0

∫
λD

Lx
∫
λD

∫
λD

(G
(z)
λDηε)(x, z)gλD(z, y) dzψ(y) dyφ(x) dx

= −
∫
λD

ψ(x)φ(x) dx+

∫
λD

∫
λD

(
(L(x)

x − L(y)
x )G

(y)
λD(x, y)

)
ψ(y) dyφ(x) dx

−
∫
λD

gλD(x, y)ψ(y) dyφ(x) dx

+

∫
λD

∫
λD

(∫
λD

(L(x)
x − L(z)

x )G
(z)
λD(x, z)gλD(z, y)dz

)
ψ(y) dyφ(x) dx

= −
∫
λD

ψ(x)φ(x) dx. (2.65)

This establishes the claim (2.54).
(II) Next we claim that there exists c = c(d, λ0, `, R0,Λ0,diam(D)) such that for any

ε > 0, ∫
λD

|LxG̃(ε)
λD(x, y)| dy ≤ c 1

δλD(x)
. (2.66)
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Due to the cut-off of singularity along the diagonal by ηε, we have by Lemma 2.5 that
x 7→ G̃

(ε)
λD(x, y) is C∞ in λD \ {y} for each y ∈ λD and

LG̃(ε)
λD(x, y) = Lx(G

(y)
λDηε)(x, y) +

∫
λD

Lx(G
(z)
λDηε)(x, z)gλD(z, y)dz.

To prove (2.66), we first prove that there exists a constant c = c(d, λ0, `, R0,Λ0,diam(D))

such that for any ε > 0,

∫
λD×λD

|Lx(G
(z)
λDηε)(x, z)gλD(z, y)| dz dy ≤ c 1

δλD(x)
. (2.67)

Note that

Lx(G
(z)
λDηε)(x, z) = ηε(x, z)LxG(z)

λD(x, z) +G
(z)
λD(x, z)Lxηε(x, z)

+

d∑
i,j=1

aij(x)
∂G

(z)
λD(x, z)

∂xi

∂ηε(x, z)

∂xj
.

(2.68)

Note that G(z)
λD(·, z) is C2 and harmonic with respect to L(z) on λD \ B(z, ε). Thus

ηε(x, z)L(z)
x G

(z)
λD(x, z) = 0. Hence, for the integral of the first term in (2.68) multiplying

by gλD(z, y), we have by (2.33), (2.37) and Lemma 2.6 that,

∫
λD×λD

|ηε(x, z)LxG(z)
λD(x, z)gλD(z, y)|dz dy

≤
∫
λD×λD

|(L(x)
x − L(z)

x )G
(z)
λD(x, z)gλD(z, y)|dz dy

+

∫
λD×λD

|ηε(x, z)L(z)
x G

(z)
λD(x, z)gλD(z, y)| dz dy

≤
d∑

i,j=1

∫
λD×λD

|aij(x)− aij(z)||DijG
(z)
λD(·, z)(x)gλD(z, y)|dz dy + 0

≤
d∑

i,j=1

∫
λD×λD

`(|x− z|)|DijG
(z)
λD(·, z)(x)gλD(z, y)|dz dy

≤ 4C3C4

∫
λD×λD

`(|x− z|)
|x− z|d

δλD(z)

δλD(x)

`(|z − y|)
|z − y|d

δλD(y)

δλD(z)
dz dy

≤ 2d+2c0C3C4

∫
λD

δλD(y)

δλD(x)

`(|x− y|)
|x− y|d

∫
λD

(
`(|x− z|)
|x− z|d

+
`(|z − y|)
|z − y|d

)
dz dy

≤ 2d+3c0C3C4
1

δλD(x)

(∫
0<s<1

ωd
`(s)

s
ds

)2

.

For the integral of the second term in (2.68) multiplying by gλD(z, y), we have by (2.23),
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(2.37) and Lemma 2.6 that,∫
λD

∫
λD

G
(z)
λD(x, z)|Lxηε(x, z)gλD(z, y)| dz dy

≤
d∑

i,j=1

|aij(x)|
∫
λD

∫
λD

G
(z)
λD(x, z)|Dijηε(·, z)(x)gλD(z, y)| dz dy

≤4d2λ0ε
−2

∫
λD

∫
λD∩{|z−x|≤2ε}

G
(z)
λD(x, z)|gλD(z, y)| dz dy

≤16d2λ0C1C4ε
−2

∫
λD∩{|z−x|≤2ε}

∫
λD

|x− z|2−d δλD(z)

rλD(x, z)

`(|z − y|)
|z − y|d

δλD(y)

δλD(z)
dy dz

≤16d2λ0C1C4ε
−2 1

δλD(x)

∫
λD∩{|z−x|≤2ε}

|x− z|2−d
∫
λD

`(|z − y|)
|z − y|d

dy dz

≤64d2λ0C1C4
1

δλD(x)

∫ 1

0

ωd
`(s)

s
ds,

where the second to the last inequality is due to rλD(x, z) ≥ δλD(x). By a similar
argument, for the integral of the third term in (2.68) multiplying by gλD(z, y), we have
by (2.24), (2.37) and Lemma 2.6 that,

∫
λD

∫
λD

d∑
i,j=1

|aij(x)DiG
(z)
λD(·, z)(x)Djηε(·, z)(x)gλD(z, y)| dz dy

≤
d∑

i,j=1

|aij(x)|
∫
λD

∫
λD

|DiG
(z)
λD(·, z)(x)Djηε(·, z)(x)gλD(z, y)| dz dy

≤2d2λ0ε
−1

∫
λD

∫
λD∩{|z−x|≤2ε}

|DiG
(z)
λD(·, z)(x)gλD(z, y)| dz dy

≤8d2λ0ε
−1

∫
λD∩{|z−x|≤2ε}

∫
λD

|x− z|1−d δλD(z)

rλD(x, z)

`(|z − y|)
|z − y|d

δλD(y)

δλD(z)
dy dz

≤8d2λ0ε
−1C2C4

1

δλD(x)

∫
λD∩{|z−x|≤2ε

|x− z|1−d
∫
λD

`(|z − y|)
|z − y|d

dy dz

≤16d2λ0C2C4
1

δλD(x)

∫ 1

0

ωd
`(s)

s
ds.

Consequently, by the three displays above and (2.68), (2.67) is established. By a very
similar but simpler argument, one can also prove that∫

λD

|Lx(G
(y)
λDηε)(x, y)| dy ≤ c 1

δλD(x)
, (2.69)

where c = c(d, λ0, `, R0,Λ0,diam(D)). The proof is omitted here. Thus, by (2.69)
and (2.67), (2.66) holds.

(III) Recall that G̃λD(x, y) is defined by (2.53). We claim that for any ψ ∈ C∞c (λD),
G̃λDψ ∈W 2,p

loc (λD) for any p > 1 and

LG̃λDψ = −ψ a.e. on λD. (2.70)

This will then imply that GλD(x, y) = G̃λD(x, y), establishing (2.52).

Fix a function ψ ∈ C∞c (λD) and define G̃(ε)
λDψ(x) :=

∫
λD

G̃
(ε)
λD(x, y)ψ(y)dy. Due to the

cut-off of singularity along the diagonal by ηε, it is easy to show that for any p > 1,
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G̃
(ε)
λDψ ∈W 2,p(λD) ∩ C(λD). It follows from (2.66) in (II) that for any relatively compact

open subset D′ of D and for any p > 1

sup
ε>0
‖LG̃(ε)

λDψ‖Lp(λD′) < +∞.

By Lemma 2.7 and (2.23),

sup
ε>0

G
(ε)
λD(x, y) ≤ G(y)

λD(x, y)+

∫
λD

G
(z)
λD(x, z)|gλD(z, y)|dz ≤ (C1+C5)|x−y|2−d, x 6= y ∈ λD.

Thus supε>0 supx∈λD |G̃
(ε)
λDψ(x)| < ∞ and whence supε>0 ‖G̃

(ε)
λDψ‖Lp(λD) < ∞ for any

p > 1. Consequently, by [22, Theorem 9.11], for any relative compact subdomain D′′ of
D′, there exists a constant c = c(d, p, λ0, `, λD

′′, λD′) so that for p > 1,

sup
ε
‖G̃(ε)

λDψ‖W 2,p(λD′′) ≤ c sup
ε
‖LG̃(ε)

λDψ‖Lp(λD′) + c sup
ε
‖G̃(ε)

λDψ‖Lp(λD′) < +∞. (2.71)

By (2.71), the weak compactness of bounded sets in W 2,p(λD′) for any relative compact
subdomain λD′ of λD and a diagonal selection procedure, there exists a sequence of
positive numbers {εi; i ≥ 1} decreasing to 0 and a function Ψ ∈W 2,p(λD) such that for

any compact C1,1 subdomain λD′ of λD, G̃(εi)
λD ψ converges to Ψ weakly in W 2,p(λD′) as

i→∞. In particular, for any compact subset λD′ of λD and any g ∈ Lp/(p−1)(λD′),

lim
i→∞

(
g,DkG̃

(εi)
λD ψ

)
L2(λD′)

=
(
g,DkΨ

)
L2(λD′)

for all |k| ≤ 2, where
(
f, g
)
L2(λD′)

:=
∫
λD′

f(x)g(x) dx. Note that each |aij(x)| ≤ λ0,

g · aij ∈ Lp/(p−1)(λD′) for every g ∈ Lp/(p−1)(λD′). It follows that

lim
i→∞

(g,LG̃(εi)
λD ψ)L2(λD′) = (g,LΨ)L2(λD′).

This together with (2.64) yields that LΨ = −ψ a.e. on λD′. On the other hand, as G̃(ε)
λDψ

converges to G̃λDψ uniformly on λD′, G̃(ε)
λDψ converges to G̃λDψ weakly in Lp(λD′) as

ε→ 0. By the uniqueness of weak limit, G̃λDψ = Ψ a.e. on λD′. Since this holds for any
relatively compact subdomain λD′ of λD, we get the desired conclusion (2.70).

Let ρ ∈ C∞c (Rd) be non-negative with supp[ρ] ⊂ B(0, 1) and
∫
Rd
ρ(x) dx = 1. Define

ρn(x) := ndρ(nx). For any ψ ∈ C∞c (λD), let f := G̃λDψ and fn(x) := ρn ∗ f(x) :=∫
λD

ρn(x − y)f(y)dy. Clearly, fn ∈ C∞(λD) and fn converges uniformly to f on λD.
Let {Dk; k ≥ 1} be an increasing sequence of relatively compact subdomains of D that
increases to D. For each fixed k ≥ 1 and x ∈ λDk, by Ito’s formula, when n is sufficiently
large,

Ex[fn(Xt∧τλDk )]− fn(x) = Ex

∫ t∧τλDk

0

Lfn(Xs) ds = −Ex
∫ t∧τλDk

0

ρn ∗ ψ(Xs) ds.

Letting n→∞ and then t→∞, we get

Ex[f(XτλDk
)]− f(x) = −Ex

∫ τλDk

0

ψ(Xs) ds for every x ∈ λDk. (2.72)

Recall that

G̃λD(x, y) = G
(y)
λD(x, y) +

∫
λD

G
(z)
λD(x, z)gλD(z, y)dz, x 6= y ∈ λD.
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By (2.23) and Lemma 2.7, G̃λD(x, y) ≤ (C1 + C5)|x− y|2−d for x 6= y ∈ λD and for each
y ∈ λD, G̃λD(x, y) converges to 0 as x→ ∂(λD). Hence, by the dominated convergence
theorem,

lim
x→∂(λD)

f(x) = lim
x→∂(λD)

G̃λDψ(x) = 0.

Sending k →∞ in (2.72), we have by Theorem 2.3 that for each x ∈ λD

G̃λDψ(x) = f(x) = Ex

∫ τλD

0

ψ(Xt) dt =

∫
λD

GλD(x, y)ψ(y)dy.

This shows that for each x ∈ λD, G̃λD(x, y) = GλD(x, y) for a.e. y ∈ λD. Since by
Theorem 2.3 and Lemma 2.7, both GλD(x, y) and G̃λD(x, y) are jointly continuous on
(λD) × (λD) \ diag, we conclude that G̃λD(x, y) = GλD(x, y) holds for every (x, y) ∈
(λD)× (λD) \ diag. This establishes (2.52).

Lemma 2.9. Suppose D is a bounded C1,1 domain in Rd with characteristics (R0,Λ0).
Let C1, θ1 and C5 be the positive constants in Lemmas 2.5, 2.6 and 2.7. Then for any
λ ∈ (0, θ1],

GλD(x, y) ≤ C1 + C5

|x− y|d−2

(
1 ∧ δλD(y)

|x− y|

)
on (λD)× (λD) \ diag. (2.73)

Moreover, for any γ ≥ 1, there are positive constants θ2 = θ2(d, λ0, `,Λ0, R0,diam(D), γ) ∈
(0, θ1] and C6 = C6(d, λ0,Λ0, R0,diam(D), γ) ≥ 1 such that for any λ ∈ (0, θ2],

C−1
6 G∆

λD(x, y) ≤ GλD(x, y) ≤ C6G
∆
λD(x, y) for x 6= y ∈ λD with |x− y| ≤ γδλD(x).

(2.74)

Proof. By (2.23) and (2.44), (2.73) is established. Let rλD(x, y) := δλD(x)+δλD(y)+|x−y|.
Note that

δλD(x) + |x− y| ≤ rλD(x, y) ≤ 2(δλD(x) + |x− y|) for every x, y ∈ λD.

For x, y ∈ λD with |x− y| ≤ γδλD(x), we have δλD(y) ≤ |y − x|+ δλD(x) ≤ (1 + γ)δλD(x)

and so
δλD(x) ≤ rλD(x, y) ≤ 2(1 + γ)δλD(x).

In this case, the two-sided estimates (2.23) for G(y)
λD(x, y) can be written as

G
(y)
λD(x, y) � 1

|x− y|d−2

δλD(y)

rλD(x, y)
, |x− y| ≤ γδλD(x), (2.75)

where the comparison constants depend only on (d, λ0,Λ0, R0,diam(D), γ). By the second
inequality in (2.48),∫

λD

G
(z)
λD(x, z)|gλD(z, y)| dz ≤ 2d+3(2 + c0)C1C4

|x− y|d−2

δλD(y)

rλD(x, y)

∫
0<r≤λdiam(D)

ωd
`(r)

r
dr

for x 6= y ∈ λD. Hence, there is a constant θ2 = θ2(d, λ0, `,Λ0, R0,diam(D), γ) ∈ (0, θ1) so
that for any λ ∈ (0, θ2], ∫

λD

G
(z)
λD(x, z)|gλD(z, y)| dz ≤ 1

2
G

(y)
λD(x, y) (2.76)

for any x 6= y ∈ λD with |x − y| ≤ γδλD(x). Consequently, this together with (2.52)
and (2.22)-(2.23) yields that there exists a constant C6 = C6(d, λ0,Λ0, R0,diam(D)) ≥ 1

so that for any λ ∈ (0, θ2],

GλD(x, y) = G
(y)
λD(x, y) +

∫
λD

G
(z)
λD(x, z)gλD(z, y)dy ≤ 3

2
G

(y)
λD(x, y) ≤ C6G

∆
λD(x, y) (2.77)
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and

GλD(x, y) ≥ G(y)
λD(x, y)−

∫
λD

G
(z)
λD(x, z)|gλD(z, y)|dy ≥ 1

2
G

(y)
λD(x, y) ≥ C−1

6 G∆
λD(x, y)

for any x 6= y in λD with |x− y| ≤ γδλD(x). This completes the proof of the theorem.

Note that it follows from (1.2) (by taking ξk = δik and ξk = δik + δjk for 1 ≤ k ≤ d

there respectively) that

λ−1
0 ≤ aii(x) ≤ λ0 and |aij(x)| = |aij(x) + aji(x)|/2 ≤ λ0 for every 1 ≤ i, j ≤ d.

(2.78)
Recall that for each Q ∈ ∂D, there exist a C1,1 function φ = φQ : Rd−1 → R satisfying

φ(0) = ∇φ(0) = 0, ‖∇φ‖∞ ≤ Λ0, |∇φ(x) − ∇φ(y)| ≤ Λ0|x − y|, and an orthonormal
coordinate system CSQ:

y = (ỹ, yd) := (y1, · · · , yd−1, yd) ∈ Rd−1 ×R

with its origin at Q such that

B(Q,R0) ∩D = {y = (ỹ, yd) ∈ B(0, R0) in CSQ : yd > φ(ỹ)}.

For the simplicity of notation, let Q = 0 ∈ ∂D. For r > 0, define φ(r)
Q (ỹ) := rφQ(r−1ỹ).

Then φ(r) is the C1,1 function representing rD in the coordinate system centered at
Q ∈ ∂(rD) so that

(rD) ∩B(Q, rR0) =
{

(ỹ, yd) ∈ (rD) ∩B(Q, rR0) : yd > φ
(r)
Q (ỹ)

}
.

Let ρ(r)
Q (x) := xd − φ(r)

Q (x̃) for x ∈ (rD) ∩B(Q, rR0). Define for r1, r2 > 0,

D
(r)
Q (r1, r2) :=

{
y ∈ rD ∩B(Q, rR0) : 0 < ρ

(r)
Q (y) < r1, |ỹ| < r2

}
(2.79)

and
U

(r)
Q (r1, r2) :=

{
y ∈ rD ∩B(Q, rR0) : ρ

(r)
Q (y) = r1, |ỹ| < r2

}
. (2.80)

The next lemma holds for any non-divergence form operator L of (1.1) with bounded,
continuous and uniformly elliptic diffusion coefficients.

Lemma 2.10. Suppose D is a bounded C1,1 domain in Rd with characteristics (R0,Λ0).
Let r0 := R0

4
√

1+Λ2
0

. There are constants δ0 = δ0(d, λ0, R0,Λ0) ∈ (0, r0) and Ck =

Ck(d, λ0, R0, Λ0), k = 7, 8, such that for any r ∈ (0, 1], λ1 > 1, Q ∈ ∂(rD), and x ∈
D

(r)
Q (rδ0/λ1, rr0/λ1) with x̃ = 0,

Px

(
Xτ

D
(r)
Q

(rδ0/λ1,rr0/λ1)
∈ rD

)
≤ C7

λ1

r
δrD(x),

Px

(
Xτ

D
(r)
Q

(rδ0/λ1,rr0/λ1)
∈ U (r)

Q (rδ0/λ1, rr0/λ1)

)
≥ C8

λ1

r
δrD(x).

Proof. The proof adopts some ideas from the proof of [10, Lemma 3.4], which in turn
are motivated by that of [7, Theorems 5.10 and 6.4]. Without loss of generality, we
assume Q = 0. Let φ = φQ : Rd−1 → R be the C1,1 function representing D with φ(0̃) = 0,
‖∇φ‖∞ ≤ Λ0 and ‖∇φ(ỹ)−∇φ(z̃)| ≤ Λ0|ỹ − z̃| and

D ∩B(Q,R0) = {(ỹ, yd) ∈ D ∩B(Q,R0) : yd > φ(ỹ) in CSQ}.
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Let λ1 > 1. Then λ1D is a C1,1 domain in Rd with the same C1,1-characteristics (Λ0, R0).
Let φλ1

(ỹ) := λ1φQ(λ−1
1 ỹ). Then φλ1

is the C1,1 function representing λ1D centered at Q
so that

(λ1D) ∩B(Q,R0) = {(ỹ, yd) ∈ (λ1D) ∩B(Q,R0) : yd > φλ1
(ỹ)}.

Let r ∈ (0, 1] and let λ2 := λ1/r and X
(λ2)
t := λ2Xt/λ2

2
. It is easy to check that the

infinitesimal generator of X(λ2) is

L(λ2) :=

d∑
i,j=1

aij(x/λ2)
∂2

∂xi∂xj
.

Note that x 7→ {aij(x/λ2); 1 ≤ i, j ≤ d} has the uniform ellipticity constant λ0.
Let p = 3/2. Define

ρλ1(y) := yd − φλ1(ỹ)

hλ1
(y) := ρλ1

(y)1λ1D∩B(0,4r0)(y)

hλ1,p(y) := ρpλ1
(y)1λ1D∩B(0,4r0)(y)

D(λ1, r1, r2) := {y = (ỹ, yd) ∈ λ1D : 0 < ρλ1(y) < r1, |ỹ| < r2}
U(λ1, r1, r2) := {y = (ỹ, yd) ∈ λ1D : ρλ1(y) = r1, |ỹ| < r2} .

It is easy to see that D(λ1, r1, r2) is contained in D ∩B(Q,R0) for every r1, r2 ≤ r0. Note
that for y ∈ λ1D ∩B(0, 4r0),

L(λ2)hλ1
(y) = −

d−1∑
i,j=1

aij(y/λ2)
∂2

∂yi∂yj
φλ1

(ỹ)− 2

d−1∑
i=1

aid(y/λ2)
∂

∂yi
φλ1

(ỹ).

Hence, by (2.78),

|L(λ2)hλ1
(y)| ≤ (d− 1)(d+ 1)λ0Λ0, y ∈ (λ1D) ∩B(Q, 4r0) (2.81)

and

L(λ2)hλ1,p(y)

= p(p− 1)ρλ1(y)p−2
d∑

i,j=1

aij(y/λ2)∂yiρλ1(y)∂yjρλ1(y)

−
d∑

i,j=1

aij(y/λ2)pρλ1
(y)p−1∂2

yiyjρλ1
(y)

≥ p(p− 1)λ−1
0 ρλ1

(y)p−2 (|∇ỹφλ1
(ỹ)|2 + 1)

−pλ0ρλ1
(y)p−1

d−1∑
i=1

|∂2
y2i
φλ1

(ỹ)|+ 2
∑

1≤i<j≤d−1

|∂2
yiyjφλ1

(ỹ)|


≥ λ−1

0 p(p− 1)ρλ1
(y)p−2 − (d− 1)2pλ0Λ0ρλ1

(y)p−1, for y ∈ λ1D ∩B(0, 4r0).

Since p ∈ (1, 2), there is some δ1 ∈ (0, r0) depending only on (λ0,Λ0, p) so that

L(λ2)hλ1,p(y) > c1ρλ1
(y)p−2 > 0 for every y ∈ D(λ1, δ1, r0). (2.82)

Let ψ be a smooth positive function with bounded first and second order partial
derivatives such that ψ(y) = 2p+1|ỹ|2/r2

0 for |y| < r0/4 and 2p+1 < ψ(y) < 2p+2 for
|y| ≥ r0/2. Define

u1,λ1
(y) := hλ1

(y) + hλ1,p(y) and u2,λ1
(y) := hλ1

(y) + ψ(y)− hλ1,p(y).
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Thus, in view of (2.81) and (2.82), there is some δ0 ∈ (0, δ1) depending only on (λ0,Λ0)

so that

L(λ2)u1,λ1
(y) > 0 and L(λ2)u2,λ1

(y) < 0 for every y ∈ D(λ1, δ0, r0). (2.83)

For any open set U ⊂ Rd, denote by τ (λ2)
U the first exit time from U by the process

X(λ2). It follows from (2.83) that t 7→ u1,λ1
(X

(λ2)

t∧τ(λ2)

D(λ1,δ0,r0)

) is a bounded submartingale

and t 7→ u2,λ1(X
(λ2)

t∧τ(λ2)

D(λ1,δ0,r0)

) is a bounded supermartingale. Then for x ∈ D(λ1, δ0, r0),

ρλ1
(x) ≤ u1,λ1

(x) ≤ Exu1,λ1

(
X

(λ2)

τ
(λ2)

D(λ1,δ0,r0)

)
≤ 2Px

(
X

(λ2)

τ
(λ2)

D(λ1,δ0,r0)

∈ λ1D
)
.

Note that ψ ≥ 2p+1 on |ỹ| > r0, it follows that for x ∈ D(λ1, δ0, r0),

ρλ1
(x) ≥ u2,λ1

(x) ≥ Exu2,λ1

(
X

(λ2)

τ
(λ2)

D(λ1,δ0,r0)

)
≥(2p+1−1)Px

(
X

(λ2)

τ
(λ2)

D(λ1,δ0,r0)

∈λ1D\U(λ1, δ0, r0)
)
.

Hence, for x ∈ D(λ1, δ0, r0),

Px

(
X

(λ2)

τ
(λ2)

D(λ1,δ0,r0)

∈ U(λ1, δ0, r0)
)
≥
(
2−1 − (2p+1 − 1)−1

)
ρλ1(x). (2.84)

Recall that 0 < hλ1,p ≤ 1 and ψ(y) ≥ 2p+1 if |y| > r0/2, then we have

u2,λ1(y) ≥ ψ(y)− hλ1,p(y) ≥ 2p ≥ 1, |y| > r0/2.

Furthermore, for y ∈ B(0, 4r0) with δ0 ≤ ρλ1(y) ≤ 4r0,

u2,λ1(y) ≥ hλ1(y)− hλ1,p(y) ≥ ρλ1(y)− ρλ1,p(y) ≥ c2,

where c2 ∈ (0, 1) depends on δ0 and r0. Hence, for x ∈ D(λ1, δ0, r0),

ρλ1
(x) ≥ u2,λ1

(x) ≥ Exu2,λ1

(
X

(λ2)

τ
(λ2)

D(λ1,δ0,r0)

)
≥ c2Px

(
X

(λ2)

τ
(λ2)

D(λ1,δ0,r0)

∈ λ1D
)
.

That is, for x ∈ D(λ1, δ0, r0),

Px

(
X

(λ2)

τ
(λ2)

D(λ1,δ0,r0)

∈ λ1D
)
≤ c−1

2 ρλ1
(x). (2.85)

Hence, by (2.84) and (2.85), for x ∈ D(r)
Q (rδ0/λ1, rr0/λ1) with x̃ = 0,

Px

(
Xτ

D
(r)
Q

(rδ0/λ1,rr0/λ1)
∈ rD

)
= Pλ1x/r

(
X

(λ2)

τ
(λ2)

D(λ1,δ0,r0)

∈ λ1D
)

≤ c−1
2 ρλ1(λ1x/r) ≤ c−1

2

λ1

r
δrD(x),

and

Px

(
Xτ

D
(r)
Q

(rδ0/λ1,rr0/λ1)
∈ U (r)

Q (rδ0/λ1, rr0/λ1)

)
= Pλ1x/r

(
X

(λ2)

τ
(λ2)

D(λ1,δ0,r0)

∈ U(λ1, δ0, r0)
)

≥
(
2−1 − (2p+1 − 1)−1

)
ρλ1

(λ1x/r) ≥
(
2−1 − (2p+1 − 1)−1

) λ1

r
δrD(x).

This completes the proof of the Lemma.
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Lemma 2.11. Suppose that D is a bounded C1,1 domain in Rd with characteristics
(R0,Λ0), there exists a constant C9 = C9(d, λ0, `, R0,Λ0,diam(D)) > 1 such that

GD(x, y) ≤ C9

|x− y|d−2

(
1 ∧ δD(x)

|x− y|

)
, x 6= y ∈ D. (2.86)

Proof. Recall that δ0 is the constant in Lemma 2.10. If δD(x) ≥ δ0(|x − y| ∧ 1), then
δD(x)
|x−y| ≥ δ0(1 ∧ (diam(D))−1), hence the conclusion holds by (2.4). Hence, it suffices to

prove the case when δD(x) < δ0(|x− y| ∧ 1).
Let Qx be the point on ∂D such that |x−Qx| = δD(x). Let φQx be the local boundary

function in the coordinate system CSQx . Let ρQx(y) := yd − φQx(ỹ) and define for
r1, r2 > 0,

DQx(r1, r2) := {y = (ỹ, yd) : 0 < ρQx(y) < r1 and |ỹ| < r2 in CSQx} . (2.87)

Let a = |x − y| ∧ 1. By (2.4) and Lemma 2.10 with r = 1, there exists a constant
c1 = c1(d, λ0, `, R0,Λ0,diam(D)) > 1 such that for δD(x) < δ0(|x− y| ∧ 1),

GD(x, y) = Ex

[
GD(XτDQx (aδ0,ar0)

, y);XτDQx (ar0,aδ0)
∈ D

]
≤ c1|x− y|2−dPx

(
XτDQx (aδ0,ar0)

∈ D
)

≤ c1C7|x− y|2−d
δD(x)

1 ∧ |x− y|

≤ c1C7(1 ∨ diam(D))|x− y|2−d δD(x)

|x− y|

where the first inequality is due to r0 ∈ (0, 1
4 ) and so |u−y| ≥ 1

2 |x−y| for u ∈ DQx(aδ0, ar0).

Note that δD(x)
|x−y| < δ0(1 ∧ |x − y|−1) < δ0 < 1 for δD(x) < δ0(|x − y| ∧ 1). The proof is

complete.

Remark 2.1.

(i) Note that the proof of Lemma 2.10 does not use the Dini continuous assumption
on {aij(x); 1 ≤ i, j ≤ d} of L. So Lemma 2.10 holds for any non-divergence form
operator L with continuous diffusion coefficients that satisfy (1.2).

(ii) In view of the above remark, we see from the proof of Lemma 2.11 that the
estimate (2.86) holds with constant C9 = c̃0C̃9(d, λ0, R0,Λ0) as long as we have
GD(x, y) ≤ c̃0|x − y|2−d for x, y ∈ D. Thus by Theorem 2.3(iii), Lemma 2.11
holds with C9 = C9(d, λ0, `, R0,Λ0,diam(D)) for any operator L with coefficients
{aij(x); 1 ≤ i, j ≤ d} satisfying the Dini mean oscillation condition as well as (1.2).

(iii) One can also derive the upper bound estimate (2.86) from the gradient estimate on
GD(x, y) obtained in [25] for non-divergence operator L with diffusion coefficients
that are Dini mean oscillation condition and satisfy (1.2) at the expense that the
constant C9 = C9(d, λ0, `,D) depends on the bounded C1,1 domain D rather than
through its C1,1-characteristics (R0,Λ0) and its diameter diam(D). Here are the
details. Let x, y ∈ D with x 6= y. Let zx be a boundary point on ∂D so that
|x− zx| = δD(x). If |y − x| > 2δD(x), since x 7→ GD(x, y) vanishes continuously on
∂D by Theorem 2.3(i), it follows from the mean value theorem, the first derivative
estimate in (2.8) and (2.13) that

GD(x, y) ≤ δD(x) sup
θ∈(0,1)

|∇xGD(x+ θ(x− zx), y)|

≤ c1δD(x)|x− y|1−d

≤ 2c1
|x− y|d−2

(
1 ∧ δD(x)

|x− y|

)
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for some c1 = c1(d, λ0, `,D) > 0, where the second inequality is due to that

|x+ θ(x− zx)− y| > |x− y| − δD(x) > |x− y|/2.

If |y − x| ≤ 2δD(x), then by (2.8),

GD(x, y) ≤ c2|x− y|2−d ≤
2c2

|x− y|d−2

(
1 ∧ δD(x)

|x− y|

)
for some c2 = c2(d, λ0, `,D) > 0. Thus there is a constant c = c(d, λ0, `,D) > 0 so
that

GD(x, y) ≤ c

|x− y|d−2

(
1 ∧ δD(x)

|x− y|

)
for x, y ∈ D.

Theorem 2.12. Suppose D is a bounded C1,1 domain in Rd with characteristics (R0,Λ0).
Let θ2 be the positive constant from Lemma 2.9, which depends only on d, λ0, `,Λ0, R0

and diam(D). There exists a positive constant C10 = C10(d, λ0, `,Λ0, R0,diam(D)) ≥ 1

such that for any r ∈ (0, θ2],

C−1
10 G

∆
rD(x, y) ≤ GrD(x, y) ≤ C10G

∆
rD(x, y) for x 6= y ∈ rD. (2.88)

Proof. Let r0 := R0

4
√

1+Λ2
0

. Let δ0 be the constant in Lemma 2.10. In view of (2.74) by

taking γ = 4/δ0, it suffices to prove (2.88) for δrD(x) < δ0|x− y|/4.

Fix x, y ∈ rD with δrD(x) < δ0|x − y|/4. Let Qx be the point on ∂(rD) such that

|x−Qx| = δrD(x). Recall that D(r)
Qx

(r1, r2) and U (r)
Qx

(r1, r2) are defined in (2.79) and (2.80).
For the simplicity of notation, we denote

D
(r)
Qx

(δ0(|x− y| ∧ r)/4, r0(|x− y| ∧ r)/4) and U
(r)
Qx

(δ0(|x− y| ∧ r)/4, r0(|x− y| ∧ r)/4)

by D(r)(1, 1) and U (r)(1, 1), respectively. Note that for every z ∈ ∂D(r)(1, 1),

|x−y|/4 ≤ |x−y|−|x−Qx|−|Qx−z| ≤ |z−y| ≤ |z−Qx|+|Qx−x|+|x−y| ≤ 3|x−y|/2. (2.89)

So by Theorem 2.3(ii), (2.73) and Lemma 2.10, for any r ∈ (0, θ1],

GrD(x, y) = Ex

[
GrD(Xτ

D(r)(1,1)
, y);Xτ

D(r)(1,1)
∈ rD

]
≤ 4d−1(C1 + C5)|x− y|2−d

(
1 ∧ δrD(y)

|x− y|

)
Px(Xτ

D(r)(1,1)
∈ rD)

≤ 4d−1(C1 + C5)C7|x− y|2−d
(

1 ∧ δrD(y)

|x− y|

)(
1 ∧ δrD(x)

r ∧ |x− y|

)
≤ 4d−1(C1 + C5)C7

(
1 ∨ diam(D)−1

)
|x− y|2−d

(
1 ∧ δrD(y)

|x− y|

)(
1 ∧ δrD(x)

|x− y|

)
.

On the other hand, since |x− y| ≤ rdiam(D), one has for every z ∈ U (r)(1, 1),

δrD(z) ≥ δ0(|x− y| ∧ r)
4

≥ δ0|x− y|
4(diam(D) ∨ 1)

≥ δ0|z − y|
6(diam(D) ∨ 1)

,

where the last inequality is due to (2.89). Hence by (2.22) and (2.74) of Lemma 2.9
for γ = 6(diam(D) ∨ 1)/δ0, there exists a positive constant c = c(d, λ0, `,Λ0, R0,diam(D))
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such that for any r ∈ (0, θ2],

GrD(x, y) = Ex

[
GrD(Xτ

D(r)(1,1)
, y);Xτ

D(r)(1,1)
∈ rD

]
≥ Ex

[
GrD(Xτ

D(r)(1,1)
, y);Xτ

D(r)(1,1)
∈ U (r)(1, 1)

]
≥ c|x− y|2−d

(
1 ∧ δrD(y)

|x− y|

)
Px

(
Xτ

D(r)(1,1)
∈ U (r)(1, 1)

)
≥ cC8|x− y|2−d

(
1 ∧ δrD(y)

|x− y|

)
δrD(x)

r ∧ |x− y|

≥ cC8|x− y|2−d
(

1 ∧ δrD(y)

|x− y|

)(
1 ∧ δrD(x)

|x− y|

)
,

where the second to the last inequality is due to Lemma 2.10. By comparing with (2.22)
of the estimates of G∆

rD(x, y), this establishes the Lemma.

Using the two-sided Green function estimates in Theorem 2.12, we can give an
alternative proof of Krylov-Safonov’s Harnack inequality for non-negative X-harmonic
functions. We point out that the Harnack inequality established in [29] is more general,
holding for any uniformly elliptic non-divergence form elliptic operators with measurable
coefficients; see also [3, Theorem V.7.6].

Definition 2.13. Suppose U is an open subset of Rd. A Borel function u defined on U is
said to be X-harmonic in U if for every bounded open set B with B ⊂ U ,

Ex|u(XτB )| <∞ and u(x) = Exu(XτB ) for every x ∈ B.

Remark 2.2. Note that if h is C2 and Lu = 0 in U , then by using Ito’s formula, h is
X-harmonic in U . In fact using molifier, we can further show in a similar way as that
in Lemma 2.2 that if h ∈W 2,1

loc (U) ∩ C(U) and Lu = 0 a.e. in U , then h is X-harmonic in
U . So the definition of X-harmonic function given above is consistent with the notion
of L-harmonic in analysis but Definition 2.13 does not require a priori the existence of
second order (distributional) derivative of h. In the rest of this paper, L-harmonicity will
be understood in the sense of Definition 2.13; that is, we say h is L-harmonic in an open
set U ⊂ Rd if it is X-harmonic in U .

Theorem 2.14 (Scale invariant Harnack inequality). There exist positive constants c =

c(d, λ0, `) and ε0 = ε0(d, λ0, `) such that for any x0 ∈ Rd, r ∈ (0, ε0) and any non-negative
X-harmonic function h in B(x0, r),

h(x1) ≤ ch(x2) for any x1, x2 ∈ B(x0, r/2).

Proof. Fix x0 ∈ Rd. For the simplicity of notation, we denote B(x0, r) by Br. By
Theorem 2.12 with B1 and r in place of D and λ, there exist positive constants ε0 =

ε0(d, λ0, `) and c1 = c1(d, λ0, `) such that for any r ∈ (0, ε0),

c−1
1 G∆

Br (x, y) ≤ GBr (x, y) ≤ c1G∆
Br (x, y), x, y ∈ Br. (2.90)

Let h be a non-negative harmonic function in Br with r ∈ (0, ε0). Let TB2r/3
:= inf{t >

0 : XBr
t ∈ B2r/3}. Define h1(x) := Exh(XBr

TB2r/3
). Then h(x) = h1(x) for x ∈ B2r/3. By

Corollary 1 to Theorem 2 in [13], there exists a Radon measure ν on B2r/3 such that

h1(x) =

∫
B2r/3

GBr (x, z) ν(dz), x ∈ Br.
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Since h1 = h is harmonic in B2r/3, then ν is supported in ∂B2r/3. Hence,

h(x) = h1(x) =

∫
∂B2r/3

GBr (x, z) ν(dz), x ∈ B2r/3. (2.91)

By (2.90) and (2.22), there exists a positive constant c2 = c2(d, λ0, `) > 1 such that for
any r ∈ (0, ε0),

c−1
2 r2−d ≤ GBr (x, z) ≤ c2r2−d for every x ∈ Br/2 and z ∈ ∂B2r/3.

This together (2.91) yields the desired comparability result.

3 Two-sided estimates of Green function on a bounded C1,1 do-
main D

Throughout this section, D is a bounded C1,1 domain in Rd with C1,1-characteristics
(R0,Λ0). In this section, we derive two-sided sharp estimates on the Green function
GD(x, y) of L in D. For this, we first construct a dual process of XD with respect to
an excessive measure of XD and use it to establish an integral representation formula
of Green function GD(x, y) in Theorem 3.3, which will play a key role in deriving the
explicit decay rate of GD(x, y) in y.

Let B be a ball with radius diam(D) centered at x0 so that D ⊂ B(x0, 2diam(D)/3).
Define

hB(x) :=

∫
B

GB(y, x) dy and ξB(dx) := hB(x) dx.

It follows from Theorem 2.3 that hB is bounded strictly positive and continuous on B.
Suppose, in addition, that {aij(x); 1 ≤ i, j ≤ d} are C1 on Rd. Then according to [28,

Theorem 3.1], there exists a transient continuous Hunt process X̂B = {X̂B
t , t ≥ 0; P̂x, x ∈

B} in B such that X̂B is a strong dual of XB with respect to the measure ξB(dx) in the
sense that∫

B

f(x)PBt g(x)ξB(dx) =

∫
B

g(x)P̂Bt f(x)ξB(dx) for all f, g ∈ L2(B; ξB),

where PBt and P̂Bt are the transition semigroups of XB and X̂B, respectively. The dual
process X̂B has joint continuous transition density function p̂B(t, x, y) := pB(t, y, x)hB(y)

hB(x)

with respect to the Lebesgue measure on B. Denote by X̂B,D the subprocess of X̂B

killed upon exiting D. By [35, Theorem 2 and its Remark 2], X̂B,D and XD are in duality
with respect to the measure ξB(dx) restricted to D. The transition density function and
the Green function of X̂B,D with respect to the Lebesgue measure on D are

p̂BD(t, x, y) :=
pD(t, y, x)hB(y)

hB(x)
and ĜBD(x, y) :=

GD(y, x)hB(y)

hB(x)
. (3.1)

It is easy to check that for x, y ∈ D,

ĜBD(y, x) = ĜB(y, x)− Êy
[
ĜB(X̂B

τ̂D
, x); τ̂D < ζ̂

]
, (3.2)

where τ̂D is the first exit time of the process X̂B from D and ζ̂ is the lifetime of X̂B.
By the joint continuity of ĜB(·, ·) on B ×B \ diag and [28, Propositions 4.5 and 4.6], for
x ∈ D and z ∈ ∂D,

ĜB(z, x) = lim
y→z

Ey

[
ĜB(X̂B

τ̂D
, x)
]
. (3.3)
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For any C1,1 domain D in Rd with characteristics (R0,Λ0), it is well known (see,
for instance, [36, Lemma 2.2]) that there exists L = L(d,R0,Λ0) > 0 such that for any
Q ∈ ∂D and r ∈ (0, R0), there is a C1,1 connected open set UQ,r ⊂ D with characteristics
(rR0/L,Λ0L/r) such that

D ∩B(Q, r/2) ⊂ UQ,r ⊂ D ∩B(Q, r). (3.4)

Note that r−1UQ,r is a C1,1 domain in Rd with characteristics (R0/L,Λ0L) and
diam(r−1UQ,r) ≤ 2. In the remainder of this paper, we always use UQ,r to denote
such a C1,1 open subset of D. By Theorem 2.12 with r−1UQ,r in place of D, we have the
following result.

Corollary 3.1. There exist positive constants θ = θ(d, λ0, `,Λ0, R0) and C11 = C11(d, λ0, `,

Λ0, R0) ≥ 1 such that for any Q ∈ ∂D and r ∈ (0, θ ∧R0),

C−1
11 G

∆
UQ,r (x, y) ≤ GUQ,r (x, y) ≤ C11G

∆
UQ,r (x, y) for any x 6= y ∈ UQ,r.

For an open subset U ⊂ B, denote by τ̂U := inf{t > 0 : X̂B
t /∈ U} the exist time from

U by X̂B.

Lemma 3.2. Let θ be the constant in Corollary 3.1. Suppose that {aij ; 1 ≤ i, j ≤ d} are
C1 on Rd and satisfy the conditions (1.2) and (1.3). There exists a positive constant
M1 = M1(d, λ0, `, R0,Λ0) > 1 such that for any Q ∈ ∂D, r ∈ (0, θ ∧R0) and U := UQ,r,

M−1
1

hB(x)

∫
∂U∩D

hB(z)Px (WτU ∈ dz) ≤ Px
(
X̂B
τ̂U
∈ dz; τ̂U < τ̂D

)
≤ M1

hB(x)

∫
∂U∩D

hB(z)Px (WτU ∈ dz) on D ∩ ∂U for every x ∈ U

where W is a Brownian motion on Rd and τU is its first exit time from U .

Proof. The proof is similar to that of [28, Theorem 4.7] (cf. [9, Theorem 2.2]). For
the convenience of the reader, we spell out its details here. Let ϕ be a non-negative
continuous function with compact support on ∂U ∩D and

u(x) := Ex

[
ϕ(X̂B

τ̂U
)
]

= Ex

[
ϕ(X̂B

τ̂U
); τ̂U < τ̂D

]
.

Then u is harmonic for X̂B in U . Let {Un}n≥1 be an increasing sequence of open sets so
that Un ⊂ Un+1 and ∪∞n=1Un = U . For each n ≥ 1, by [28, Proposition 4.2], there exists a
Radon measures νn supported on ∂Un such that

u(x) =
1

hB(x)

∫
∂Un

GU (y, x)νn(dy) for x ∈ Un.

Define

vn(x) :=

∫
∂Un

G∆
U (y, x)νn(dy), x ∈ Un.

By Corollary 3.1,

C−1
11 G

∆
U (x, y) ≤ GU (x, y) ≤ C11G

∆
U (x, y) for any x 6= y ∈ U.

Consequently,
C−1

11 vn(x) ≤ hB(x)u(x) ≤ C11vn(x), x ∈ Un.

For each n ≥ 1, {vk; k ≥ n} is a sequence of bounded classical harmonic function with
respect to the Laplacian on Un. So by the equi-Hölder-continuity of {vk; k ≥ n} and
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a diagonal selection procedure, there is a subsequence nk such that vnk converges
uniformly on each Un to a harmonic function v in U . Clearly,

C−1
11 v(x) ≤ hB(x)u(x) ≤ C11v(x), x ∈ U. (3.5)

For an open subset V of B with V ⊂ B and z ∈ ∂V , if there is a cone A with vertex z
so that A ∩B(z, r) ⊂ B \ V for some r > 0, then z is a regular point of V for X̂B by [28,
Proposition 4.5], that is, Pz(τ̂BV = 0) = 1. Here τ̂BV := inf{t > 0 : X̂B

t /∈ V }. Hence every
boundary point of U is regular for X̂B. Since ϕ ∈ Cc(∂U ∩D) ⊂ Cc(∂U), it follows from
[28, Proposition 4.6] that

lim
U3x→z

u(x) = ϕ(z) for every z ∈ ∂U.

Consequently, we have by (3.5) that for every z ∈ ∂U ,

C−1
11 hB(z)ϕ(z) ≤ lim inf

U3x→z
v(x) ≤ lim sup

U3x→z
v(x) ≤ C11hB(z)ϕ(z). (3.6)

Define
w(x) := Ex[hB(WτU )ϕ(WτU )], x ∈ U.

Then w is a harmonic function with respect to W in U with the boundary hB(z)ϕ(z). By
the maximum principle and (3.6), we obtain that C−1

11 w(x) ≤ v(x) ≤ C11w(x) in U . Hence,
combined with (3.5), we have C−2

11 w(x) ≤ hB(x)u(x) ≤ C2
11w(x) in U . That is, for each

non-negative ϕ ∈ Cc(∂U ∩D),

C−2
11

∫
D∩∂U

hB(z)ϕ(z)Px (WτU ∈ dz) ≤ hB(x)

∫
D∩∂U

ϕ(z)Py

(
X̂B
τ̂U
∈ dz; τ̂U < τ̂D

)
≤ C2

11

∫
D∩∂U

hB(z)ϕ(z)Px (WτU ∈ dz) , x ∈ U.

Observe that on
{
τ̂U < τ̂D

}
, X̂B

τ̂U
∈ D ∩ ∂U . Let M1 := C2

11. This establishes the
lemma.

Theorem 3.3. Suppose that {aij ; 1 ≤ i, j ≤ d} are C1 and satisfy the conditions (1.2)
and (1.3). Let θ be the constant in Corollary 3.1 and let M1 > 1 be the constant in
Lemma 3.2. There exists a measurable function ψ1 on Rd ×Rd that is bounded between
M−1

1 and M1 such that for any Q ∈ ∂D and U := UQ,r with r ∈ (0, θ ∧R0),

GD(x, y) =

∫
∂U∩D

GD(x, z)ψ1(y, z)K∆
U (y, z)σ(dz), x ∈ D \ U, y ∈ U,

where K∆
U (y, z) := ∂

∂~nz
G∆
U (y, z) is the Poisson kernel of Brownian motion. Here ~nz is the

unit inward normal vector z ∈ ∂U for U , and σ is the surface measure of ∂U .

Proof. By the strong Markov property of X̂B, the Green function ĜBD(x, y) of X̂B,D has
the property that for y ∈ U and x ∈ D \ U ,

ĜBD(y, x) = Ey

[
ĜBD(X̂B

τ̂U
, x); τ̂U < τ̂D

]
.

Thus by Lemma 3.2, we have for y ∈ U and x ∈ D \ U ,

M−1
1

hB(y)
Ey

[
hB(WτU )ĜBD(WτU , x);WτU ∈ D

]
≤ ĜBD(y, x)

≤ M1

hB(y)
Ey

[
hB(WτU )ĜBD(WτU , x);WτU ∈ D

]
.
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Recall from (3.1) that

ĜBD(y, x) =
GD(x, y)hB(x)

hB(y)
on D ×D \ diag.

Thus we have for x ∈ D \ U and y ∈ U ,

M−1
1 Ey[GD(x,WτU );WτU ∈ D ∩ ∂U ] ≤ GD(x, y) ≤M1Ey[GD(x,WτU );WτU ∈ D ∩ ∂U ].

(3.7)
It is well-known (see, e.g., [14, Proposition 5.13]) that Py(WτU ∈ dz) = K∆

U (y, z)σ(dz) on
∂U , where σ is the surface measure of ∂U . This together with (3.7) yields the desired
conclusion.

Theorem 3.4. Suppose that {aij ; 1 ≤ i, j ≤ d} are C1 on Rd and satisfy the condi-
tions (1.2) and (1.3). There exists a constant C12 = C12(d, λ0, `, R0,Λ0,diam(D)) > 1 such
that

GD(x, y) ≤ C12|x− y|2−d
(

1 ∧ δD(x)

|x− y|

)(
1 ∧ δD(y)

|x− y|

)
, x 6= y ∈ D.

Proof. Let θ be the constant in Corollary 3.1, and set κ0 := θ ∧ R0. By Lemma 2.11, it
suffices to prove theorem for δD(y) < (|x− y| ∧ κ0)/8.

Fix x, y ∈ D with δD(y) < (|x − y| ∧ κ0)/8. Let Qy be the point on ∂D such that
|y − Qy| = δD(y). Denote by U := UQy,|x−y|∧κ0

a C1,1 connected open set such that

D ∩ B(Qy, (|x− y| ∧ κ0)/2) ⊂ U ⊂ D ∩ B(Qy, |x− y| ∧ κ0). Let y0 := Qy + (|x−y|∧κ0)
4 (y −

Qy)/|y−Qy|. It is well known (see e.g. by (2.22)) that there exists c1 = c1(d,R0,Λ0) such
that for z ∈ ∂U ∩D,

K∆
U (y, z) ≤ c1

δD(y)

δD(y0)
K∆
U (y0, z)=4c1

δD(y)

|x− y| ∧ κ0
K∆
U (y0, z) ≤ 4c1

diam(D)

κ0

δD(y)

|x− y|
K∆
U (y0, z).

Let c2 = 4c1
diam(D)

κ0
. It follows from Theorem 3.3 that

GD(x, y) ≤M1

∫
∂U∩D

GD(x, z)K∆
U (y, z)σ(dz)

≤ c2M1
δD(y)

|x− y|

∫
∂U∩D

GD(x, z)K∆
U (y0, z)σ(dz)

≤ c2M2
1

δD(y)

|x− y|
GD(x, y0)

= c2M
2
1

(
1 ∧ δD(y)

|x− y|

)
GD(x, y0)

(3.8)

Note that 1
2 |x− y| ≤ |x− y0| ≤ 2|x− y|, we have by Lemma 2.11 that

GD(x, y0) ≤ C9|x− y0|2−d
(

1 ∧ δD(x)

|x− y0|

)
≤ C92d−1|x− y|2−d

(
1 ∧ δD(x)

|x− y|

)
. (3.9)

The desired result follows from (3.8) and (3.9).

For r > 0, let Dr := {z ∈ D : dist(z, ∂D) ≤ r}.
Lemma 3.5. For each a ∈ (0, 1], there exists a constant C13 = C13(d, a, λ0, `, R0,Λ0,

diam(D)) ∈ (0, 1) such that

GD(x, y) ≥ C13|x− y|2−d
(

1 ∧ δD(x)

|x− y|

)
, x ∈ D, y ∈ D \Da.
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Proof. Fix a positive constant a ∈ (0, 1]. Suppose y ∈ D \ Da. Recall that δ0 is the
constant in Lemma 2.10.

(i) We first consider x ∈ D \Daδ0/2. By Theorem 2.12 and (2.22), there exist positive
constants a0 ∈ (0, a/2) and c1 = c1(d, λ0, `) such that for r ∈ (0, a0) and y ∈ Rd,

GB(y,r)(u, y) ≥ c1|u− y|2−d, u ∈ B(y, r/2). (3.10)

Then by the standard chain argument and Harnack principle Theorem 2.14 of the
operator L, there exists c2 = c2(d, λ0, `, R0,Λ0,diam(D)) such that for x ∈ D \Daδ0/2 and
y ∈ D \Da,

GD(x, y) ≥ c2|x− y|2−d.

(ii) Now we consider x ∈ Daδ0/2. Let Qx be the point on ∂D such that |x−Qx| = δD(x).
Let φQx be the local boundary function in the coordinate system CSQx . Let ρQx(y) :=

yd − φQx(ỹ). For r1, r2 > 0, let

DQx(r1, r2) := {y = (ỹ, yd) ∈ D : 0 < ρQx(y) < r1 and |ỹ| < r2 in CSQx}

UQx(r1, r2) := {y = (ỹ, yd) ∈ D : ρQx(y) = r1 and |ỹ| < r2 in CSQx}

By step (i) and Lemma 2.10 with r = 1, there exists c3 = c3(d, λ0, `, R0,Λ0,diam(D)) such
that

GD(x, y) ≥ Ex

[
GD(XτDQx (aδ0,ar0)

, y);XτDQx (aδ0,ar0)
∈ UQx(aδ0, ar0)

]
≥ c3|x− y|2−dPx

(
XτDQx (aδ0,ar0)

∈ UQx(aδ0, ar0)
)

≥ c3C8|x− y|2−d
δD(x)

a
≥ 1

2
c3C8|x− y|2−d

(
1 ∧ δD(x)

|x− y|

)
,

where in the last inequality we used the fact that |x− y| > a/2.

Theorem 3.6. Suppose that {aij ; 1 ≤ i, j ≤ d} are C1 on Rd and satisfy the condi-
tions (1.2) and (1.3). There exists a constant C14 = C14(d, λ0, `,Λ0, R0,diam(D)) such
that

GD(x, y) ≥ C14|x− y|2−d
(

1 ∧ δD(x)

|x− y|

)(
1 ∧ δD(y)

|x− y|

)
on D ×D \ diag. (3.11)

Proof. Let θ be the constant in Corollary 3.1. Let κ0 := θ ∧R0. By Lemma 3.5, it suffices
to prove the result for x ∈ D and y ∈ Dκ0/32.

(1) Suppose y ∈ Dκ0/32 and |x − y| ≤ κ0/8. Let Qy be the point on ∂D such that
|y − Qy| = δD(y). Let U1 := UQy,κ0/2 be a C1,1 connected open set such that D ∩
B(Qy, κ0/4) ⊂ U1 ⊂ D ∩ B(Qy, κ0/2). Then x, y ∈ U1 and δU1

(x) = δD(x), δU1
(y) = δD(y).

Then by Corollary 3.1, there exists a constant c1 = c1(d, λ0, `,Λ0, R0) such that

GD(x, y) ≥ GU1(x, y) ≥ c1|x− y|2−d
(

1 ∧ δD(x)

|x− y|

)(
1 ∧ δD(y)

|x− y|

)
.

(2) If y ∈ Dκ0/32 and |x− y| > κ0/8. Let Qy be the point on ∂D such that |y −Qy| =
δD(y). Let y0 := Qy+ κ0

32 (y−Qy)/|y−Qy|. Let U2 := UQy,κ0/8 be a C1,1 connected open set
such that D ∩B(Qy, κ0/16) ⊂ U2 ⊂ D ∩B(Qy, κ0/8). It is well known (see e.g. by (2.22))
that there exists c2 = c2(d,R0,Λ0) such that for z ∈ ∂U2 ∩D,

K∆
U2

(y, z) ≥ c2
δD(y)

δD(y0)
K∆
U2

(y0, z) ≥ c2
δD(y)

|x− y|
K∆
U2

(y0, z).
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Then by Theorem 3.3,

GD(x, y) ≥M−1
1

∫
∂U∩D

GD(x, z)K∆
U2

(y, z)σ(dz)

≥ c2M−1
1

δD(y)

|x− y|

∫
∂U∩D

GD(x, z)K∆
U2

(y0, z)σ(dz)

≥ c2M−2
1

(
1 ∧ δD(y)

|x− y|

)
GD(x, y0).

(3.12)

By Lemma 3.5 with a = κ0/64,

GD(x, y0) ≥ C13|x− y0|2−d
(

1 ∧ δD(x)

|x− y0|

)
≥ C1321−d|x− y|2−d

(
1 ∧ δD(x)

|x− y|

)
. (3.13)

The desired result follows from (3.12) and (3.13).

We now removed the C1 smoothness assumption on {aij(x); 1 ≤ i, j ≤ d} from
Theorem 3.4 and Theorem 3.6.

Theorem 3.7. There exists a constant C15 = C15(d, λ0, `,Λ0, R0,diam(D)) such that

C−1
15 G

∆
D(x, y) ≤ GD(x, y) ≤ C15G

∆
D(x, y) on D ×D \ diag. (3.14)

Proof. Let φ ∈ C∞c (Rd) with φ ≥ 0, supp[φ] ⊂ B(0, 1) and
∫
Rd
φ(x) dx = 1. For each

integer k ≥ 1, define φk(x) := kdφ(kx) and a(k)
ij (x) := φk ∗ aij(x) :=

∫
Rd
φk(x− y)aij(y)dy.

Then a(k)
ij ∈ C∞(Rd) satisfying the conditions (1.2)-(1.3) with the same ellipticity constant

λ0 ≥ 1 and Dini modulo of continuity function `, and a(k)
ij converges uniformly to aij on

any compact set of Rd. Denote by L(k) the non-divergence operator L but with diffusion
coefficients a(k)

ij in place of aij . Let X(k) be the diffusion process having L(k) as its

infinitesimal generator, and G(k)
D (x, y) its Green function on D. That is, G(k)

D (x, y) is the
unique jointly continuous function on D ×D \ diag so that for every f ∈ Cc(D),

Ex

[∫ τ
(k)
D

0

f(X(k)
s )ds

]
=

∫
D

G
(k)
D (x, y)f(y)dy, x ∈ D,

where τ (k)
D is the first exit time of the process X(k) from D.

We first show that for each x ∈ D and any f ∈ Cc(D), limk→∞G
(k)
D f(x) = GDf(x).

For any f ∈ Cc(D), define u(k)(x) := G
(k)
D f(x) and u(x) := GDf(x). By Lemma 2.2, u(k)

and u are the unique solutions in W 2,p(D) ∩ C(D) with p > d for

L(k)u(k)(x) = −f in D and u(k) = 0 on ∂D,

and for

Lu = −f in D and u = 0 on ∂D,

respectively. The function v(k) := u(k) − u ∈W 2,p(D) ∩ C(D) satisfies

L(k)v(k)(x) = −g(k) in D and v(k) = 0 on ∂D.

where g(k)(x) := f(x)+L(k)u(x) = (L(k)−L)u(x), which is in Lp(D). Thus by [25, Remark
1.14],

v(k)(x) = G
(k)
D g(k)(x) =

∫
D

G
(k)
D (x, y)g(k)(y) dy for x ∈ D.
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By Hölder’s inequality and (2.4), there is c = c(d, λ0, `, R0,Λ0,diam(D), p) > 0 so that

sup
x∈D
|v(k)(x)| ≤ sup

x∈D
‖G(k)

D (x, ·)‖Lp/(p−1)(D)‖g(k)‖Lp(D) ≤ c‖g(k)‖Lp(D).

Since u ∈W 2,p(D),

lim
k→∞

‖g(k)‖Lp(D) ≤ lim
k→∞

d∑
i,j=1

‖a(k)
ij − aij‖L∞(D)‖∂2

xixju‖Lp(D) = 0.

Therefore, u(k)(x) converges uniformly to u(x) on D as k →∞. This in particular implies
that for each x ∈ D,

lim
k→∞

∫
D

G
(k)
D (x, y)f(y)dy =

∫
D

GD(x, y)f(y)dy for every f ∈ Cc(D). (3.15)

From Theorems 3.4 and 3.6, we know that there exists a constant C15 = C15(d, λ0, `,Λ0,
R0,diam(D)) such that for any k ≥ 1,

C−1
15 G

∆
D(x, y) ≤ G(k)

D (x, y) ≤ C15G
∆
D(x, y) on D ×D \ diag. (3.16)

Consequently, for each x ∈ D and every non-negative f ∈ Cc(D), C−1
15 G

∆
Df(x) ≤

G
(k)
D f(x) ≤ C15G

∆
Df(x). Passing k →∞, (3.15) and (3.16) yield

C−1
15 G

∆
Df(x) ≤ GDf(x) ≤ C15G

∆
Df(x).

Hence,
C−1

15 G
∆
D(x, y) ≤ GD(x, y) ≤ C15G

∆
D(x, y) for a.e. y.

By the continuity of GD(x, y) in y ∈ D \ {x}, we get

C−1
15 G

∆
D(x, y) ≤ GD(x, y) ≤ C15G

∆
D(x, y) for every x 6= y ∈ D.

The proof is complete.

In the last part of this section, we derive a Poisson integral representation for non-
negative L-harmonic functions on a bounded C1,1 domain D and establish a comparison
result between non-negative L-harmonic functions and non-negative classical harmonic
functions on D. The latter is then used to give a direct proof of the boundary Harnack
principle in bounded C1,1 domains with an explicit boundary decay rate. Boundary
Harnack principle for L has previously been established in [4, 19] for Lipschitz domains
without an explicit boundary decay rate. We next use it to identify the Martin boundary
and minimal Martin boundary with the Euclidean boundary of D for non-divergence form
differential operator L with Dini coefficients.

Theorem 3.8. Let C15 ≥ 1 be the constant in Theorem 3.7.

(i) For every non-negative L-harmonic function u in D, there exists a classical har-
monic function v in D so that C−1

15 v ≤ u ≤ C15v on D;
(ii) There exists a function ψ on D × ∂D that is bounded between 1/C2

15 and C2
15 so

that for each non-negative function ϕ on ∂D,

Ex [ϕ(XτD )] =

∫
∂D

K∆
D (x, z)ψ(x, z)ϕ(z)σ(dz), x ∈ D, (3.17)

where K∆
D (x, z) is the Poisson kernel of Brownian motion on D × ∂D and σ is the

surface measure of ∂D. Consequently, there is a constant C0 = C0(d, λ0, `,Λ0, R0,
diam(D)) > 1 such that for every x ∈ D,

C−1
0

δD(x)

|x− z|d
σ(dz) ≤ Px(XτD ∈ dz) ≤ C0

δD(x)

|x− z|d
σ(dz) on ∂D.
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Proof. The proof is similar to that of [9, Theorem 2.2]. For readers’ convenience, we
spell out the details here.

(i) Suppose that u is a non-negative L-harmonic function on D. Let {Dn}n≥1 be an
increasing sequence of open sets so that Dn ⊂ Dn+1 and ∪∞n=1Dn = D. Let TDn :=

inf{t > 0 : Xt ∈ Dn}. For each n ≥ 1, by Corollary 1 to Theorem 2 in [13], there exists a
Radon measure νn on Dn so that

u(x) = Exu(XD
TDn

) =

∫
Dn

GD(x, y)νn(dy) for x ∈ Dn.

Define

vn(x) :=

∫
Dn

G∆
D(x, y)νn(dy), x ∈ Dn.

By Theorem 3.7,
C−1

15 vn(x) ≤ u(x) ≤ C15vn(x), x ∈ Dn.

By a similar argument as that for Lemma 3.2, there is a subsequence nk such that vnk
converges uniformly on each Dn to a ∆-harmonic function v in D. Clearly,

C−1
15 v(x) ≤ u(x) ≤ C15v(x) for x ∈ D. (3.18)

(ii) Let ϕ ∈ C(∂D) be non-negative and take u(x) := Ex [ϕ(XτD )] for x ∈ D, which is
a non-negative L-harmonic function in D. Let v be a classical harmonic function in D

obtained in (i) so that C−1
15 v ≤ u ≤ C15v on D. On the other hand, by Lemma 2.2, u is

the unique function in W 2,p
loc (D) ∩ C(D) with p > d/2 so that Lu = 0 in D and u = ϕ on

∂D. Hence, limD3x→z u(x) = ϕ(z) for every z ∈ ∂D. It follows from (3.18) that for every
z ∈ ∂D,

C−1
15 ϕ(z) ≤ lim inf

D3x→z
v(x) ≤ lim sup

D3x→z
v(x) ≤ C15ϕ(z).

Define w(x) = Ex [ϕ(WτD )], where W is the standard Brownian motion on Rd. Then w

is a classical harmonic function in D with w = ϕ on ∂D. By the above display and the
maximum principle, we have C−1

15 w(x) ≤ v(x) ≤ C15w(x) in D. Thus we have by (3.18)
that C−2

15 w(x) ≤ u(x) ≤ C2
15w(x) in D. This implies that Px(XτD ∈ dz) has a density

KD(x, z) with respect to the surface measure σ on ∂D and that for every non-negative
ϕ ∈ C(∂D),

C−2
15

∫
∂D

K∆
D (x, z)ϕ(z)σ(dz) ≤

∫
∂D

KD(x, z)ϕ(z)σ(dz) ≤ C2
15

∫
∂D

K∆
D (x, z)ϕ(z)σ(dz).

This implies that for each x ∈ D, C−2
15 K

∆
D (x, z) ≤ KD(x, z) ≤ C2

15K
∆
D (x, z) σ-a.e. on

∂D. Thus there is a function ψ(x, z) bounded between C−2
15 and C2

15 so that KD(x, z) =

K∆
D (x, z)ψ(x, z) on D × ∂D. This completes the proof of the theorem.

Corollary 3.9 (Boundary Harnack principle). Suppose D is a bounded C1,1 domain in Rd

with characteristics (R0,Λ0). There exists a constant C = C(d, λ0, `, R0,Λ0) such that for
all Q ∈ ∂D, r ∈ (0, R0) and all function h ≥ 0 on Rd that is L-harmonic in D ∩B(Q, r) and
vanishes continuously on ∂D ∩B(Q, r), we have

h(x)

h(y)
≤ C δD(x)

δD(y)
for x, y ∈ D ∩B(Q, r/4).

Proof. Let θ be the constant in Corollary 3.1. By the Harnack inequality Theorem 2.14,
it suffices to prove r ∈ (0, θ ∧ R0). Let Q ∈ ∂D. Recall from (3.4) that UQ,r is a C1,1

connected open set with characteristics (rR0/L,Λ0L/r) such that D∩B(Q, r/2) ⊂ UQ,r ⊂
D ∩B(Q, r).
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Let h ≥ 0 be a non-negative harmonic function with respect to X in D ∩B(Q, r) and
vanishes continuously on ∂D ∩B(Q, r). By the same argument as that for Theorem 3.8(i)
on UQ,r instead of D and using Corollary 3.1 in place of Theorem 3.7 in the proof, we
can conclude that there is a classical harmonic function v in UQ,r so that

c−1
1 v(x) ≤ h(x) ≤ c1v(x) for every x ∈ UQ,r. (3.19)

where c1 > 1 is a constant that depends only on (d, λ0, `,Λ0, R0). Since v vanishes
continuously on UQ,r∩∂D ⊃ B(Q, r/2)∩∂D, by the classical boundary Harnack inequality
(for Laplacian) on bounded C1,1 domains, there is a constant c2 = c2(d,R0,Λ0) > 1 such
that

v(x)

v(y)
≤ c2

δU (x)

δU (y)
= c2

δD(x)

δD(y)
for every x, y ∈ B(Q, r/4) ∩D.

Consequently, by (3.19),

h(x)

h(y)
≤ c21c2

δD(x)

δD(y)
for x, y ∈ B(Q, r/4) ∩D.

This proves the lemma by taking C = c21c2.

Fix x0 ∈ D. For each x, y ∈ D, we define the Martin kernel MD(x, y) :=
GD(x, y)

GD(x0, y)
.

Theorem 3.10. Suppose D is a bounded C1,1 domain in Rd with characteristics (R0,Λ0).
Then MD(x, z) := limy→zMD(x, y) exists for x ∈ D and z ∈ ∂D. Moreover, the Martin
boundary and the minimal Martin boundary of X in D can all be identified with the
Eulidean boundary ∂D.

Proof. By the boundary Harnack principle Theorem 3.9 and a standard argument (see
e.g. [2, Proposition 2.2„ Chapter III]), MD(x, z) := limy→zMD(x, y) exists for x ∈ D and
z ∈ ∂D, and MD(x, z) is a continuous function on D × ∂D. Note that by Theorems 3.7
and 5.1, there exists a constant c = c(d, λ0, `, R0,Λ0,diam(D)) > 1 such that for any
x ∈ D and z ∈ ∂D,

c−1 δD(x)

|x− z|d
≤MD(x, z) ≤ c δD(x)

|x− z|d
. (3.20)

Hence MD(·, z1) 6= MD(·, z2) for z1 6= z2 ∈ ∂D. It is easy to check that for each z ∈ ∂D,
x 7→ MD(x, z) is X-harmonic in D, and so the Martin boundary of X in D is identified
with the Eulidean boundary ∂D. We next show that for each z0 ∈ ∂D, x 7→MD(x, z0) is a
minimal harmonic function of XD. Suppose that h ≥ 0 is a non-negative XD-harmonic
function on D and h ≤MD(·, z0). By the Martin representation formula [30], there exists
a unique finite measure µ on ∂D so that

h(x) =

∫
∂D

MD(x, z)µ(dz) for x ∈ D.

We claim that µ is a constant multiple of a Dirac measure concentrated at z0. Sup-
pose not, there is some ε > 0 so that µε := µ|∂D\B(z0,ε) is non-trivial. Then hε(x) :=∫
∂D

MD(x, z)µε(dz) is a non-trivial non-negativeX-harmonic function inD that is bounded
by MD(x, z). By (3.20), hε(x) vanishes continuous on ∂D \ {z0} as so does MD(x, z0). On
the other hand, by (3.20) and the dominated convergence theorem,

lim sup
x→z0
x∈D

hε(x) ≤ lim sup
x→z0
x∈D

c

∫
∂D\B(z0,ε)

δD(x)

|x− z|d
µ(dz) = 0.

Hence hε is a bounded non-negative X-harmonic function that vanishes continuously on
∂D. It follows from the definition of harmonicity and the bounded convergence theorem
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that hε = 0 on D, which is a contradiction. Hence µ(dz) = λδ{z0} for some λ ≥ 0 and
so h(x) = λMD(x, z0), proving that MD(x, z0) is a minimal X-harmonic function in D.
This shows that the minimal Martin boundary of X in D can also be identified with the
Euclidean boundary ∂D.

4 Derivative estimates

In this section, we shall prove the first and second derivatives of GD(·, y) in D \ {y}.
Lemma 4.1. Suppose D is a bounded C1,1 domain in Rd with characteristics (R0,Λ0).
Let C15 ≥ 1 be the constant in Theorem 3.7, which depends only on (d, λ0, `,Λ0, R0,

diam(D)). Then for any λ ∈ (0, 1],

C−1
15 G

∆
λD(x, y) ≤ GλD(x, y) ≤ C15G

∆
λD(x, y) on λD × λD \ diag. (4.1)

In particular, there exists a positive constant C16 = C16(d, λ0, `) such that for any x0 ∈ Rd
and r ∈ (0, 1],

C−1
16 G

∆
B(x0,r)

(x, y) ≤ GB(x0,r)(x, y) ≤ C16G
∆
B(x0,r)

(x, y) (4.2)

for x 6= y in B(x0, r).

Proof. Let λ ∈ (0, 1] and X
(λ)
t := λ−1Xtλ2 . It is easy to check that the infinitesimal

generator of X(λ) is

L(λ) :=

d∑
i,j=1

aij(λx)
∂2

∂xi∂xj
.

Denote by G(λ)
D the Green function of X(λ) in D. We have

GλD(x, y) = λ2−dG
(λ)
D (λ−1x, λ−1y), x 6= y ∈ λD. (4.3)

Note that for λ ∈ (0, 1], x 7→ {aij(λx); 1 ≤ i, j ≤ d} is `-Dini continuous and has the
uniform ellipticity constant λ0. Therefore, (4.1) is obtained by Theorem 3.7 and (4.3). In
particular, (4.2) is obtained by (4.1) with B(x0, 1) and r in place of D and λ.

In the following, we use Levi’s freezing coefficient formula (2.52) in Theorem 2.8 to
obtain the upper bound of the first derivative estimate |∇xGD(x, y)|.
Lemma 4.2. There exist ε0 = ε0(d, λ0, `) ∈ (0, 1] and C17 = C17(d, λ0, `) such that for any
r ∈ (0, ε0), x0 ∈ Rd,

|∇xGB(x0,r)(x, y)| ≤ C17

GB(x0,r)(x, y)

r
for x ∈ B(x0, r/4) and y ∈ B(x0, r) \B(x0, 3r/4).

(4.4)

Proof. For the simplicity of notation, we denote B(x0, r) by Br. It follows from The-
orem 2.8 and Lemma 2.6 with B1 and r in place of D and λ that there exists ε0 =

ε0(d, λ0, `) ∈ (0, 1] such that for any r ∈ (0, ε0),

GBr (x, y) = G
(y)
Br

(x, y) +

∫
Br

G
(z)
Br

(x, z)gBr (z, y) dz, x 6= y ∈ Br (4.5)

and

|gBr (x, y)| ≤
∞∑
k=0

|g(k)
Br

(x, y)| ≤ c1
`(|x− y|)
|x− y|d

δBr (y)

δBr (x)
for x 6= y ∈ Br, (4.6)
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where c1 is a constant depending only on (d, λ0, `). By (2.24) with B1 and r in place of D
and λ, there exists c2 = c2(d, λ0) such that for any r ∈ (0, ε0),

|∇xG(z)
Br

(x, z)| ≤ c2|x− z|1−d
(

1 ∧ δBr (z)
|x− z|

)
for x 6= z ∈ Br. (4.7)

By (4.6) and (4.7), for r ∈ (0, ε0), x ∈ Br/4 and y ∈ Br \B3r/4,∫
Br/2

|∇xG(z)
Br

(x, z)||gBr (z, y)| dz

≤c1c2
∫
Br/2

|x− z|1−d `(|z − y|)
|z − y|d

δBr (y)

δBr (z)
dz

≤c1c2c−1
0

`(r/4)

(r/4)d
δBr (y)

r/2

∫
Br/2

|x− z|1−d dz

≤4dc1c2c
−1
0 `(1)

δBr (y)

rd
,

(4.8)

where the second inequality is due to (2.36) and |z − y| ≥ r/4 for z ∈ Br/2 and y ∈
Br \ B3r/4. Moreover, it follows from (4.6) and (4.7) that for r ∈ (0, ε0), x ∈ Br/4 and
y ∈ Br \B3r/4, ∫

Br\Br/2
|∇xG(z)

Br
(x, z)||gBr (z, y)| dz

≤c1c2
∫
Br\Br/2

|x− z|1−d δBr (z)
|x− z|

`(|z − y|)
|z − y|d

δBr (y)

δBr (z)
dz

≤c1c24d
δBr (y)

rd

∫
Br\Br/2

`(|z − y|)
|z − y|d

dz

≤c1c24d
δBr (y)

rd

∫
|s|≤1

ωd
`(s)

s
ds.

(4.9)

Hence, by (4.7)-(4.9) together with (4.5) and the dominated convergence theorem, there
exists c3 = c3(d, λ0)

|∇xGB(x0,r)(x, y)| ≤ c3
δB(x0,r)(y)

rd
for x ∈ B(x0, r/4) and y ∈ B(x0, r) \B(x0, 3r/4).

By Lemma 4.1 and (2.22), there exists c4 = c4(d, λ0, `) > 0 such that GB(x0,r)(x, y) ≥
c4r

1−dδB(x0,r)(y) for x ∈ Br/4 and y ∈ Br \ B3r/4. Therefore, the desired conclusion is
obtained.

Proposition 4.3. Let ε0 = ε0(d, λ0, `) ∈ (0, 1] and C17 = C17(d, λ0, `) be the constants in
Lemma 4.2. Then for any x0 ∈ Rd, r ∈ (0, ε0) and each non-negative L-harmonic function
h in B(x0, r),

|∇h(x)| ≤ C17
h(x)

r
for x ∈ B(x0, r/4). (4.10)

Proof. For the simplicity of notation, we denote B(x0, r) by Br. Let h be a non-negative
L-harmonic function in Br with r ∈ (0, ε0). Let TB3r/4

:= inf{t > 0 : XBr
t ∈ B3r/4}. Define

h1(x) := Exh(XBr
TB3r/4

). Then h(x) = h1(x) for x ∈ B3r/4. By Corollary 1 to Theorem 2 in

[13], there exists a Radon measure ν on B3r/4 such that

h1(x) =

∫
B3r/4

GBr (x, z) ν(dz), x ∈ Br.
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Note that h1 = h is harmonic in B3r/4, then ν is supported in ∂B3r/4. Hence, there exists
a Radon measure ν on ∂B3r/4 such that

h(x) = h1(x) =

∫
∂B3r/4

GBr (x, y) ν(dy), x ∈ B3r/4. (4.11)

Therefore, the desired conclusion is obtained by Lemma 4.2 and the dominated conver-
gence theorem.

Theorem 4.4. Suppose D is a bounded C1,1 domain in Rd with characteristics (R0,Λ0).
There exists C18 = C18(d, λ0, `, R0,Λ0,diam(D)) such that

|∇xGD(x, y)| ≤ C18

|x− y|d−1

(
1 ∧ δD(y)

|x− y|

)
for x 6= y in D. (4.12)

Proof. Let ε0 be the constant in Proposition 4.3. Fix x, y ∈ D with x 6= y. Note that
GD(·, y) is L-harmonic in B(x, (δD(x)∧|x−y|∧ε0)/2). By Proposition 4.3 with x0 = x, r =

(δD(x) ∧ |x− y| ∧ ε0)/2 and h(·) = GD(·, y), Theorems 3.7 and 5.1, there exists a positive
constant C18 = C18(d, λ0, `, R0,Λ0,diam(D)) such that

|∇xGD(x, y)| ≤ 2C17(δD(x) ∧ |x− y| ∧ ε0)−1GD(x, y)

≤ 2C17C15|x− y|−1

(
1 ∧ δD(x)

|x− y|
∧ ε0

diam(D)

)−1

G∆
D(x, y)

≤ C18|x− y|1−d
(

1 ∧ δD(y)

|x− y|

)
.

Remark 4.1. In view of Lemma 4.2, the gradient estimate on GBr (x, y) (here Br =

B(x0, r)) is derived mainly through the Levi’s freezing coefficient formula. However, this
method does not work well for the second order derivative estimates on GBr (x, y). The
reason is that if we use the Levi’s freezing formula (4.5) on GBr and follow the argument
of Lemma 4.2 similarly, then by (2.33) and (4.6) that for x ∈ Br/4 and y ∈ Br \B3r/4,∫

Br/2

|D2
xG

(z)
Br

(x, z)||gBr (z, y)| dz

≤c
∫
Br/2

|x− z|−d δBr (z)
δBr (x)

`(|z − y|)
|z − y|d

δBr (y)

δBr (z)
dz

≤c `(r/4)

(r/4)d
δBr (y)

δBr (x)

∫
Br/2

|x− z|−d dz = +∞.

In the following, we use the second derivative estimate |∇2
xGB(x, y)| ≤ c|x− y|−d on

balls from [25] and Lemma 4.5 below to obtain the second order derivative estimates on
GD(x, y).

Let x0 ∈ Rd and let B1 := B(x0, 1). The unit ball B1 has C1,1 characteristics (R,Λ)

with R = 1/4 and Λ = 1. For Q1 ∈ ∂B1 and r ∈ (0, 1/4], recall from (3.4) that UQ1,r ⊂ B1

is a C1,1 connect open subset of B1 with C1,1-characteristics (r/(4L), L/r) such that
B1 ∩ B(Q1, r/2) ⊂ UQ1,r ⊂ B1 ∩ B(Q1, r), where L > 0 is a constant that depends
only on the dimension d. For each r ∈ (0, 1], s ∈ (0, r/4) and Q ∈ ∂B(x0, r), define

U
(r)
Q,s := rUr−1Q,s/r. Note that r−1Q ∈ ∂B1 and Ur−1Q,s/r is a connected C1,1 open set in

B1 with characteristics (s/(4rL), rL/s) such that

B1 ∩B(r−1Q, s/2r) ⊂ Ur−1Q,s/r ⊂ B1 ∩B(r−1Q, s/r).
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Then U (r)
Q,s is a C1,1 connected open set in B(x0, r) with characteristics (s/(4L), L/s) such

that

B(x0, r) ∩B(Q, s/2) ⊂ U (r)
Q,s ⊂ B(x0, r) ∩B(Q, s).

In the following, we use U (r)
Q,s to denote such C1,1 subdomain of B(x0, r).

Lemma 4.5. Suppose that {aij ; 1 ≤ i, j ≤ d} are C1 on Rd and satisfy the conditions (1.2)
and (1.3). There exist M1 = M1(d, λ0, `) > 1 and a positive function ψ1 ∈ (M−1

1 ,M1) on

Rd ×Rd such that for any r ∈ (0, 1], x0 ∈ Rd, Q ∈ ∂B(x0, r) and U (r)
Q,s with s ∈ (0, r/4],

GB(x0,r)(x, y) =

∫
∂U

(r)
Q,s∩B(x0,r)

GB(x0,r)(x, z)ψ1(y, z)K∆

U
(r)
Q,s

(y, z)σ(dz)

holds for x ∈ B(x0, r/2) and y ∈ U
(r)
Q,s, where K∆

U
(r)
Q,s

(y, z) := ∂
∂~nz

G∆

U
(r)
Q,s

(y, z), ~nz is the

inward unit normal at z ∈ ∂U (r)
Q,s, σ is the surface measure of ∂U (r)

Q,s.

Proof. For the simplicity of notation, we denote B(x0, r) by Br. Note that s−1U
(r)
Q,s is a

C1,1 connected open set in B1 with characteristics (1/(4L), L) and diam(s−1U
(r)
Q,s) ≤ 1,

where L > 0 is a constant that depends only on the dimension d. Then by Lemma 4.1
with s−1U

(r)
Q,s and s in place of D and λ, there exists a constant c = c(d, λ0, `) such that

for any r ∈ (0, 1] and s ∈ (0, 1
4r],

c−1G∆

U
(r)
Q,s

(x, y) ≤ G
U

(r)
Q,s

(x, y) ≤ cG∆

U
(r)
Q,s

(x, y), x, y ∈ U (r)
Q,s.

Thus, by a similar proof of Lemma 3.2 and Theorem 3.3, the conclusion can be obtained.

Suppose D is a bounded C1,1 domain. Note that by [25, p.34], for every y ∈ D and
ε > 0, GD(·, y) is in W 2,2(D \ B(y, ε)) and satisfies LGD(·, y) = 0 on D \ B(y, ε). The
C2 regularity of the strong solution W 2,2(Ω) for Lu = g with g a Dini mean oscillation
function in balls and later in bounded smooth domains Ω are studied in [16] and [17]. By
[16, Theorem 1.6], GD(x, y) is C2 in x ∈ D \B(y, ε).

Lemma 4.6. Suppose that {aij ; 1 ≤ i, j ≤ d} are C1 on Rd and satisfy the conditions (1.2)
and (1.3). There exists C19 = C19(d, λ0, `) such that for any x0 ∈ Rd and r ∈ (0, 1],

|D2
xGB(x0,r)(x, y)| ≤ C19

GB(x0,r)(x, y)

r2
for x ∈ B(x0, r/2) and y ∈ B(x0, r) \B(x0,

15

16
r).

(4.13)

Proof. For the simplicity of notation, we denote B(x0, r) by Br. By Theorem 1.9 in [25],
there exists c1 = c1(d, λ0, `) such that

|D2
xGB1

(x, y)| ≤ c1|x− y|−d for x 6= y ∈ B1. (4.14)

Let G(r)
B1

(x, y) be the Green function of the operator L with a(r)
ij (x) = aij(rx) in place of

aij(x). Then for each r ∈ (0, 1], a(r)
ij (·) is `-Dini continuous and has the same uniform

ellipticity constant λ0 as aij(·). By (4.14) and the scaling formula (4.3), there exists
c1 = c1(d, λ0, `) such that for any r ∈ (0, 1],

|D2
xGBr (x, y)| = |r2−dD2

xG
(r)
B1

(r−1x, r−1y)| ≤ c1|x− y|−d for x 6= y ∈ Br. (4.15)
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Let y ∈ Br \ B 15
16 r

and Qy be a point on ∂Br with |y − Qy| = δBr (y), then δBr (y) <

r/16. Recall that Uy := U
(r)

Qy,
1
4 r

is a connected C1,1 open set in Br with characteristics

(r/(16L), 4L/r) such that

Br ∩B(Qy, r/8) ⊂ Uy ⊂ Br ∩B(Qy, r/4),

where L > 0 is a constant that depends only on the dimension d. By Lemma 4.5, (4.15)
and the dominated convergence theorem, there exist M1 = M1(d, λ0, `) > 1 and a positive
function ψ1 ∈ (M1,M1) such that for any r ∈ (0, 1],

D2
xGBr (x, y)=

∫
∂Uy∩Br

D2
xGBr (x, z)ψ1(y, z)K∆

Uy (y, z)σ(dz), x∈Br/2 and y∈Br \B 15
16 r
.

(4.16)
Thus, by (4.16) and (4.15), for any r ∈ (0, 1], x ∈ Br/2 and y ∈ Br \B 15

16 r
,

∣∣D2
xGBr (x, y)

∣∣ ≤ c1M14dr−d
∫
∂Uy∩Br

K∆
Uy (y, z)σ(dz). (4.17)

By (2.22) with r−1Uy and r in place of D and λ, there exists c2 = c2(d) such that

K∆
Uy (y, z) = lim

u→z

G∆
Uy

(y, u)

δUy (u)
≤ c2

δUy (y)

|y − z|d
≤ c216d

δBr (y)

rd
, for z ∈ ∂Uy ∩Br. (4.18)

Therefore, by (4.17) and (4.18), there exists c3 = c3(d, λ0, `) such that

|D2
xGBr (x, y)| ≤ c3

δBr (y)

rd+1
for x ∈ Br/2 and y ∈ Br \B 15

16 r
.

By Lemma 4.1 and (2.22), there exists c4 = c4(d, λ0, `) > 0 such that GBr (x, y) ≥ c4
δBr (y)

rd−1

for x ∈ Br/2 and y ∈ Br \B 15
16 r

. Thus, the desired conclusion is obtained.

Proposition 4.7. Suppose that {aij ; 1 ≤ i, j ≤ d} are C1 on Rd and satisfy the condi-
tions (1.2) and (1.3). Let C19 = C19(d, λ0, `) be the constant in Lemma 4.6. For any
x0 ∈ Rd, r ∈ (0, 1] and each non-negative L-harmonic function h in B(x0, r),

|D2
xh(x)| ≤ C19

h(x)

r2
, for x ∈ B(x0, r/2).

Proof. For the simplicity of notation, we denote B(x0, r) by Br. Let h be a non-negative
L-harmonic function in Br with r ∈ (0, 1]. By a similar argument of (4.11), there exists a
Radon measure ν on ∂B15r/16 such that

h(x) =

∫
∂B15r/16

GBr (x, y) ν(dy) for x ∈ B15r/16.

Hence, the desired conclusion follows from Lemma 4.6 and the dominated convergence
theorem.

Theorem 4.8. Suppose D is a bounded C1,1 domain in Rd with characteristics (R0,Λ0).
There is a positive constant C20 = C20(d, λ0, `, R0,Λ0,diam(D)) such that

|D2
xGD(x, y)| ≤ C20

|x− y|d

(
1 ∧ δD(y)

|x− y|

)(
1 ∧ δD(x)

|x− y|

)−1

for x 6= y in D. (4.19)
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Proof. Let φ ∈ C∞c (Rd) with φ ≥ 0, supp[φ] ⊂ B(0, 1) and
∫
Rd
φ(x) dx = 1, For each

integer k ≥ 1, define φk(x) := kdφ(kx) and a(k)
ij (x) := φk ∗ aij(x) :=

∫
Rd
φk(x− y)aij(y)dy.

Then a
(k)
ij ∈ C∞(Rd) satisfying the conditions (1.2) and (1.3) with the same ellipticity

constant λ0 ≥ 1 and Dini modulo of continuity function `, and a(k)
ij converges uniformly to

aij on any compact set of Rd. Denote by L(k) the non-divergence operator of (1.1) with

diffusion coefficients a(k)
ij in place of aij . Let X(k) be the diffusion process having L(k) as

its infinitesimal generator, and G(k)
D (x, y) its Green function on D.

Note that G(k)
D (·, y) is L(k)-harmonic in B(x, (δD(x)∧ |x− y| ∧ 1)/2). By Proposition 4.7

with h(·) = G
(k)
D (·, y) and r = (δD(x) ∧ |x− y| ∧ 1)/2, Theorems 3.7 and 5.1, there exists a

positive constant C20 = C20(d, λ0, `, R0,Λ0,diam(D)) such that for each k ≥ 1,

|D2
xG

(k)
D (x, y)| ≤ 4C19(δD(x) ∧ |x− y| ∧ 1)−2G

(k)
D (x, y)

≤ C20|x− y|−d
(

1 ∧ δD(y)

|x− y|

)(
1 ∧ δD(x)

|x− y|

)−1

.

Let

F (x, y) := |x− y|−d
(

1 ∧ δD(y)

|x− y|

)(
1 ∧ δD(x)

|x− y|

)−1

, x 6= y ∈ D.

For any non-negative φ, f ∈ C2
c (D), we have∣∣∣∣∫

D×D
D2
xG

(k)
D (x, y)φ(x)f(y)dxdy

∣∣∣∣ ≤ C20

∫
D×D

F (x, y)φ(x)f(y)dxdy. (4.20)

On the other hand, by (3.15),

lim
k→∞

∫
D×D

D2
xG

(k)
D (x, y)φ(x)f(y)dxdy

= lim
k→∞

∫
D

D2
xφ(x)

(∫
D

G
(k)
D (x, y)f(y)dy

)
dx

=

∫
D

D2
xφ(x)

(∫
D

GD(x, y)f(y)dy

)
dx

=

∫
D×D

D2
xGD(x, y)φ(x)f(y)dxdy.

Then by letting k →∞ in (4.20), it follows that

−C20

∫
D×D

F (x, y)φ(x)f(y)dxdy ≤
∫
D×D

D2
xGD(x, y)φ(x)f(y)dxdy

≤ C20

∫
D×D

F (x, y)φ(x)f(y)dxdy.

(4.21)

For any fixed x0 6= y0 ∈ D, let ε > 0 be so that

B(x0, 2ε) ⊂ D, B(y0, 2ε) ⊂ D and B(x0, 2ε) ∩B(y0, 2ε) = ∅.

As we noted earlier that by [25, p.34], for each y ∈ B(y0, ε), x 7→ GD(x, y) is in
W 2,2(B(x0, 2ε)) and LxGD(x, y) = 0 on B(x0, 2ε). Thus by [22, Theorem 9.11], there
exists a positive constant c2 = c2(d, λ0, `, ε) such that for any y1, y2 ∈ B(y0, ε),

‖GD(·, y1)−GD(·, y2)‖W 2,2(B(x0,ε)) ≤ C‖GD(·, y1)−GD(·, y2)‖L2(B(x0,2ε)). (4.22)

Since by Theorem 2.3, GD(x, y) ≤ C|x − y|2−d and GD(x, y) is jointly continuous off
the diagonal, GD(·, y) is continuous in L2(B(x0, ε)) in y ∈ B(y0, ε) by the dominated
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convergence theorem. Consequently, GD(·, y) is continuous in W 2,2(B(x0, ε)) in y ∈
B(y0, ε) by (4.22). Thus for any φ ∈ Cc(B(x0, ε)),

∫
D
D2
xGD(x, y)φ(x)dx is a continuous

function in y ∈ B(y0, ε). By this continuity, we deduce from (4.21) by taking all possible
non-negative f ∈ C2

c (B(y0, ε) that for every non-negative φ ∈ Cc(B(x0, ε)) and for every
y ∈ B(y0, ε),

−C20

∫
D

F (x, y)φ(x)dx ≤
∫
D

D2
xGD(x, y)φ(x)dx ≤ C20

∫
D

F (x, y)φ(x)dx.

Thus we have for every y ∈ B(y0, ε), −C20F (x, y) ≤ D2
xGD(x, y) ≤ C20F (x, y) for a.e. and

hence for every x ∈ B(x0, ε) as x 7→ GD(x, y) is C2 in D \ {y}. This in particular shows
that

|D2
xGD(x0, y0)| ≤ C20F (x0, y0),

establishing the pointwise second derivative estimate for GD(x, y).

Using scaling, we can remove the restriction of ε0 ∈ (0, 1] from Proposition 4.3 and
also give the interior second derivative estimate for non-negative L-harmonic functions.

Theorem 4.9. For any R > 0, there exists a constant C21 = C21(d, λ0, `, R) > 0 so that for
any x0 ∈ Rd, r ∈ (0, R] and every non-negative L-harmonic function h in Br := B(x0, r),

|∇h(x)| ≤ C21h(x)/r and |D2
xh(x)| ≤ C21h(x)/r2 for all x ∈ B(x0, r/2). (4.23)

In particular, if h is a non-negative L-harmonic function in an open set D ⊂ Rd, then
there is a constant c = c(d, λ0, `,diam(D)) > 0 so that

|∇h(x)| ≤ ch(x)/δD(x) and |D2
xh(x)| ≤ ch(x)/δD(x)2 for all x ∈ D. (4.24)

Proof. For any λ > 0, let L(λ) be the non-divergence form operator (1.1) but with
a

(λ)
ij (x) := aij(λx) in place of aij(x) for 1 ≤ i, j ≤ d. For any open set U ⊂ Rd, denote the

Green function of L(λ) in U by G(λ)
U (x, y). Clearly, {a(λ)

ij (x); 1 ≤ i, j ≤ d} satisfies (1.2) and
are `λ-Dini continuous with `λ(r) := `(λr). By Theorems 4.4 and 4.8, there is a constant
c1 = c1(d, λ0, `, R) > 0 so that for any λ ∈ (0, R], x0 ∈ Rd and any B = B(x0, 1) ⊂ Rd,|∇xG

(λ)
B (x, y)| ≤ c1

|x−y|d−1

(
1 ∧ δB(y)

|x−y|

)
|D2

xG
(λ)
B (x, y)| ≤ c1

|x−y|d

(
1 ∧ δB(y)

|x−y|

)(
1 ∧ δB(x)

|x−y|

)−1 for x 6= y in B. (4.25)

By the scaling identity (4.3) for any x0 ∈ Rd and r ∈ (0, R],

GB(x0,r)(x, y) = r2−dG
(r)
B(x0/r,1)(x/r, y/r) for any x 6= y ∈ B(x0, r). (4.26)

This together with (4.25) implies that there is a constant c2 = c2(d, λ0, `, R) > 0 so that
for any x0 ∈ Rd and r ∈ (0, R],|∇xGB(x0,r)(x, y)| ≤ c2

|x−y|d−1

(
1 ∧ δB(x0,r)

(y)

|x−y|

)
|D2

xGB(x0,r)(x, y)| ≤ c2
|x−y|d

(
1 ∧ δB(x0,r)

(y)

|x−y|

)(
1 ∧ δB(x0,r)

(x)

|x−y|

)−1 for x 6= y in B(x0, r).

(4.27)
This combined with Theorem 3.7 shows that there is a constant c3 = c3(d, λ0, `, R) > 0 so
that for any x0 ∈ Rd and r ∈ (0, R],

|∇xGB(x0,r)(x, y)| ≤ c3
GB(x0,r)(x, y)

r
and |D2

xGB(x0,r)(x, y)| ≤ c3
GB(x0,r)(x, y)

r2

(4.28)
for any x ∈ B(x0, r/2) and y ∈ B(x0, r) \B(x0, 3r/4). The estimates in (4.23) now follows
from this, (4.11) and the dominated convergence theorem, while the estimates (4.24)
follows from (4.23) by taking r = δD(x).
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Theorems 4.9 extends the classical interior Schauder estimate (see, e.g., [22, Theorem
6.2]) for harmonic functions of non-divergence form operators L with Hölder continuous
coefficients to Dini continuous coefficients.

5 Appendix

In this section, we show that the constant C in (1.13) can be chosen to depend only
on d,Λ0, R0 and diam(D).

Theorem 5.1. Suppose that D ⊂ Rd is a bounded C1,1 domain with characteristics
(R0,Λ0) and d ≥ 3. There is a constant C = C(d,Λ0, R0,diam(D)) > 1 such that for any
x 6= y in D,

C−1

|x− y|d−2

(
1∧ δD(x)

|x− y|

)(
1∧ δD(y)

|x− y|

)
≤G∆

D(x, y)≤ C

|x− y|d−2

(
1∧ δD(x)

|x− y|

)(
1∧ δD(y)

|x− y|

)
.

(5.1)

Proof. First we mention that a C1,1-domain D with C1,1-characteristics (R0,Λ0) is a
non-tangential accessible domain so in particular it satisfies the Harnack chain property
in the following sense [26, p.93]: there is a constant M > 1 so that for any x, y ∈ D with
|x− y| ≤ K[δD(x) ∧ δD(y)], there exist at most N number of balls B(ai, ri), 0 ≤ i ≤ N , in
D so that a0 = x, aN = y and B(ai, ri)∩B(ai+1, ri+1) 6= ∅ and M−1ri ≤ d(B(ai, ri), D

c) ≤
Mri for 0 ≤ i ≤ N − 1, where the constant M depends on (R0,Λ0), and N depends only
on (R0,Λ0) and K only. See the proof of [26, Proposition 3.6] for the verification of the
above statement, which is given for more general Zygmund domains. The Harnack chain
property will be used several times in this proof.

(I) From the proof in Lemma 3.2 and Theorem 3.3 in [23], one can see that the
constant in the upper bound of (5.1) depends on (d,Λ0, R0,diam(D)). For the reader’s
convenience, we spell out the details here.

It is well known that any bounded C1,1 domain D satisfies a uniform interior and
exterior ball condition, that is, there exists a constant r0 > 0 depending on the C1,1-
characteristics (R0,Λ0) of D such that for any z ∈ ∂D and r ∈ (0, r0), there exist two balls
Bz1(r) and Bz2(r) of radius r such that Bz1(r) ⊂ Dc

, Bz2(r) ⊂ D, and {z} = ∂Bz1(r)∩ ∂Bz2(r).
Let x, y ∈ D with x 6= y. We consider three cases of x and y.

(1) Suppose that δD(x) < |x− y|/8 < r0. Denote by zx the point on the boundary ∂D
so that |x − zx| = δD(x). Let r = |x − y|/8 and x∗ ∈ Dc be such that B(x∗, r) = Bzx1 (r).
For the simplicity of notation, we denote Br := B(x∗, r). Let Er := B2r \Br and let ur be
the unique solution of the Dirichlet boundary problem ∆ur = 0 in Er with ur = 0 on ∂Br
and ur = 1 on ∂B2r. By [23, Lemma 3.2], there is a constant c1 = c1(d, r0) > 1 such that

|∇xur(z)| ≤
c1
r

for every z ∈ Er.

Note that zx ∈ ∂Br and

ur(x) = ur(x)− ur(zx) ≤ |x− zx| sup
θ∈(0,1)

|∇xu(x+ θ(x− zx))| ≤ c1
δD(x)

r
. (5.2)

SetG∆
D(·, y) = 0 onDc. Note thatG∆

D(·, y) is harmonic inD∩Er and vanishes continuously
on ∂D. Clearly, there is a constant C = C(d) > 0 such that G∆

D(x, y) ≤ G∆
Rd

(x, y) =

C|x− y|2−d. As |z− y| ≥ |x− y| − |x− z| ≥ |x− y| − 4r ≥ |x− y|/2 for z ∈ ∂B2r and ur = 1

on ∂B2r, we have

G∆
D(z, y) ≤ C2d−2|x− y|2−dur(z) for every z ∈ ∂(D ∩ Er).
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Since G∆
D(·, y) and C2d−2|x − y|2−dur(·) are both ∆-harmonic functions in D ∩ Er and

x ∈ D∩Er, one concludes by the maximum principle thatG∆
D(x, y) ≤ C2d−2|x−y|2−dur(x).

Hence by (5.2),

G∆
D(x, y) ≤ C2d−2|x− y|2−dur(x) ≤ C2d−2|x− y|2−d 8c1δD(x)

|x− y|

≤ 2d+1Cc1|x− y|2−d
(

1 ∧ δD(x)

|x− y|

)
.

(2) Suppose that δD(x) < r0 ≤ |x − y|/8. By a similar argument as above in (1) but
taking r = r0 instead, we have

G∆
D(x, y) ≤ C2d−2|x− y|2−dur(x) ≤ C2d−2c1

δD(x)

r0
|x− y|2−d

≤ 2d−2Cc1
diam(D)

r0
|x− y|2−d

(
1 ∧ δD(x)

|x− y|

)
.

(3) The remaining case is δD(x) ≥ min{|x− y|/8, r0}. In this case,

G∆
D(x, y) ≤ G∆

Rd(x, y) = C|x− y|2−d ≤ 8C
diam(D)

r0
|x− y|2−d

(
1 ∧ δD(x)

|x− y|

)
.

Combining (1)-(3) gives

G∆
D(x, y) ≤ 2d+1Cc1

diam(D)

r0
|x− y|2−d

(
1 ∧ δD(x)

|x− y|

)
for any x 6= y ∈ D. (5.3)

By the symmetry of G∆
D(x, y) in (x, y), we have

G∆
D(x, y) ≤ 2d+1Cc1

diam(D)

r0
|x− y|2−d

(
1 ∧ δD(y)

|x− y|

)
for any x 6= y ∈ D. (5.4)

Repeating the arguments in (1)-(3) but with (5.4) in place of the bound G∆
D(x, y) ≤

G∆
Rd

(x, y) there, we get

G∆
D(x, y)≤

(
2d+1Cc21

diam(D)

r0

)2

|x−y|2−d
(

1∧ δD(x)

|x− y|

)(
1∧ δD(y)

|x− y|

)
for any x 6= y ∈ D.

(II) Next we show that the lower bound for G∆
D in (5.1) holds with C−1 depending

only on (d,Λ0, R0,diam(D)). Recall r0 > 0 is the constant in (I) for the uniform interior
and exterior ball condition of the C1,1-domain D. By checking carefully the proof of
Theorem 1 in [39], it follows from the paragraph under Theorem 1 in page 316 and
(6), (17)-(18) in [39] that when |x − y| ≤ max {δD(x)/2, δD(y)/2} or when |x − y| ≥
max {δD(x)/2, δD(y)/2} with |x− y| ≤ r0

10(1 + r0Λ0)
, the constant C−1 in the lower bound

of (5.1) depends on (d, r0). So it remains to consider the case of x 6= y ∈ D with |x− y| ≥
max {δD(x)/2, δD(y)/2} with |x− y| > r0

10(1 + r0Λ0)
. For simplicity, let r1 :=

r0

10(1 + r0Λ0)
.

Without loss of generality, we assume δD(y) ≤ δD(x). We consider its three possible
scenarios.

(1) Suppose that δD(y) ≤ δD(x) < r1/8. Let zx be a point on the boundary ∂D so that
|x − zx| = δD(x). Since D is a bounded C1,1 domain, there exist κ ∈ (0, 1) depending
on (R0,Λ0) and a point x0 on D ∩ ∂B(zx, r1/8) so that κr1/8 < δD(x0) < r1/8. Note that
|x − y| > r1, then |y − zx| > |y − x| − |x − zx| > r1 − r1/8 = 7

8r1. Hence, G∆
D(·, y) is

harmonic in D ∩ B(zx, r1/2). By the scale invariant boundary Harnack principle (BHP
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in abbreviation) of the Laplacian ∆ (see [10, Theorem 1.4]), there is c2 = c2(d,R0,Λ0)

such that
G∆
D(x, y)

G∆
D(x0, y)

≥ c2
δD(x)

r1
.

Similarly, let zy be a point on the boundary ∂D so that |y − zy| = δD(y). Let y0 be a
point on D ∩ ∂B(zy, r1/8) so that κr1/8 < δD(y0) < r1/8. Note that |x − y| > r1, then
|x0 − y| > |x − y| − |x − x0| > r1 − r1/4 = 3r1/4. Thus |x0 − zy| > |x0 − y| − |y − zy| >
3r1/4 − r1/8 = 5

8r1. So G∆
D(x0, ·) is harmonic in D ∩ B(zy, r1/2). By the scale invariant

BHP of ∆,
G∆
D(x0, y)

G∆
D(x0, y0)

≥ c2
δD(y)

r1
.

By [39, Lemma 3], there is a constant c3 = c3(d) such that for any r > 0,

G∆
B(0,r)(w, z) ≥ c3|w − z|

2−d, w, z ∈ B(0, r/2). (5.5)

Note that (δD(x0) ∧ δD(y0)) ≥ κr1/8. Thus by the Harnack chain property of D, the
Harnack inequality for ∆ and (5.5), there exists a constant c4 = c4(d,R0,Λ0,diam(D)) so
that

G∆
D(x0, y0) ≥ c4|x0 − y0|2−d ≥ c4(diam(D))2−d.

Hence, combining the above inequalities, we have

G∆
D(x, y) ≥ G∆

D(x, y)

G∆
D(x0, y)

G∆
D(x0, y)

G∆
D(x0, y0)

G∆
D(x0, y0) ≥ c22c4

δD(x)

r1

δD(y)

r1
(diam(D))2−d

≥ c22c4
(diam(D))2−d

r2−d
1

|x− y|2−d
(

1 ∧ δD(x)

|x− y|

)(
1 ∧ δD(y)

|x− y|

)
,

where the last inequality is due to that r1 < |x− y|.
(2) Suppose that δD(y) ≤ r1/8 ≤ δD(x). Note that (δD(x) ∧ δD(y0)) ≥ κr1/8. Thus

by the Harnack chain property of D and Harnack inequality again, there exists c5 =

c5(d,R0,Λ0,diam(D)) such that

G∆
D(x, y0) ≥ c5|x− y0|2−d ≥ c5

diam(D)2−d

r2−d
1

|x− y|2−d,

where the last inequality is due to that |x− y0| < diam(D) ≤ diam(D)

r1
|x− y|. Note that

|x−zy| > |x−y|−|y−zy| > r1−r1/8 = 7r1/8, then G∆
D(x, ·) is harmonic in D∩B(zy, r1/2).

Then by the scale invariant BHP of ∆, we have

G∆
D(x, y) ≥ G∆

D(x, y)

G∆
D(x, y0)

G∆
D(x, y0) ≥ c2c5

diam(D)2−d

r2−d
1

δD(y)

r1
|x− y|2−d

≥ c2c5diam(D)2−d

|x− y|d−2

(
1 ∧ δD(x)

|x− y|

)(
1 ∧ δD(y)

|x− y|

)
,

where the last inequality is due to that r1 < |x− y|.
(3) The remaining case is r1/8 ≤ δD(y) ≤ δD(x). In this case, note that |x − y| <

diam(D) < (8/r1)diam(D)(δD(x) ∧ δD(y)). By the Harnack chain property of D and
Harnack inequality, there exists c6 = c6(d,R0,Λ0,diam(D)) such that

G∆
D(x, y) ≥ c6|x− y|2−d ≥

c6
|x− y|d−2

(
1 ∧ δD(x)

|x− y|

)(
1 ∧ δD(y)

|x− y|

)
.

This completes the proof of the lower bound and hence the theorem.
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