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Abstract

By Girsanov’s theorem and using the existing log-Harnack inequality for distribution
independent SDEs, the log-Harnack inequality is derived for path-distribution depen-
dent stochastic Hamiltonian system. As an application, the exponential ergodicity
in relative entropy is obtained by combining with transportation cost inequality. In
addition, the quantitative propagation of chaos in the sense of Wasserstein distance
is obtained, which together with the coupling by change of measure implies the
quantitative propagation of chaos in total variation norm as well as relative entropy.
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1 Introduction

The stochastic Hamiltonian system (SHS), which includes the kinetic Fokker-Planck
equation (see [31]), has been extensively investigated in [6, 11, 15, 17, 34, 35, 37, 38] and
references therein. More precisely, [11] has studied the regularity of stochastic kinetic
equations; [15] investigated Bismut formula, gradient estimate and Harnack inequality
for SHS by using coupling by change of measure; the derivative formula is extended to
the case that the degenerate part is not linear by using Malliavin calculus in [35] and
[37]; moreover, [37] derived the stochastic flows for SHS with linear degenerate part,
and the diffusion only depends on the degenerate part; see also [38] for the results on
the stochastic flows with singular coefficients; we refer to [34] for the hypercontractivity
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for SHS. For the path-dependent SHS, the derivative formula and Harnack inequality
are established in [6], see also [17] for Harnack inequalities with singular drifts.

Recently, along with the application in nonlinear Fokker-Planck-Kolmogorov equa-
tions, McKean-Vlasov stochastic differential equations (SDEs), presented in [22], have
gained much attention. There are plentiful results on these type SDEs, see for instance,
[3, 4, 9, 16, 21, 29, 39] and references therein. In [28], the exponential ergodicity
of McKean-Vlasov SDEs in relative entropy is derived by log-Harnack inequality and
transportation cost inequality. The log-Harnack inequality for non-degenerate McKean-
Vlasov SDEs is investigated in [33] by coupling by change of measure. One can also
refer to [18] for the log-Harnack inequality of non-degenerate McKean-Vlasov SDEs with
memory. In addition, there are lots of references on the well-posedness of McKean-Vlasov
SDEs with singular coefficients, for instance, [9, 16, 19, 21, 24, 29, 39] and references
therein. Since in this paper we do not plan to pay attention in the well-posedness for
McKean-Vlasov SDEs with singular coefficients, we will not characterize the details of
the well-posedness results in the above references and we will give the well-posedness
result using the appendix in Section A.

To obtain the log-Harnack inequality for the path-distribution dependent SHS, we
will adopt Girsanov’s transform and combine with the existing log-Harnack inequality in
[32] and [17].

McKean-Vlasov SDEs can be viewed as the limit of the mean field interacting particle
system. The so called propagation of chaos ([30]) means that the joint distribution of
finite many particles converges to the product of the distribution of McKean-Vlasov SDEs
as the number of interacting particle system tends to infinity, see [14, Definition 4.1] for
more details. For the propagation of chaos, [21] obtain the convergence of the interacting
particle system with non-degenerate noise in the total variation distance. In this paper,
we obtain the convergence of the interacting particle system in the sense of Wasserstein
distance, total variation norm and relative entropy, see Theorem 4.2 below. Since ¢™*¢
is an infinite dimensional space, to obtain the quantitative propagation of chaos, we
assume that the coefficients are Lipschitz continuous in W} instead of L?-Wasserstein
distance. For more results on the propagation of chaos, see [2, 7, 13, 14, 20, 25, 30] and
references therein.

The main contributions of this paper mainly include: (1) The diffusion is degenerate.
(2) The model is assumed to be both path and distribution dependent. (3) The quantitative
propagation of chaos in the sense of total variation norm and relative entropy is obtained.

The paper is organized as follows: In Section 2, we prove the log-Harnack inequality
for path-distribution dependent SHS; The exponential ergodicity in relative entropy is
derived in Section 3, where the transportation cost inequality for the invariant probability
measure is also investigated under the dissipative condition; in Section 4, the quantitative
propagation of chaos for path-distribution dependent SHS is studied. Finally, the well-
posedness for general path-distribution dependent SDEs and mean field interacting
particle system is provided in Section A.

Throughout the paper, fix a constant > 0. For any n € IN*, let €™ = C([—r,0]; R™)
be equipped with the uniform norm |[[{[|oc =: sup,e[_, oj [§(s)]. Forany f € C([-7,00); R"),
t > 0, define f, € €™ as f,(s) = f(t + s),s € [-r,0], which is called the segment process.
Let &2(%™) be the set of all probability measures in ¥ equipped with the weak topology.
For 6 > 1, define

Po(¢") = {ne P(@): pu(] - |%) < o0}

It is well known that %% (%™") is a Polish space under the Wasserstein distance

Wo(u,v) = inf ( / Ifnllﬁoﬂ(df,dn)) L wv e Po(™),
EnXE"

TeC(p,v)
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where C(u, v) is the set of all couplings of 1 and v.
Recall that for two probability measures y, » on some measurable space (F, &), the
entropy and total variation norm are defined as follows:

I} (log g—;)dy, if v is absolutely continuous with respect to p,

Ent(v|p) := {

00, otherwise;

and

[ = Vlvar = sup [u(f) —v(f))].
[f1<1
By Pinsker’s inequality (see [26]),
1t = Vl[3ar < 2Ent(vlp), p,ve P(E), (1.1)

here &(F) denotes all probability measures on (E, &). Throughout the paper, we will
use C or c as a constant, the values of which may change from one place to another. For
n,k € NT, let 0,, and 0,5, denote the n dimensional vector and n x k matrix with all
components being 0.

2 Log-Harnack inequality

The log-Harnack inequality provides an estimate of the relative entropy for two
probability measures, see for instance [32, Theorem 1.4.2 (2)]. For the path dependent
SHS, the log-Harnack inequality has been established in [32, Theorem 4.4.5], see also
[17] for the case with singular drifts. [18] studied log-Harnack inequality for path-
distribution dependent SDEs with non-degenerate noise and the result is extended to the
path-distribution dependent SDEs with singular drift in [16]. Moreover, by Girsanov’s
transform and Young’s inequality, the log-Harnack inequality is obtained in [19], where
the semi-linear SPDE with Dini continuous drift and non-degenerate noise is considered.
In this section, we extend the method in [19] to the path-distribution dependent case
including the path-distribution SHS. To this end, we first give a general result as follows.

2.1 A general result
Let T > r and n,k € IN*. Consider SDE on R":

AX (1) = Ho(t, X )dt + S(t, X H(t, Xy, Lx,)dt + S(t, X,)dAW (1), (2.1)

where Hy : [0,00) x €™ — R", H : [0,00) x " x Z(€") — RF, £ :[0,00) x €™ — R"@R*
are measurable and W (t) is a k-dimensional Brownian motion on some complete filtration
probability space (Q, %, (%#i)t>0, P).

Let 97(%”) be a subset of Z(¢") containing all Dirac measures and it is equipped
with some topology. Assume that (2.1) is well-posed in @(‘5") see Definition A.1 and
Theorem A.1 for general result on the well-posedness of path-distribution depedndent
SDESs. For any g € 97(%"), let X}'* be the unique solution to (2.1) with initial distribution
1o and define

Pif(no) = (P uo)(f) = Ef(X(), f € Bp(€"),t 20, (2.2)

For any 1 € C([0,T]; #(€"™)) and any .#,-measurable random variable X, with Zx, €

P (€"), suppose that the decoupled SDE

AXX0r(8) = Ho(t, XXMt + $(t, XXM H (£, X0 pe)dt + 28, X0 dW () (2.3)
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with Xg(o”‘ = Xy has a unique strong solution. Note that (2.3) reduces to a path
dependent classical SDE, see [17, 36, 38] and references therein for the well-posedness
with singular coefficients. Let Pt“ be the associated semigroup to (2.3), i.e.

Pl'f(&) = Bf(XPH), €€6™, f e By(€™),t>0.

Forv € C([0,T]; 2(€™)), let

= HXEO ) — H (8 X ),

t t
Ré"”exp{ [ erawe - [ |<5’"|2ds}, te 0.7,

Theorem 2.1. Assume that for any p,v € C([0,T], Z(¢")), {R{"" }1cj0, is a martingale
and P/ satisfies the log-Harnack inequality, i.e. there exists a function C' : (r,00) — (0, 00)
such that for any f € %,(¢™) with f >0

PPlog f(§) <log P/ f(n) + C()IE =%, r<t<T,&ned™. (2.4)
Then we have

Py log f(v) < log Py f (o)
+ 2C(£)Wa (o, 1) + log B(RMY)2, r <t < T, po,vo € P(€"). (2.5)

Consequently,
1 v
1B o — Pivoar < Ent(Pf po| P o) < 20(1)Wa(po, 1) +log B(R{™)?, r <t <T.

Proof. By [32, Theorem 1.4.2 (2)] and (1.1), it is sufficient to prove the log-Harnack
inequality (2.5).

Let X satisfy Zx, = o and let i, = Puo and v, = Prvg, W(t) = W(t) + [; Ct¥ds,
t € [0,T]. Since {R}""},c[o,7] is a martingale, it follows from Girsanov’s theorem that
{W(t)}icpo,1) is a k-dimensional Brownian motion under Qr = R}"P. So, (2.3) can be
rewritten as

AXX0OR(t) = Ho(t, X OM)+ (8, X 0P H (t, X750, v)dt 4+ B(t, X0M)dW (1), X0 =X,.
Letting ji; = £ x,..|Qr and noting that {R}""},c[o,7] is @ martingale, we derive
fe(f) = B9 (X0 = BRI F(X;51)), f € By(€™),t €[0,T],

which implies that for any ¢ € [0, 7], P-a.s.

i
i xXomy — B(REY

XXO,M )
dut t )

By Jensen’s inequality for conditional expectation, we get

i () = BRI < B(REP, e 0.1 2.6)
He

On the other hand, taking expectation in (2.4) with respect to any = € C(vy, 110), using
Jensen’s inequality and then taking infimum in 7 € C(vy, o), we get

(Pfwo)(log f) <log fi(f) + C(t)Wa(po, v0)?, r <t <T.
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This together with [32, Theorem 1.4.2 (2)] implies that

APy v, log APy,

Ent(Pvo|fit) = fiy < i, i, > < C(t)Wa(po, v0)*-

It follows from Young’s inequality (see for instance [1, Lemma 2.4]) and (2.6) that

Pylog f(v) = pue <

dut dpt
dﬂt dPt*I/() <dﬂt dPt*I/O ))
SIO P + <1O -_—
g P f (po) + pit Ao A g A dfie
_ dP*VO dﬂt _ dP*I/O dP*Z/O
=log P, —t " Jog —— ! ¢
og tf(uo)+ut( 4 ogdm)ﬂu( TR

di dpPr dpPr
<log P f(po) + log fit ('Ut> + 2[¢ ( L 0 log t_Vo)
dp diu dp

< log P f (o) + log E(RI)? + 2C() W (o, v0)*.
Therefore, we complete the proof. O

2.2 Log-Harnack inequality and regularity for path-distribution dependent
SHS

Let m,d € INT. In this section, consider the following path-distribution dependent
stochastic Hamiltonian system on R™*%:

{dX(t) = {AX(t) + MY (t)}dt, (2.7)

dY'(t) = {Z(X (), Y(t), Z(x,.v)) + B(Xi, Vi, Z(x, v)) Ydt + odW (1),

where W = (W (t));>0 is a d-dimensional standard Brownian motion with respect to
a complete filtration probability space (2, .%,{%;}1>0,P), A is an m x m matrix, M
is an m x d matrix, o is a d x d matrix, Z : Rt x 2(¢™m+4) — RY, B : €™t x
2(¢™*1) — R?. We should remark that the reason why we assume that the coefficients
are time independent is only to coincide with the assertion in Section 3 and the result
in Theorem 2.2 below can also be available in the time dependent case. To obtain the
log-Harnack inequality, we make the following assumptions:

(A1) o is invertible.
(A2) There exists § > 1 and Kz > 0 such that

1Z(2,7) — Z2(2,9)| < Kz(|z — 2| + Wo(7,7)), 2,2 € R™M 5,5 € Po(m ).
(A3) Let 0 be in (A2). There exists a constant K g > 0 such that
[B(&7) = B0, 7)| < Kp(ll€ = nlloc + Wo(7,7)), &n €™, y,5 € Po(€™).
(A4) There exists an integer [ with 0 <[ < m — 1 such that

Rank[M, AM, ..., A'M] = m.

According to Remark A.2 below, under (A1)-(A3), (2.7) is well-posed in & (‘gm”).
Denote the solution to (2.7) with £ x, v,) = po € Po(€™+?) by (X[, Y/""). Let P, and
P} be defined in the same way as in (2.2) for (X}, Y}") replacing X/ there. The next
result characterizes the log-Harnack inequality for (2.7).

EJP 28 (2023), paper 134. https://www.imstat.org/ejp
Page 5/20


https://doi.org/10.1214/23-EJP1027
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Exponential ergodicity and propagation of chaos

Theorem 2.2. Assume (A1)-(A4) and let t > r. Then for any pug, vy € Pp(¢™ %) and
positive f € %, (€™*9),

t
Pt IOg .f(,UJO) < 1Og Ptf(ljo) + 02/ e2CSdSW9(,u’07 V0)2 + E(t7’l"7 ||M||7Z)W2(,u07 V0)27
0

where

(e 3010 = { (=g + ooy r) + (U o) |-

and C > 0 is a constant. Consequently, it holds

7HPt Ho — P VOH’UG’I‘ < Ent(Pt*:uo|Pt*V0)
t
< 02/ e2“5dsWo(po, v0)> + S(t, 7, | M|, ) Wa (10, v0)2. (2.8)
0
Proof. Letn=m+d, k =d,
Ho(z,y) = (Ax BL My> , H=0"YZ+B), ¥ = (0“;”) , € R™ye R
d

Let put = P uo and vy = P;vy. For simplicity, we denote (X,,Y;) = (X#0, Y o). Set
¢ =07 Z(X(5), Y (5), ) + B(Xs, Ys, 1) — Z(X(5),Y (), v5) = B(X, Yo, v5)].
By (A2)-(A3) and Remark A.2 below, there exists a constant C' > 0 such that
¢ < Nlo ™ HI(Kz + Kp)We(us, vs) < Ce““Wo(uo, m0), s € [0,2].

Recalling the definition of R,”” in Theorem 2.1, we arrive at

t
log B(R"Y)? < logesssupﬂefot Ic s < / C?e?“*Wy (1o, v0)ds.
0

On the other hand, by [32, Theorem 4.4.5], we know
P log f(§) <log P f(n) + S(t, 7, [ M|, k)€ —nll%.

So, applying Theorem 2.1, we complete the proof. O

3 Exponential ergodicity

In this section, we investigate the exponential ergodicity of (2.7) in L?-Wasserstein
distance as well as in relative entropy. To this end, we assume

(C) There exist A1 > 0,9, A3 > 0 with Xy + A3 < supsep,] 5e~%" such that for any
£ = (61,6),£= (EW,E2) € 47, 7,7 ¢ %(%m%
2(A(EM(0) — £€(0)) + M(EP(0) — £€2(0)), ¢M(0) —EM(0)),
+2(Z(£(0),7) — Z(£(0),7) + B(&, 7) B(¢, 7) £2(0) — £(0))
< =A1[€(0) — E(0)]* + A2ll€ — €], + AsWa (v, )%
Theorem 3.1. Assume (C) and (A1)-(A4) with § = 2. Then P; has a unique invariant
probability measure p* € 25 (¢™+4) with
mas(Wa(P{w, i 2, But(Pv|u”)
< ce 2" min(Ws(v, 1*)%, Ent(v|u*)), v e Po(€™ ), t > 2r

for some constants ¢, xk > 0.
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Proof. By [18, Remark 2.1], (C) implies that there exist constants ¢y, x > 0 such that
Wa (P o, Piveo) < coe™ " "Wa(uo, o), fo,vo € Pa(€™ )t > 0.

Then it is standard to prove that P; has a unique invariant probability measure p* €
322 (%m-{-d) with

Wo(Pfv, ") < e "Wy (v, u*)?, v e Po(e™F),t > 0. (3.1)

Combining this with (2.8) for ¢ = 2r and (3.2) below, we complete the proof by using [28,
Theorem 2.1]. O

3.1 Transportation cost inequality

To obtain the exponential ergodicity in relative entropy, we also need to prove the
transportation cost inequality for p*. [5] give a proof of transportation cost inequality
for the solution to path dependent SDEs starting from dirac measure and the technique
used there is also available in the present case. Furthermore, under the dissipative
condition (C), we can derive a uniform constant with respect to time variable T in
the transportation cost inequality for the solution to (2.7) on [0, T starting from dirac
measure, see (3.6) below. Then applying [10, Lemma 2.1] and [10, Lemma 2.2], the
stability of transportation cost inequality, p* satisfies the transportation cost inequality
due to (3.1).

Theorem 3.2. Assume (C). Then the transportation cost inequality holds for the invari-
ant probability measure u*, i.e.

[§

W (v, u*)? < 2e()‘1_5)’"”07Ent(u\u*), v e Py(e™H?) (3.2)
€

with some constant e € (0, A1).

Proof. Let ¢ € €™*9 and X(t) = (X'(t), X%(t)) solve

{dxl(t) = {AX(t) + MX2(t)}dt, (3.3)

dX?2(t) = {Z(X(t), ") + B(Xy, p*)}dt + ocdW (¢)

with X, = (X!, X2) = ¢. Let P (¢,dn) = %, (dn). According to (C) and [18, Remark
2.1], p* is the unique invariant probability measure of (3.3) and there exist constants
¢,k > 0 such that

Wao (P (€,), 1) < de™ "Wy (be, u*). (3.4)

As in the proof of [5, Lemma 2.2], denote by HET as the distribution of (X¢)c[o,7]. Define
the distance

pL(V, V)= sup Vi — Villeo, ViV € C([0,T];6™).
t€(0,T]

Let (h(t)):e(0,7] be an R%-valued .%;-predictable process and Y (t) = (Y*(¢), Y2(t)) solve
dY'l(t) = {AY1(t) + MY?(¢)}de,
dY?(t) = {Z(Y (1), n*) + B(Yy, p*) }dt — oh(t)dt + odW (t)

with Yy = (Y, Y$) = & Let ale) := 2e(’\1*6)”@,e € (0,A1). We claim that [5, Lemma

2.2] holds for «a(e) with some constant ¢ € (0, \;) replacing «(7). To this end, it is
sufficient to prove [5, (14)] for a(e) with some constant € € (0, A;) instead of «(7T), i.e.

2 ot
sup || Xs — Yi||% < e(Al_e)Tm/ |h(s)|*ds, t>0. (3.5)
s€[0,t] € 0
EJP 28 (2023), paper 134. https://www.imstat.org/ejp
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In fact, it follows from Itd’s formula and (C) that
2
dX(t) -Y (@) < @M(t)ﬁdt + (e = A\)|X () =Y () 2dt + Xo|| X — V|| 2 dt, €€ (0,\1).

So, we get

2
dle® X (t) - Y (1) < e(’\l’f)tm\h(t)ﬁdt + eMm9t\, || X, — ;|| dt.
€

Let n = sup,cpo,q e =93 X (5) — Y (s)|?. It follows from X, = Y; that

t 2 t
e < / e(Al*E)S HZH |h(8)‘2d8 + )\Qe()q*E)r/ 77st
0 0

Gronwall’s inequality implies that
' A A lo]? 2
U S/ exp{)\ge( 1_E)T(t—s)}e( 1_“)S—|h(s)| ds
0 €
: -0, [l
:/ exp{ eI 1 el(Mime)—Aze Js = |h(s) Pds.
0 €

Noting that 7, > e ~9(=|| X, — V;||%, we arrive at

2 t
1%, — |2, < o l7 [ et e s,
€ 0

Since A2 < supseo,a,] se7%" and § — Je~°" is a continuous function, there exists a
constant e € (0, \;) such that (A\; — €)e”*1=9" — X, > 0. In the following, we fix this e.
We derive

2 t
I - vif < e L2 Mrgpas 120,
0

which gives (3.5). So, [5, Lemma 2.2] holds for a(e) replacing «(T"). Therefore, by [5,
(7)] with ¢, = 0, the transportation cost inequality for HET holds, i.e.

2
W, e (v 11E)? < getm-orlol® Ent (v |II}) (3.6)
° €

for any probability measure v on C([0,T1]; 6" %) with v7 (sup, (o 7 lv¢]|2,) < oo.
Define the projection mapping 77 : C([0,7];¢™t4) — €™*4 as mr(v) = vr,v €
C([0,T);€™*+%). Then by (3.6) and [10, Lemma 2.1] for ® = 77, we obtain

* 2 *
Walv, P (6,0)? < 2000 1T o g (6)), v e e,

Finally, in view of (3.4) and [10, Lemma 2.2], we complete the proof. O

4 Propagation of chaos

In this section, we consider path-distribution dependent SHS on R™*¢:

N b(t,Xt,ZXt) Omxd
dX(t) = <B(t7Xt7$Xt)> dt + <U(t7Xta$Xt)) dW (¢), (4.1)

where W = (W (t));>¢ is a d-dimensional standard Brownian motion with respect to a
complete filtration probability space (2, ., {Z;}1>0,P), b: [0,00) x €™ x 2 (g™ +d) —

EJP 28 (2023), paper 134. https://www.imstat.org/ejp
Page 8/20


https://doi.org/10.1214/23-EJP1027
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Exponential ergodicity and propagation of chaos

R™, B:[0,00) x €™t x 2(¢™*?) - RYand 0 : [0,00) x €™ x Z(€™F) - RY @ R?
are measurable. Throughout this section, we fix T" > 0 and consider the solution for (4.1)
on time interval [0, 7.

Let X, be an .#)-measurable ¥™*%-valued random variable, N > 1 be an integer and
(XE, Wi(t))1<i<n be ii.d. copies of (Xo, W(t)). Consider the following non-interacting
particle system:

, b(t, X} M)) < Omxd ) ; )
dX*(t) = LT de + 24 AW (E), 1<i<N, (4.2)
0 (B(t,Xt,/Lt) o(t, X¢, p) ®)

where pi ;= 'EXZ" and the mean field interacting particle system

; b(t, XN, adv) O xcd . N _
dXz,N(t) — ’ ti ) At dt + : . dWZ(t), X5 :XZ7 4.3)
B(t, XN, i) o(t, X", i) 0 0
where /¥ is the empirical distribution of th’N, e 7XtN’N, ie.

| X
AN ,
= Njg,l (5Xt],N.

To obtain the propagation of chaos, we make the following assumptions.

(H) There exist constants K > 0 and ¢ > 1 such that the following conditions hold for
allt € [0,7] and v € Py(€™+?):

(H1) For any &, € €M1,
b(t,&,7) — b(t,n, )|+ |B(t, &, v) — B(t,n, M| + llo(t, §,7) —a(t,n, V)] < K[I€ = nlloo-
(H2) For any &£ € €t and 7,7 € Py(€™m+9),

|b(t,f,"—}/) - b(tvé'a;?” + ”U(tvfa;}/) - O-(tvfa:y)n + ‘B(taga:)/) - B(t7£aﬁ)| S KWG(_7’~Y)7
|b(t70750)| + ‘B(t,o,do)‘ + |U(t70750)‘ < K.

Under (H), the well-posedness in &y(¢™*%) for (4.1) holds due to Remark A.2 below,
which means that ! in (4.2) does not depend on i and we denote u; = ui,t € [0,7].
Moreover, by Theorem A.3 below, (4.3) is also well-posed.

To prove the propagation of chaos, we need the following lemma, which may be a
known result. Since we have not found some references, we give a brief proof in the
following.

Lemma 4.1. Let {Z;},>1 be a sequence of i.i.d. non-negative random variables with
E(Z;) < cc. Then {+ Zf\il Z;}n>1 is uniformly integrable.

Proof. Since E(Z;) < oo, it follows from the strong law of large number that P-a.s.

1

N
Jim ; Z; = B(Zy),

which yields P-a.s.
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This together with the fact that {Z;},>1 are i.i.d., E(Z;) < oo and the dominated conver-
gence theorem yields that

N
) 1

= B {A e, 2o )

< Jim B{Z10, ey gy =0

So, we complete the proof. O

To derive the quantitative propagation of chaos, we introduce the projection mappings
7T(S>(£) = 5(8), s € [_T7 0]’§ € gt

and define p* = pom(s)~!, u € 2(€¢™*?). Then for any u € Z2(¢™*%),s € [-r,0], u° is
a probability measure on R™*%. Let W) be the L’-Wasserstein distance on &(R™*9),
the collection of all probability measures with finite #-th moment on R™*%. Let I" be a
probability measure on [—r, 0] and define

0
Wi (v,7) == [ Wo(y*,7°)T(ds), 7,7 € Po(€™). (4.4)

Noting that for any v, 5 € Z,(¢™+?), it holds
W, 7) — W(%,7°)] < WS, 79) — W, 3°) | + (W91, 7°) — WEr°,3°)
< WH(3,7%) + Wo(v',7°), s,t € [=n,0].

So, Wg(vs, 7%) is continuous in s and the right hand side of (4.4) is well-defined. Moreover,
it is clear that

W5 (71,72) < Waly1,72), 71,72 € Po(€™F9). (4.5)

In particular, when I' = §y, W} (7,7) = W9(+°,4°). The main result in this section is as
follows.

Theorem 4.2. Assume (H) and E| X}||%, < co. Then the following assertions hold.
(1) It holds

lim E sup |X'(t) — X"V ()% = 0. (4.6)
N—o00 tE[O,T]

Consequently,

lim B sup Wy(il,u)? =0. (4.7)
N—=oo  tejo,1]

If in addition, b(¢,¢,~) and o(¢,£,~) do not depend on v and there exists a constant
Ky > 0 such that

|B(t7£a7) - B<t7§>’?)| S KO[W9<’%:)’/) A 1]7
lo(t, )7 < Ko, (£,€) € [0,T] x €™, 5,5 € Py(6™ ), (4.8)

then for any k£ > 1,

2

. k
lim sup Hip(xtlvN,Xf’N,.“,Xf’N)_“? lvar

N—004e0,1)

: Rk _
< QJ&EHO%ES[%%] Ent (%Xi,Nﬂxtz,N’m_’X:c,Nﬂpt ) =0, (4.9)

where uf@k = Hle 1, the k-independent product of p;.
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(2) Assume that one of the following conditions hold:

(i 0>2,
(ii) 0 € [1,2) and o(t,&,~y) does not depend on +.

If E|| X%, < oo for some ¢ > 6 and there exists a probability measure I" on [—r, 0]
such that (H2) holds for Wg replacing Wy, then there exists a constant C' > 0
depending only on 6, ¢, m + d, T and E|| X{||%, such that

E sup |X'(t) — X"V ()| < CRuia(N), (4.10)
t€[0,T]
where
N_%—FNi%, 9>m;_d7q7é297
Rypra(N) = S N3 log(1+N) + N™5°, 0= md g 2 9,
— -4t mtd m-td
N-mra + N7, 0ell, 2)7(]7£m+d—9’
and consequently
sup EWE (17, 11)? < CRmya(N). (4.11)
t€[0,T]

If in addition, b(t,&,v) and o(t,&,v) do not depend on v and (4.8) holds for W}
replacing Wy, then there exists a constant C' > 0 depending on 6, ¢, m + d,T and
E|| X¢||%, such that for any k > 1,

2

k
sup ||$Xt1=N,vaN7.__,Xt’CvN) _,u? 5ar

te[0,T]

<2 sup Ent (,f(xl,w 2N kaN)|Mi®k) 412)
tE[O,T] t y<r g yeees Xy

< CkRnta(N)liperi 2y + ChRsa(N) 7 1(psa).
Proof. (1) If E|| X{||Z, < oo for some p > 0, it is standard to derive from (H) that

E sup [ X;[% < Co(1+E(|X5]%)) (4.13)
t€[0,T

for some constant Cy > 0. Let "™ (t) = sup,cpo 4 [X""(s) — X'(s)|. Applying the BDG
inequality and Holder’s inequality, we derive from (H) that

t
BN (1) < co / (Y () + Wo (¥, a)?)ds
0

. g (4.14)
s ([ 000+ Wola )P
0
for some constant ¢y > 0. Let i) = & Zévzl dx;. Noting that
1Y ’
Wo(as', i) < (N SOy - X;Hio) , (@.15)
i=1
we obtain
Wo (il ps) < Wo(al', i) + Wo (il )
1 Y i,N i10 ! ~N (4.16)
S NZHX; _Xs”oo +W9(:us MUS)'
i1
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Next, we divide into two cases: § > 2 and 6 € [1, 2) to estimate the second term on the
right hand side of (4.14).
If 6 > 2, by Holder’s inequality, we have

2]

t 2 t t

¢oF ( / (nZ’N(S)+We(ﬂf,us))2d8> <o [ BN+ aB [ Wi p)'ds
0 0 0

for some constant ¢; > 0. This together with (4.14) and (4.16) implies that there exists a
constant ¢y > 0 such that

t t
En»N(t)? < 62/ EnN (s)%ds + CQ]E/ Wo (i, ps)?ds.
0 0

(4.13) for p = 6 and Gronwall’s inequality give
‘ t
EnN (1) < 03E/ Wo (i, ps)?ds (4.17)
0

for some constant c3 > 0.
If 0 € [1,2), it follows from (4.16), the inequality +/|ab| < W and Holder’s inequal-
ity that

9
2

g N (s) + Wi, o)

[SI5

1 2

el 1SN . ’ y
<arl [ ”Z’N(S”(NZIX;’N—X;HZO Wi ) | ds| @18)
0

i=1

t t £
. 1 . -
<l [ B east B0 + G ( [ Wl as )
0 0
for some constant ¢} > 0. So, this combined with (4.14) and (4.16) derives

t t
EntN (1)? < cg/ En"N (s)’ds +C'2E/ Wi (g, ps)’ds
0 0 (4.19)

2

t
4 ( | Wt ,us>2ds)
0

for some constant ¢, > 0. Therefore, using Gréonwall’s inequality for (4.19), there exists
a constant ¢4 > 0 such that

)
t t 2
EntN () <GB [ Wo(il, us)?ds + GE ( Wo (i, us)2d5> . (4.20)
0 0

Let €T = C([-r, T]; R™*?) be equipped with the uniform norm and 2(%;" ") be the
set of the probability measures on %}"*d. Define

%(‘5%"”)—{MT€9(%}”*"): Lo s |f<s>9uT<ds><oo}

s€[—r,T]

and denote Wy 7 as the L?-Wasserstein distance on Z(¢+?). So, (Z4(€ ), Wy 1)
is a Polish space.
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Next, by the triangle inequality, we arrive at

N
Z i([=r,T]) s X ([ rT))

=l

sup Wo(il, ps) < Wo r (
s€1[0,T

N
1

< Wo,r <N ZCSXi([r,T]),(;o) + Wo,r (60, Lxi([=r,1]) (4.21)

i1
1 1
1 N 0 ) b
<+ sup [|X{)% ) + | E sup [ X% | -
(N;se[OT s€[0,T]

Thanks to the generalized Glivenko-Cantelli-Varadarajan theorem, see for instance [27,
Corollary 12.2.2], it holds P-a.s.

N
. 1
A}gnoo W, r (N Z5Xi([—r,T]),$Xi([—r,T])> =0. (4.22)

i=1

Therefore, it follows from (4.13) for p = 64, (4.21), (4.22), Lemma 4.1 for Z, =
i |6
supepo,7) || X<

oo and the dominated convergence theorem that

lim E sup Wo(al, us)’
N—=oo  se0,1)

N—o0

0
N
. 1
< lim E W@yT (N;(in([r,T])va"'([T,T])> =0. (4.23)

This together with (4.17) or (4.20) derives (4.6). Finally, by (4.6), (4.23) and (4.16), we
get (4.7).
When b(t,¢,v) and o(t,£,y) do not depend on v, we can rewrite (4.2) as

i b(t,X;) Ormxd i .
‘t) = . . ‘ <1<
dx'(t) (B(t,Xg, Ly 5Xz)> dt + <a(t,Xg) dW'(t), 1<i<N,

with
dWi(t) =dWi(t) —Ti(t)dt, 1<i< N

and

I'(t) = o(t, X)) ' [B(t, X}, — Z(sx —B(t, X!, )], 1<i<N.

It follows from (4.8) that
IT(t)| < K2(Wp(~ Z@MM YA1), te[0,T],1<i<N. (4.24)

Let
N t N t
Rt:exp{Z/O <fi(s),dwi(s)>—%z/0 |fi(s)|2ds}, te0,7].

(4.24) and Girsanov’s theorem imply that {R;},cjo,rj is a martingale and
((Wi(t))lgigN)te[O,T] is an Nd-dimensional Brownian motion under Qr = R7P and

Lixixz,.. xM)Qr = (X:’N,Xf’N,,_“’XfV’N)uP? te[0,T].
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This implies that

Elf(xXN, x0N XN = BRef (X)L X X))
= B[R f(X}, X2, ..., X)), feB(eNmD) ¢ el0,T).

So, there exists a constant C > 0 such that

Ent(Lxpn xax,.xmm [Pl

N t
1 .
<E(Rilogh) = 3> [ EIE(s)Pds
i=170

t 1 N
2 QT - ) 2
gCN/OlE (WQ(NZ(SX;,,LLS)/\I) ds

i=1
t 1 N
= CQNA E(WG(N Z(;X;',N,,us) A 1)2d5
=1
t
= C2N/ E(Wq (i, us) A1)%ds, t€[0,T].
0
This together with [23, Lemma 3.9] implies that for any kK > 1 and N > k,
t
Ent(Lyiv x2n oy g < 20%/0 E(Wq (i, us) A1)%ds.

So, Pinsker’s inequality (1.1) yields

k k
1L xz o xeny = 18 [Rar < 2B0t(Ln x2n |y ™)

..... var =

t
< 40%/ E(Wo (i, us) A1)%ds. (4.25)
0
Note that

E(Wo(al', 1s) A1) <E(Wo(al, 1s) ) ioenn 2y + (EWo (i), 15)°) 7 1go2).  (4.26)

By (4.7) and (4.25), we prove (4.9).
(2) Assume that (H2) holds for Wg replacing Wy. When 6 > 2, repeating the proof to
get (4.17), we derive

t
En»N(t)? < c4/ EW} (i, ps)0ds (4.27)
0

for some constant ¢4 > 0. When 0 € [1,2) and o(¢,£,~) does not depend on ~, (4.18) is
replaced by

t ¢ t
_ , 1
o (/ nZ’N(5)2d5> < 021/ BN (s)"ds + SN (1)”
0

0

for some constant ¢ > 0. Then (4.27) instead of (4.20) holds. Next, by the definition of
W}, we have

0 N [4
1
0
| Wo (N;5X;<u>»fxg<u)> I'(du). (4.28)

EW (il ps)? < /

-
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Note that sup,ejo y pe(l| - [|4) < oo due to (4.13) for p = ¢g. By [12, Theorem 1] for
p=40,q=q, see [8, Theorem 5.8] for the special case § = 2, ¢ > 4, there exists a constant
Cy > 0 depending only on 6, ¢, m + d such that

%
N
1
E [Wj <Nz5xg(u),fx;(u)>

i=1

< Co ( sup :ut(” ’ ||go)> Rerd(N)v s € [O’T]’u € [—T70].
t€[0,T]

Substituting this into (4.28), we derive from (4.13) for p = ¢ that there exists a constant

C > 0 depending only on 6, ¢,m + d,T and E|| X{||%, such that

q
sup EWj (i)', pis)” < Co ( sup (|| - IIZO)> Rimpa(N) < CRiya(N). (4.29)
s€[0,T] te[0,T]

So, (4.10) follows from (4.27) and (4.29). Moreover, it follows from (4.5) and (4.15) that
W (' ps)? <207 "W (pl, 1)) 4+ 27" W (Y, )’
<27 Wo (), i)’ 4+ 207 W (), )’

N
1 i i — ~
<277 D IXEY = XL + 27 W (A )’
i=1

which implies (4.11) due to (4.10) and (4.29).

Finally, if b(t,&,~) and o(t,£, ) do not depend on ~ and (4.8) holds for W} replacing
Wy, then (4.25) holds for Wg replacing Wy. Moreover, by (4.26) for Wg replacing Wy
and (4.11), we derive (4.12) and the proof is completed. O

A Appendix

In this section, we give the well-posedness of general path-distribution dependent
SDEs as well as mean field interacting particle system, and then apply it to the path-
distribution dependent SHS. Fix 7" > 0. Let n,k € IN* and § > 1. Consider path-
distribution dependent SDEs on R":

AX(t) = H(t, X;, Zx,)dt + (1, X,, Lx,)AW (1), t € [0,T]. (A.1)

where H : [0,T]| x 6" x Z(€") — R™, ¥ : [0, T] x €™ x 2(€¢") — R" @ RF are measurable
and W (t) is a k-dimensional Brownian motion on some complete filtration probability
space (Q, F, (Fi)i>0,P). Let Z(€") be a subset of Z(%¢™) and it is equipped with some
topology.

Definition A.1. The SDE (A.1) is called well-posed for distributions in 22(4™), if for any
Fo-measurable initial value X, with Zx, € P (#™) (respectively any initial distribution
v E P (€™)), it has a unique strong solution (respectively weak solution) such that ¥x. €
C([0,T); Z(€™)), the space of continuous maps from [0, 7] to &(¢™). In particular, (A.1)
is called well-posed for distributions in £%(%"), if the above holds for (% (¢"), Wy)

replacing 2 (%¢").

Theorem A.1l. Assume that there exists some constant K > 0 such that

|H(S7£a71) - H(San772)| + |E(S7£afyl) - 2(8377772” < K(”§ - UHOO +W9(71a72))7
|H(s,0,00)| + [X(s,0,00)| < K, s€[0,T],§,n € E", 71,72 € Po(€"). (A.2)
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Then (A.1) is strongly well-posed in &y (%") and there exists a constant C' > 0 such that
Wo (P po, Pfvo) < Ce®“Wo(po, o), t € [0,T], p0,v0 € Pp(E™),
here P/ 1 is the distribution of the solution to (A.1) with initial distribution po € % (€").

Proof. Tt follows from (A.2) that for any p € C([0,T], Z¢(€™)), the classical SDE
AXA(t) = H(t, XF, pe)dt + S, XP, ) dW (1), € [0,T] (A.3)

is well-posed. For any .%;-measurable random variable X, with .%x, € P(€™"), let
Xt X0 he the unique solution to (A.3) starting from X,. Define the mapping ®X° :
C([OvT]v 329(%n)) - C([O7T]7 ‘@9(%71)) as

B0 (n) = Lywxo, tE[0,T].
By (A.2) and the inequality
(lal + o] +|e))” < 3°~*(lal” + [ + |c[),
we arrive at

X7 %o (1) — Xm0 (1)) < 3071 X(0) — X(0)]°
0
4301

t ~
[ xS ) s X a)

0

0

t -
g0 / 5, X250, 1) — 5(s, X1X0 1) dW (s)
0

Let § = sup,e[_, | X HXo(s) — X”’Xo(s)|. By (A.2), it follows from BDG’s inequality, the
inequality /|ab| < w and Hoélder’s inequality that

0

31 sup
v€E(0,t]

/ (505, XEX0, 1) — (s, X250, )} (s)

I
2

< CoE ( / t(&f +W9<us,vs>2)ds)

A
2

1
§E§t ++Cl/ E§ ds + C (/ Wo(ps, vs) ds)

for some constant C; > 0. Again by (A.2) and Hoélder’s inequality, there exists a constant
C5 > 0 such that

0
3°~'E sup
ve(0,t]

/ [H (s, XX py) — H(s,X;”X"7 vs)]ds
0

t
< CQE/ (€0 + W (s, vs)?)ds.
0

As a result, we obtain from (A.4) and Holder’s inequality that

E¢! < 2°7 B[ Xo — Xo|% +2°7'E sup [X¥0(s) — X0 (s))?
s€[0,t]

B t t t 2
< C3E|| X — Xol%, + Cg/ Eefds + 03/ Wo(ps, vs)?ds + Cs (/ Wo (s, z/s)zds>
0 0 0
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for some constant C'5 > 0. So, Gronwall’s inequality yields that there exists a constant
(4 > 0 such that

~ ~ t
Wo (@50 (), 85 (v)? < Be! < CiE|[Xo — Xoll% + Ca / Wo e, vs)’ds

t 2
+Cy (/ W@(,us,l/s)st) , t€[0,T]. (A.5)
0

Therefore, for any § > 0, we have

sup e~ "W (@ (1), ° (1) < sup_e™*""Wo(pur, 14)° Cu[(56) ™" + (20) ).
te[0,T7] t€[0,T7]

1
0

Take J, satisfying <C4[(500)’1 + (250)*%]) < Landlet EXo := {u € C([0,T]; Po(E™)) :
wo = ZLx, } equipped with the complete metric

sy (v, 1) == sup e 'Wo(vy, py), p,ve EX0.
te[0,T]

Then we conclude that

1
Pso (20 (1), @0 (v)) < 3P0 (1), v € EXo,

and the Banach fixed point theorem yields that
X (1) = pu, t€0,T]

has a unique solution u € EXo. This means that (A.1) has a unique strong solution on
[0, T'] with initial value X.

Next, applying (A.5) for u; = P} po, v = Pfvg and Xy, Xo satisfying Zx, = wo, XXO =
1o and noting that

0

IN

t 2 1 t
¢, ( / Wems,us)?ds) L sup Wa(Pruo, Pr)? + Cs ( / wew;wo,z%:uo)ds)
0 s€[0,t] 0

IN

1 t
= sup Wy (P: o, Prvp)? +Cﬁ/ Wo (P} po, Prvg)’ds
s€0,t] 0

for some constant Cg > 0, there exists a constant C7; > 0 such that

t
Sl[lp]Wg(P;uo,P:VO)a < C7E|| X0 — Xol/%, + 07/ Wo (P! o, PXvp)lds, te[0,T).
se(0,t 0

So, by Gronwall inequality and taking infimum for all Xy, Xo satisfying Lx, = o, ,,%XU =
vy, we complete the proof. O

Remark A.2. Under (A2)-(A3), the assertions in Theorem A.1 hold for (2.7) replac-
ing (A.1) by applying Theorem A.1 for n = m 4+ d, k = d and

B Af(l)(O)"f‘Mf(Q)(o) . Omxd
H(t’“)‘(Z(fm),ww(w)’ Z_< o )

Similarly, under (H), the assertions in Theorem A.1 hold for (4.1) replacing (A.1).
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Next, consider the mean field interacting particle system:
dXPN(1) = H(t, XN, ) + S0 XY, a)dWE (1), 1<i <N, (A.6)

with 2y = & Zf\il 6yin and (W*);<;<y are independent k-dimensional standard Brown-
i <i<
ian motions. We give a result on the well-posedness of (A.6).

Theorem A.3. Under (A.2), (A.6) is well-posed.

&1
Proof. Forany ¢ = | & | € (¢™), let u§, = & 2V, 0, and define
N
H(t,fl,@w 2t nk)  Ouxe co O
L e B O R o O
H(t,fN,,ui;) Onxk Onxk e E(t7£N7ﬂ§\/‘)

Note that for &,7 € (¢™)", it holds

W(”NHUN ( Z(Sﬁwﬁ

&MZ

)

e

N
1
< <N > llE - mllio) < (0, N)[|€ — 1l (A.7)
i=1
for some constant ¢(f, N) > 0. Consider path dependent SDE on R"":
dX(t) = H(t, Xy)dt + X(t, X, )dW (1), (A.8)
Wl
where Wy = w? is a kN-dimensional Brownian motion. By (A.2) and (A.7), we have
WN
|H(t,&) — H(t,n)| + |S(t,£) = St )| < ClE = nlloos &m € (€M),
So, it is standard that (A.8) is well-posed and so is (A.6). O
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