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Scaling limit for line ensembles of random walks with
geometric area tilts
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Abstract

We consider line ensembles of non-intersecting random walks constrained by a hard
wall, each tilted by the area underneath it with geometrically growing pre-factors
bi where b > 1. This is a model for the level lines of the (2 + 1)D SOS model above
a hard wall, which itself mimics the low-temperature 3D Ising interface. A similar
model with b = 1 and a fixed number of curves was studied by Ioffe, Velenik, and
Wachtel (2018), who derived a scaling limit as the time interval [−N,N ] tends to
infinity. Line ensembles of Brownian bridges with geometric area tilts (b > 1) were
studied by Caputo, Ioffe, and Wachtel (2019), and later by Dembo, Lubetzky, and
Zeitouni (2022+). Their results show that as the time interval and the number of
curves n tend to infinity, the top k paths converge to a limiting measure µ. In this
paper we address the open problem of proving existence of a scaling limit for random
walk ensembles with geometric area tilts. We prove that with mild assumptions on
the jump distribution, under suitable scaling the top k paths converge to the same
measure µ as N →∞ followed by n→∞. We do so both in the case of bridges fixed
at ±N and of walks fixed only at −N .
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1 Introduction

1.1 Background and motivation

The geometry of low-temperature interfaces in two- and three-dimensional lattice
models has been the subject of much interest in statistical physics for several decades.
In the 3D Ising model on a cylinder at low temperature with Dobrushin boundary
conditions, the interface can be viewed as a two-dimensional random surface (possibly
with self-intersections) which is zero on the boundary and separates + and − spins in
the configuration. In the absence of a wall, the interface fluctuates near height zero
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Limit of line ensembles with geometric area tilts

[12]. When conditioned to stay above a hard wall, the interface experiences entropic
repulsion and is expected to become rigid at a height diverging with the diameter L of
the cylinder [14].

This behavior was first confirmed in [1] for the (2 + 1)-dimensional solid-on-solid
(SOS) model above a hard wall, an approximation of the 3D Ising interface defined by a
random nonnegative height function on an L× L box in Z2. There it was shown that in
the bulk, the surface is typically propelled to height H(L) ∼ logL. This was extended
in [5, 6] with a detailed description of the geometry of the SOS surface: the surface is
characterized by a unique ensemble of n = H(L) nested contours, which can be viewed
as the level lines of the surface. As L → ∞ with the box rescaled to the unit square,
these contours were shown to converge to a unique limit shape of infinitely many nested
loops. In the bulk away from the corners of the box, these loops all lie flat against the
sides of the box.

A natural question is then to study the fluctuations of the level lines from the sides of
the box in the bulk. It is known from [6] that for the top line, these fluctuations are of
order L1/3+o(1) on middle portions of the boundary of length linear in L. The level lines
in this region may be approximated by n ordered height functions ψ1 ≥ · · · ≥ ψn ≥ 0

on {−L, . . . , L}, and it was shown via cluster expansion in [6] that the probabilistic
weight of these random paths includes geometrically growing area tilts of the form
exp(−biL−1A(ψi)) for each i, where b > 1 is a constant and A(ψi) =

∑
j ψi(j) represents

the area under ψi. We refer to [5, 6, 7] for further exposition on contours of the SOS
model above a wall and detailed statements and proofs of these facts, and to [3] for
further motivation of this model of random height functions with area tilts.

Motivated by this analysis, in this paper we consider scaling limits as N,n→∞ of a
line ensemble of n random walks on an interval [−N,N ], conditioned to remain above
zero and not to intersect one another, and each tilted by the area underneath it with
a geometrically growing prefactor. We give a precise definition of this model in the
next section, but before doing so we will review some previous work on similar models
of SOS level lines and related two-dimensional interfaces. These models fit into the
broad framework of Gibbsian line ensembles, which have notably been studied in [8, 9]
and numerous subsequent works on models mostly lying in the KPZ universality class.
Although the physical motivations for the models we study here are somewhat different,
the Gibbsian techniques developed in these works remain fundamental to the analysis.

A model of the top SOS level line, consisting of a random walk above a wall tilted by
its area, was studied in [15] and shown to possess as a scaling limit the Ferrari-Spohn
diffusion. Subsequently, [17] studied a fixed number n of non-intersecting random walk
bridges above a wall with area tilts without geometric pre-factors, i.e., in the case b = 1

above. They proved convergence to an explicit scaling limit, the Dyson Ferrari-Spohn
diffusion, a determinantal process of n non-intersecting Ferrari-Spohn diffusions. Their
argument relies on two main inputs: a mixing bound used to prove tightness, and the
Karlin-McGregor formula for finite-dimensional convergence. For the latter point the
choice b = 1 is essential, as the determinantal structure is lost when b > 1. For further
discussion of Ferrari-Spohn scaling limits of interface models, we refer to the survey
[16], as well as the recent works [13, 11] which show that the Dyson Ferrari-Spohn
diffusion has the Airy line ensemble as a scaling limit as n→∞.

Geometrically growing area tilts with a diverging number of curves were first treated
in [3, 4] for a Brownian polymer model, with the random walk bridges replaced by n
Brownian bridges on [−T, T ]. Unlike in the non-geometric tilt case b = 1, where tightness
is not expected as n→∞, the additional effect of the growing prefactors in the b > 1 case
allows for a proof of tightness as T, n→∞ for the Brownian polymer with both zero and
free boundary conditions (with no scaling). For zero boundary conditions, convergence to
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an as-yet-unidentified limiting diffusion µ was also proven using stochastic monotonicity.
The arguments used in [3, 4] rely fundamentally on the scaling invariance of Brownian
motion, and do not readily extend to the rescaled random walk case. Convergence to
the limit µ was extended to the Brownian polymer with free boundary conditions (with
T →∞ first and then n→∞) in [10] using a spectral theory approach. This was recently
improved in [2] to allow T, n→∞ in any order; moreover, mixing (hence ergodicity) and
tail estimates for the limiting process were established.

In this paper, we expand upon the results above by showing that line ensembles of
n random walks on [−N,N ] with geometric area tilts converge after suitable diffusive
scaling (including 1:2:3 scaling as a special case) to the same limiting diffusion µ as the
Brownian polymer, as N →∞ followed by n→∞, addressing the open question posed in
[4, 3.5.3]. We do this both for random walk bridges and for random walks which are fixed
only at −N and free at N . Our approach is essentially to prove an invariance principle
for the random walk ensembles on a fixed interval towards the Brownian polymers. Then
for bridges we exploit the mixing bounds provided by [17] and the convergence result of
[4] for the zero-boundary Brownian polymer. We deal with walks (free at N ) by extending
the mixing bounds from [17] to this setting, and using the stochastic monotonicity results
of [3] and the convergence of the free-boundary Brownian polymer from [10].

1.2 Definitions

We will now define the line ensemble models we will study and review known results
in greater detail. Our notation is mostly a mixture of that in [10] and [17], and in
particular the definition of our model is meant to mirror that in [17]. Throughout this
paper, for a given probability measure P and a functional F , we will use P[F (X)] to
denote the expectation of F (X) with respect to P, where X is a random variable with law
P. We will not specify the law of X when it is clear from context. We will be considering
weak convergence of measures in the topology of uniform convergence on compact sets,
which we will abbreviate by (u.c.c.).

We let n ∈ N denote the number of curves, which will be fixed unless stated otherwise,
and we fix parameters a > 0 and b > 1. Let

A+
n = {x ∈ Rn : x1 > · · · > xn > 0}, A0

n = {x ∈ Rn : x1 ≥ · · · ≥ xn ≥ 0}

denote the open and closed Weyl chambers in Rn.

Let (pz)z∈Z be an irreducible random walk kernel with mean 0, variance 1, and finite
exponential moments as in [17] for simplicity (although this last assumption is probably
not strictly necessary). For u, v,M,N ∈ N with M < N , let PuM denote the law of a
random walk on {M,M + 1, . . . } with kernel p starting at u at time M , and let Pu,vM,N

denote the law of a random walk bridge on {M, . . . , N} with kernel p starting at u at M
and ending at v at N . For u, v ∈ Nn, let PuM denote the law Pu1

M ⊗ · · · ⊗P
un
M , and let Pu,vM,N

denote Pu1,v1
M,N ⊗ · · · ⊗ P

un,vn
M,N .

Fix a family of potentials Vλ : [0,∞) → [0,∞) for λ > 0 which are continuous,
monotone increasing, and satisfy Vλ(0) = 0, limx→∞ Vλ(x) =∞. For the main results we
will work with the most relevant case of the linear potential Vλ(x) = λx, but some of
our auxiliary results hold in this more general setting, and we expect the main results
to extend. For n trajectories Xi = (Xi(M), . . . , Xi(N)) ∈ NN−M+1, 1 ≤ i ≤ n, define the
area functional

AλM,N (X) = a

n∑
i=1

bi−1
N−1∑
j=M

Vλ(Xi(j)).

Let ΩnM,N (X) denote the event thatX(j) = (X1(j), . . . , Xn(j)) ∈ A+
n for all j ∈ {M, . . . , N}.
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We then define the line ensemble measures PuM,N,+,λ (walks) and Pu,vM,N,+,λ (bridges) via

P
u
M,N,+,λ[F (X)] =

1

Z
u
N,+,λ

P
u
M

[
F (X)1ΩnM,N (X)e

−AλM,N (X)
]
, (1.1)

P
u,v
M,N,+,λ[F (X)] =

1

Z
u,v
N,+,λ

P
u,v
M,N

[
F (X)1ΩnM,N (X)e

−AλM,N (X)
]
, (1.2)

for any bounded functional F on NN−M+1, with the partition functions

Z
u
M,N,+,λ = P

u
M

[
1ΩnM,N (X)e

−AλM,N (X)
]
, Z

u,v
M,N,+,λ = P

u
M,N

[
1ΩnM,N (X)e

−AλM,N (X)
]
.

We will most often consider the symmetric case M = −N (although all results readily
extend to the asymmetric case), in which case we omit the first subscript and write
P
u
N,+,λ, etc., for brevity.

Remark 1.1. Let us note an important property of these line ensemble measures,
the so-called Gibbs property. For any integers M < K < L < N , it is easy to see
by splitting the sum in the area tilt that, conditional on the values of X(j) for each
j ∈ {−N, . . . , N} \ {K + 1, . . . , L − 1}, the law of X|{K,...,L} under both PuM,N,+,λ and

P
u,v
M,N,+,λ is simply PX(K),X(L)

K,L,+,λ . In particular the conditional law only depends on X(K)

and X(L). This property and its Brownian analogue are key tools in the arguments used
in [17, 4] to prove mixing, tightness, and convergence for zero boundary conditions, all
of which we use here. The Gibbs property was first used systematically to prove limiting
results for line ensembles in [8, 9]; we refer to these papers for further exposition. For
the line ensembles we consider here, the Gibbsian structure is used in the proof of the
mixing result Theorem 1.7.

Now we establish the scaling we will use. For λ > 0, let Hλ > 0 be the unique number
satisfying H2

λVλ(Hλ) = 1. We assume that limλ↓0Hλ =∞, and that there exist λ0 and a
continuous non-decreasing function q0 ≥ 0 on (0,∞) with limr→∞ q0(r) = ∞ such that
for all λ ≤ λ0,

H2
λVλ(rHλ) ≥ q0(r). (1.3)

In particular, in the case Vλ(x) = λx, we have Hλ = λ−1/3 and we may take q0(r) = r.
We write hλ = H−1

λ , Nλ = hλN, A+
n,λ = A+

n ∩Nλ, and Zλ = h2
λZ. For t ∈ h2

λZ, define
the rescaling

xλ(t) = hλX(H2
λt), (1.4)

and extend to t ∈ R by linear interpolation. We will now adjust our notation to this
scaling as follows. For u, v ∈ A+

n,λ, a, b ∈ Zλ with a < b, and T > 0, we write for brevity

P
u
a,b,+,λ := P

Hλu

H2
λa,H

2
λb,+,λ

, P
u,v
a,b,+,λ := P

Hλu,Hλv

H2
λa,H

2
λb,+,λ

,

and likewise for the partition functions. This should not create any confusion since
u, v, a, b are generally not integer-valued and this is the only reasonable way to interpret
the notation. We write Pu;T

a,b,+,λ and Pu,v;T
a,b,+,λ to denote the laws of xλ restricted to [−T, T ]

under these measures. As before if a = −b we omit the first subscript. We will write
Aλa(xλ) = Aλ

H2
λa

(X); that is, in terms of the rescaled process,

Aλa(xλ) = a

n∑
i=1

bi−1

H2
λa−1∑

j=−H2
λa

Vλ(Hλx
λ
i (h2

λj)). (1.5)

Finally, we establish notation for the Brownian polymers which will serve as the scaling
limits. We let Bu,v

M denote the unnormalized path measure of n independent Brownian
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bridges on [−M,M ] with boundary conditions u at −M and v at M , with total mass
(4πM)−d/2 exp(−‖u− v‖2/4M). For u, v ∈ A+

n , define Pu,vM,+,0 by

P
u,v
M,+,0 [F (x)] =

1

Z
u,v
M,+,0

B
u,v
M

[
F (x)1ΩnM (x)e

−AM (x)
]
, (1.6)

where F is any functional on C([−M,M ],Rn), ΩnM (x) = {x(t) ∈ A+
n for all t ∈ [−M,M ]},

and

AM (x) = a

n∑
i=1

bi−1

∫ M

−M
xi(t) dt.

It is known [3, 10] by stochastic monotonicity that the zero boundary condition measures

P
0,0
M,+,0 := lim

ε,η ↓ 0
P
εx,ηy

M,+,0 (1.7)

exist and are independent of x and y, and converge weakly (u.c.c.) as M → ∞ to a
measure µn. Moreover, the free boundary condition measures PM,+,0 given by

PM,+,0 [F (x)] =
1

ZM,+,0

∫
A

+
n

∫
A

+
n

B
u,v
M

[
F (x)1ΩnM (x)e

−AM (x)
]
du dv (1.8)

are well-defined [3, Appendix A]. It was proven in [10, Theorem 1.1] that these measures
converge as M →∞ to the same limit µn. Thus

µn := lim
M→∞

P
0,0
M,+,0 = lim

M→∞
PM,+,0, (u.c.c.) (1.9)

We write µTn for the restriction of µn to [−T, T ].
In this paper we will also consider the similarly defined law P

u
M,+,0, namely that of n

Brownian motions on [−M,M ] starting at u at −M with the same conditioning and area
tilt. Because of the choice of normalization of Bu,v

M , this is equivalent to

P
u
M,+,0 [F (x)] =

1

Z
u
M,+,0

∫
A

+
n

B
u,v
M

[
F (x)1ΩnM (x)e

−AM (x)
]
dv. (1.10)

It is not hard to see from the results of [4, 10] that P0
M,+,0 := limε↓0P

εx
M,+,0 exists and

converges as M →∞ to the same measure µn; we will prove this in Section 2.
Finally, we are interested in sending the number of curves n to infinity. To emphasize

that n is no longer fixed, we will add a subscript of n to the measures to indicate a
growing number of curves. By [4, Theorem 1.5], the limiting law µn of the n-curve
Brownian polymer itself has a weak limit (u.c.c.) as n→∞, which we denote by µ. Thus

µ := lim
n→∞

lim
M→∞

P
0,0
n,M,+,0, (u.c.c.) (1.11)

In fact, the two limits can be taken in either order. For T > 0 and k ≤ n fixed, write
P
u;T,k
n,aN ,+,λN

, Pu,v;T,k
n,aN ,+,λN

, and µT,k for the corresponding laws restricted to [−T, T ] and the
top k curves.

1.3 Main results

Our first result proves that if n is fixed and N →∞, then both the walk and bridge
line ensemble measures converge after rescaling to the limiting law µn in (1.9) of the
Brownian polymer with n curves.

Theorem 1.2. Assume Vλ(x) = λx. Let λN be a sequence satisfying

lim
N→∞

λN = 0, lim
N→∞

aN := lim
N→∞

h2
λNN =∞.
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Then for any n ∈ N and any bounded sequences uN , vN ∈ A+
n,λN

, the measures P
uN
aN ,+,λN

and P
uN ,vN
aN ,+,λN

both converge weakly (u.c.c.) to µn as N → ∞. More precisely, for any
C ∈ (0,∞) and T > 0, uniformly in uN,1, vN,1 ≤ C, we have the weak limits in the uniform
topology

lim
N→∞

P
uN ;T
aN ,+,λN

= lim
N→∞

P
uN ,vN ;T
aN ,+,λN

= µTn .

As a corollary, we obtain convergence for N →∞ followed by the number of curves
n→∞, with suitably chosen boundary conditions, to the limiting law µ in (1.11) of the
Brownian polymer with a growing number of curves.

Theorem 1.3. Assume the hypotheses of Theorem 1.2. Let unN , v
n
N ∈ A

+
n,λN

be sequences
such that for each fixed n ∈ N, (unN )N≥1 and (vnN )N≥1 are bounded. Then the measures

P
unN
n,aN ,+,λN

and P
unN ,v

n
N

n,aN ,+,λN
both converge weakly (u.c.c.) to µ if N → ∞ first and then

n→∞. That is, for any T > 0 and k ∈ N we have the weak limits in the uniform topology

lim
n→∞

lim
N→∞

P
unN ;T,k
n,aN ,+,λN

= lim
n→∞

lim
N→∞

P
unN ,v

n
N ;T,k

n,aN ,+,λN
= µT,k.

Together, Theorems 1.2 and 1.3 address the open problem posed in [4, 3.5.3]. We note
that there is no claim of uniformity with respect to boundary conditions in Theorem 1.3.
We make three remarks on these theorems before stating the final main result.

Remark 1.4. For concreteness, in Theorems 1.2 and 1.3 one can take λN = N−1. In this
case the scaling in (1.4) is given by hλN = N−1/3 in space and H2

λN
= N2/3 in time, i.e.,

diffusive 1:2:3 scaling. This agrees with the cube-root fluctuations described for SOS
level lines in Section 1.1.

Remark 1.5. The order of limits taken in Theorem 1.3, N →∞ followed by n→∞, is
the same as in [10, Theorem 1.1] for the Brownian polymer with free boundary conditions.
On the other hand for the zero boundary condition Brownian polymer, [4, Theorem 1.5]
shows that the limits can be taken in any order. Their argument essentially amounts to
showing that the top k curves on [−T, T ] are stochastically increasing with N and n. This
is no longer true in our case since the walks are rescaled depending on N , unlike the
Brownian polymer which has no rescaling. It would be interesting to prove a modification
of Theorem 1.3 which allows n to grow with N at a sufficiently slow rate, but the mixing
methods we use in this paper do not readily appear to accomplish this.

Remark 1.6. Although we only prove Theorems 1.2 and 1.3 in the linear potential case,
we expect them to hold more generally if one assumes, as in [17], that there is a nonneg-
ative continuous function q on (0,∞) such that H2

λVλ(rHλ)→ q(r) uniformly on compact
sets as λ ↓ 0. Our argument would apply in this case if we knew that the analogue of the
Brownian polymer with the nonlinear area tilts exp(−abi−1

∫M
−M q(xi(t)) dt) converges

as M,n → ∞ to some analogue of µ. This could likely be achieved by modifying the
arguments in [10] given some mild assumptions on q, but we do not attempt to do so
here as we believe the linear area case is the most relevant.

The proof of Theorems 1.2 and 1.3, which we give in Section 2, will rely on the
following mixing result, which is an analogue of [17, Theorem 3.3].

Theorem 1.7. For any n ∈ N, C ∈ (0,∞), T > 0, there exist c1, c2 > 0 such that for any
K > 0, ∥∥∥Pr;Ta,+,λ − Pw;T

b,+,λ

∥∥∥
var
≤ c1e−c2K , (1.12)∥∥∥Pr,s;Ta,+,λ − P

w,z;T
b,+,λ

∥∥∥
var
≤ c1e−c2K , (1.13)

uniformly in λ small, a, b ∈ Zλ with a, b ≥ K+T , and r, s, w, z ∈ A+
n,λ with r1, s1, w1, z1 ≤ C.
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The proof given in [17] applies almost verbatim in the bridge case (1.13). Indeed,
the only difference is that here the area tilt is geometric, i.e., b > 1. In their argument,
the area tilt is bounded from below using (1.3), with a constant factor of n in front to
account for each of the n curves. This constant will increase to say bn+1, but this does
not affect the rest of the argument.

In the walk case (1.12), the same argument works, but more modifications are needed.
We will describe these in detail in Section 3.

2 Proof of convergence

In this section we prove Theorems 1.2 and 1.3.

2.1 Preliminaries

We will need two short lemmas for the proof. The first can be viewed as an invariance
principle for the random walk ensembles to the Brownian polymers. It gives convergence
to the Brownian polymer if the time scale is fixed and the mesh size tends to zero. In
combination with the mixing statement Theorem 1.7 and the convergence results for the
Brownian polymer, this will quickly imply the main results.

Lemma 2.1. Assume Vλ(x) = λx. Let uN , vN be sequences in A+
n,λN

such that uN → u ∈
A+
n and vN → v ∈ A+

n as N → ∞. Fix M > 0 and write MN = λ
2/3
N dλ

−2/3
N Me, so that

MN ∈ ZλN and MN ↓M . Fix T ≤M , and let F be any continuous bounded functional on
C([−T, T ],Rn). Then

lim
N→∞

P
uN
MN ,+,λN

[
F (xλN |[−T,T ])

]
= P

u
M,+,0

[
F (x|[−T,T ])

]
, (2.1)

lim
N→∞

P
uN ,vN
MN ,+,λN

[
F (xλN |[−T,T ])

]
= P

u,v
M,+,0

[
F (x|[−T,T ])

]
. (2.2)

Proof. We write λ in place of λN for brevity; it will be clear from context which index N
we take. We mostly work in the bridge case (2.2) and explain the adjustments needed
for the walk case (2.1).

Let us write sλ for n independent random walk bridges distributed according to
P
HλuN ,HλvN
H2
λMN

, rescaled as in (1.4). Because of the Brownian scaling, it is known by an

invariance principle for bridges (see, e.g., [18, Theorem 4]) that the law of sλ|[−M,M ]

converges as N →∞ to the law of n independent Brownian bridges B on [−M,M ] from
u to v. Since C([−M,M ],Rn) with the uniform topology is separable, by the Skorohod
representation theorem there is a probability measure P on some probability space
supporting C([−M,M ],Rn)-valued random variables yλ and y with the laws of sλ|[−M,M ]

and B respectively, such that yλ → y uniformly on [−M,M ] as N →∞, P-a.s.
Consider first the indicators of the curves remaining ordered in (1.2) and (1.6). For

a < b, let us write

Ωn,+a,b := {f ∈ C([a, b],Rn) : f(t) ∈ A+
n for all t ∈ [a, b]}. (2.3)

If a = −b, we write instead Ωn,+b . For sλ, we can express the indicator in the defini-
tion (1.2) (if sλ is taken to be the rescaling and linear interpolation of the bridge X) as
the indicator that sλ lies in the set Ωn,+M . Indeed, since sλ(−MN ) = uN and sλ(MN ) = vN
already lie in A+

n , and MN is the smallest element of Zλ larger than M , the indicator
in (1.2) is exactly equal to 1Ωn,+M

(sλ), which is equal in law to 1Ωn,+M
(yλ) under P. On the

other hand, the indicator appearing in (1.6) for B is simply 1Ωn,+M
(B), which is equal in

law to 1Ωn,+M
(y) under P.

Now observe that Ωn,+M is an open subset of C([−M,M ],Rn). Indeed, suppose
f ∈ Ωn,+M . Since f is continuous and [−M,M ] is compact, there exists ε > 0 so that
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Limit of line ensembles with geometric area tilts

min1≤i<n,t∈[−M,M ](fi(t)− fi+1(t)) > ε. Then clearly the ε/2-ball around f in the sup-norm

is still contained in Ωn,+M . It follows that the indicator 1Ωn,+M
is lower semicontinuous,

which implies
lim inf
N→∞

1Ωn,+M
(yλ) ≥ 1Ωn,+M

(y), P-a.s.

For the other bound, consider instead the closed Weyl chamber A0
n and the corre-

sponding set Ωn,0M = {f ∈ C([−M,M ],Rn) : f(t) ∈ A0
n for all t ∈ [−M,M ]}. It is easy to

see that Ωn,0M is closed, so 1Ωn,0M
is upper semicontinuous. Therefore

lim sup
N→∞

1Ωn,0M
(yλ) ≤ 1Ωn,0M

(y), P-a.s.

Now the key point is that 1Ωn,+M
(y) = 1Ωn,0M

(y), P-a.s. Indeed, the complement of these

two events for y is the event that min1≤i<n,t∈[−M,M ](yi(t) − yi+1(t)) = 0. This has
probability 0 since the difference of two Brownian bridges is another Brownian bridge,
and the minimum of a Brownian bridge is a continuous random variable by the reflection
principle. Therefore, combining the above two inequalities and using the trivial inclusion
Ωn,+M ⊂ Ωn,0M , we get

lim sup
N→∞

1Ωn,+M
(yλ) ≤ lim sup

N→∞
1Ωn,0M

(yλ) ≤ 1Ωn,0M
(y) = 1Ωn,+M

(y) ≤ lim inf
N→∞

1Ωn,+M
(yλ), P-a.s.

This implies that
lim
N→∞

1Ωn,+M
(yλ) = 1Ωn,+M

(y), P-a.s. (2.4)

For the walk case, we must be slightly more careful at the right endpoint M . Write
rλN for n independent random walks distributed according to P

HλuN
−H2

λMN
and rescaled as

in (1.4). By the invariance principle the law of rλ|[−M,M+1] converges as N →∞ to that
of n independent Brownian motions on [−M,M + 1] starting at u. Again by the Skorohod
representation theorem we can find a probability measure P and C([−M,M + 1],Rn)-
valued random variables zλ and z with the same respective laws, so that zλ → z uniformly,
P-a.s. Then the indicator appearing in (1.1) has the same law as 1Ωn,+−M,MN

(zλ|[−M,MN ]),

with notation as in (2.3). Now since MN ↓M , for any δ > 0 we have for sufficiently large
N that

1Ωn,+−M,M+δ
(zλ|[−M,M+δ]) ≤ 1Ωn,+−M,MN

(zλ|[−M,MN ]) ≤ 1Ωn,+−M,M
(zλ|[−M,M ]).

By the argument leading up to (2.4), the left and right hand sides converge as N →∞,
P-a.s., to 1Ωn,+−M,M+δ

(z|[−M,M+δ]) and 1Ωn,+−M,M
(z|[−M,M ]). Now sending δ ↓ 0, it is clear

since z is continuous that the first indicator tends P-a.s. to the latter. Therefore

lim
N→∞

1Ωn,+−M,MN
(zλN |[−M,MN ]) = 1Ωn,+M

(z|[−M,M ]), P-a.s. (2.5)

Next consider the area tilts. We work with bridges; there is no change for walks.
A small amount of care is needed since sλ is defined on the larger interval [−MN ,MN ],
while yλ is only defined on [−M,M ]. In the linear case Vλ(x) = λx, using (1.5) we write
the area tilt for sλi as

MNλ
−2/3−1∑

k=−MNλ−2/3

λ · λ−1/3sλi (λ2/3k) = λ2/3uN,i + λ2/3
MNλ

−2/3−1∑
−MNλ−2/3+1

sλi (λ2/3k).

Since MNλ
−2/3
N − 1 ≤ M by construction, and the law of yλi under P is the law of

sλi |[−M,M ], it now makes sense to define

AλM (yλ) := a

n∑
i=1

bi−1

λ2/3uN,i + λ2/3
MNλ

−2/3−1∑
k=−MNλ−2/3+1

yλi (λ2/3k)

 .
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Limit of line ensembles with geometric area tilts

Then the law of AλM (yλ) under P is exactly the law of AλMN
(sλ). Note that the first term

in the sum λ
2/3
N uN,i → 0 since uN,i → ui <∞. Now we estimate∣∣∣∣∣∣λ2/3

MNλ
−2/3−1∑

−MNλ−2/3+1

yλi (λ2/3k)−
∫ M

−M
yi(t) dt

∣∣∣∣∣∣ ≤ λ2/3
MNλ

−2/3−1∑
−MNλ−2/3+1

∣∣∣yλi (λ2/3k)− yi(λ2/3k)
∣∣∣

+

∣∣∣∣∣∣λ2/3
MNλ

−2/3−1∑
−MNλ−2/3+1

yi(λ
2/3k)−

∫ M

−M
yi(t) dt

∣∣∣∣∣∣
≤ 2MN‖yλi − yi‖∞ + oN (1)

= oN (1),

where the term in the second line is seen to be oN (1) since the sum is a Riemann sum
for the continuous function yi. This argument applies to the walks zλ as well, so we have

AλM (yλ) −→ AM (y), AλM (zλ) −→ AM (z), P-a.s. (2.6)

We conclude using the bounded convergence theorem. For bridges the expectations
can be written as

P
uN ,vN
MN ,+,λN

[
F (xλ|[−T,T ])

]
=
P
[
F (yλ|[−T,T ])1Ωn,+M

(yλ)e−A
λ
M (yλ)

]
P
[
1Ωn,+M

(yλ)e−A
λ
M (yλ)

] ,

P
u,v
M,+,0

[
F (x|[−T,T ])

]
=
P
[
F (y|[−T,T ])1Ωn,+M

(y)e−AM (y)
]

P
[
1Ωn,+M

(y)e−AM (y)
] .

Since F is continuous and yλ → y uniformly on [−M,M ] ⊇ [−T, T ], we have that
F (yλ|[−T,T ]) → F (y|[−T,T ]), P-a.s. Combining with (2.4) and (2.6), we see that the inte-
grands on the right in the first line, in both numerator and denominator, converge P-a.s.
to the those in the second line as N →∞. Since the integrands are uniformly bounded by
sup |F | in the numerator and 1 in the denominator, (2.2) follows. Likewise, (2.5) and (2.6)
imply (2.1).

The next lemma will be needed to treat the walk case in Theorem 1.2.

Lemma 2.2. The measures
P

0
M,+,0 := lim

ε↓0
P
εw
M,+,0

exist and are independent of w ∈ A+
n . Moreover, P0

M,+,0 converges weakly (u.c.c.) to µn
as M →∞.

Proof. We will prove both statements using the stochastic monotonicity result [3, Lemma 1.2].
For the first statement, note that the same coupling argument as in [3, Appendix B],
except with the constraint on the right boundary removed, shows that

u ≤ v implies P
u
M,+,0 � P

v
M,+,0. (2.7)

Here u ≤ v means ui ≤ vi for 1 ≤ i ≤ n, and � denotes stochastic ordering of measures.
(We recall that for two probability measures µ, ν the stochastic ordering µ � ν means that
for any increasing functional F we have µ[F (X)] ≤ ν[F (X)].) The existence statement of
the lemma now follows by monotone convergence.

To prove the second statement, we will show that

P
0,0
M,+,0 � P

0
M,+,0 � PM,+,0, (2.8)
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where we recall PM,+,0 denotes free boundary conditions as in (1.8). Since the left and
right measures are both known to converge to µn by (1.9), this implies the result. Let F
be an increasing functional on C([−M,M ],A+

n ). To prove the first inequality in (2.8), we
note by (1.10) that PεwM,+,0 can be written as a mixture of the bridge measures via

P
εw
M,+,0[F (x)] =

∫
A

+
n

P
εw,v
M,+,0[F (x)]

Z
εw,v
M,+,0

Z
εw
M,+,0

dv.

Since Pεw,vM,+,0 � limη↓0P
εw,ηv
M,+,0 = P

εw,0
M,+,0 for each v, we get

P
εw
M,+,0[F (x)] ≥ Pεw,0M,+,0[F (x)]

∫
A

+
n

Z
εw,v
M,+,0

Z
εw
M,+,0

dv = P
εw,0
M,+,0[F (x)].

Taking ε ↓ 0 implies the first inequality in (2.8). Similarly, for the second inequality (2.7)
implies

PM,+,0[F (x)]=

∫
A

+
n

P
u
M,+,0[F (x)]

Z
u
M,+,0

ZM,+,0
du≥P0

M,+,0[F (x)]

∫
A

+
n

Z
u
M,+,0

ZM,+,0
du = P

0
M,+,0[F (x)].

2.2 Proof of Theorems 1.2 and 1.3

We now complete the proof of convergence.

Proof. First consider bridges. Let F be any bounded continuous functional on
C([−T, T ],Rn). Fix M > T and define MN as in the statement of Lemma 2.1. By
the mixing bound (1.13) in Theorem 1.7, we have

P
uN ,vN
aN ,+,λN

[
F (xλN |[−T,T ])

]
= P

r,s
MN ,+,λN

[
F (xλN |[−T,T ])

]
+RM

where RM is an error term satisfying |RM | ≤ c1e−c2(M−T ), uniformly in uN,1, vN,1, r1, s1 ≤
C and large N . In particular, we can fix ε > 0 and w ∈ A+

n and choose r = s = wN for
some sequence wN → εw. Lemma 2.1 then implies that

lim sup
N→∞

P
uN ,vN
aN ,+,λN

[
F (xλN |[−T,T ])

]
≤ Pεw,εwM,+,0

[
F (x|[−T,T ])

]
+ c1e

−c2(M−T ),

lim inf
N→∞

P
uN ,vN
aN ,+,λN

[
F (xλN |[−T,T ])

]
≥ Pεw,εwM,+,0

[
F (x|[−T,T ])

]
− c1e−c2(M−T ).

Now first taking ε ↓ 0, and then M →∞, by (1.9) the right hand sides of the above two
inequalities both converge to the same limit. Combining, we see that the limit exists and

lim
N→∞

P
uN ,vN
aN ,+,λN

[
F (xλN |[−T,T ])

]
= µn

[
F (x|[−T,T ])

]
. (2.9)

For the walk case, we instead apply (1.12) in Theorem 1.7 to get

P
uN
aN ,+,λN

[
F (xλN |[−T,T ])

]
= P

r
MN ,+,λN

[
F (xλN |[−T,T ])

]
+RM ,

and then in view of Lemma 2.2 the same argument shows that

lim
N→∞

P
uN
aN ,+,λN

[
F (xλN |[−T,T ])

]
= µn

[
F (x|[−T,T ])

]
. (2.10)

Since F was arbitrary, (2.9) and (2.10) prove Theorem 1.2.
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Now to prove Theorem 1.3, fix any k ≤ n and any bounded continuous functional F
on C([−T, T ],Rk). Let πk denote the projection of Rn onto the first k coordinates in Rk.
If unN , v

n
N ∈ A

+
n,λN

remain bounded in N , then (2.9) and (2.10) imply that

lim
N→∞

P
unN
n,aN ,+,λN

[
F (πk ◦ xλN |[−T,T ])

]
= µn

[
F (πk ◦ x|[−T,T ])

]
,

lim
N→∞

P
unN ,v

n
N

n,aN ,+,λN

[
F (πk ◦ xλN |[−T,T ])

]
= µn

[
F (πk ◦ x|[−T,T ])

]
,

for each n ≥ 1. By (1.11), the right hand side of both lines converges to µ[F (πk ◦x|[−T,T ])]

as n→∞. Again since F and k are arbitrary, this proves Theorem 1.3.

3 Mixing for walks

In this section we explain how the mixing bounds (1.12) in Theorem 1.7 can be
proven in the case of random walks (that is, fixed only on the left) with geometric
area tilts. We emphasize that we follow very closely the argument of [17], making only
small modifications where needed to account for the different boundary conditions. For
convenience, we will assume without loss of generality that H2

λ ∈ Z in this section, so
that Z ⊂ Zλ.

3.1 Reduction to good blocks

As in [17, Section 6], we fix η > 0 large and ε > 0 small, and define the regular
sets A+,r

n = {x ∈ A+
n : x1 ≤ η and min1≤i<n(xi − xi+1) ≥ ε} and A+,r

n,λ = A+
n,λ ∩ A+,r

n .
An interval [`, ` + 1] is called regular for a trajectory x(·) if x(`), x(` + 1) ∈ A+,r

n and
maxt∈[`,`+1] x1(t) ≤ 2η. For a block D` = D−` ∪D

+
` := [2`, 2`+ 1]∪ [2`+ 1, 2(`+ 1)], we say

D` is good if both D+
` and D−` are regular. We also write D` for the event that the block

D` is good for the trajectory xλ.
Consider a couple of independent trajectories (xλ, yλ) distributed according to

P
r
a,+,λ ⊗ P

u
b,+,λ. We let 3M = a ∧ b, and for D` ⊂ [−2M, 2M ] we write D±` for the

event that D±` is good for both xλ and yλ, and D` = D+
` ∩D−` . We define

M0 =
∑

−M≤`≤M−1

1D`
.

We will prove below the following analogue of [17, Lemma 6.2].

Lemma 3.1. For η > 0 large enough and ε > 0 small enough, there exist ν, κ > 0 such
that

P
r
a,+,λ ⊗ P

u
b,+,λ(M0 ≤ νM) ≤ e−κM ,

uniformly in λ small, M large, and r1, u1 ≤ η.

Given this lemma, the proof of the bounds (1.12) in Theorem 1.7 proceeds in exactly
the same way as in [17, Section 6.4]. The argument there relies on the Gibbs property for
the bridge measures, but the walk measures satisfy precisely the same Gibbs property
(see Remark 1.1), and thus the argument translates immediately. It therefore remains to
prove Lemma 3.1.

3.2 Proof of Lemma 3.1

As in [17, Section 7.3], we define the notion of a pre-good 5-block as follows. For
integers −bM/5c ≤ ` ≤ bM/5c, a 5-block D(5)

` = D5`−2 ∪ · · · ∪D5`+2 is called pre-good
for xλ if

min
t∈D5`−2

xλ1 (t) ≤ η, min
t∈D5`+2

xλ1 (t) ≤ η.
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Let D̃5` denote the event that D(5)
` is jointly pre-good for xλ and yλ. By [17, (7.10)], we

have
P
r,s
−4,6,+,λ(D0 is good | D(5)

0 is pre-good) ≥ ρ1

for a constant ρ1(η, ε) uniformly in r, s ∈ A+
n,λ and small λ. (This is proven for b = 1, but

in our case b > 1 just results in a different constant.) By the Gibbs property, this implies
that for each `,

P
r
a,+,λ ⊗ P

s
b,+,λ(D5` | D̃(5)

` ) ≥ ρ2
1.

It therefore suffices to prove that with

M(5)
0 =

bM/5c∑
j=−bM/5c

1
D

(5)
`

,

we can find constants ν(5) and κ(5) such that

P
r
a,+,λ ⊗ P

s
b,+,λ(M(5)

0 ≤ ν(5)M) ≤ e−κ
(5)M (3.1)

uniformly in small λ, large M , a, b ≥ 3M , and r1, s1 ≤ η.
To prove (3.1), we will need the following analogue of [17, Lemma 7.1].

Lemma 3.2. There exist constants c1(n), c2(n, η), and T0(η) such that for all T ≥ T0,

Z
w
T,+,λ ≥ c2e

−c1T

uniformly in w1 ≤ η and λ small.

Proof. Fix ε > 0 so that nε < 1, and assume T > 2. We write P̂
w
λ for the law of n

independent rescaled random walks started at w, and P̂
w
t,+,λ for this law with trajectories

restricted to stay in A+
n,λ in the interval [0, t]. Write A+,r

n,λ(α) = A
+,r
n,λ ∩ {x : x1 ≤ α}, and

define the event

E =

{
max
t∈[0,1]

xλ1 (t) ≤ 2η, xλ(1) ∈ A+,r
n,λ(1), max

t∈[1,2T ]
xλ1 (t) < 2

}
.

By (1.3), we have
Z
w
T,+,λ ≥ e

−abn+1(q0(2η)+(2T−1)q0(2))P̂
w
2T,+,λ(E). (3.2)

To bound this probability, we use the Markov property to compute

P̂
w
2T,+,λ(E) =

∑
u∈A+,r

n,λ(1)

P̂
w
2T,+,λ

(
max
t∈[0,1]

xλ1 (t) ≤ 2η, max
t∈[1,2T ]

xλ1 (t) < 2

∣∣∣∣xλ(1) = u

)
× P̂

w
2T,+,λ(xλ(1) = u)

=
∑

u∈A+,r
n,λ(1)

P̂
w
1,+,λ

(
max
t∈[0,1]

xλ1 (t)≤2η

∣∣∣∣xλ(1)=u

)
P̂
u
2T−1,+,λ

(
max

t∈[0,2T−1]
xλ1 (t)<2

)
× P̂

w
1,+,λ(xλ(1) = u)

≥ P̂
w
1,+,λ

(
max
t∈[0,1]

xλ1 (t) ≤ 2η, xλ(1) ∈ A+,r
n,λ(1)

)
× min
u∈A+,r

n,λ(1)
P̂
u
2T−1,+,λ

(
max

t∈[0,2T−1]
xλ1 (t) < 2

)
.

By [17, Section 7.2, (I.2), (I.3)], there is a constant ρ > 0 so that the probability in the
second to last line is bounded below by ρ2 uniformly in w ∈ A+

n,λ with w1 ≤ η and λ small.
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The probability in the last line can be bounded below by the probability that n walks
starting at u1, . . . , un stay within horizontal tubes of width ε/4 centered at u1, . . . , un on
the whole interval. Splitting the walks into time blocks of length c3ε2, the probability that
each walk stays within the corresponding tube on each time block is bounded below for
small λ by some constant p > 0, and this gives a total lower bound of pc4T/ε

2 ≥ e−c5(ε)T .
Combining with (3.2), we get

Z
w
T,+,λ ≥ e

−abn+1(q0(2η)+(2T−1)q0(2)) · ρ2e−c5(ε)T ≥ c1(n)e−c2(n,η)T

as desired.

Now we finish the proof of (3.1). Recall that 3M = a ∧ b, so without loss of generality
we may assume a = 3M and b ≥ a. In fact it suffices to consider a, b ≤ 3M with high
probability. Indeed, as in [17, (7.25)], define the random variables B± ≥ 0 by

−2M −B− = max{t ≤ −2M : yλ1 (t) ≤ η}, 2M +B+ = min{t ≥ 2M : yλ1 (t) ≤ η}.

Then the same argument using the Gibbs property as in [17, (7.28)] shows that for any
b± ≥ 0,

P
r
b,+,λ(B± = b±) ≤ c6(ε)ec7(ε)M−(b++b−)q0(η).

Therefore fixing η large enough so that q0(η) > 2c7(ε), we can ignore the case where
b± > M .

Now by the Gibbs property (conditioning on A, B±, and the values of xλ and yλ at
these times), it suffices to prove (3.1) in the case a = −3M and b1, b2 ∈ [2M, 3M ] in place
of b. For this we observe that if ν(5) < 1/5 for example, then Lemma 3.2 implies

P
r
a,+,λ ⊗ P

s
b1,b2,+,λ

(M(5)
0 ≤ ν(5)M) ≤ e−q0(η)M/10 · 1

Z
r
6M,+,λZ

u
b1+b2,+,λ

≤ e−q0(η)M/10 · c2(n, η)−2e24c1(n)M .

Enlarging η if necessary so that q0(η)/10 > 25c1(n) and then taking M large enough
depending on c1(n) and c2(n, η), we obtain a constant κ(5) for which (3.1) holds. This
completes the proof.
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