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Abstract

Birkner et al. obtained necessary and sufficient conditions for the frequency between
two independent and identically distributed continuous-state branching processes
time-changed by a functional of the total mass process to be a Markov process. Foucart
et al. extended this result to continuous-state branching processes with immigration.
We generalize these results by dropping the independent and identically distributed
assumption. Our result clarifies under which conditions a multi-type Λ-coalescent
can be constructed from a multi-type branching process by a time change using the
total mass. Finally, we address a problem formulated by Griffiths, by clarifying the
relation between 2-type α-stable continuous-state branching processes and 2-type
β-Fleming–Viot processes with mutation and selection.
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1 Introduction

Let (X1, X2) be a pair of identically distributed and independent continuous-state
branching processes. We can think of a population of two types of individuals in which
Xi represents the size of the population of type i individuals for i = 1, 2. Under this
setting we consider the total population size process Zt := X1

t +X2
t , and if Zt > 0, the

frequency process R := (Rt : t ≥ 0) of type 1 individuals given by

Rt =
X1
t

X1
t +X2

t

, t ≥ 0.

Observe that R is not a Markov process. However, it is known that for the case where X1

and X2 are independent Feller diffusions, one can time-change the frequency process
R by a functional of the total population size process Z to obtain the Wright–Fisher
diffusion.

In a more general setting, let β be a nonnegative Borel measurable function on
(0,∞) that is locally bounded in (0,∞). Consider a functional T of the total size of the
population size process Z, introduced below in (1.2).
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Alpha-stable branching and beta-frequency processes, beyond the IID assumption

In [2], Birkner et al. characterized the class of continuous-state branching processes
for which there exists a function β : (0,∞)→ R+ such that the time-changed frequency
process RT−1(t) has the Markov property. It turns out that the aforementioned class is
that of the α-stable continuous-state branching processes. Furthermore, in this case the
time-changed frequency processRT−1(t) is the moment dual of a Beta (2−α, α)-coalescent.
This result was extended by Foucart and Hénard to continuous-state branching processes
with immigration [7].

The aim of this note is to generalize this result in two directions:

1. X1 and X2 will not be assumed to have the same distribution.
2. X1 and X2 will not be assumed to be independent. Instead, we will assume that

X = (X1, X2) is given by a two-type continuous-state branching process with
immigration.

The frequency process associated with a pair of independent continuous-state branching
processes with different distributions was studied in [3]. On the other hand, we are
not aware of studies in the literature on the frequency process arising from multi-type
continuous-state branching processes.

Our main result, Theorem 1.1, formulates necessary and sufficient conditions under
which the frequency process R can be time-changed by a functional of the total size of
the population process Z to obtain a Markov process, and to characterize the associated
frequency process. For simplicity, we work with real-valued processes, as opposed to [2]
and [7] where the authors deal with measure-valued processes.

Finally, we address the problem formulated by Griffiths in the concluding section of
[11], about the relation between multi-type Λ-Fleming–Viot processes with mutation and
selection and branching processes; by showing (see Remark 2.1) that the time-changed
frequency process associated to a 2-type α-stable continuous-state branching process
with α ∈ (0, 1) corresponds to the 2-type β-Fleming–Viot process with mutation and
selection.

1.1 Multi-type continuous-state branching processes with immigration

Set D := R2
+. We define

C0(D) :=
{
f : D → R : f is continuous on D and lim

|x|→∞
f(x) = 0

}
,

Cn0 (D) :=
{
f : D → R : f and all its derivatives up to the n-th order are in C0(D)

}
,

and C∞0 (D) := ∩∞n=1Cn0 (D). Under this setting, we consider a two-type continuous-state
branching process with immigration X = ((X1

t , X
2
t ) : t ≥ 0).

Following [13] we have that X is a Feller process with infinitesimal generator L given,
for any f ∈ C2

0(D), by

Lf(x)=c1x1∂11f(x) + c2x2∂22f(x) + (b11x1 + b21x2 + η1)∂1f(x) + (b22x2 + b12x1 + η2)∂2f(x)

+

2∑
i=1

xi

∫
D

[f(x+ y)− f(x)− ξi(y)∂if(x)]mi(dy) +

∫
D

[f(x+ y)− f(x)] ν(dy), (1.1)

where c1, c2, b12, b21, η1, η2 ∈ R+, b11, b22 ∈ R,∫
U

(
ξ2
1(y) + ξ2(y)

)
m1(dy) +

∫
U

(
ξ1(y) + ξ2

2(y)
)
m2(dy)

+

2∑
i=1

mi(D\U) +

∫
U

(ξ1(y) + ξ2(y)) ν(dy) + ν(D\U) <∞,

and for i = 1, 2, ξi ∈ C∞0 (D) such that ξi = xi in a neighborhood U of the origin.
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Alpha-stable branching and beta-frequency processes, beyond the IID assumption

1.2 Main result

We consider a population of two types of individuals 1 and 2, and the dynamics of the
population of type i is given by the process Xi for each i = 1, 2. In order to study the
evolution of the population, we define the total size of the population process

Zt := X1
t +X2

t , t ≥ 0, Z0 = z,

where z := x1 + x2 and we assume that z > 0. Our goal is to study the frequency process
R := (Rt : t ≥ 0) of type 1 individuals given by

Rt =
X1
t

X1
t +X2

t

1{t<τ} + ∆1{t≥τ}, t ≥ 0, R0 = r,

where r := x1/(x1 + x2), τ := inf
{
t ≥ 0 : Zt ∈ {0,∞}

}
, and ∆ is a cemetery state.

We consider a nonnegative Borel measurable function β : (0,∞)→ R+ that is locally
bounded on (0,∞) and define a functional T of the total size population process Z by

T (t) =

∫ t

0

β(Zs)ds, t ∈ [0, τ). (1.2)

After Lemma 1.3 it will be clear that we are mostly interested in the case where β

is continuous. Additionally, we denote by T−1 the right-continuous inverse of T , i.e.
T−1(t) := inf{s : T (s) > t}.

We are interested in studying the evolution of the frequency process R, however,
although the pair (R,Z) is a Markov process, the process R is not markovian. Therefore
in the spirit of Theorem 1.1 in [2], we use the random time-change T−1 to obtain an
autonomous Markov process that describes the frequency of type 1 individuals in the
population. This is stated in the following result, which generalizes the random-time
change technique from [2] to the setting where the processes X1 and X2 are not
necessarily independent nor necessarily identically distributed, and where immigration
is included in the model.

Through the rest of the paper we denote by S2 to the unit sphere in R2 and S2
+ :=

S2 ∩D.

Theorem 1.1. The frequency process R can be time-changed by a functional of the total
size of the population process Z to obtain a Markov process if and only if

(i) Continuous case.- mi = ν = b11 = b12 = b21 = b22 = 0,

(ii) Independent branching and multi-type immigration.- c1 = c2 = η1 = η2 =

b21 = b12 = 0, additionally

bii =

∫
D

(ξi(u)− ui)mi(du), i = 1, 2,

where for A ∈ B(D)

ν(A) =

∫
S2+

λI(dξ)

∫ ∞
0

1A(rξ)
dr

rα
, mi(A) = ai

∫ ∞
0

1A(rei)
dr

r1+α
, i = 1, 2,

with α ∈ (1, 2), e1 = (1, 0), e2 = (0, 1), λI is finite measure on S2
+, and ai ≥ 0 for

i = 1, 2.

(iii) Multi-type branching.- ν = c1 = c2 = η1 = η2 = b21 = b12 = 0,

bii =

∫
D

ξi(u)mi(du), mi(A) =

∫
S2+

λi(dξ)

∫ ∞
0

1A(rξ)
dr

r1+α
, i = 1, 2,

with α ∈ (0, 1), and λi is a finite measure on S2
+ for i = 1, 2.
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Remark 1.2. Theorem 1.1 explores different cases in which the frequency process
associated with a pair of continuous-state branching processes can be transformed into
a Markov process by a time-change involving a functional of the total mass. In each case,
the specific conditions for this transformation depend on the particular characteristics
of the branching processes involved.

In case (i), the theorem considers continuous-state branching processes with immi-
gration that are both continuous and independent, and may have different distributions.
The condition for transforming the frequency process into a Markov process depends on
the properties of the immigration process and the branching mechanisms involved.

In case (ii), the theorem looks at independent continuous-state branching processes
with multi-type immigration. The branching mechanisms in this case must be associated
with stable Lévy measures of the same index for the transformation to be possible.

Finally, in the last case, the theorem focuses on the frequency of one of the types
in a two-type continuous-state branching process. The condition for transforming the
frequency process into a Markov process involves both a stable Lévy measure governing
the size of the reproduction events and a measure on the sphere that determines the
amount of mass that each type receives at each reproduction event.

Overall, Theorem 1.1 provides a framework for understanding the conditions under
which the frequency process associated with continuous-state branching processes can
be transformed into a Markov process, highlighting the role played by immigration,
branching mechanisms, and other factors in this transformation.

The proof of Theorem 1.1 relies on the following result which is a generalization of
Lemma 3.5 in [2] to the two-dimensional case, its proof is deferred to Section 2.1.

Lemma 1.3. Let ν be a measure on D satisfying∫
U

(
ξ2
1(y) + ξ2(y)

)
ν(dy) + ν(D\U) <∞. (1.3)

For z > 0 let µz = φz(ν) be the image of ν under the mapping given by

φz : (u1, u2) 7→ (r1, r2) :=

(
u1

z + u1 + u2
,

u2

z + u1 + u2

)
. (1.4)

There exists a measure µ in D\{(0, 0)} and a measurable mapping β : (0,∞)→ R+ such
that

µz = β(z)µ (1.5)

if and only if, for some α ∈ (0, 2),

ν(B) =

∫
S2+

λ(dξ)

∫ ∞
0

1B(rξ)
dr

r1+α
, B ∈ B(D), (1.6)

where λ is a finite measure on S2
+ and β(z) = const · z−α. Additionally, for the case

α ∈ (1, 2) we have that λ(S2
+\{e1}) = 0.

We end this section by providing a characterization of the time change T (t) and the
resulting time-changed frequency process R := (RT−1(t) : t ≥ 0) hinted by Theorem 1.1
in each of the three cases. This is the content of the following corollaries and their proof
is contained in the proof of Theorem 1.1.

Corollary 1.4. For case (i) in Theorem 1.1 let T (t) :=
∫ t

0
Z−1
s ds for t > 0 (i.e. β(z) = z−1

in (1.2)). Then the process R is the unique weak solution to the following stochastic
differential equation

dRt = 2(c2 − c1)Rt(1−Rt)dt+
(
η1(1−Rt)− η2Rt

)
dt

+

√
2c1Rt(1−Rt)2 + 2c2(1−Rt)R

2

tdBt, t ≥ 0, (1.7)
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where B = (Bt : t ≥ 0) is a Brownian motion.
If T (τ) < ∞, we consider (RT−1(t) : t ≥ 0) to be extended for t ≥ T (τ) by an

independent copy of the solution to (1.7) started from RT−1(T (τ)−).

Corollary 1.5. For case (ii) in Theorem 1.1 let α ∈ (1, 2) and T (t) :=
∫ t

0
Z1−α
s ds for

t > 0 (i.e. β(z) = z1−α in (1.2)). Then the process R is the unique weak solution to the
following stochastic differential equation

dRt = Rt(1−Rt)(a2 − a1)

∫
(0,1)

w1−α(1− w)α−2dwdt

+

∫ 1

0

∫ 1

0

w(1−Rt−)1{u≤Rt−}Ñ
1(dt, dw, du)−

∫ 1

0

∫ 1

0

wRt−1{u≤(1−Rt−)}Ñ
2(dt, dw, du)

+

∫ 1

0

∫
S2+

y

(
〈ξ, e1〉
〈ξ, 1〉

−Rt−
)
N̄ I(dt, dy, dξ), (1.8)

where for i = 1, 2, Ñ i are compensated Poisson random measures on (0,∞)×(0, 1)×(0, 1)

with intensity measures dtΛi(dw)du respectively, with

Λi(dw) = ai(1− w)α−1w−(1+α)dw,

whereas N̄ I is a Poisson random measure on (0,∞)× (0, 1)× S2
+ with intensity measure

dtΛ̄I(dy, dξ), with
Λ̄I(dy, dξ) = (1− y)α−2y−α〈ξ, 1〉α−1λI(dξ)dy.

If T (τ) <∞, we consider (RT−1(t) : t ≥ 0) to be extended for t ≥ T (τ) by an independent
copy of the solution to (1.8) started from RT−1(T (τ)−).

Corollary 1.6. For case (iii) in Theorem 1.1 let α ∈ (0, 1) and T (t) :=
∫ t

0
Z1−α
s ds for t > 0

(i.e. β(z) = z1−α in (1.2)).Then the process R is the unique weak solution to the following
stochastic differential equation

dRt =

∫ 1

0

∫
S2+

∫ 1

0

y

(
〈ξ, e1〉
〈ξ, 1〉

−Rt−
)

1{u≤Rt−}N̊
1(dt, dy, dξ, du)

+

∫ 1

0

∫
S2+

∫ 1

0

y

(
〈ξ, e1〉
〈ξ, 1〉

−Rt−
)

1{u≤(1−Rt−)}N̊
2(dt, dy, dξ, du), (1.9)

where N̊ i, i = 1, 2, are independent Poisson random measures on (0,∞)×(0, 1)×S2
+×(0, 1)

with intensity measures dtΛ̄i(dy, dξ)du where

Λ̄i(dy, dξ) = (1− y)α−1y−1−α〈ξ, 1〉αλi(dξ)dy.

If T (τ) <∞, we consider (RT−1(t) : t ≥ 0) to be extended for t ≥ T (τ) by an independent
copy of the solution to (1.9) started from RT−1(T (τ)−).

Remark 1.7. For some choices of the parameters, the processes on the three previous
corollaries have moment duals. We now provide a few examples:

• The process R in Corollary 1.1 is known as the Gillespie–Wright–Fisher diffusion
(see [9, 10]), whose dual is the branching coalescing pairwise branching process
studied in [4, 5].

• By taking a1 = a2 = a, λI = 0 in Corollary 1.5, and λi(dξ) = aδei(dξ) with a ≥ 0

in Corollary 1.6, the moment dual of the frequency process R is given by the
β-coalescent studied in [2]. If additionally we take λI(dξ) = b1δe1(dξ) + b2δe2(dξ) in
Corollary 1.5 we obtain the β-coalescent with coordinated mutations (see [7]).
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• We want to point out that some of the moment duals that emerge seem to be new in
the literature. For instance, by taking a1 > a2 in Corollary 1.5, the moment dual of
the process R is given by a β-coalescent with selection and coordinated multi-type
mutations, where both types participate in a mutation event. On the other hand, by
taking λ1 = λ2 in Corollary 1.6, the moment dual becomes a pure mutation process.
Finally, the moment dual of the frequency process given in Corollary 1.6 is related
to the multi-type Λ-coalescent with selection and mutation given in Theorem 2.2 in
[11].

2 Proofs the main results

2.1 Proof of Lemma 1.3

Proceeding like in the proof of Lemma 3.5 in [2], for c > 0 consider the mapping
ψc : (u1, u2) 7→ c(u1, u2). Hence, for all z, c > 0

φz = φcz ◦ ψc (2.1)

Using (1.5) together with (2.1)

β(z)µ = φcz(ψc(ν)). (2.2)

Additionally, by (1.5)

φcz(ν) = β(cz)µ (2.3)

Inverting (2.3) we obtain

ν = β(cz)φ−1
cz (µ). (2.4)

Inverting (2.2) and using (2.4)

ψc(ν) =
β(z)

β(cz)
ν. (2.5)

Let us consider C ∈ B(S2
+), then by taking z = 1 in (2.5) we have for h > 0

ν

(
1

c
(h,∞)× C

)
= ψc(ν) ((h,∞)× C) = β̃

(
1

c

)
ν ((h,∞)× C) ,

where β̃
(

1
c

)
= β(1)/β(c). Then proceeding as in the proof of Lemma 3.5 in [2] we have

that

ν ((h,∞)× C) = const · h−α. (2.6)

Now let us define λ(C) := αν ((1,∞)× C), then using (2.6)

ν ((h,∞)× C) =
λ(C)

α
h−α.

Let us denote by ν′ to the right-hand side of (1.6) then for any C ∈ B(S2
+)

ν′((h,∞)× C)) = λ(C)

∫ ∞
h

dr

r1+α
= h−α

λ(C)

α
= ν((h,∞)× C).

Hence, by an application of Dynkin’s Lemma (see Theorem 3.2 in [1]) we have that ν = ν′

on B(D\{(0, 0)}).When α ∈ (1, 2) the fact that λ(S2
+\{e1}) = 0 follows from (1.3).
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2.2 Proof of Theorem 1.1

Let us consider τM := inf{t > 0 : Zt /∈ [1/M,M ]}, the minimum between the first
hitting time of 1/M and the first passage time above M for the process Z. Additionally,
we denote by (Ft)t≥0 the filtration generated by the process X.

Then, using Dynkin’s formula (see Proposition IV.1.7 in [6]) we have that, for any
f ∈ C2([0, 1]), the process

f(Rt∧τM )− f(R0)−
∫ t∧τM

0

Lf(g(Xs))ds, t ≥ 0,

is a Ft∧τ -martingale, where g(x) =
x1

x1 + x2
for x ∈ D.

Using (1.1) we can write

Lf(g(x)) = c1x1

[
f ′′
(

x1

x1 + x2

)
x2

2

(x1 + x2)4
− 2f ′

(
x1

x1 + x2

)
x2

(x1 + x2)3

]
+ c2x2

[
f ′′
(

x1

x1 + x2

)
x2

1

(x1 + x2)4
+ 2f ′

(
x1

x1 + x2

)
x1

(x1 + x2)3

]
+ f ′

(
x1

x1 + x2

)
x2

(x1 + x2)2
(b11x1 + b21x2 + η1)

− f ′
(

x1

x1 + x2

)
x1

(x1 + x2)2
(b12x1 + b22x2 + η2)

+ x1

∫
D

[
f

(
x1 + u1

x1 + x2 + u1 + u2

)
− f

(
x1

x1 + x2

)
− ξ1(u)f ′

(
x1

x1 + x2

)
x2

(x1 + x2)2

]
m1(du)

+ x2

∫
D

[
f

(
x1 + u1

x1 + x2 + u1 + u2

)
− f

(
x1

x1 + x2

)
+ ξ2(u)f ′

(
x1

x1 + x2

)
x1

(x1 + x2)2

]
m2(du)

+

∫
D

[
f

(
x1 + u1

x1 + x2 + u1 + u2

)
− f

(
x1

x1 + x2

)]
ν(du). (2.7)

By making the change of variable
(

x1

x1+x2
, x1 + x2

)
7→ (r, z), in (2.7), we obtain that the

process

Mf,M
t := f(Rt∧τM )− f(R0)−

∫ t∧τM

0

G(Rs, Zs)ds, t ≥ 0,

is a Ft∧τ -martingale, where for r ∈ [0, 1] and z ∈ (0,∞),

G(r, z) : = c1
r

z

[
f ′′(r)(1− r)2 − 2f ′(r)(1− r)

]
+ c2

(1− r)
z

[
f ′′(r)r2 + 2f ′(r)r

]
+ (1− r)f ′(r)

[
b11r + b21(1− r) +

η1

z

]
− rf ′(r)

[
b12r + b22(1− r) +

η2

z

]
+ rz

∫
∆

[
f (r(1− w1 − w2) + w1)− f(r)

− ξ1
(

zw1

1− w1 − w2
,

zw2

1− w1 − w2

)
f ′(r)

(1− r)
z

]
φz(m

1)(dw)

+ (1− r)z
∫

∆

[
f (r(1− w1 − w2) + w1)− f(r)

+ ξ2

(
zw1

1− w1 − w2
,

zw2

1− w1 − w2

)
f ′(r)

r

z

]
φz(m

2)(dw)

+

∫
∆

[f (r(1− w1 − w2) + w1)− f(r)]φz(ν)(dw),
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where ∆ = {(w1, w2) ∈ R2
+ : w1 + w2 < 1}, and where we recall that for any measure ζ

on D, φz(ζ) is the image of ζ under the mapping given in (1.4).
Recall the time-change T given in (1.2), and define Rt := RT−1(t) for t ≥ 0. Then, by

noting that T−1(T (τM )) = τM and T−1(t ∧ T (τM )) = T−1(t) ∧ τM , the optional stopping
theorem (see Theorem 6.29 in [12]) implies that

M
f,M

t : = f(RT−1(t)∧τM )− f(R0)−
∫ T−1(t)∧τM

0

G(Rs, Zs)ds

= f(Rt∧T (τM ))− f(R0)−
∫ t∧T (τM )

0

G(Rs, ZT−1(s))
1

β(ZT−1(s))
ds t ≥ 0, (2.8)

is a FT−1(t∧(T (τ)−))-martingale.
Now, for s ≥ 0

G(Rs,ZT−1(s))
1

β(ZT−1(s))
= c1

Rs
ZT−1(s)

[
f ′′(Rs)(1−Rs)2 − 2f ′(Rs)(1−Rs)

] 1

β(ZT−1(s))

+ c2
(1−Rs)
ZT−1(s)

[
f ′′(Rs)R

2

s + 2f ′(Rs)Rs

] 1

β(ZT−1(s))

+ (1−Rs)f ′(Rs)
(
b11Rs + b21(1−Rs) +

η1

ZT−1(s)

)
1

β(ZT−1(s))

−Rsf ′(Rs)
(
b12Rs + b22(1−Rs) +

η2

ZT−1(s)

)
1

β(ZT−1(s))

+RsZT−1(s)

∫
∆

[
f(Rs(1− w1 − w2) + w1)− f(Rs)

− ξ1
(
ZT−1(s)w1

1− w1 − w2
,
ZT−1(s)w2

1− w1 − w2

)
f ′(Rs)

(1−Rs)
ZT−1(s)

]
1

β(ZT−1(s))
φZT−1(s)

(m1)(dw)

+ (1−Rs)ZT−1(s)

∫
∆

[
f(Rs(1− w1 − w2) + w1)− f(Rs)

+ ξ2

(
ZT−1(s)w1

1− w1 − w2
,
ZT−1(s)w2

1− w1 − w2

)
f ′(Rs)

Rs
ZT−1(s)

]
1

β(ZT−1(s))
φZT−1(s)

(m2)(dw)

+

∫
∆

[
f(Rs(1− w1 − w2) + w1)− f(Rs)

] 1

β(ZT−1(s))
φZT−1(s)

(ν)(dw). (2.9)

By Lemma 1.3, the time-changed process R will be an autonomous frequency process
(with no dependence on the process Z) if and only if one of the three following conditions
hold:

(i) β(z) = z−1 for z > 0, and

mi(du) = ν(du) = b11 = b12 = b21 = b22 = 0.

(ii) β(z) = z1−α for z > 0 with α ∈ (1, 2),

c1 = c2 = η1 = η2 = b21 = b12 = 0,

and

b11 =

∫
D

(ξ1(u)− u1)m1(du), b22 =

∫
D

(ξ2(u)− u2)m2(du),
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with

ν(du) = 1rξ(u)λI(dξ)
dr

rα
, mi(du) = ai1rei(u)

dr

r1+α
, i = 1, 2,

where e1 = (1, 0) and e2 = (0, 1).
(iii) β(z) = z1−α for z > 0 with α ∈ (0, 1),

ν(du) = c1 = c2 = η1 = η2 = b21 = b12 = 0,

and

b11 =

∫
D

ξ1(u)m1(du), b22 =

∫
D

ξ2(u)m2(du),

with

m1(du) = 1rξ(u)
dr

r1+α
λ1(dξ), m2(du) = 1rξ(u)

dr

r1+α
λ2(dξ).

2.2.1 Case (i)

For this case, using (2.8) together with (2.9) gives

M
f,M

t = f(Rt∧T (τM ))− f(R0)−
∫ t∧T (τM )

0

f ′′(Rs)
[
c1Rs(1−Rs)2 + c2(1−Rs)R

2

s

]
ds

−
∫ t∧T (τM )

0

2(c2 − c1)f ′(Rs)Rs(1−Rs)ds−
∫ t∧T (τM )

0

f ′(Rs)
(
η1(1−Rs)− η2Rs

)
ds,

(2.10)

Now, noting that f ∈ C2([0, 1]), we take M → ∞ in (2.8) and by the dominated conver-
gence theorem, we obtain that the right-hand side of (2.10), with t ∧ T (τM ) replaced by
t ∧ (T (τ)−), is a FT−1(t∧(T (τ)−))-martingale. Let us denote by Y := (Yt : t ≥ 0) a weak
solution to (1.7), then by Proposition 4.2 in [3] and Proposition IV.1.7 in [6] we have that
the process

f(Yt)− f(Y0)−
∫ t

0

f ′′(Ys)
[
c1Ys(1− Ys)2 + c2(1− Ys)Y 2

s

]
ds

−
∫ t

0

2(c2 − c1)f ′(Ys)Ys(1− Ys)ds−
∫ t

0

f ′(Ys) (η1(1− Ys)− η2Ys) ds, (2.11)

is a FYt -martingale, where (FYt )t≥0 is the filtration generated by Y .
By Propositions 4.1 and 4.2 in [3] together with Proposition 4.2 in [8] the solution to

the martingale problem stated in (2.11) is unique. Hence, Lemma IV.5.16 in [6] implies
that the process R is the unique weak solution to (1.7).

2.2.2 Case (ii)

By (2.8) and (2.9) we obtain that

M
f,M

t = f(Rt∧T (τM ))− f(R0)

−
∫ t∧T (τM )

0

∫ 1

0

∫
S2+

[
f(Rs(1−〈uξ, 1〉) + 〈uξ, e1〉)− f(Rs)

]
1{uξ∈∆}

(1− 〈ξ, 1〉u)α−2

uα
λI(dξ)duds

−
∫ t∧T (τM )

0

Rs

∫ 1

0

[
f(Rs(1− w1) +w1)− f(Rs)− f ′(Rs)(1−Rs)

w1

1− w1

]
a1

(1− w1)α−1

w1+α
1

dw1ds

−
∫ t∧T (τM )

0

(1−Rs)
∫ 1

0

[
f(Rs(1− w2))− f(Rs) + f ′(Rs)Rs

w2

1− w2

]
a2

(1− w2)α−1

w1+α
2

dw2ds.

(2.12)
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As in case (i), taking M →∞ we obtain that the right-hand side of (2.12), with t ∧ T (τM )

replaced by t ∧ (T (τ)−), is a FT−1(t∧(T (τ)−))-martingale. By a slight modification of
Proposition 4.2 in [3], for any solution Y to (1.8), the process

f(Yt)− f(Y0)

−
∫ t

0

∫ 1

0

∫
S2+

[
f

(
Ys(1− y) + y

〈ξ, e1〉
〈ξ, 1〉

)
− f(Ys)

]
(1− y)α−2

yα
〈ξ, 1〉α−1λI(dξ)dyds

−
∫ t

0

Ys

∫ 1

0

[
f(Ys(1− w1) + w1)− f(Ys)− f ′(Ys)(1− Ys)

w1

1− w1

]
a1

(1− w1)α−1

w1+α
1

dw1ds

−
∫ t

0

(1− Ys)
∫ 1

0

[
f(Ys(1− w2))− f(Ys) + f ′(Ys)Ys

w2

1− w2

]
a2

(1− w2)α−1

w1+α
2

dw2ds,

(2.13)

is a FYt -martingale, where (FYt )t≥0 is the filtration generated by Y . Notice that the
change of variable y = u〈ξ, 1〉 in the first integral of (2.13) leads to a similar expression
as the first integral in (2.12).

By a slight modification of Proposition 4.1 in [3] together with Proposition 4.2 in [3]
and Proposition 4.2 in [8], we have the martingale problem given in (2.13) has a unique
solution. Therefore, using Lemma IV.5.16 in [6] we have that the process R is the unique
weak solution to (1.8).

2.2.3 Case (iii)

Using (2.8) together with (2.9) we obtain that

M
f,M

t = f(Rt∧T (τM ))− f(R0)

−
∫ t∧T (τM )

0

Rs

∫ 1

0

∫
S2+

[
f(Rs(1− 〈uξ, 1〉) + 〈uξ, e1〉)

− f(Rs)
]
1{uξ∈∆}λ

1(dξ)
(1− 〈ξ, 1〉u)α−1

u1+α
duds

−
∫ t∧T (τM )

0

(1−Rs)
∫ 1

0

∫
S2+

[
f(Rs(1− 〈uξ, 1〉) + 〈uξ, e1〉)

− f(Rs)
]
1{uξ∈∆}λ

2(dξ)
(1− 〈ξ, 1〉u)α−1

u1+α
duds.

(2.14)

Proceeding like in the previous case, by taking M →∞ we obtain that the right hand-side
of (2.14), replacing t ∧ T (τM ) by t ∧ (T (τ)−), is a a FT−1(t∧(T (τ)−))-martingale. As in
case (ii), by a minor modification of Proposition 4.2 in [3] we obtain, for any solution Y
to (1.9), that the process

f(Yt)− f(Y0)

−
∫ t

0

Ys

∫ 1

0

∫
S2+

[
f

(
Ys(1− y) +

〈ξ, e1〉
〈ξ, 1〉

y

)
− f(Ys)

]
λ1(dξ)

(1− y)α−1

y1+α
〈ξ, 1〉αdyds

−
∫ t∧τM

0

(1−Ys)
∫ 1

0

∫
S2+

[
f

(
Ys(1− y) +

〈ξ, e1〉
〈ξ, 1〉

y

)
− f(Ys)

]
λ2(dξ)

(1− y)α−1

y1+α
〈ξ, 1〉αdyds,

(2.15)

is a FYt -martingale, with (FYt )t≥0 the filtration generated by Y .
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Using Propositions 4.1 and 4.2 in [3] and Proposition 4.2 in [8], we obtain the
uniqueness of the solution to the martingale problem (2.15). Hence, as in the previous
case, an application of Lemma IV.5.16 in [6] gives that the process R is the unique weak
solution to (1.8).

Remark 2.1. In Section 2.4 in [11], Griffiths introduced the 2-type Λ-Fleming–Viot
process with mutation and selection, Y := (Yt : t ≥ 0), through its infinitesimal generator
A, given for any g ∈ C2([0, 1]) by

Ag(x) =

∫
∆

2∑
i=1

x2−i(1− x)i−1 (g(x(1− 〈y, 1〉) + 〈y, e1〉)− g(x)) Λi(dy),

where ∆ := {y ∈ R2
+ : 〈y, 1〉 ≤ 1} and Λi is a measure on ∆ such that

∫
∆
〈y, 1〉Λi(dy) <∞

for i = 1, 2.
Consider that the measures Λi for i = 1, 2 are given (in polar coordinates) as

Λi(A) =

∫ 1

0

∫
S2+

1{rξ∈A}1{rξ∈∆}λ
i(dξ)

(1− 〈ξ, 1〉u)α−1

u1+α
du,

with α ∈ (0, 1). Hence, we obtain that the process Y is a solution to the martingale
problem given in (2.14), and therefore it has the same distribution as the process R
defined in Corollary 1.6. Thus, the process R is a 2-type β-Fleming-Viot process with
selection and mutation in the sense of [11] (see for instance Example 2.3 in [11] for
the case with no mutation). This result clarifies the relation between α-stable multi-
type continuous-state branching processes and 2-type Λ-Fleming–Viot processes with
selection and mutation, answering a question formulated in the concluding section
of [11]. By Theorem 1.1 the time-change technique only works in the α-stable case,
however, we believe we can explain in general the relation between multi-type continuous-
state branching processes and multi-type Λ-Fleming–Viot processes with selection and
mutation, using the culling technique developed in [3]. We leave it as a venue for future
research.
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