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Stochastic Gradient MCMC for Nonlinear State
Space Models∗

Christopher Aicher†, Srshti Putcha‡, Christopher Nemeth§,
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Abstract. State space models (SSMs) provide a flexible framework for modeling
complex time series via a latent stochastic process. Inference for nonlinear, non-
Gaussian SSMs is often tackled with particle methods that do not scale well to
long time series. The challenge is two-fold: not only do computations scale linearly
with time, as in the linear case, but particle filters additionally suffer from increas-
ing particle degeneracy with longer series. Stochastic gradient MCMC methods
have been developed to scale Bayesian inference for finite-state hidden Markov
models and linear SSMs using buffered stochastic gradient estimates to account
for temporal dependencies. We extend these stochastic gradient estimators to
nonlinear SSMs using particle methods. We present error bounds that account
for both buffering error and particle error in the case of nonlinear SSMs that
are log-concave in the latent process. We evaluate our proposed particle buffered
stochastic gradient using stochastic gradient MCMC for inference on both long
sequential synthetic and minute-resolution financial returns data, demonstrating
the importance of this class of methods.

Keywords: Bayesian inference, exponential forgetting, Markov chain Monte
Carlo, nonlinear state space model, particle filtering, stochastic gradient.

1 Introduction
Nonlinear state space models (SSMs) are widely used in many scientific domains for mod-
eling time series. For example, nonlinear SSMs can be applied in engineering (e.g. target
tracking, Gordon et al. 1993), in epidemiology (e.g. compartmental disease models, Du-
kic et al. 2012), and to financial time series (e.g. stochastic volatility models, Shephard
2005). To capture complex dynamical structure, nonlinear SSMs augment the observed
time series with a latent state sequence, inducing a Markov chain dependence structure.
Parameter inference for nonlinear SSMs requires us to handle this latent state sequence.
This is typically achieved using particle filtering methods.

Particle filtering algorithms are a set of flexible Monte Carlo simulation-based meth-
ods, which use a set of samples, also known as particles, to approximate the posterior
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distribution over the latent states. Unfortunately, inference in nonlinear SSMs does not
scale well to long sequences: (i) the cost of each update requires full passes through the
data that scales linearly with the length of the sequence, and (ii) the number of particles
(and hence the computation per data point) required to control the bias of the particle
filter scales linearly with the length of the sequence (Kantas et al., 2015).

Stochastic gradient Markov chain Monte Carlo (SG-MCMC) is a popular method for
scaling Bayesian inference to large data sets, replacing full data gradients with stochastic
gradient estimates based on subsets of data (Welling and Teh, 2011; Ma et al., 2015). In
the context of SSMs, naive stochastic gradients are biased because subsampling breaks
temporal dependencies in the data (Ma et al., 2017; Aicher et al., 2019). To correct
for this, Ma et al. (2017) and Aicher et al. (2019) have developed buffered stochastic
gradient estimators that control the bias. The latent state sequence is marginalized in
a buffer around each subsequence, which reduces the effect that breaking dependencies
has on the estimate of the gradient. However, the work so far has been limited to SSMs
where analytic marginalization is possible (e.g. finite-state HMMs and linear dynamical
systems).

In this work, we propose particle buffered gradient estimators that generalize the
buffered gradient estimators to nonlinear SSMs. Although straightforward in concept,
a number of unique challenges arise in this setting. First, we show how buffering in
nonlinear SSMs can be approximated with a modified particle filter. Second, we provide
an error analysis of our proposed estimators by decomposing the error into subsequence
error, buffering error, and particle filter error and analyze how this error propagates
to estimating posterior means with SGMCMC. Third, we extend the buffering error
bounds of Aicher et al. (2019) to nonlinear SSMs with log-concave likelihoods and show
that buffer error decays geometrically in buffer size, ensuring that a small buffer size
can be used in practice.

The theory we present highlights the importance of controlling bias in the estimate
of the gradient – as whilst the impact of a high variance estimator on the accuracy
of the SG-MCMC algorithm can be controlled by increasing the number of steps and
reducing the step size, it is not possible to change the implementation of the SG-MCMC
algorithm to reduce the impact of the bias. We then show theoretically that introducing
buffering enables us to control the bias of the estimates of the gradient – with the
bias decaying geometrically in the size of the buffer. We investigate the accuracy of
our new approach on a range of models with both synthetic and real data – and show
that for fixed computational cost we have obtained substantial gains in accuracy over
alternatives. This is due to the reduced bias relative to unbuffered versions of SG-MCMC
and through the fact that using stochastic gradient methods allows for more iterations
of the MCMC algorithm when compared to approaches that estimate gradients using
all observations.

Python code for our Algorithm and for replicating our numerical studies is available
at https://github.com/aicherc/sgmcmc_ssm_code.

https://github.com/aicherc/sgmcmc_ssm_code
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2 Background
2.1 Nonlinear State Space Models for Time Series

State space models are a class of discrete-time bivariate stochastic processes consisting
of a latent state process X = {Xt ∈ R

dx}Tt=1 and a second observed process, Y =
{Yt ∈ R

dy}Tt=1. The evolution of the state variables is typically assumed to be a time-
homogeneous Markov process, such that the latent state at time t, Xt, is determined
only by the latent state at time t − 1, Xt−1. The observed states are conditionally
independent given the latent states. Given the prior X0 ∼ ν(x0|θ) and parameters
θ ∈ Θ, the generative model for X,Y is thus

Xt|(Xt−1 = xt−1, θ) ∼ p(xt |xt−1, θ), (1)
Yt|(Xt = xt, θ) ∼ p(yt |xt, θ),

where we call p(xt |xt−1, θ) the transition density and p(yt |xt, θ) the emission density.

For an arbitrary sequence {zi}, we use zi:j to denote the sequence (zi, zi+1, . . . , zj).
To infer the model parameters θ, a quantity of interest is the score function, the gradient
of the marginal loglikelihood, ∇θ log p(y1:T |θ). Using the score function, the loglikelihood
can be maximized iteratively via a (batch) gradient ascent algorithm (Robbins and
Monro, 1951), given the observations, y1:T .

If the latent state posterior p(x1:T |y1:T , θ) can be expressed analytically, we can
calculate the score using Fisher’s identity (Cappé et al., 2005),

∇θ log p(y1:T | θ) = EX|Y,θ[∇θ log p(X1:T , y1:T | θ)]

=
T∑

t=1
EX|Y,θ[∇θ log p(Xt, yt |xt−1, θ)]. (2)

If the latent state posterior, p(x1:T |y1:T , θ), is not available in closed-form, we can ap-
proximate the expectations of the latent state posterior. One popular approach is via
particle filtering methods.

Particle Filtering and Smoothing

Particle filtering algorithms (see e.g. Doucet and Johansen, 2009; Fearnhead and Kün-
sch, 2018) can be used to create an empirical approximation of the expectation of a
function H(X1:T ) with respect to the posterior density, p(x1:T |y1:T , θ). This is done by
generating a collection of N random samples or particles, {x(i)

t }Ni=1 and calculating their
associated importance weights, {w(i)

t }Ni=1, recursively over time. We update the particles
and weights with sequential importance resampling (Doucet and Johansen, 2009) in the
following manner.

(i) Resample auxiliary ancestor indices {a1, . . . , aN} with probabilities proportional
to the importance weights, i.e. ai ∼ Categorical(w(i)

t−1).
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(ii) Propagate particles x
(i)
t ∼ q(·|x(ai)

t−1 , yt, θ), using a proposal distribution q(·|·).

(iii) Update and normalize the weight of each particle,

w
(i)
t ∝

p(yt|x(i)
t , θ)p(x(i)

t |x(ai)
t−1 , θ)

q(x(i)
t |x(ai)

t−1 , yt, θ)
,

∑
i

w
(i)
t = 1. (3)

The auxiliary variables, {ai}Ni=1, represent the indices of the ancestors of the par-
ticles, {x(i)

t }Ni=1, sampled at time t. The introduction of ancestor indices allows us to
keep track of the lineage of particles over time (Andrieu et al., 2010). The multinomial
resampling scheme given in (i) describes the procedure by which offspring particles are
produced.

Resampling at each iteration is used to mitigate against the problem of weight de-
generacy. This phenomenon occurs when the variance of the importance weights grows,
causing more and more particles to have negligible weight. Aside from the multinomial
resampling scheme described above, there are various other resampling schemes out-
lined in the particle filtering literature, such as stratified sampling (Kitagawa, 1996)
and residual sampling (Liu and Chen, 1998).

If the proposal density q(xt|xt−1, yt, θ) is the transition density p(xt|xt−1, θ) we
obtain the bootstrap particle filter (Gordon et al., 1993). By using the transition density
for proposals, the importance weight recursion in (3) simplifies to w

(i)
t ∝ p(yt|x(i)

t , θ).

When our target function decomposes into a pairwise sum H(x1:T ) =∑T
t=1 ht(xt, xt−1) – such as for Fisher’s identity ht(xt, xt−1) = ∇θ log p(yt, xt |xt−1, θ)

– then we only need to keep track of the partial sum Ht =
∑t

s=1 hs(xs, xs−1) in the
filter (Doucet and Johansen, 2009): see Algorithm 1.

Algorithm 1 Particle Filter.
1: Input: number of particles, N , pairwise statistics, h1:T , observations y1:T , proposal

density q,
2: Draw x

(i)
0 ∼ ν(x0|θ), set w

(i)
0 = 1

N , and H
(i)
0 = 0 ∀i.

3: for t = 1, . . . , T do
4: Resample ancestor indices {a1, . . . , aN}.
5: Propagate particles x

(i)
t ∼ q(·|x(ai)

t−1 , yt, θ).
6: Update each w

(i)
t according to (3).

7: Update statistics H
(i)
t = H

(ai)
t−1 + ht(x(i)

t , x
(ai)
t−1).

8: end for
9: Return H =

∑N
i=1 w

(i)
T H

(i)
T .

A key challenge for particle filters is handling large T . Not only do long sequences
require O(T ) computation, but particle filters require a large number of particles, N ,
to avoid particle degeneracy: the use of resampling in the particle filter causes path-
dependence over time, depleting the number of distinct particles available overall. For
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Algorithm 1, the variance in H scales as O(T 2/N) (Poyiadjis et al., 2011). Therefore to
maintain a constant variance, the number of particles would need to increase quadrat-
ically with T , which is computationally infeasible for long sequences. Poyiadjis et al.
(2011); Nemeth et al. (2016) and Olsson and Westerborn (2017) propose alternatives to
Step 7 of Algorithm 1 that trade additional computation or bias to decrease the vari-
ance in H to O(T/N). Fixed-lag particle smoothers provide another approach to avoid
particle degeneracy, where sample paths are not updated after a fixed lag (Kitagawa
and Sato, 2001; Dahlin et al., 2015). All of these methods perform a full pass over the
data y1:T , which requires O(T ) computation.

2.2 Stochastic Gradient MCMC

One popular method to conduct scalable Bayesian inference for large data sets is stochas-
tic gradient Markov chain Monte Carlo (SGMCMC). Given a prior p(θ), to draw a
sample θ from the posterior p(θ|y) ∝ p(y|θ)p(θ), gradient-based MCMC methods simu-
late a stochastic differential equation (SDE) based on the gradient of the loglikelihood
gθ = ∇θ log p(y|θ), such that the posterior is the stationary distribution of the SDE.
SGMCMC methods replace the full-data gradients with stochastic gradients, ĝθ, using
subsamples of the data to avoid costly computation.

The most common method of the SGMCMC family is the stochastic gradient Lange-
vin dynamics (SGLD) algorithm (Welling and Teh, 2011; Nemeth and Fearnhead, 2021):

θ(k+1) ← θ(k) + ε(k) · (ĝθ + ∇ log p(θ)) + N (0, 2ε(k)), (4)

where ε(k) is the stepsize and θ1 is an initialization of the chain. When ĝθ is unbiased
and with an appropriate decreasing stepsize, the distribution of θ(k) asymptotically con-
verges to the posterior distribution (Teh et al., 2016). Dalalyan and Karagulyan (2019)
provide non-asymptotic bounds on the Wasserstein distance between the posterior and
the output of SGLD after K steps for fixed ε(k) = ε and possibly biased ĝθ.

Many extensions of SGLD exist in the literature, including using control variates to
reduce the variance of ĝθ (Baker et al., 2019; Nagapetyan et al., 2017; Chatterji et al.,
2018) and augmented dynamics to improve mixing (Ma et al., 2015) such as stochastic
gradient Hamiltonian Monte Carlo (Chen et al., 2014), stochastic gradient Nosé-Hoover
thermostat (Ding et al., 2014), and stochastic gradient Riemannian Langevin dynam-
ics (Girolami and Calderhead, 2011; Patterson and Teh, 2013).

Stochastic Gradients for SSMs

An additional challenge when applying SGMCMC to SSMs is handling the temporal
dependence between observations. Based on a subset S of size S, an unbiased stochastic
gradient estimate of (2) is

∑
t∈S

Pr(t ∈ S)−1 · EX|y1:T ,θ[∇θ log p(Xt, yt |Xt−1, θ)]. (5)
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Figure 1: Graphical model of S∗ with S = 3 and B = 1.

Although (5) is a sum over S terms, it requires taking expectations with respect to
p(x|y1:T , θ), which requires processing the full sequence y1:T . One approach to reduce
computation is to randomly sample S as a contiguous subsequence S = {s+1, . . . , s+S}
and approximate (5) using only yS∑

t∈S
Pr(t ∈ S)−1 · EX|yS ,θ[∇θ log p(Xt, yt |Xt−1, θ)]. (6)

However, (6) is biased because the expectation over the latent states xS is conditioned
only on yS rather than y1:T .

To control the bias in stochastic gradients while also avoiding accessing the full
sequence, previous work on SGMCMC for SSMs proposed buffered stochastic gradi-
ents (Ma et al., 2017; Aicher et al., 2019).

ĝθ(S,B) =
∑
t∈S

EX|yS∗ ,θ[∇θ log p(Xt, yt |Xt−1, θ)]
Pr(t ∈ S) , (7)

where S∗ = {s+ 1−B, . . . , s+ S +B} is the buffered subsequence such that S ⊆ S∗ ⊆
{1, . . . , T} (see Figure 1). When the “buffer” extends outside of the original subsequence
(e.g. s+1−B < 1 or s+S+B > T ), then we can extend the model to {1−B, . . . , T+B}
and assume the observations yt outside of {1, . . . , T} are missing. In practice, we will
truncate S∗ by intersecting it with {1, . . . , T}.

The unbiased gradient estimate, which conditions on all data (5), is ĝ(S, T ) and the
estimator with no buffering (6) is ĝ(S, 0). As B increases from 0 to T , the estimator
ĝθ(S,B) trades computation for reduced bias. In particular, when the model and gra-
dient both satisfy a Lipschitz property, the error decays geometrically in buffer size B,
see Theorem 4.1 of Aicher et al. (2019). Specifically, for all S

‖ĝθ(S,B) − ĝθ(S, T )‖2 = O(LB
θ · T/S), (8)

where Lθ is a bound for the Lipschitz constants of the forward and backward smoothing
kernels1

�Ψt(xt+1, xt) = p(xt+1 |xt, y1:T , θ),
�Ψt(xt−1, xt) = p(xt−1 |xt, y1:T , θ). (9)

1We follow Aicher et al. (2019) and consider Lipschitz constants for a kernel Ψ measured in terms
of the p-Wasserstein distance between distributions of x, x′ and Ψ(x),Ψ(x′).
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The bound provided in (8) ensures that only a modest buffer size B is required (e.g.
O(log δ−1) for an accuracy of δ). Unfortunately, neither the buffered stochastic gradient
ĝθ(S,B) nor the smoothing kernels {�Ψt, �Ψt} have a closed form for nonlinear SSMs.

3 Method
In this section, we propose a particle buffered stochastic gradient for nonlinear SSMs,
by applying the particle approximations of Section 2.1 to (7).

3.1 Buffered Stochastic Gradient Estimates for Nonlinear SSMs

Let gPF
θ (S,B,N) denote the particle approximation of ĝθ(S,B) with N particles. We

approximate the expectation over p(x|yS∗ , θ) in (7) using Algorithm 1 run over S∗. In
the following we will use ν0 as the prior distribution for Xs+1−B, which is a natural
choice if the state process is stationary and ν0 is its stationary distribution; for other
cases better choices for the prior distribution of Xs+1−B may be possible.

The complete data loglikelihood, log p(yS , xS , θ), in (7) decomposes into a sum of
pairwise statistics

H =
∑
t∈S∗

ht(xt, xt−1), (10)

where

ht(xt, xt−1) =

⎧⎨
⎩

∇θ log p(xt, yt |xt−1, θ)
Pr(t ∈ S) if t ∈ S,

0 otherwise.
(11)

We highlight that the statistic is zero for t in the left and right buffers S∗\S. Although
Ht is not updated by ht for t in S∗\S, running the particle filter over the buffers is
crucial to reduce the bias of gPF

θ (S,B,N).

Note that gPF
θ (S,B,N) allows us to approximate the non-analytic expectation in (7)

with a modest number of particles N , by avoiding the particle degeneracy and full
sequence runtime bottlenecks, as the particle filter is only run over S∗, which has length
S + 2B � T .

3.2 SGMCMC Algorithm

Using gPF
θ (S,B,N) as our stochastic gradient estimate in SGLD, (4), gives us Algo-

rithm 2.

Algorithm 2 can be extended by (i) averaging over multiple sequences or varying
the subsequence sampling method (Schmidt et al., 2015; Ou et al., 2018), (ii) using
different particle filters such as those listed in Section 2.1, and (iii) using more advanced
SGMCMC schemes such as those listed in Section 2.2.
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Algorithm 2 Buffered PF-SGLD.
1: Input: data y1:T , initial θ(0), stepsize ε, subsequence size S, buffer size B, particle

size N
2: for k = 1, 2, . . . ,K do
3: Sample S = {s + 1, . . . , s + S}
4: Set S∗ = {s + 1 −B, . . . , s + S + B}.
5: Calculate gPF

θ over S∗ using Alg. 1 on (11).
6: Set θ(k+1) ← θ(k) + ε · (gPF

θ + ∇ log p(θ)) + N (0, 2ε)
7: end for
8: Return θ(K+1)

4 Error Analysis
In this section, we analyze the error of our particle buffered stochastic gradient gPF

θ

and its effect on approximating posterior means with finite sample averages using Algo-
rithm 2. We first present error bounds for approximating posterior means using SGLD
with biased gradients (Theorem 1). We then present bounds on the gradient bias and
MSE of gPF

θ , extending the error bounds of Aicher et al. (2019) (Theorem 2). In par-
ticular, we provide bounds for the Lipschitz constant Lθ of the smoothing kernels (9)
without requiring an explicit form for the smoothing kernels (Theorem 3), allowing (8)
to apply to nonlinear SSMs.

4.1 Error of Biased SGLD’s Finite Sample Averages

We consider the estimation error of the posterior expected value of some test function
of the parameters φ : Θ → R using samples θ(k) drawn using SGLD with a fixed step
size ε and stochastic gradients gθ.

Let φ̄ be the posterior expected value

φ̄ = E p(θ|y)[φ(θ)], (12)

and let φ̂K,ε be the K-sample estimator for φ̄

φ̂K,ε = 1
K

K∑
k=1

φ(θ(k)). (13)

The error of the finite sample average |φ̂K,ε−φ̄| has been previously studied for SGLD
with unbiased gradients by Vollmer et al. (2016) and Chen et al. (2015). Following Chen
et al. (2015), we make the following assumption on φ.

Assumption 1. Let L be the generator of the Langevin diffusion

L[ψ(θt)] = −∇ log p(θt) · ∇ψ(θt) + ε2

2 tr(∇2ψ(θt)).
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Then, we define ψ to solve the Poisson equation

1
K

K∑
k=1

L[ψ(θ(k))] = φ̂K,ε − φ̄. (14)

We assume that ψ(θ) and its derivatives (up to third order) are bounded.

We now present Theorem 1, which bounds the error of a finite sample Monte Carlo
estimator based on SGLD when the stochastic gradients ĝθ are potentially biased.

Theorem 1 (Error of Finite Sample Average). If the gradient gθ is smooth in θ, the
test function φ satisfies a moment condition (Assumption 1) and the bias and MSE of
the gradient estimates ĝθ are uniformly bounded, that is,

‖E ĝθ − gθ‖ ≤ δ and E‖ĝθ − gθ‖2 ≤ σ2 for all θ, (15)

then there exists some constant C > 0, such that the bias and MSE of φ̂K,ε satisfy

|E φ̂K,ε − φ̄ | ≤ C ·
(

1
Kε

+ δ

)
+ O(ε), (16)

E|φ̂K,ε − φ̄ |2 ≤ C

(
1

K2ε2
+ σ2

K
+ δ2 + δ

ε

)
+ O

(
1
Kε

+ δε + ε2
)
. (17)

The bias bound, (16), is a direct application of Theorem 2 in Chen et al. (2015).
The MSE bound, (17), is an extension of Theorem 3 in Chen et al. (2015) when the
stochastic gradient estimates ĝθ are biased (i.e. δ �= 0). The additional bias terms δ arise
from keeping track of additional cross terms in (φ̂K,ε − φ̄)2. The proof of Theorem 1 is
presented in the Supplement (Aicher et al., 2023).

From Theorem 1, we see that the error bounds on φ̂K,ε are more sensitive to the
bias δ of ĝ than the variance σ2: the term involving σ2 decays with increasing K,
while terms involving δ do not decay regardless of stepsize ε or number of samples K.
A similar conclusion comes from the bound on error of SGLD in Theorem 4 of Dalalyan
and Karagulyan (2019): the impact of bias on the error bound is not affected by step
size, whereas the impact of the variance can be reduced by taking more steps of smaller
size; however, we do not require the posterior distribution be log-concave.

Therefore for the samples from Algorithm 2 to be useful, it is important for the bias
of gPF

θ to be controlled.

4.2 Gradient Bias and MSE Bounds

To apply Theorem 1 to the samples from Algorithm 2, we develop bounds on the bias
δ and MSE σ2 of our particle buffered stochastic gradients gPF

θ .

Theorem 2 (Bias and MSE Bounds for gPF
θ ). For fixed θ, if the model and gradi-

ent satisfy a Lipschitz condition and there is a bound on the autocorrelation between
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EX|y1:T ∇ log p(yt, Xt|Xt−1, θ) for different t, then the bias δ and MSE σ2 of gPF
θ is

bounded by

δ ≤ γ ·
[
C1 · LB

θ + O
(
S + 2B

N

)]
, (18)

σ2 ≤ 3γ2 ·
[
C2

1 · L2B
θ + C2S + O

(
(S + 2B)2

N

)]
, (19)

where γ = maxt Pr(t ∈ S)−1 and C1, C2 are constants with respect to S,B,N .

From Theorem 2, we see that the bias δ (18) can be controlled by selecting large
enough N and B when Lθ < 1.

We now sketch the proof of Theorem 2 and discuss its assumptions. The complete
proof can be found in the Supplement (Aicher et al., 2023).

We decompose the error between gPF
θ and the full gradient gθ through ĝθ(S,B) and

ĝθ(S, T ) into three error sources:

‖gPF
θ (S,B,N) − gθ‖ ≤ ‖gPF

θ (S,B,N) − ĝθ(S,B)‖︸ ︷︷ ︸
particle error (I)

+

‖ĝθ(S,B) − ĝθ(S, T )‖︸ ︷︷ ︸
buffering error (II)

+ ‖ĝθ(S, T ) − gθ‖︸ ︷︷ ︸
subsequence error (III)

. (20)

(I) Particle error : the Monte Carlo error of the particle filter. From Kantas et al.
(2015), the asymptotic bias and MSE of a particle approximation to the sum of
R test functions (using Algorithm 1) is O(R/N) and O(R2/N) respectively. Since
gPF(S,B,N) is a particle approximation to the sum of R = S +2B test functions
(i.e., ht(xt, xt−1)), we have

‖E gPF
θ (S,B,N) − ĝθ(S,B)‖ = O

(
γ · S + 2B

N

)

E‖gPF
θ (S,B,N) − ĝθ(S,B)‖2 = O

(
γ2 · (S + 2B)2

N

)
, (21)

where γ is a upper bound on the sampling scale factor γ = maxt Pr(t ∈ S)−1.
Using a more advanced particle filter, such as the “PaRIS” or “Poyiadjis N2”
algorithm, Corollary 6 of Olsson and Westerborn (2017) gives a tighter bound for
the MSE

E‖gPF
θ (S,B,N) − ĝθ(S,B)‖2 = O

(
γ2 · S + 2B

N

)
.

However in our experiments, we found that the improved MSE of these other
particle filters was not worth the additional computational overhead for the small
subsequences we considered, where S +2B � 100. See experiments in the Supple-
ment (Aicher et al., 2023).
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(II) Buffering error,: error in approximating the latent state posterior p(x1:T |y1:T ) with
p(x1:T |yS∗). The error stems from conditioning on only a buffered subsequence yS∗

instead of y1:T and the initial distribution approximation ν0 for Xs+1−B. If the
smoothing kernels {�Ψt, �Ψt} are contractions for all t (i.e. Lθ < 1), then according
to (8), the error in this term is proportional to γLB

θ . In Section 4.3, we show
sufficient conditions for Lθ < 1.

(III) Subsequence error : the error in approximating Fisher’s identity using a randomly
chosen subsequence of data points. The error in this term depends on the sub-
sequence size S and how subsequences are sampled. Because we sample random
contiguous subsequences of size S, the MSE scales O(γ2S 1+ρ

1−ρ ), where ρ is a bound
on the autocorrelation between EX|y1:T ∇ log p(yt, Xt|Xt−1, θ) for different t. See
the Supplement (Aicher et al., 2023) for details.

Combining these error bounds gives us Theorem 2.

We present examples of the asymptotic bias and MSE bounds given by Theorem 2
for four different gradient estimators in Table 1. The four gradient estimators are: (i)
naive stochastic subsequence (without buffering) gPF(S, 0, N) (ii) buffered stochastic
subsequence gPF(S,B,N), (iii) fully buffered stochastic subsequence gPF(S, T,N), and
(iv) full sequence gPF(T, T,N). For simplicity, we assume the subsequences S are sam-
pled from a strict partition of 1 : T such that γ = T/S and assume B is on the same
order as S (i.e. B is O(S)).

Gradient (S,B,N) Bias δ Compute
Naive Subsequence (S, 0, N) C1 · T/S + O(T/N) O(SN)

Buffered Subsequence (S,B,N) C1 · LB
θ · T/S + O(T/N) O(SN)

Fully Buffered Subsequence (S, T,N) O(T/N) O(TN)
Full Sequence (T, T,N) O(T/N) O(TN)

Table 1: Asymptotic bias and compute cost for four different gradient estimators.

From Table 1, we see that without buffering, the naive stochastic gradient has a
C1 · T/S term in the bias bound δ. The fully buffered subsequence and full sequence
gradients remove the buffering error entirely, but require O(TN) computation. Instead,
our proposed buffered stochastic gradient controls the bias, with the geometrically de-
caying factor LB

θ , using only O(SN) computation.

4.3 Buffering Error Bound for Nonlinear SSMs

To obtain a bound for the buffering error term (II), we require the Lipschitz constant Lθ

of smoothing kernels {�Ψt, �Ψt} to be less than 1. Typically the smoothing kernels �Ψt, �Ψt

are not available in closed-form for nonlinear SSMs and therefore directly bounding the
Lipschitz constant is difficult. However, we now show that when the model’s transition
and emission densities are log-concave in xt, xt−1, we can bound the Lipschitz constant
of �Ψt, �Ψt in terms of the Lipschitz constant of either the prior kernels �Ψ(0)

t , �Ψ
(0)
t , or the
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filtered kernels �Ψ(1)
t , �Ψ

(1)
t

�Ψ(0)
t := p(xt |xt−1, θ), �Ψ(1)

t := p(xt |xt−1, yt, θ),

�Ψ
(0)
t := p(xt |xt+1, θ), �Ψ

(1)
t := p(xt |xt+1, yt, θ). (22)

Unlike the smoothing kernels, the prior kernels are defined by the model and are there-
fore usually available. If the filtered kernels are available, then they can be used to
obtain even tighter bounds.

Theorem 3 (Lipschitz Kernel Bound). Assume the prior for x0 is log-concave in x. If
the transition density p(xt |xt−1, θ) is log-concave in (xt, xt−1) and the emission density
p(yt |xt) is log-concave in xt, then

‖�Ψt‖Lip ≤ ‖�Ψ(1)
t ‖Lip ≤ ‖�Ψ(0)

t ‖Lip, (23)

‖ �Ψt‖Lip ≤ ‖ �Ψ
(1)
t ‖Lip ≤ ‖ �Ψ

(0)
t ‖Lip. (24)

Therefore

Lθ = max
t

{‖�Ψt‖Lip, ‖ �Ψt‖Lip}

≤ max
t

{‖�Ψ(1)
t ‖Lip, ‖ �Ψ

(1)
t ‖Lip}

≤ max
t

{‖�Ψ(0)
t ‖Lip, ‖ �Ψ

(0)
t ‖Lip}. (25)

This theorem lets us bound Lθ with the Lipschitz constant of either the prior kernels
or filtered kernels. The proof of Theorem 3 is provided in the Supplement (Aicher et al.,
2023) and uses Caffarelli’s log-concave perturbation theorem (Villani, 2008; Colombo
et al., 2017). Examples of SSMs for which Theorem 3 applies include the linear Gaussian
SSM, the stochastic volatility model, or any linear SSM with log-concave transition and
emission distributions.

Theorem 3 lets us calculate analytic bounds on Lθ for the buffering error of Theo-
rem 2. We provide explicit bounds for Lθ for the linear Gaussian SSM and stochastic
volatility model in Section 5.1 with proofs in the Supplement (Aicher et al., 2023).

5 Experiments
We first empirically test the bias of our particle buffered gradient estimator gPF

θ on
synthetic data for fixed θ. We then evaluate the performance of our proposed SGLD
algorithm (Algorithm 2) on both real and synthetic data.

5.1 Models
For our experiments, we consider three models: (i) the linear Gaussian SSM (LGSSM),
a case where analytic buffering is possible, to assess the impact of the particle fil-
ter; (ii) the stochastic volatility model (SVM) (Shephard, 2005), where the emissions
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are non-Gaussian; and (iii) the generalized autoregressive conditional heteroskedasticity
(GARCH) model (Bollerslev, 1986), where the latent transitions are nonlinear.

Linear Gaussian SSM

The linear Gaussian SSM (LGSSM) is

Xt | (Xt−1 = xt−1, θ) ∼ N (xt |φxt−1 , σ
2),

Yt | (Xt = xt, θ) ∼ N (yt |xt , τ
2), (26)

with ν0(x0) = N (x0 | 0, φ2

1−σ2 ) and parameters θ = (φ, σ, τ).

The transition and emission distributions are both Gaussian and log-concave in x,
so Theorem 3 applies. In the Supplement (Aicher et al., 2023), we show that the filtered
kernels of the LGSSM are bounded with the Lipschitz constant Lθ = |φ| · σ2/(σ2 + τ2).
Thus, the buffering error decays geometrically with increasing buffer size B when |φ| <
(1 + τ2

σ2 ). This linear model serves as a useful baseline since the various terms in (20)
can be calculated analytically.

Stochastic Volatility Model

The stochastic volatility model (SVM) is

Xt | (Xt−1 = xt−1, θ) ∼ N (xt |φxt−1 , σ
2),

Yt | (Xt = xt, θ) ∼ N (yt | 0 , exp(xt)τ2), (27)

with ν0(x0) = N (x0 | 0, φ2

1−σ2 ) and parameters θ = (φ, σ, τ).

For the SVM, the transition and emission distributions are log-concave in x, allowing
Theorem 3 to apply. In the Supplement (Aicher et al., 2023), we show that the prior
kernels {�Ψ(0)

t , �Ψ
(0)
t } of the SVM are bounded with the Lipschitz constant Lθ = |φ|. Thus,

the buffering error decays geometrically with increasing buffer size B when |φ| < 1.

GARCH Model

We finally consider a GARCH(1,1) model (with noise)

Xt | (Xt−1 = xt−1, σ
2
t , θ) ∼ N (xt | 0, σ2

t ),
σ2
t (xt−1, σ

2
t−1, θ) = α + βx2

t−1 + γσ2
t−1,

Yt | (Xt = xt, θ) ∼ N (yt |xt , τ
2), (28)

with ν0(x0) = N (0, α
1−β−γ ) and parameters θ = (α, β, γ, τ). Unlike the LGSSM and

SVM, the noise between Xt and Xt−1 is multiplicative in Xt−1 rather than additive.
This model’s transition distribution is not log-concave in (xt, xt−1) and therefore our
theory (Theorem 3) does not hold. However, we see empirically that buffering can
help reduce the gradient error for the GARCH in the experiments below and in the
Supplement (Aicher et al., 2023).



14 SGMCMC for Nonlinear SSMs

Figure 2: Stochastic gradient bias varying buffer size B for S = 16 for different val-
ues of N . (left) LGSSM φ, (middle) SVM φ, (right) GARCH β. Error bars are 95%
confidence interval over 1000 replications.

Figure 3: Stochastic gradient bias varying subsequence size S for No Buffer (B = 0)
and Buffer (B > 0) for different values of N . (left) LGSSM φ, (middle) SVM φ, (right)
GARCH β. The buffer size B = 8 for LGSSM and GARCH and B = 16 for the SVM.
Error bars are 95% confidence interval over 1000 replications.

5.2 Stochastic Gradient Bias

We compare the error of stochastic gradient estimates using a buffered subsequence
with S = 16, while varying B and N on synthetic data from each model. We generated
synthetic data of length T = 256 using (φ = 0.9, σ = 0.7, τ = 1.0) for the LGSSM,
(φ = 0.9, σ = 0.5, τ = 0.5) for the SVM, and (α = 0.1, β = 0.8, γ = 0.05, τ = 0.3) for
the GARCH model.

Figures 2–4 display the bias of our particle buffered stochastic gradient gPF
θ (S,B,N)

and gθ averaged over 1000 replications. We evaluate the gradients at θ equal to the
data generating parameters. We vary the buffer size B ∈ [0, 16], the subsequence size
S ∈ [1, T ] and the number of samples N ∈ {100, 1000, 10000}. For the LGSSM, we also
consider N = ∞, by calculating gPF

θ (S,B,∞) using the Kalman filter (Kalman, 1960),
which is tractable in the linear setting. We calculate gθ using the Kalman filter for the
LGSSM, and use gθ ≈ gPF

θ (T, 0, 107) for the SVM and the GARCH model, assuming
that N = 107 particles is sufficient for an accurate approximation in these 1-dimensional
settings.
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Figure 4: Stochastic gradient bias varying N for different S,B. (left) LGSSM φ, (middle)
SVM φ, (right) GARCH β. (top) x-axis is N , (bottom) x-axis is runtime in seconds. No
Buffer is gPF(16, 0, N), Buffer B = B is gPF(16, B,N), Buffer B = T is gPF(16, T,N),
and Full is gPF(T, T,N). The moderate buffer size B = 8 for LGSSM and GARCH and
B = 16 for the SVM. Error bars are 95% confidence interval over 1000 replications.

Figure 2 shows the bias as we vary the buffer size B for different N and S = 16. From
Figure 2, we see the trade-off between the buffering error (II) and the particle error (III)
in the bias bound, (18) of Theorem 2. For all N , when B is small, the buffering error
(II) dominates, and therefore the MSE decays exponentially as B increases. However
for N < ∞, the particle error (III) dominates for larger values of B. In fact, the bias
slightly increases due to particle degeneracy, as |S∗| = S + 2B increases with B. For
N = ∞ in the LGSSM case, we see that the bias continues to decreases exponentially
with large B as there is no particle filter error when using the Kalman filter.

Figure 3 shows the bias as we vary the subsequence size S for different N and with
and without buffering. We see that buffering helps regardless of subsequence size (as the
bias for all buffered methods are lower than the no buffer methods for all S ∈ [2, 64]).
We also see that increasing S can increase the bias for fixed N (when buffering) as the
particle error (III) dominates.

Figure 4 shows the bias as we vary the number of particles N for the four different
methods correspond to Table 1. In the top row, we compare the bias against N and
in the bottom row, we compare the bias against the runtime required to calculate gPF

θ .
We see that the method without buffering (orange) is significantly biased regardless of
N , where as buffering with moderate B (blue), buffering with large B = T (red), and
using the full sequence (green) have similar (lower) bias as we increase N . However the
runtime plots show that buffering with moderate B takes significantly less time.
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In summary, Figures 2–4 show that buffering cannot be ignored in these three exam-
ple models: there is high bias for B = 0. In general, buffering has diminishing returns
when B is excessively large relative to N .

In the Supplement (Aicher et al., 2023), we present plots of the bias varying B,S,N
using different particle filters (PaRIS and Poyiadjis N2) instead of the naive PF. We
find that they perform similarly to the naive PF for the small subsequence lengths |S∗|
considered, while taking ≈ 10 times longer to run. We also present plots of the bias as
we vary the parameters of the data generating model. We find that as the parameters
become more challenging (e.g. Lθ → 1), we need to increase both B and N to control
bias; otherwise, the buffer stochastic subsequence methods are more biased than using
full sequence gradient.

5.3 SGLD Experiments
Having examined the stochastic gradient bias, we now examine using our buffered
stochastic gradient estimators in SGLD (Algorithm 2).

SGLD Evaluation Method

We measure the sample quality of our MCMC chains {θ(k)}Kk=1 using the kernel Stein
discrepancy (KSD) for equal compute time (Gorham and Mackey, 2017; Liu et al., 2016).
We choose to use KSD rather than classic MCMC diagnostics such as effective sample
size (ESS) (Gelman et al., 2013), because KSD penalizes the bias present in our MCMC
chains. Whilst it can be hard to interpret the absolute value of KSD for any problem, it
is informative for comparing between different algorithms. Given a sample chain (after
burnin and thinning) {θ(k)}K̃k=1, let p̂(θ|y) be the empirical distribution of the samples.
Then the KSD between p̂(θ|y) and the posterior distribution p(θ|y) is

KSD(p̂, p) =
dim(θ)∑
d=1

√√√√√ K̃∑
k,k′=1

Kd
0(θ(k), θ(k′))

K̃2
, (29)

where
Kd

0(θ, θ′) = 1
p(θ|y)p(θ′|y)∇θd∇θ′

d
(p(θ|y)K(θ, θ′)p(θ′|y)) (30)

and K(·, ·) is a valid kernel function. Following Gorham and Mackey (2017), we use the
inverse multiquadratic kernel K(θ, θ′) = (1+‖θ−θ′‖2

2)−0.5 in our experiments. Since (30)
requires full gradient evaluations of log p(θ|y) that are computationally intractable, we
replace these terms with corresponding stochastic estimates using the full particle filter
estimate, gPF

θ (Gorham et al., 2020).

SGLD on Synthetic LGSSM Data

To assess the effect of using particle filters with buffered stochastic gradients, we first
focus on SGLD on synthetic LGSSM data, where calculating ĝθ(S,B) is possible. We
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generate training sequences of length T = 103 or 106 using the same parametrization
as Section 5.2.

We consider three pairs of different gradient estimators: Full (S = T ), Buffered
(S = 40, B = 10) and No Buffer (S = 40, B = 0) each with N = 1000 particles
using the particle filter and with N = ∞ using the Kalman filter. To select the stepsize,
we performed a grid search over ε ∈ {1, 0.1, 0.01, 0.001} and selected the method with
smallest KSD to the posterior on the training set. We present the KSD results (for the
best ε) in Table 2 and trace plots of the metrics in Figure 5.

Figure 5: Comparison of SGLD with different gradient estimates on synthetic LGSSM
data: T = 103 (left), T = 106 (right). MSE of estimated posterior mean to true φ = 0.9.

From Figure 5, we see that the methods without buffering (B = 0) have higher MSE
as they are biased. We also see that the full sequence methods (S = T ) perform poorly
for large T = 106.

The KSD results further support this story. Table 2 presents the mean and standard
deviation on our estimated log10 KSD for θ. Tables of the marginal KSD for individual
components of θ can be found in the Supplement (Aicher et al., 2023). The methods
without buffering have larger KSD, as the inherent bias of ĝθ(S,B = 0) led to an
incorrect stationary distribution. The full sequence methods perform poorly for T = 106

because of a lack of samples that can be computed in a fixed runtime.

In the Supplement (Aicher et al., 2023), we present similar results on synthetic SVM
and GARCH data. Also in the Supplement (Aicher et al., 2023), we present results
on LGSSM in higher dimensions. As is typical in the particle filtering literature, the
performance degrades with increasing dimensions for N fixed.

SGLD on Exchange Rate Log-Returns

We now consider fitting the SVM and the GARCH model to EUR-USD exchange rate
data at the minute resolution from November 2017 to October 2018. The data consists
of 350,000 observations of demeaned log-returns. As the market is closed during non-
business hours, we further break the data into 53 weekly segments of roughly 7,000
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log10KSD

S B N T = 103 T = 106

T – 1000 0.85 (0.08) 4.92 (0.40)

∞ 0.64 (0.17) 4.85 (0.36)

40 0 1000 1.58 (0.03) 4.68 (0.10)

∞ 1.55 (0.03) 4.68 (0.11)

40 10 1000 0.68 (0.25) 3.43 (0.19)
∞ 0.61 (0.21) 3.25 (0.29)

Table 2: KSD for Synthetic LGSSM. Mean and SD. Results are shown after running
each method for a fixed computational time.

observations each. In our model, we assume independence between weekly segments
and divide the data into a training set of the first 45 weeks and a test set of the last 8
weeks. Full processing details and example plots are in the Supplement (Aicher et al.,
2023). Our method (Algorithm 2) easily scales to the unsegmented series; however the
abrupt changes between starts of weeks are not adequately modeled by (27)

We fit both the SVM and the GARCH model using SGLD with four different gradient
methods: (i) Full, the full gradient over all segments in the training set; (ii) Weekly,
a stochastic gradient over a randomly selected segment in the training set; (iii) No
Buffer, a stochastic gradient over a randomly selected subsequence of length S = 40;
and (iv) Buffer, our buffered stochastic gradient for a subsequence of length S = 40
with buffer length B = 10. To estimate the stochastic gradients, we use Algorithm 1
with N = 1000. To select the stepsize parameter, we performed a grid search over
ε ∈ {1, 0.1, 0.01, 0.001} and selected the method with smallest KSD. We present the
KSD results in Table 3.

log10KSD

Method SVM GARCH

Full 4.03 (0.14) 2.84 (0.30)

Weekly 3.87 (0.08) 2.81 (0.21)

No Buffer 4.48 (0.01) 2.09 (0.09)
Buffer 3.56 (0.08) 2.19 (0.05)

Table 3: KSD for SGLD on exchange rate data. Mean and SD over 5 chains each. Results
are shown after running each method for a fixed computational time.

For the SVM, we see that buffering leads to more accurate MCMC samples, Ta-
ble 3 (left). In particular, the samples from SGLD without buffering have smaller φ, τ2

and a larger σ2, indicating that its posterior is (inaccurately) centered around a SVM
with larger latent state noise. We also again see that the full sequence and weekly
segment methods perform poorly due to the limited number of samples that can be
computed in a fixed runtime.

For the GARCH model, Table 3 (right), we see that the subsequence methods out
perform the full sequence methods, but unlike in the SVM, buffering does not help with
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inference on the GARCH data. This is because the GARCH model that we recover
on the exchange rate data (for all gradient methods) is close to white noise β ≈ 0.
Therefore the model believes the observations are close to independent, hence no buffer
is necessary.

6 Discussion
In this work, we developed a particle buffered stochastic gradient estimators for nonlin-
ear SSMs. Our key contributions are (i) extending buffered stochastic gradient MCMC
with particle filtering for nonlinear SSMs, (ii) analyzing the error of our proposed parti-
cle buffered stochastic gradient gPF

θ (Theorem 2) and its affect on our SGLD Algorithm 2
(Theorem 1), and (iii) generalizing the geometric decay bound for buffering to nonlinear
SSMs with log-concave likelihoods (Theorem 3). We evaluated our proposed gradient
estimator with SGLD on both synthetic data and EUR-USD exchange rate data. We
find that buffering is necessary to control bias and that our stochastic gradient methods
(Algorithm 2) are able to out perform batch methods on long sequences.

Possible future extensions of this work include relaxing the log-concave restriction
of Theorem 3, extensions to Algorithm 2 as discussed at the end of Section 3.2, and
applying our particle buffered stochastic gradient estimates to other applications than
SGMCMC, such as maximising likelihoods or optimization in variational autoencoders
for sequential data (Maddison et al., 2017; Naesseth et al., 2018).

Supplementary Material
Supplementary Material (DOI: 10.1214/23-BA1395SUPP; .pdf). See the Supplement
(Aicher et al., 2023) for all additional material. In Supplement A, we provide additional
details and proofs for the error analysis of Section 4. In particular, we provide the proof
of Theorem 1 in Supplement A.1, the proof of Theorem 2 in Supplement A.2, the proof
of Theorem 3 in Supplement A.3 and applications of Theorem 3 for LGSSM and SVM
in Supplement A.4. In Supplement B, we provide additional particle filter and gradient
details for the models in Section 5.1. In Supplement C, we provide additional details
and figures of experiments.
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