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Abstract. In this paper, we study Bayesian asymptotic properties of the pro-
portional hazards model where the link function is modeled by the generalized
additive model. As the standard generalized additive model is, the generalized
additive proportional hazards model is a useful tool in finding the nonlinearity
of covariate effects to survival times. We develop a data-dependent sieve prior
for the generalized additive link function and use the Bayesian bootstrap prior
for the baseline hazard function. We prove that the posterior contraction rate
of the generalized additive link function is minimax optimal up to a logn term
when the prior is carefully selected. By analyzing simulated as well as real data,
we verify our theoretical results and compare with exisiting algorithms for the
generalized additive proportional hazards model to illustrate that the proposed
Bayesian model is a useful inference tool.
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1 Introduction
For decades, the proportional hazards (PH) model (Cox, 1975) has been widely used to
assess the effect of covariates on the hazard function. The typical PH model assumes
that the hazard function of survival time T given a covariate vector z ∈ R

b has the form

λ(t | z) = exp(z′β)λ0(t), t ∈ [0,∞), (1)

where λ0(t) is a fully unspecified baseline hazard function. The key assumption of the
PH model is that log λ(t | z) = z′β +log λ0(t). That is, the log hazard function is linear
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in z, which is referred to as the proportionality. The hazard increases as a constant
rate over time when z increases in a unit value. Even though the proportionality allows
interpretation of the regression coefficients to be simple, the linearity in z may not hold
in many situations (Keele, 2010).

Various modifications of the PH model for nonproportionality have been proposed.
Time-varying coefficients models, which allow the regression coefficient β depending
on time t, have been considered (Lambert and Eilers, 2005; Tian et al., 2005; Thomas
and Reyes, 2014; Kim et al., 2017), and nonparametric regression approaches, which
replace z′β in (1) by f(z), have been studied (Chen et al., 2010; Hastie and Tibshirani,
1990; Huang, 1999; Shang et al., 2013; Argyropoulos and Unruh, 2015; Gaïffas and
Guilloux, 2012). In this paper, we focus on the second approach – the PH model with
a nonparametric link function.

Nonparametric regression approaches for the PH model assume

log λ(t | z) = f(z) + log λ0(t), (2)

where the link function f is modeled by the generalized additive model (GAM) (Hastie
and Tibshirani, 1990), the partial linear model (Huang, 1999; Shang et al., 2013) or the
single index model (Gaïffas and Guilloux, 2012). Among these, the GAM is known to
be a useful compromise between a linear and fully nonparametric models in particular
when b is large.

In this paper, we consider Bayesian analysis of the proportional hazards model with
the link function f in (2) modeled by the GAM such that

log λ(t | z) =
b∑

a=1
fa(za) + log λ0(t), (3)

where fa : R → R. We call the model (3) the Generalized Additive Proportional Hazards
(GA-PH) model. Bayesian analysis of the GA-PH model has been already considered
by Umlauf et al. (2018), Scheipl et al. (2012) and Yi et al. (2019).

Our main contributions are (i) to develop a prior and the corresponding posterior
sampling algorithm for f and λ0 based on a data-dependent B-spline Basis functions
and Bayesian boostrap approach (Kim and Lee, 2003a) and (ii) to study asymptotic
properties of the resulting posterior distribution of f = (f1, . . . , fb) to prove that the
posterior contraction rate is minimax optimal (up to log term) and adaptive with right-
censored data. Advatages of our Bayesian model are that the model is flexible and
the posterior sampling is simple and efficient along with the desirable large sample
properties.

Bayesian boostrap approach of (Kim and Lee, 2003a) is about the prior on λ0. For
λ0(t), various priors have been proposed such as gamma processes (Kalbfleisch, 1978),
beta processes (Hjort, 1990), mixture of Lévy processes (Nieto-Barajas and Walker,
2004) and mixture of Weibull (Kottas, 2006). In this paper, we use the Bayesian boot-
strap (BB) prior proposed by Kim and Lee (2003a). The BB prior is conceptually and
computationally easy to use compared to the aforementioned full Bayesian approaches
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as it does not require prior information and the marginal likelihood of f becomes the
partial likelihood. In addition, Kim and Lee (2003a) proved that the BB prior could be
understood as a limit of the Lévy process priors including gamma and beta processes
and enjoys desirable large sample properties. Kim et al. (2011) and Kim et al. (2017)
utilize the Bayesian bootstrap prior for monotone hazard models and time-dependent
coefficient models.

Our study is based on Bayesian nonparametric approaches for survival analysis,
which have been studied for several decasdes but still are active. Castillo and van der
Pas (2021) prove the Bernstein von-Mises theorem for linear functionals of the hazard
function with right censored data. Dependent priors for multiple hazard functions have
been proposed by Camerlenghi et al. (2021) and Riva-Palacio et al. (2022), and Bayesian
analysis for dependent censoring problems is considered by Paulon et al. (2022). A
copula-based predictive update of Bayesian nonparametric survival analysis is proposed
by Fong and Lehmann (2022), which does not require the specification of complex
nonparametric priors.

The remainder of this paper is organized as follows. Setups of the model and prior
are given in Section 2. In Section 3, the posterior contraction rate of the GA-PH, which
is minimax optimal up to a logn term, is derived when the smoothness of the true
link function is known. In addition, a prior on the smoothness of the link function is
devised so that the posterior contraction rate is minimax optimal adaptive to the true
smoothness. The results of simulation studies and real data analysis are presented in
Sections 4 and 5, respectively, and concluding remarks follow in Section 6. All proofs for
Lemmas and Theorems are deferred to the Supplementary Material (Kim et al., 2023).

2 Model, prior and posterior
2.1 Model and data

Let X1, . . . , Xn be independent survival times and z1, . . . , zn ∈ [−B,B]b be covariate
vectors for B > 0. It is assumed that the hazard function λ(t | zi) of Xi for given zi
is given as (3). The survival times are subject to right censoring, and only D(1:n) =
{(T1, δ1, z1), . . ., (Tn, δn, zn)} are observed, where Ti = min{Xi, Ci}, δi = I(Xi ≤ Ci)
and C1, . . . , Cn are independent censoring variables having a common distribution func-
tion G. As usual, we assume that the censoring variables are independent of the Xi’s.
Let f∗ and λ∗

0 be the true link and baseline hazard function, respectively. For f∗, we
assume that supza∈[−B,B] |f∗

a (za)| < A and for all a = 1, . . . , b,

∫ B

−B

f∗
a (za)dza = 0. (4)

The constraint (4) is introduced to make f∗ and λ∗
0 be identifiable.
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2.2 Prior
We consider a sieve prior for f = (f1, . . . , fb) as follows. Let

Θp =
{
f = (f1, . . . , fb) : ‖f (p)‖∞ < A, ‖f‖∞ < A,

∫ B

−B

fa(za)dza = 0, a = 1, . . . , b
}
, (5)

where ‖f‖∞ =
∑b

a=1 supza∈[−B,B] |fa(za)| and f
(p)
a is the p-th derivative of fa. For

given basis functions Ban,k(·), k = 1, . . . , an, the sieve Sn of Θp considered in this paper
is given as:

Sn =
{
f = (f1, . . . , fb) : fa(za) =

an∑
k=1

τa,kBan,k(za), sup
a,k

|τa,k| ≤ L

∫ B

−B

fa(za)dza = 0, a = 1, . . . , b
}
. (6)

For the basis functions, we focus on B-spline basis functions of degree s having equally
spaced an+s+1 knots on [−B,B]. However, the proofs for the posterior contraction rate
in this paper can be modified for other basis functions (e.g., Fourier basis) without much
difficulty. For details of the B-spline, the definition and properties of the B-spline basis
functions can be found in Györfi et al. (2002), and we summarize the formal definition
of B-spline basis functions and examples in Section 1 of the Supplementary Material for
reader’s sake. It is also known that ζ def= supf∈Sn

‖f‖∞ ≤ (max{2s[s(s−1)]s/s!, 1})−1L.

For fa ∈ Sn, we can write fa(·) = τ ′
aBan(·) for some vector τ a, where Ban(·) is the

vector of B-spline basis functions

Ban(·) = (Ban,1(·), . . . , Ban,an(·))′.

In this paper, we use f and τ = (τ ′
1, . . . , τ

′
b)′ interchangeably unless there is any con-

fusion. Due to the constraint (4), the free parameters are τ a,−an = (τa,1, . . . , τa,an−1)′
in the sense that τa,an is defined automatically once τ a,−an is given. For notational
simplicity, we use τ a and τ a,−an interchangeably unless otherwise stated.

The stability of the B-spline (Lyche and Mørken, 2008) implies that there exist
0 < q1 ≤ q2 < ∞ such that

q1‖f‖2 ≤ τ ′τ/an ≤ q2‖f‖2, (7)

where ‖f‖ =
{∑b

a=1
∫ B

−B
|fa(za)|2dza

}1/2

. This implies the equivalence up to a con-

stant between the l2 norm of τ divided by an and the l2 norm of f .

The following proposition, which plays a key role in our derivation, is about the
approximating property of the B-spline basis functions whose proof can be found in
de Boor et al. (1976), Györfi et al. (2002) or Lyche and Mørken (2008).
Proposition 1. Suppose that the degree s of the B-spline basis functions is greater than
or equal to p. Then, for any f∗ ∈ Θp, there exists fB,∗ ∈ Sn satisfying

‖f∗ − fB,∗‖∞ = O
(
a−p
n

)
.
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Remark. Here, we only consider ‘the equally spaced knots’ to simplify the B-spline
approximation (Lyche and Mørken, 2008). In practice, B-spline basis functions with
equally spaced knots approximate low curvature functions well. On the other hand, for
functions having high curvature, data-dependent knots perform better (Sharef et al.,
2010). For the GA-PH model, we did a small simulation study about data-dependent
knots whose results are given in Section 7 of the Supplementary Material.

The proposed sieve prior for (f1, · · · fb)′ puts prior probabilities on τ such that

πp
n(dτ1,1, · · · , dτ1,an−1, · · · , dτb,1, · · · , dτb,an−1)

∝
b∏

a=1

{
an−1∏
k=1

φ(τa,k | 0, σ2)I(|τa,k| ≤ L)dτa,1dτa,2, · · · , dτa,an−1

}
, (8)

where φ(· | μ, σ2) is the probability density function of the Gaussian distribution with
mean μ and variance σ2, and I(·) is the indicator function. Note that the constraint (4)
implies

∫
τa,anBan,an(za)dza = −

∫ ∑an−1
k=1 τa,kBan,kd(za)dza and thus τa,an is defined

once τa,1, . . . , τa,an−1 are given.

For the prior on λ0, we use the BB prior of Kim and Lee (2003a). Let qn be the
number of distinct uncensored observations and 0 < t1 < t2 < · · · < tqn be the cor-
responding ordered distinct uncensored observations. Let Λ0(t) =

∫ t

0 λ0(s)ds. Consider
the empirical likelihood Ln(f,Λ0) defined as:

Ln(f,Λ0)

=
n∏

i=1

[
exp

{
b∑

a=1
fa(zia)

}
ΔΛ0(Ti)

]δi

exp

⎡
⎣− exp

{
b∑

a=1
fa(zia)

} ∑
tk≤Ti

ΔΛ0(tk)

⎤
⎦ .(9)

See Kim and Lee (2003b) for details of the empirical likelihood (9). The BB treats the
empirical likelihood of (9) as the real likelihood with the parameters f and ΔΛ0(t1), . . .,
ΔΛ0(tqn) and puts the prior on ΔΛ0(t1), . . . ,ΔΛ0(tqn) as well as f , where

πp
n(Λ0) ∝

qn∏
k=1

1
ΔΛ0(tk)

. (10)

2.3 BB posterior inference

The joint posterior distribution of f and Λ in the BB approach is proportional to

n∏
i=1

[
exp

{
b∑

a=1
fa(zia)

}
ΔΛ0(Ti)

]δi

exp

⎡
⎣− exp

{
b∑

a=1
fa(zia)

} ∑
tk≤Ti

ΔΛ0(tk)

⎤
⎦

×
qn∏
k=1

1
ΔΛ0(tk)

πp
n(dτ1,1, · · · , dτb,an−1), (11)
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where fa(·) = τ ′
aBan(·). Let D(t) = {k : Tk = t, δk = 1} and R(t) = {j : Tj ≥ t}. We

can approximate this joint posterior distribution by the following.

By direct calculation, the marginal posterior of τ from (11) turns out to be

πp
n(dτ1,1, · · · , dτ1,an−1, · · · , dτb,1, · · · , dτb,an−1 | D(1:n))

∝
qn∏
i=1

∑
k∈D(ti) exp

(∑b
a=1 fa(zka)

)
∑

j∈R(ti) exp
(∑b

a=1 fa(zja)
)
/n

πp
n(dτ1,1, · · · , dτb,an−1). (12)

Note the first term of (12) is the partial likelihood p
n(f) as:

Lp
n(f) =

qn∏
i=1

∑
k∈D(ti) exp

(∑b
a=1 fa(zka)

)
∑

j∈R(ti) exp
(∑b

a=1 fa(zja)
)
/n

.

Since the partialikelihood is log-concave, we can generate τ from its marginal posterior
distribution easily.

The conditional posterior of ΔΛ0(tk), k = 1, . . . , qn given f is given as:

πp
n(ΔΛ0(tk) | f,D(1:n)) = βαk

k

Γ(αk)
ΔΛ0(tk)αk−1 exp {−ΔΛ0(tk)βk} , (13)

where αk = |D(tk)| and βk =
∑

i∈R(tk) exp
{∑b

a=1 fa(zia)
}

, which is the gamma dis-
tribution with the parameters αk and βk. Hence, the baseline hazard function can be
generated easily from the conditional posterior distribution.

Hereafter we use the notations of πp
n(df) and πp

n(df | D(1:n)) instead of πp
n(dτ1,1, · · · ,

dτb,an−1) and πp
n(dτ1,1, · · · , dτb,an−1 | D(1:n)) for simplicity.

3 Posterior contraction rates of f
In this section we derive the posterior contraction rate of f given in (12) when the
true smoothness of the true link function is known. Then, we develop a prior on the
smoothness so that the resulting posterior is adaptive in the sense that the posterior
contraction rate is minimax optimal (up to a logn term) regardless of the smoothness
of the true link function.

We say that the posterior contraction rate is εn if for any positive diverging sequence
Mn,

πp
n

[
{f ∈ Sn : ‖f − f∗‖ ≥ ε} |D(1:n)

]
→ 0

in P ∗
n probability as n → ∞, where P ∗

n is the true probability measure of {(Ti, δi, zi)}ni=1
with the true link functions f∗ and the true baseline hazard function λ∗

0.

We assume that the covariate vectors z1, . . . , zn are independent realizations of the
random vector Z. Throughout this paper, we assume the following three regularity
conditions.
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(A1) The G satisfies G(τ) = 1, G(τ−) < 1 for some τ ∈ (0,∞) and has only a finite
number of jumps.

(A2) The Cov(Z) is positive definite, and Z has a probability density function hz such
that

h1 ≤ inf
w∈[−B,B]b

hz(w) ≤ sup
w∈[−B,B]b

hz(w) ≤ h2

for two positive constants h1 and h2.

(A3) There exist positive constant a1 and a2 such that a1 ≤ λ∗
0(t) ≤ a2 for all t ∈ [0, τ ].

Assumption (A1) means that the follow-up of each subject is terminated before
τ , which holds in most studies. Assumption (A2) basically requires that the covari-
ate vector is nonsigular. In this paper, we only consider continuous covariate vectors
for technical simplicity but categorical covariate vectors can be easily incoporated. As-
sumption (A3) assumes that the distribution of survival time is absolutely continuous,
which is assumed in most studies of survival analysis.

3.1 Posterior contraction rate when the smoothness of the true
link function is known

The following theorem provides the posterior contraction rate of the BB posterior of f ,
which is the same as the minimax optimal convergence rate (Györfi et al., 2002) up to
the lognp/(2p+1) term.

Theorem 1. Suppose that regularity conditions (A1)–(A3) hold and f∗ ∈ Θp. Then,
under the B-spline prior πp

n with an = [(n/ logn)1/(2p+1)], we have that for any diverging
sequence Mn,

πp
n

(
‖f − f∗‖ ≥ Mn(n/ logn)−p/(2p+1) | D(1:n)

)
→ 0

in probability as n → ∞.

We use the BB prior on the baseline hazard function, which is not a proper prior. We
may wonder what is the posterior contraction rate of a full Bayesian posterior. When
the prior of the baseline hazard function is the beta process (Hjort, 1990), we can prove
that the posterior contraction rate of f is the same as that in Theorem 1. The detailed
proof is given in Section 2 of the Supplementary Materials.

3.2 Posterior contraction rate with adaptive prior when the
smoothness of the true link function is unknown

For given f∗, let p∗ be the smoothness of f∗ defined as p∗ = supp{p : f∗ ∈ Θp}. Suppose
that p∗ is unknown. In this case, a standard Bayesian approach is to use the hierarchical
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prior where a prior is placed on p and the sieve prior conditional on p is used for f . We
devise a prior on p which is adaptive to p∗ in the sense that the posterior contraction
rate of f is the same as that with the case of known p∗.

For an adaptive prior, we consider the following prior on p:

πn(p) ∝ exp
(
−ηnn(n/ logn)−p/(2p+1)

)
, (14)

where ηn is a sequence of diverging real numbers such that limn→∞ ηn/ logn = 0.

The prior (14), which is devised to have desirable large sample properties, is not of
a standard distribution. However, there is an important implication. The prior πn(p)
decreases in p and the decreasing rate becomes exponentially faster as n is getting larger.
That is, to achieve the optimal posterior concentration rate, the prior should strongly
discourage larger p. The following theorem proves that the posterior distribution of p
under the prior (14) is consistent.

Theorem 2. Suppose that regularity conditions (A1)–(A3) hold, the prior πn(p) sat-
isfies (14) and the sieve prior introduced in Section 2 with an = [(n/ logn)1/(2p+1)]
conditional on p is used for f . Then, for any f∗ with the smoothness p∗, we have

πp
n(p = p∗ | D(1:n)) → 1

with probability tending to 1 as n → ∞.

A direct consequence of Theorem 2 is that the hierarchical prior with the prior (14)
on p and the sieve prior on f conditional on p yields the posterior distribution whose
convergence rate is minimax optimal up to a logn term, which is stated in the following
corollary.

Corollary 1. Suppose that the prior πn(p) satisfies (14) and the sieve prior intro-
duced in Section 2 with an = [(n/ logn)1/(2p+1)] conditional on p is used for f . If the
smoothness of f∗ is p∗, then we have that for any diverging sequence Mn,

πp
n

(
‖f − f∗‖ ≥ Mn(n/ logn)−p∗/(2p∗+1) | D(1:n)

)
→ 0

in probability as n → ∞.

4 Simulation studies
In this section, we investigate finite sample properties of the BB posterior distribution
of f by analyzing simulated data. The degree of the B-spline basis functions is set to 3,
for which we denote our Bayesian method GA-PH(3). The Markov chain Monte Carlo
(MCMC) algorithm used in this section is described in Section 6 of the Supplementary
Materials. For computational simplicity, instead of (4) we use the constraint fa(ma) = 0,
where ma = min(supp(za)). Here min(supp(za)) is the minimum value of supp(za),
where supp(za) is the support of the covariate za.
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We consider three cases for simulation. The first case considers one component GA-
PH models and the second case considers a GA-PH model with two components. For
these two cases, we investigate the performance of the BB posterior distribution and
compare them with the two competitors: MGCV (Wood et al., 2016) and bamlss (Um-
lauf et al., 2018), where the first is the frequetists method based on a penalized likeli-
hood, and the later is a Bayesian approach using the normal approximation to generate
MCMC samples. Note that PH-GA(3) uses the M-H algorithm.

The third case considers a GA-PH model with two components but the true model
is an one-component GA-PH model. We apply the slab-and-spike prior along with our
sieve prior and investigate how well our Bayesian model selects the signal component.
For comparison, we also apply BhGLM (Yi et al., 2019) and relgam (Tay and Tibshirani,
2020) that select signal components by a prior and a penalty function, respectively.

4.1 Simulation study I
We first considers the cases where the dimension of the covariate is one. We let λ∗

0(t) = 1
and the distribution of censoring time be the exponential distribution with mean 1/η.
The covariate is generated from the mixture of normal distributions:

0.5N (0.6, 0.42) + 0.5N (−0.6, 0.42)

truncated on [−1, 1]. For the link function f∗ generating data, we consider the following
four functions: 3 log(1 + z), 2(1 − z2), 2I(z > 0), and 3 sin(2πz), i.e., log, quadratic,
step, and sine functions. The η is selected so that the censoring probability becomes
0.2 for the log and quadratic link functions and 0.4 and 0.5 for the step and the sine
functions, respectively.

Four basis functions with equally spaced knots are assigned to the log and quadratic
functions and eights and tens of basis functions are assigned to the step and sine func-
tions, respectively. We assign more basis functions to the step and sine functions since
they are more complex. For the competitors, MGCV and bamlss with sufficient numbers
(no less than 10) of basis functions are assigned for fair comparison. Detailed setups
for the considered algorithms including the burn-in, thinning and hyperparameter se-
lections are given in Section 6 of the Supplementary Materials. In addition, the effect
of the number of basis functions and the random knot selection instead of the equally
spaced knots are discussed in Section 7 of the Supplementary Materials.

Figure 1 compares GA-PH(3) with MGCV and bamlss. For Bayesian models, i.e.,
GA-PH(3) and bamlss, the Bayes estimates (posterior means) of the link function and
the point-wise 95% credible intervals are provided, whereas the point estimates and 95%
confidence intervals are given for MGCV. We only present the results for the sample
size n = 100 here and the results for other sample sizes are given in Section 7 of the
Supplementary Materials. The interval estimates of GA-PH are much better than those
of MGCV and bamlss in the sense that the intervals well include the true link functions.
In addition, it is interesting that the estimates of MGCV and bamlss look almost linear
for the step function while GA-PH(3) captures an abrupt change from the discontinuity
point of the step function.
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Figure 1: Bayes estimates (dot-dashed lines) and the upper and lower limits of the 95%
credible intervals (dotted lines) for the four link functions when sample size is 100. Left
to right: GA-PH(3), bamlss, and MGCV.

Data size Algorithm Log Quadratic Sine Step Average
2 (CP) 2 (CP) 2 (CP) 2 (CP) 2 (CP)

n = 100
GA-PH(3) 0.13 (0.95) 0.15 (0.95) 0.45 (0.97) 0.22 (0.97) 0.23 (0.96)

bamlss 0.09 (1.00) 0.27 (1.00) 1.70 (0.79) 0.30 (0.61) 0.59 (0.85)
MGCV 0.10 (1.00) 0.27 (0.97) 1.53 (0.97) 0.33 (0.57) 0.56 (0.88)

n = 300
GA-PH(3) 0.16 (1.00) 0.13 (1.00) 0.33 (0.97) 0.14 (1.00) 0.19 (0.99)

bamlss 0.14 (0.83) 0.11 (1.00) 0.32 (0.97) 0.16 (1.00) 0.18 (0.95)
MGCV 0.13 (0.19) 0.12 (0.16) 0.35 (0.96) 0.18 (0.99) 0.20 (0.99)

n = 500
GA-PH(3) 0.08 (0.99) 0.11 (0.99) 0.21 (0.96) 0.13 (1.00) 0.13 (0.98)

bamlss 0.08 (1.00) 0.10 (0.99) 0.26 (1.00) 0.11 (0.99) 0.14 (1.00)
MGCV 0.09 (1.00) 0.11 (1.00) 0.23 (1.00) 0.13 (0.97) 0.14 (0.99)

Table 1: 2 is defined as 22 = minc

∑n
i=1(f̂(zi) − f(zi) − c)2/n, where f̂(·) and f(·) are

the Bayes estimate and true function respectively, and CP is the proportion of zis where
the point-wise credible/confidence intervals of f at each zi include the value of the true
link function.

Table 1 compares the 2 distances of the point estimates from the true link function
defined as 22 = minc

∑n
i=1(f̂(zi) − f(zi) − c)2/n, and the coverage proportions (CPs)

defined as the proportion of zis where the point-wise credible/confidence intervals of
f at each zi include the value of the true link function. In Table 1, we can clearly see
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Figure 2: Bayes estimates (red dot-dashed lines) and the upper and lower limits of the
95% credible/confidence intervals (dotted lines) for two component functions when the
sample size is 100. Left to right: GA-PH(3), bamlss, and MGCV. The censoring rate is
set to be 0.5.

Functions Data size GA-PH(3) bamlss MGCV
2 (CP) 2 (CP) 2 (CP)

Step (1st)
n = 100 0.48 (0.93) 0.43 (0.82) 0.50 (0.56)
n = 300 0.32 (0.93) 0.25 (0.94) 0.25 (0.94)
n = 500 0.31 (0.92) 0.23 (0.92) 0.24 (0.91)

Sine (2nd)
n = 100 0.53 (1.00) 1.05 (0.46) 0.92 (0.57)
n = 300 0.26 (0.99) 0.90 (0.29) 0.90 (0.34)
n = 500 0.20 (0.97) 0.65 (0.37) 0.69 (0.36)

Average of two components
n = 100 0.50 (0.97) 0.74 (0.64) 0.71 (0.56)
n = 300 0.29 (0.96) 0.58 (0.62) 0.58 (0.64)
n = 500 0.26 (0.95) 0.44 (0.64) 0.47 (0.64)

Table 2: 2 is defined as 22 = minc

∑n
i=1(f̂(zi) − f(zi) − c)2/n, where f̂(·) and f(·) are

the Bayes estimate and true function respectively, and CP is the proportion of zis where
the point-wisecredible/confidence intervals of f at each zi include the value of the true
link function.

that GA-PH(3) performs much better in terms of 2 (i.e. the accuracy of the point
estimate), especially when either the sample sizes are small or the true link function is
the sine function. Moreover, the CPs of MGCV and bamlss become worse when data
size increases while those of GA-PH(3) remain stable with respect to the sample size.

4.2 Simulation study II: Multivariate case
We consider a two component GA-PH model, where the true link function for data
generation is given as f∗(z) = f1(z1) + f2(z2) where z ∈ [−1, 1]2,

f∗
1 (z1) = 2I(z1 > 0), and f∗

2 (z2) = 2 sin(2πz2).
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For simulation, we generate z1 and z2 independently from the uniform distribution on
[−1, 1]. For the data-dependent prior, the numbers of basis functions are eight and ten
for f1 and f2, respectively. The censoring rate is set to be 0.5 and the other setups are
the same as those in Section 4.1.

Figure 2 presents the point estimates and credible/confidence intervals for the two
components when n = 100. The figures for other sample sizes are presented in Section
7 of the Supplementary Material. It is observed that the true link function is almost
encapsulated by the 95% credible intervals of the GA-PH(3). In contrast, the 95%
intervals of bamlss and MGCV do not include the sine function properly. In addition,
the point estimates of bamlss and MGCV for the step function look linear.

Table 2 presents the 2s and CPs of the two components. For the point estimation,
GA-PH(3) is inferior for the step function but superior for the sine function. It is ob-
served that GA-PH(3) measures the uncertainties much better than bamlss and MGCV
do, especially when the sample size is large. The CPs of the sine function for bamlss
and MGCV becomes worse as the sample size increases, which indicates that bamlss
and MGCV would not quantify the uncertainties properly.

4.3 Spike-and-slab prior for GA-PH
In this section, we consider the component selection in the GA-PH model. For this
purpose, the spike-and-slab prior is used with the GA-PH model, which is formulated
as:

log λ(t | z1, . . . , zb, γ1, . . . γb) =
b∑

a=1
γafa(za) + log λ0(t),

π(γa = 1) = v (0 < v < 1), a = 1, . . . , b. (15)

See O’Hara et al. (2009) for related literature about Bayesian model selection methods
including the spike-and-slab prior.

For the spike-and-slab prior, a standard MCMC algorithm could suffer from slow
mixing in particular for γa. For generating γa from its conditional posterior, a Metropolis-
Hastings algorithm is used. The proposal distribution for τ a should be carefully designed
to improve the acceptance rate. In our MCMC algorithm, the normal distribution with
the mean vector τ̂ a and the covariance matrix of Ha(τ̂ a)−1 is used for the proposal
distribution of τ a when γa = 0, where Ha(τ̂ a) is the negative Hessian matrix of the log-
partial likelihood with respect to τ a evaluated at τ̂ a. Details are explained in Section
6 of the Supplementary Material.

For simulation, we let b = 2 and let f∗
1 (z1) = 0 and f∗

2 (z2) = I(z2 > 0). The covariate
vectors are generated as:

z1 =
√
wU1 +

√
1 − wU2, z2 = U2,

where Ui
i.i.d.∼ Unif [−1, 1], in which z1 ad z2 are correlated with the correlation

√
1 − w.

We investigate how the correlation affects the posterior distribution. Usually, correla-
tions between covariates affect the efficiency of the estimator negatively. For example,
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Figure 3: Tree figures (GA-PH(3), BhGLM, and relgam) are Bayes estimates (dot-
dashed lines) for the second component and the upper and lower limits of the 95%
credible/confidence intervals (dotted lines), when the sample size is 100 and r = 0.4.

Function (r) Data size GA-PH(3) BhGLM relgam
2 (CP) 2 (CP) 2 (CP)

Null (0.00)
n = 100 0.1332 (1.0000) 0.0002 (1.0000) 0.1714 (NA)
n = 300 0.0068 (1.0000) < 0.0000 (1.0000) 0.0330 (NA)
n = 500 0.0071 (1.0000) 0.0050 (1.0000) 0.0781 (NA)

Null (0.40)
n = 100 0.1239 (1.0000) 0.0001 (1.0000) 0.2636 (NA)
n = 300 0.0234 (1.0000) 0.0095 (1.0000) 0.1050 (NA)
n = 500 0.0062 (1.0000) 0.0136 (1.0000) 0.0119 (NA)

Null (0.80)
n = 100 0.0566 (1.0000) 0.0244 (1.0000) < 0.0000 (NA)
n = 300 0.0050 ( 1.0000) 0.0122 (1.0000) < 0.0000 (NA)
n = 500 0.0707 (1.0000) 0.0767 (1.0000) 0.0939 (NA)

Step (0.00)
n = 100 0.2817 (0.8800) 0.5186 (0.5200) 0.2241 (NA)
n = 300 0.1782 (1.0000) 0.4279 (0.6400) 0.2040 (NA)
n = 500 0.1261 (0.9940) 0.4116 (0.8920) 0.1735 (NA)

Step (0.40)
n = 100 0.3140 (0.9800) 0.4725 (0.5500) 0.3366 (NA)
n = 300 0.2142 (0.9533) 0.4506 (0.6333) 0.2306 (NA)
n = 500 0.1531 (0.9620) 0.4406 (0.8720) 0.1778 (NA)

Step (0.80)
n = 100 0.2396 (0.9900) 0.4937 (0.4900) 0.3788 (NA)
n = 300 0.2488 (1.0000) 0.4926 (0.1233) 0.2480 (NA)
n = 500 0.1702 (0.8840) 0.5323 (0.2060) 0.2160 (NA)

Table 3: 2 is defined as 22 = minc

∑n
i=1(f̂(zi) − f(zi) − c)2/n, where f̂(·) and f(·) are

the Bayes estimate and true function respectively, and CP is the proportion of zis where
the point-wise credible/confidence intervals of f at each zi include the value of the true
link function. Here, ρ in the parenthesis is the correlation coefficient of two covariates.

Huang (1999) observed this phenomenon in the partially linear proportional hazards
model.

For simulation studies, we let the censoring variable be the exponential distribution
with mean r and choose the r so that the censoring rates for all setups are between
0.20∼0.25. We set v in (15) to be 1/11 which results in πn(γa = 1)/πn(γa = 0) = 0.1.
The other setups are the same as those in Sections 4.1–2.

For comparison, we consider the algorithms of BhGLM (Nengjun et al., 2018) and
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Null Step
n = 100 n = 300 n = 500 n = 100 n = 300 n = 500

r = 0.0 0.5233 0.1120 0.1280 0.9300 1.0000 1.0000
r = 0.4 0.4420 0.1933 0.1166 0.5800 1.0000 1.0000
r = 0.8 0.2380 0.3561 0.4213 0.8806 1.0000 1.0000

Table 4: Posterior mean of γa.

relgam (Tay and Tibshirani, 2020). BhGLM uses a double-exponential prior for each
basis function. BhGLM is a recently developed Bayesian method which enables variable
selection in the GA-PH model. The hyper-parameters used in BhGLM are given in
Section 7 of the Supplementary Material. In contrast, relgam, which selects components
in the GA-PH model by use of a sparse penalty, provides only a point estimate but does
not yield a confidence interval. Thus we obtain the point estimates and credible intervals
for GA-PH (3) and BhGLM while we only obtain the point estimates for relgam.

The Bayes estimates and pointwise probability intervals of the signal components
are drawn in Figure 3 (the results for n = 100 are presented and the results for other
sample sizes are given in Section 7 of the Supplementary Material) and the 2 and CPs
are reported in Table 3. The results indicate that our Bayesian model estimates the
signal component much better than BhGLM. In particular, the CPs of BhGLM of the
signal component are much less than the nominal level 0.95. GA-PH(3) is competitive
to relgam in point estimate, but uncertainty quantification is not available for relgam.

It is interesting to observe the behavior of γa in the GA-PH(3), summarized in
Table 4. The posterior mean of γ1 for the null function seems to go to the zero when the
data size increases, and r is not large. However, the posterior mean of γ1 is relatively
large for r = 0.80, which is partly due to the correlation between z1 and z2. On the other
hand, GA-PH(3) identifies the non-zero function quickly as the sample size increases.
Remark. Though the 2 of GA-PH(3) for the null function behaves slightly irregularly
with respect to data size. This is because the posterior mean is not exactly zero for
the null function. In contrast, if we use the posterior median as the Bayes estimate,
all estimates of the null function become 0, whose results are given in Section 7 of the
Supplementary Material. As shown in the Supplementary Material, using the median
as the Bayes estimates is preferable when we are interested in component selection.

5 Data analysis
We analyze the Chemotherapy Data for Stage B/C colon cancer (CDS) archived in R

survival package (Moertel et al., 1990). In CDS, there are eight covariates consisting
of six binary variables and two continuous variables. The six binary variables are 1)
the treatment Lev(amisole), 2) Lev(amisole)+5-FU, 3) sex, 4) obstruction of colon by
tumor (Obstruction), 5) perforation of colon (Perforation), 6) adherence of nearby or-
gans (Adherence), and the two continuous covariates are age (Age) and the number
of lymph nodes detectable cancer (Nodes). We consider the following partially linear
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Variable BE 90% CI 95% CI
Lev(amisole) −0.0398 (−0.2145, 0.1456) (−0.2550, 0.1900)
Lev(amisole)+5-FU −0.5269 (−0.7158,−0.3338) (−0.7592,−0.2930)
Sex −0.1242 (−0.2810, 0.0239) (−0.3113, 0.0505)
Obstruction 0.2106 (0.0212, 0.3967) (−0.0092, 0.4347)
Perforation 0.1565 (−0.2638, 0.5596) (−0.3647, 0.6542)
Adherence 0.2525 (0.0486, 0.4485) (0.0066, 0.4874)

Table 5: Bayes estimates (BEs) and 90% and 95% credible intervals (CIs) of the regres-
sion coefficients of the binary covariates.

Figure 4: Left panel: the posterior probabilities of γa = 1, Right panel: Bayes estimate
and point-wise 95% credible interval for the component of Nodes.

GA-PH model with the spike-and-slab prior:

log λ(t | x1, . . . , x6, z1, z2) =
6∑

k=1

βkxk +
2∑

a=1
γafa(za) + log λ0(t),

where γa ∈ {0, 1} and π(γa = 1) = v for a = 1, 2. Here, xks are binary covariates, and
z1 and z2 are Age and Nodes, respectively. The four B-spline basis functions of order 3
are used for the sieve prior.

Table 5 summarizes the Bayes estimates and 90% and 95% credible intervals of the
six binary covariates, and Figure 4 presents the posterior probabilities of γa = 1 and
the Bayes estimates of the second component of nonlinear term with the 95% point-
wise credible intervals. Note that the posterior probability of γ1 is close 0 and thus we
eliminate the first component of nonlinear term for further analysis. It is interesting to
see that the effect of Nodes on the hazard is quite nonlinear. The hazard increases when
z2 ≤ 4 but stops increasing after that.

6 Concluding remarks
We only considered the GAM in the proportional hazards model. Our results could be
extended for other nonparametric models such as the single index model (Shang et al.,
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2013). Moreover, similar results could be obtained for other semi-parametric regression
models for survival data, such as the generalized transformation model (Doksum, 1987)
even though computation would be demanding compared to GA-PH.

We have used a sieve prior. However, our techniques to derive the posterior contrac-
tion rate cannot be directly applicable to other nonparametric priors such as Gaussian
process priors (van der Vaart and van Zanten, 2008). It would be interesting to drive
posterior contraction rates for other nonparametric priors.

The MCMC algorithms used for our numerical studies and data analysis are not
the fully efficient. More efficient MCMC algorithms could be developed using the log
concavity of Gn(f) as is done by Görür and Teh (2011) and Dwivedi et al. (2018).

Supplementary Material
Supplementary Material of Bayesian analysis of the generalized additive proportional
hazards model: Asymptotic studies (DOI: 10.1214/23-BA1384SUPP; .pdf). Proofs, de-
tails of numerical studies and MCMC algorithm, and additional numerial studies.
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