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Abstract. COVID-19 has challenged health systems to learn how to learn.
This paper describes the context, methods and challenges for learning to im-
prove COVID-19 care at one academic health center. Challenges to learning
include: (1) choosing a right clinical target; (2) designing methods for accu-
rate predictions by borrowing strength from prior patients’ experiences; (3)
communicating the methodology to clinicians so they understand and trust
it; (4) communicating the predictions to the patient at the moment of clinical
decision; and (5) continuously evaluating and revising the methods so they
adapt to changing patients and clinical demands.

To illustrate these challenges, this paper contrasts two statistical model-
ing approaches—prospective longitudinal models in common use and retro-
spective analogues complementary in the COVID-19 context—for predicting
future biomarker trajectories and major clinical events. The methods are ap-
plied to and validated on a cohort of 1678 patients who were hospitalized
with COVID-19 during the early months of the pandemic. We emphasize
graphical tools to promote physician learning and inform clinical decision

making.
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1. INTRODUCTION

COVID-19 has challenged health systems around the
world. Most infected persons have mild to moderate flu-
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like symptoms, but a subset have life-threatening lung in-
jury requiring hospitalization and critical care services.
Since the first cases early in 2020, more than 5.5 million
people have died, constituting the most deadly pandemic
since the 1918 Influenza [10].

The U.S. healthcare system is the most expensive in the
world. The excess per capita expenditures relative to the
second most expensive country total more than $1.1 tril-
lion per year or 5% of U.S. GDP. Despite this excessive
investment, U.S. health outcomes are not competitive with
countries that spend much less. For example in 2020, an
American’s life expectancy at age 65 ranked 26th out of
40 reporting OECD countries [21]. The U.S. population,
which comprises 4.2% of the world population, has suf-
fered 835,000 COVID-19 deaths, 15% of the global total.
Poorly-informed medical decisions, often caused by mis-
aligned incentives, explain a substantial part of the ineffi-
ciency in the U.S. health system [5, 27].

One strategy to improve health outcomes and reduce
wasteful spending, advocated by the National Academy
of Medicine and others, is the learning health care sys-
tem [24]. The strategy is to collect the massive amounts
of information generated in medical practice, learn from
past successes and failures as reflected in these data,
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and change clinical practice to improve patient outcomes
[7]. During the COVID-19 pandemic, the combination
of exponentially-increasing patient numbers, intense life-
preserving medical interventions, and poor understanding
of how to manage the disease has strained what was al-
ready an inefficient system.

In this paper, we present the statistical models and
graphical tools we have developed to support clinical de-
cision processes at the Johns Hopkins Health System in
the context of the COVID-19 pandemic. Also discussed
are some of the challenges we have faced in integrating
these tools into clinicians’ workflow. Section 2 describes
the data and analytic infrastructure available to statisti-
cians and design principles behind our statistical approach
in supporting clinical decisions. Section 3 introduces the
models we developed for COVID-19 patient monitoring.
In Section 4, we apply the methods to the data set con-
sisting of the 1678 patients hospitalized during the early
months of the epidemic. We highlight graphical displays
as well as evaluations of the dynamic prediction process
starting with the baseline risks and adding regular updates
as the biomarkers change. Section 5 discusses the chal-
lenges in implementing our tools and others like them
in clinical care and how to assure the tools adapt to the
changing patient population and clinical demands.

“You never want a serious crisis to go to waste,” said
Rahm Emanuel, White House Chief of Staff for President
Obama [29]. COVID-19 is the healthcare crisis that de-
mands that medical systems learn how to learn.

2. PRECISION MEDICINE, COVID-19, STATISTICAL
FRAMEWORK TO SUPPORT CLINICAL DECISIONS

At Johns Hopkins, a key component of its strategy
to become a learning health care system is its precision
medicine initiative called Hopkins inHealth, where “in”
is for “intelligent.” To enable this initiative, Johns Hop-
kins a decade earlier installed a system-wide electronic
health record (EHR) that collects clinical data and text
from all patient encounters. In addition to routine clini-
cal data, Precision Medicine Centers of Excellence (PM-
COEs) acquire research-grade measurements of their pa-
tients. The Centers collect a range of measurements, in-
cluding genomic, imaging, physiologic, signs and symp-
toms, patient reported, and social-behavioral data.

As an example of this strategy, over the first three
months of the pandemic, the COVID-19 PMCOE built
the Johns Hopkins CROWN (JH-CROWN) Registry com-
prising all clinical data related to the testing and treatment
of COVID-19 patients including demographic character-
istics, medical histories, comorbid conditions, vital signs,
respiratory events, and laboratory values [6, 15]. During
this period, the Johns Hopkins health system admitted
1978 COVID-19 patients. Of these, 1687 arrived in the

mild/moderate disease state, contributing sufficient clin-
ical data for learning; 1378 patients were ultimately dis-
charged without ventilation, 199 were ventilated of whom
60 subsequently died, and 110 died without ventilation.
Learning requires a secure platform for data wrangling
and statistical analysis. The EHR data for COVID-19 pa-
tients are routinely downloaded into the JH-CROWN reg-
istry within a cloud-based system called the Precision
Medicine Analytics Platform (PMAP). The data are in-
tegrated with other external and internal research data
and shaped into a clinical cohort dataset organized by
patient ID and time. Each PMCOE has a secure plat-
form for analysis using R, Python, Jupyter Notebooks and
other standard tools. The clinician scientists in each group
are charged with identifying clinically-relevant subgroups
and tailoring interventions to improve outcomes. Hy-
potheses generated from initial analyses are integrated
into decision support tools and tested in clinical settings.
The remainder of this section describes a statistical
framework to support a learning health care system.

2.1 Choosing a Right Clinical Target

A key clinical objective is to triage patients from high-
est to lowest risk of requiring invasive interventions. Clin-
icians demand clinically interpretable, dynamic predictive
models for the competing risks of intubation and death to
focus their resources on patients at greatest risk. In sim-
plest terms, clinicians seek tools that quantify their expe-
riences with past patients as they strive to improve care
for similar patients going forward.

Consider, from a clinician’s perspective, a COVID-19
patient with mild or moderate disease on the day of ad-
mission (day 0). The patient presents with personal and
medical characteristics (X). The clinician measures base-
line levels for a set of biomarkers used to monitor disease
progression (Yp). Examples include pulse rate, oxygen
saturation level, and body temperature. At this point, the
clinician makes a preliminary assessment of their patient’s
risk for each of the three competing events: discharge (1),
severe disease defined by the need for ventilation (2), or
death (3), versus remaining event-free in the hospital for
another day (0). We will write W; to denote the patient’s
status on day ¢, where W; € {0, 1, 2, 3}. When planning
a clinical approach on day ¢, the clinician updates their
baseline assessment by taking into account the observed
biomarker trajectories Yo.; := (Yp, Y1, ..., Yz). The clini-
cal target for statistical analysis is the probability distribu-
tion of the future competing events and biomarkers given
the individual patient’s history up until today. Letting T
be the time of a person’s future event, this conditional dis-
tribution can be written

[Tv WT’ Yl-‘rlTlT > t9 YOI[! X]'

The statistical specialty of joint models for longitudi-
nal and survival or competing risks data focuses exactly
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on this joint distribution [2, 9]. Joint models are an ex-
ample of multivariate (many biomarkers and events) hier-
archical statistical models that include random effects to
represent the heterogeneity among patients in their dis-
ease experience [16]. An overview of the methods and
computations for joint models is provided by Rizopou-
los [26]. A recent expository article on using joint models
for predicting non-COVID-19 patient outcomes is by An-
drinopoulou et al. [1].

We focus on modeling the dynamic biomarkers that sig-
nal patient improvement or deterioration. More generally,
albeit beyond the scope of this paper, we can account for
the influence of past interventions on the biomarkers by
modeling both biomarkers and interventions as causally
interacting components of the dynamic Y; process. The
reader interested in dynamic treatment regimes is referred
to Zhang et al. [38] and references therein.

2.2 Borrowing Strength from Prior Patients’
Experiences

A well-designed hierarchical model of the distribution
of the future events and biomarkers given the observed
history of an at-risk patient is one way to summarize the
major sources of variation in prior patient experiences in
order to predict what the next otherwise-similar patient is
likely to experience. John Tukey referred to this process
as borrowing strength from the prior experience [31].

There are multiple complementary ways to decompose
the distribution of interest into components that can be
estimated from past patient data. Prospective and retro-
spective decompositions of dynamic statistical models are
the focus of the remainder of this paper in order to illus-
trate the challenges of using statistical models to learn to
improve COVID-19 care. By using different decomposi-
tions, we can see how sensitive predictions are to the spe-
cific choice of method for borrowing strength.

The more common prospective approach is to de-
compose the joint distribution of a next interval value
(Wi41, Yi41) given the past into the product of: (1) the
distribution of each possible state W;, at time ¢ + 1,
given the person is at risk W, = 0 and given the his-
tory of biomarkers Yy.;+1 and the baseline values X, and
(2) the probability of the next biomarker value given the
biomarker history and baseline measures. This decom-
position, that we refer to as a prospective model, can be
written

[(Wig1, it IT > 1, Yo, X1

=W, 1IT > 1, Yo g1, XY 1T > 1, You, X1,

where we use the brackets to denote the (conditional) dis-
tributions of random variables.

Focusing on the first term on the right hand side, there
are many ‘“‘static” methods that predict clinical events us-
ing baseline measures but few that use the history of

biomarkers over time. Examples of static prediction mod-
els based upon baseline covariates using logistic regres-
sion and/or machine learning are in [4, 11, 25, 33, 34].
Patient features commonly used in these static models
include demographic variables (age, sex, race), medical
history variables (body mass index, comorbidities), base-
line vital signs, and laboratory measurements. A survey
of predictor variables used to predict disease severity is in
Gallo Marin et al. [14]. These static models are useful to
triage patients at baseline but not for patient monitoring
day to day as is the goal here. Less common are COVID-
19 dynamic prediction models using not only baseline
predictors but also measured biomarkers that change over
time Y1.;41. The machine learning models developed by
Chen et al. [8] and Wongvibulsin et al. [35] incorporate
the dynamic nature of biomakers. These methods, how-
ever, are both prospective in design and do not attempt
to forecast the biomarkers as in the second term on the
right-hand side of Equation (1).

Such prospective approaches have a few major short-
comings as a statistical tool to support clinical decisions
in the COVID-19 context. First, the risks of discharge, se-
vere disease and death may be complex functions of cur-
rent and past biomarkers. Finding a parsimonious set of
functions of biomarker values to include in the prediction
model is a nontrivial task. Second, the clinician wants to
know the risk in both the near and more distant future.
Clinicians tell us that their focus is often on predicting the
worst outcome in the future, not just on tomorrow’s or an-
other day’s value. Third, day ¢ = O refers to the time of
admission not the time of disease onset. By day 0, each
patient has traveled a different disease path introducing
substantial baseline variability.

An alternative decomposition that partially addresses
these limitations, while introducing others, is what we
will refer to as a retrospective model that uses the day of
event T to align patients’ disease trajectories rather than
the day of hospitalization, as follows:

[T, Wr, Yi.r |T > 1, You, X]
= [YT-"-lTlT! T > t’ WT! YOIlvx]
X [T7 WTlT >t’ YOZZ‘7X]'

We can then make predictions based upon the following
further decomposition:

[T, Wr,Yiy1.7|T > t, Yo, X]
X Y417 | T, T >t, Wr, Yo, X]
x[T,Wr|T >t,Yp, X]
x [Y14|Wr, T, T > ¢, Yo, X].

)

When, after the appropriate transformation, the condi-
tional distribution of Yj.7 is reasonably approximated by
a Gaussian distribution, it is clear how to compute the first
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term on the right hand side in (2). The second term is also
easily obtained as shown in the Appendix A.

In words, the right-hand side shows that to predict fu-
ture biomarkers and events, we must estimate three terms:
(1) the probability distribution of the future biomarker
process given the event type Wr and day 7 and given
the observed biomarker process to date Yi.;; (2) the prob-
ability of each event on each future day given only the
baseline biomarkers and patient characteristics; and (3)
the probability distribution of the observed biomarker his-
tory Y1, given that the event is of type Wr on event day
T. In the Appendix A, we justify the decomposition using
standard conditioning arguments.

As detailed in the sections that follow, we can pro-
vide the clinician with both graphical and numerical dis-
plays of their patient’s future risks and update them with
each additional day of biomarker observation from either
the prospective or retrospective models. In the retrospec-
tive model, we show how implementation is relatively
easy because estimating the first term can be done with
standard discrete-time competing risks methods. And the
second term corresponds to a retrospective model of the
biomarker data given the event types and times. Bowring
et al. studied the biomarker distributions just before the
onset of the event and their relationships to baseline co-
variates [6]. The prospective modeling approach is more
common, but the retrospective approach has also been
beneficial in other related problems which will be dis-
cussed in more details in the Appendix B.3.

3. MODELING APPROACHES
3.1 Overview

We observe repeated values of multiple biomarkers for
each patient and seek to predict their future biomarker
trajectories and event risks from models estimated for a
population of patients. Hierarchical modeling is a natural
choice for this task. We use a Bayesian approach to ex-
ploit both the computational flexibility of Markov Chain
Monte Carlo algorithms and to allow for informative pri-
ors where solid prior knowledge exists.

In the COVID-19 application, we jointly model three
continuous biomarkers: pulse rate, body temperature, and
SpO,-FiO; ratio, a measure of lung efficiency calculated
by dividing oxygen saturation measurement from pulse
oximetry by the fraction of inspired oxygen. We assume
that the joint distribution of the continuous biomarkers
can be reasonably approximated by a linear mixed ef-
fects model. Because it is unlikely that biomarker mea-
surements have marginal distributions well approximated
by the Gaussian, we replace the observed biomarker val-
ues by the corresponding quantiles of a Gaussian variate.
Once models are estimated and predictions are made, we
transform them back to the original scales.

In the prospective model for biomarkers’ trajectories,
the time origin is the day of admission. The multivariate
mixed effects model for [Y;. | Yy, X] assumes the mean
curve for each biomarker to be a smooth function of time,
represented by a natural spline with fixed degrees of free-
dom. Baseline covariates X are included as fixed effects.
The smooth function is allowed to vary among patients by
including the spline bases as random effects. This model
is used to estimate the mean curves and the covariance
of the multivariate response vector for each patient. We
then use this model to simulate future realizations for the
biomarkers from the distribution [Y;41.7|Y1:s, X] that are
needed in predicting future events.

To complete the specification of the prospective model,
we choose a discrete-time cause-specific hazards model
for the three competing outcomes [32]. This model can
be fit as a multinomial logistic regression model in which
the reference category is remaining hospitalized with-
out an event. The logit of the probability of a particu-
lar event (e.g. death) depends on the baseline covariates
and on simple functions of each of the biomarkers. In
the COVID-19 application, the risk of each event depends
on the most recent observation of the biomarkers and on
their linear trend over the past two days. The multinomial
model predicts daily risks of discharge, ventilation, and
death as a function of the biomarker histories.

In the retrospective model, the time origin is the day
of the event rather than the day of admission. A potential
benefit of this choice is to reduce some of the heterogene-
ity among patients at the time of hospital admission; for
example, due to different health conditions, viral status,
and access to care. As the patients approach a common
outcome, they are likely more homogeneous. The key idea
of the retrospective approach is to stratify the patients
by their outcomes and build separate multivariate linear
mixed effects models for each stratum. The biomarker tra-
jectories are modeled backward in time, conditional on
the type and future date of the outcome.

As in the prospective model, we use a multinomial lo-
gistic regression for the distribution of the three compet-
ing clinical events: discharge, ventilation, and death. The
predictors, however, consist only of the patients’ base-
line characteristics (Yp, X), not the dynamic biomarker
values (Y1.). For each unique set of baseline predictors,
this model gives the estimated probabilities of the com-
peting events for each day since admission. We can think
of this discrete distribution as the clinician’s best assess-
ment of risks at admission but prior to monitoring the pa-
tient’s biomarker trajectories. This initial risk estimates
combine with the retrospective multivariate mixed effects
model to yield the updated predictive distribution of inter-
est [T, Wr, Y17 T > 1, You, X1.

The notation and formal model specifications are pro-
vided in full detail in the Appendix B.1.
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3.2 Model Validation

With each additional day of hospitalization, more
biomarker data are collected and the at-risk popula-
tion changes, calling for updated predictions. We hence
compare the predictive performance of the prospective
and retrospective models on hospitalization days ¢ =
0, 2,4 and 8. For each model and ¢, we predict both fu-
ture biomarkers and event probabilities from the next
day through to day 20. We compare the predicted event
risks with the observed values to quantify prediction er-
ror. To estimate out-of-sample prediction errors, we fit
each model to a random 80% of the data and evaluate
its prediction error for the remaining 20%. To stabilize
the prediction error estimates, we repeat this evaluation
for all five 20% subsets. The 20-80 split is arbitrary and
others might be used.

Validation of the event risk predictions has two parts:
calibration to assess prediction bias by asking whether a
predicted rate is close to the observed rate for a new popu-
lation; and discrimination to assess whether persons with
higher predicted risks have events more often than those
with lower predicted risks. For calibration, we contrast the
observed and model-based expected numbers of incident
events on each future day until day 20. We split the fu-
ture days into three to five bins for which the expected
number of events exceeds five and then calculate a cross-
validated chi-square statistic as a measure of departure.
To assess discrimination, we calculate time-varying area-
under-the-curve (AUC) [17]. In particular, we consider
the task of predicting the binary outcome of discharge vs.
severe disease (ventilation or death). We take the observed

data up to day r =0, 2,4, and 8 and calculate the cumu-
lative probabilities of each competing event at each future
day until day 20. We then use these cumulative probabili-
ties to calculate the time-varying AUC.

4. APPLICATION AND RESULTS
4.1 Multivariate Linear Mixed Model

We report on prospective and retrospective models us-
ing three key biomarkers: pulse rate, body temperature,
and SpO»-FiO; ratio. In the prospective model, the design
matrix X; comprises time (natural spline with 4 degrees
of freedom) plus baseline variables including biomarker
values at admission, comorbidities and demographics. In
the retrospective model, the design matrix X; comprises
three separate time functions, one for each outcome event.
Figure 1 contrasts the alignment of the biomarker data
based on admission time in the prospective model and
clinical event in the retrospective model. Biomarker tra-
jectories of a random sample of 100 patients from each
outcome group are shown in gray with colored dots in-
dicating the event type and day. The mean curves with
confidence regions are model-based estimates and point-
wise 95% credible intervals. They represent the mean
across the entire sample as if each person were observed
at all times. In the prospective panel, the population av-
erage biomarker curve is shown in dark gold for a hypo-
thetical reference patient having population-average base-
line biomarker values and reference category character-
istics. For this reference patient, SpO;,-FiO; ratio in-
creased steadily after admission, body temperature de-
creased slightly from 37 and pulse stayed relatively con-
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stant throughout hospitalization. The variation in patient-
specific SpO»-FiO; ratio trajectories is greater than in
temperature and pulse trajectories.

In the retrospective panels, biomarker trajectories from
admission until event day are shown separately for dis-
charged, ventilated and deceased patients. Similar to tra-
jectories observed by Bowring et al. [6], among those dis-
charged, SpO,-FiO; ratio increases rapidly starting ap-
proximately five days prior to discharge, pulse decreases
during hospitalization with a notable drop three to four
days immediately prior to discharge, and temperature
begins to decrease approximately 10 days prior to dis-
charge. Among those who received mechanical ventila-
tion, SpO,-FiO; ratio decreases five days prior, pulse in-
creases slightly five days prior, and temperature remains
elevated prior to ventilation. Among those who died with-
out ventilation, SpO,-FiO, ratio decreases consistently
during admission and prior to death, pulse begins to in-
crease approximately 10 days prior to death, and tempera-
ture remains elevated during admission and increases im-
mediately prior to death. This retrospective approach can
be expanded to jointly model more longitudinal biomark-
ers starting at admission and to add a second phase of
follow-up after ventilation.

For all of the multivariate linear mixed effects mod-
els, as a part of routine model checking, we plotted the
standardized residuals versus predicted values to iden-
tify any systematic deviations from a residual mean of
zero (not shown). No systematic deviations were found.
Model-based and empirical correlations were compared
within and across biomarkers to validate the modeling
assumptions about covariances (not shown). Small sys-
tematic departures relative to the size of the correlations
were observed, but nothing of scientific interest to warrant
changing the model. To check the Gaussian assumption
for residuals, we produced quantile-quantile plots for the
standardized, decorrelated residuals against the standard
Gaussian distribution. The Gaussian assumptions were
also reasonable.

4.2 Competing Risks Model

The competing risks models in both approaches uses
the same set of baseline covariates as in the multivariate
linear mixed model. In the the prospective model, we ad-
ditionally include the biomarker measures on the previ-
ous day and their slopes over the previous two days. The
estimated regression coefficients with 95% credible inter-
vals are displayed in Figure 2. The combination of the two
modeling approaches (prospective and retrospective) and
the three outcomes (discharge, death, and ventilation) re-
sults in 6 coefficients for each predictor. The figure iden-
tifies the important predictors for each outcome and qual-
itatively compares the results of the two models. Because
the prospective model conditions on functions of the past
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biomarkers and the retrospective model does not, the co-
efficients are not quantitatively equivalent.

Figure 2 shows that, in the prospective competing risks
model, increased temperature at baseline is associated
with higher log-odds of discharge and increased ALC is
associated with decreased log-odds of ventilation. When
compared to white patients less than age 75, Latinx pa-
tients have higher log-odds of discharge, Black and white
patients over 75 have higher log-odds of death, and white
patients over 75 have lower log-odds of receiving ven-
tilation. BMI above 30 is associated with higher log-
odds of discharge. Higher Charlson comorbidity index
(CQD) is associated with lower log-odds of discharge and
higher log-odds of death. Higher previous SpO;-FiO; ra-
tio, lower previous temperature and lower previous pulse
rate are associated with higher log-odds of discharge and
lower log-odds of ventilation and death. An increasing
slope in SpO,-FiO; ratio is associated with a decreased
log-odds of ventilation.

In the retrospective competing risks model, most base-
line variables including pulse rate, SpO;-FiO; ratio, CRP,
D-dimer, and eGFR have minimal effect on the proba-
bility of discharge, death, or ventilation. Higher baseline
temperature and lower ALC are associated with higher
log odds of ventilation and death. Black patients with age
less than 75 and Latinx/Other patients have a higher log-
odds of discharge when compared to white patients less
than 75. Black and white patients over the age of 75 are
more likely to die when compared to white patients less
than 75. Regarding comorbidities, a higher CCI and lower
BMI are associated with lower log-odds of discharge and
higher log-odds of death.

4.3 Model Evaluation

Figure 3 evaluates the two approaches by comparing
five-fold cross-validated calibration as detailed in Sec-
tion 3.2. The rows correspond to the at-risk population on
days 0, 2, 4 and 8. Grey vertical lines separate observation
and prediction periods. The colored markers represent the
observed number of events (y-axis) of each event type
(indicated by color) on each future day (x-axis). Solid
lines correspond to the predicted number from the retro-
spective approach and dashed lines from the prospective
approach. When using two days of hospitalization data
(Figure 3, second row), the retrospective approach under-
estimates the number of patients discharged after day 10.
This underestimation translates to an elevated normalized
x? as seen in Table 1. Overall, Figure 3 and the x? col-
umn in Table 1 show comparable calibration between the
two modeling approaches.

We compare the time-varying AUC curves of the two
approaches for each remaining at-risk population on days
t =0,2,4, and 8. The daily AUCs from the two ap-
proaches are stable over time and remain comparable,
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F1G. 3. Model calibration. Calibrations of the prospective and ret-
rospective models are illustrated by plotting observed and expected
number of events from each model. Each row shows calibration of the
models based on dynamically available data ranging from the first 0
day (baseline), 2 days, 4 days and 8 days of hospitalizations for pa-
tients still at risk. Colored markers represent the observed number of
events at each future time (blue = discharge, red = death, green = ven-
tilation). Solid and dashed lines show the expected number of events
from the retrospective and prospective models respectively. Grey verti-
cal lines with arrows separate the observation and prediction periods.

so we only report the AUC value at day 20. The AUC
columns in Table 1 show competitive discrimination be-
tween discharge and severe disease events.

4.4 Dynamic Prediction for Individual Patient

Our goal is to provide clinicians with the real-time dy-
namic predictions for an individual patient of their fu-
ture risks of the major events and expected biomarker tra-
jectories. To illustrate the utility of the retrospective ap-
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TABLE 1
Normalized x? to evaluate calibration and AUCs at day 20 to
evaluate discrimination. We calculated the X2 statistic for each model
and time interval of available data normalized by the )(2 degrees of
freedom. The AUCs are calculated as described in Section 3.2, based
on the models’ abilities to predict the binary outcome of discharge vs.
severe disease (ventilation or death)

Normalized x2 AUC
Day  Prospective  Retrospective  Prospective ~ Retrospective
0 14.38 1.82 0.83 0.85
2 8.72 33.08 0.83 0.84
4 10.34 6.99 0.85 0.87
8 7.80 4.02 0.87 0.86

proach in achieving this goal, we randomly select a patient
who was discharged on their 13th day of hospitalization.
This female patient is greater than 75 years old, a former
smoker with few comorbidities and BMI > 30.

The top row of Figure 4 shows predicted biomarker tra-
jectories, one for each type of outcome and for each day of
the event (up to day 20) after two days of hospitalization.
The black line represents the observed SpO,-FiO, ratio
during the first two days. The marker at the end of each
trajectory curve indicates the probability of that event oc-
curring on that day given the first two days of observation.
For example, if this patient were to be discharged (blue)
on day 10, we would expect their SpO;-FiO; ratio to rise
until above 250, their temperature to decrease to 36.4 and
pulse to stabilize around 72. However, we can see from
the sizes of the event probability markers that this event
is unlikely. Finally, the cumulative probabilities (i.e., the
sum of the daily probabilities) of events are shown on the
top right. For this patient, given the first two days of data,
their probabilities of discharge, death and ventilation are
12.0%, 24.2%, and 63.9%, respectively.

The subsequent rows of Figure 4 show the correspond-
ing predictions for this patient, updated using additional
days of observation. For example, after 10 days of hospi-
talization, the distribution indicates a higher probability of
being deceased in the next few days. From the predicted
trajectories, if the patient were to be discharged on the
next day, we would expect their SpO,-FiO; ratio to sta-
bilize over 200. This patient’s cumulative probabilities of
discharge, death, and ventilation are 28.5%, 54.7% and
16.7%, respectively.

5. CHOICES AND CHALLENGES

5.1 One or More Methods

This paper describes what were the second and third ap-
proaches to dynamic prediction of COVID-19 outcomes
in the CROWN registry. It compares two methods derived
from different decompositions and modeling assumptions
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® Died e 0.10 24.2%
300 Vent ® 0.15 63.9%
200
100{ «~ ———
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FIG. 4.  Prediction capabilities of the retrospective model based on
data from the first 2, 4, 6, 8 and 10 days of hospitalization for a
given patient. Black lines represent the observed SpO2/FiO2 for the
patient during hospitalization. Blue, red, and green lines indicate the
predicted SpO2/FiO2 trajectories leading to discharge, death, or ven-
tilation events respectively. The marker size at the end of each pre-
dicted trajectory indicates the probability of that event on that day
given the past biomarker history. The probabilities of each event hap-
pening eventually (before day 20) are shown in the colored boxes on
the right, with colors indicating event types.

about the same conditional distribution. It is therefore not
too surprising that their prediction performances are sim-
ilar. The first approach applied an extension of random
forests for survival models with time-varying predictors
[36] and predicted the occurrence of ventilation or death
in the next one or seven days [35]. The prospective and
retrospective statistical models proposed here are compa-
rable to this machine learning approach in terms of the
overall accuracy and precision. For example, the one-day
ahead prediction cross-validated AUCs from our prospec-
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tive model, retrospective model, and the average of both
are 0.87,0.86, and 0.87 respectively, comparable to 0.89
reported by Wongvibulsin et al. [35].

These models have different features and comple-
mentary strengths. The machine learning method of
Wongvibulsin et al. [35] is optimized to minimize the
prediction error, while the prospective and retrospective
statistical models produce all future predictions for both
the events and for the biomarkers. The latter models have
more utilities for educating clinicians about what future
outcomes to expect. There is a growing realization that,
given the complex structure of data generated in health
care settings, a statistical method that works well in one
situation may not work well in another [28]. It is essential,
therefore, to have alternative models whose predictions
can be compared against one another. Moreover, having
multiple models can potentially improve over individual
models by combining them through model averaging pro-
cedures [3, 18].

5.2 Implementing Clinical Decision Support Software

In our experience, clinical colleagues understand the
principle that John Tukey called “borrowing strength” the
idea that the experience with past patients can inform a
clinician’s assessment of risk and their decision about a
current patient. The statistical models described here and
the machine learning alternative are complex calculations
on data from a population of prior patients to quantify the
risk for the patient at hand. A key challenge for data scien-
tists is to convince their clinician colleagues of their pre-
dictions’ validity [30].

At our own institution, there are standardized policies
and procedures for validating novel medical devices but
not yet for novel decision support tools. Publication of
the methodology is a necessary but insufficient first step.
To obtain buy-in from clinicians, they need to be a part
of the design, implementation and testing team. Half of
the authors of this paper are clinicians or clinical trainees.
The work is also part of a larger COVID-19 clinical/data
science project in which a third of the forty members are
clinicians. During their development, the prospective and
retrospective approaches and the machine learning alter-
native were discussed at weekly meetings of the larger
team over many months. The tools were more readily ac-
cepted given the clinicians’ role in their development.

Another key component of validation is the ability of
the clinician users to “look under the hood” so as to under-
stand where the predictions come from in general terms
[30]. Figure 4 is an example of an effort to provide clin-
icians more than just prediction probabilities. It shows
both the event probabilities and the expected biomarker
trajectories for each of the clinical events: discharge, ven-
tilation and death. Clinicians can compare these quantita-
tive findings against their qualitative experiences having

cared from many patients. For example, it makes sense to
clinicians that the SpO,-FiO; ratio needs to rise into the
250-350 range before a patient can be discharged. Clini-
cians also want to “kick the tires” of the method by asking
“what if” questions. How does the prediction for this pa-
tient change if we restrict the training sample to patients
70 years of age? Which prior patients are most like this
one and what happened to each of them? A task we have
yet to complete is building a Shiny interface that facili-
tates “what if”” questions elicited from clinical colleagues.

Finally and most importantly, clinical decision support
software is regulated within the U.S. by the FDA [20, 37],
under its 2019 draft guidance [13]. To gain regular use
in patients, software to implement the methods described
here must undergo clinical evaluation and receive FDA
approval. Most institutions currently leave the process of
seeking FDA approval to individual research groups to
conduct the requisite experiments and file for approval.
Lack of an institution-wide regulatory process is a large
disincentive to research groups. The more common course
for researchers is to form a company under their univer-
sity’s technology transfer policies, raise money for clin-
ical testing, then the company seeks FDA approval. The
company can then license the approved software back to
the institution where it was developed. This is a slow and
arduous process that is a strong impediment to modern
data science impacting clinical care. At Johns Hopkins,
our current strategy is to implement new policies and pro-
cedures that expedite seeking regulatory approval for de-
cision support software.

5.3 Intelligence Internal and/or External to the EHR

The inHealth PMAP system, external to the EHR, is a
secure cloud-based system where all of our clinical data
analysis must take place to meet federal privacy rules.
PMAP routinely downloads then integrates the clinical
data with other sources including images, -omics, social-
behavioral, and other measures. This external system was
created to wrangle the raw clinical data into clinical co-
hort datasets, conduct population-level analyses, produce
predictions for individual patients, then return the results
back to the EHR for use in clinical decision making. The
advantage of moving the data out of the EHR is that non-
clinical data scientists can collaborate with clinicians to
build learning systems using hardware and software nec-
essary for large, complex analyses. These analytic plat-
forms can be scaled separately from the EHR systems.
Data can be de-identified and studied with fewer patient-
privacy concerns.

The external approach has its drawbacks. The first is
that new data are not immediately available to external al-
gorithms to generate predictions for a current patient visit.
Our current approach is to produce two algorithms: the
first uses all of the population data available in PMAP



260 Z. WANG ET AL.

to train the model; the second is a less computationally-
expensive updating algorithm that can run within the EHR
system to update the predictions based upon this patient’s
current-visit data. Scaling this two-stage approach is dif-
ficult because the updating programs must be custom de-
signed for each data type and prediction algorithm.

The second issue is that, in order to document the clini-
cal process, the predictions must be presented to clinicians
and patients within the EHR-directed workflow. A sim-
ilar issue occurs when clinicians use images in guiding
patient care. External systems store and analyze the im-
ages. Clinicians view the the images that reside outside
of the EHR. Clinicians then write an EHR-based note to
document their findings and decisions. Image system ven-
dors build the interfaces for this hand-shaking process. No
analogous interface currently exists to document the pro-
cess if clinicians were to exit the EHR, view prediction
from an external algorithm, and use this external informa-
tion to guide their decisions. Such an interface needs to be
developed for decision support tools.

5.4 Continuous Model Re-Evaluation

Devices within medical systems are recalibrated on a
regular schedule to assure the validity of their measure-
ments. Repeated re-evaluation, what we refer to as “cura-
tion” is just as essential for decision support tools, espe-
cially in dynamic pandemics like COVID-19. The virus
and the patient populations are continuously changing.
A system trained on early patients may not be as useful in
predicting outcomes for later patients. The standard meth-
ods of evaluation illustrated in this paper are necessary but
not sufficient to handle the dynamics. Curation comprises
repeated routine re-training and re-evaluation of the mod-
els on early, middle and late subsets of the growing popu-
lation of patients. A graphical curation dashboard might
include a sequence of figures like Figure 3 along with
Table 1 showing calibration and discrimination in each
time period. In addition to routine curation, model ver-
sion updates will likely be needed to adapt to the chang-
ing epidemiology. Updates must be version controlled and
documented for clinical oversight. When a decision sup-
port tool is used in clinical care, the predictions and clin-
ical decisions to which they contributed must be linked
to the specific version of the software and training data
from which they were generated so that the predictions
are entirely reproducible. Curation also requires an open
feedback channel lest clinicians using a tool have con-
cerns about predictions for a particular patient. Each ma-
jor clinical support tool requires a curation team compris-
ing independent clinical, data and regulatory experts who
review the routine updates and respond to clinical feed-
back in a timely fashion.

6. DISCUSSION

This paper illustrates one academic health center’s ef-
forts to learn how best to monitor COVID-19 patients’
disease states and predict major outcomes in near real
time. The infrastructure necessary to build this learning
health system comprises: automated acquisition of clin-
ical data via an electronic health record; a secure ana-
Iytic platform where raw transactional data can be trans-
formed into research-grade clinical cohort data and in-
tegrated with external auxiliary data; statistical models
for learning in real time; accessible presentations of the
new knowledge to clinicians and patients within the EHR-
driven workflow; capacity to clinically test the value of
the new knowledge in clinical trials; and a system for scal-
ing and curating learned knowledge to assure it improves
clinical outcomes and controls costs over the longer-term.

While discussing many of the above components, this
paper focused on using longitudinal statistical models to
learn about an individual patient’s biomarker trajectories
and outcome risks from a population of otherwise simi-
lar patients who came before. We discussed two comple-
mentary approaches to decomposing the dynamic proba-
bility distribution of future biomarkers and events given
patients’ histories. The traditional prospective approach
models the marginal distribution of the biomarker pro-
cesses and then the risk of events given the biomarkers.
The more novel retrospective approach models the base-
line risks of the events and then the conditional likelihood
of the biomarkers given the eventual outcome. In our anal-
ysis of the 1678 patients, the discrimination and calibra-
tion of major events were qualitatively similar between
the two approaches.

One goal of this paper is to illustrate a graphical rep-
resentation of the joint biomarker-event distributions that
is accessible to clinicians and is consistent with how
they think. For a clinician concerned mainly with triag-
ing patients using their relative risks over the next 24 or
48 hours, the prospective model has the advantage of di-
rectly modeling the competing risks as an explicit func-
tion of the recent biomarker values. However, for clini-
cians concerned about longer-term outcomes and what the
expected biomarker trajectories look like for each event
type and future date, the retrospective model is a valuable
complementary tool.

The findings in Figure 3 are generally consistent with
current medical knowledge. It is well known that rising
Sp0O,-FiO; ratio and decreasing pulse portend earlier dis-
charge and reduce the risk of intubation and death. One
counter-intuitive finding was that obese persons (body
mass index (BMI) > 30) were more likely to be dis-
charged and less likely to die after conditioning on other
variables. A similar finding has previously been reported
from a separate analysis of the JH-CROWN registry by
Garibaldi et al. [15]. Despite adjustment for age and race,
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this finding might be driven by the older more frail pa-
tients in our cohort, for whom higher BMI can be protec-
tive.

This paper focuses on the early learning about COVID-
19 using the 1678 patients hospitalized during the early
months of the epidemic. The JH-CROWN registry now
includes more than 8000 COVID-19 patients. An impor-
tant systems-level question relevant to the ultimate impact
of these and similar tools is how they are to be curated. In
purchasing devices and pharmaceutical products, health
systems count on their suppliers to monitor the longer-
term efficacy and efficiency of their products as the popu-
lation of patients and medical practice change over time.
Currently, tools like the ones in this paper do not come
with a dynamic curation process to sustain them over the
longer-term. Should data science tools be sold like soft-
ware, imagers, sequencers or drugs? If so, how should
they be locally optimized across diverse populations and
over time?

Finally, this paper places traditional statistical research
within the context of the COVID-19 epidemic, in which
healthcare system requirements have made it challenging
to achieve routine, intelligent use of emerging data to im-
prove care. A clearly documented, useful method that pre-
dicts the likely trajectories and risks for a current patient
is only an important first step. The ultimate goal is for
the learned information to improve clinical decisions and
patient outcomes. Improvement requires health system in-
frastructure that is just starting to be built. As it emerges,
statisticians and other data scientists have the opportunity
to play essential roles in improving health outcomes at
more affordable costs.

APPENDIX A: DETAILS ON RETROSPECTIVE MODEL
DYNAMIC PREDICTION

Appendix A provides details on the decomposition for-
mula (2) introduced in Section 2.2 for making predictions
from the retrospective model. We suppress the subscript
i for individuals to simplify the notation. The goal is to
compute the joint distribution of the time of event T, type
of event W7 and future biomarkers Y;41.7 given the indi-
vidual remaining at risk 7 > ¢, the biomarkers observed
to that point Y7.;, baseline biomarkers Y( and patient char-
acteristics X (i.e., [T, Wr,Yi41:7|T > ¢, Y14, Yo, X]).
Given the baseline biomarker measures Yy and patient
characteristics X, the initial probability distribution for
event type and day in the interval (r 4+ 1 : T') is given by

[T=t,Wr=m|T >t, Yy, X]

= srm
—1

=Ttm l_[ (I —=mg1 — - —7sm),
s=t+1

where the probabilities g, of event type m on day s have
been estimated from the retrospective competing risks
model.

The likelihood L(t, m; y) of observing the biomarkers
Y1.: =y given the person is at risk at time ¢ and given the
event Wr = m happens at time 7 = 7 is

L(tvmﬂy)=[Ylt=y|T=T>I7WT=m7Y05X]

This is the conditional distribution of the biomarker up
until time ¢ given the outcome event between times ¢ and
T that can be estimated from the fitted retrospective mul-
tivariate linear mixed effects model.

The updated probability [T, Wr|T > t, Y14, Yo, X]
can now be obtained by applying conditional probability
rule:

[T, Wr |T >t, Y14, Yo, X]
M| T, T >t,Wr, Yo, XIIT,Wr | T >1t, Yo, X]
Srw Y| T, T >t, Wr, Yo, XI[T, Wr | T > ¢, Yo, X]

__ L@ miy)m
Zr,m L(t,m; y)éep ’

Finally, we obtain the joint distribution of the future
biomarkers and events given the history of biomarkers and
sequence of events up until time ¢ such that

[T’ WT» Y[+1:T | T > ta Yl:[7 YOa X]
= [YT+1T | T! WT7 Ylit’ Y09 X]
X [T, Weqr.r | Y1, Yo, X1

APPENDIX B: MODEL DETAILS
B.1 Notation

Appendix B provides model details on the prospective
and retrospective approaches. Figure 5 introduces nota-
tions for the prospective and retrospective models using
two hypothetical patients who were discharged on day 20
and ventilated on day 16, respectively. The y-axes indi-
cate the time origins for each model; the gray dashed lines
indicate each patient’s day of event. We use Yl.(tk) to de-
note measure k for person i on day ¢ after hospitalization,
i=1,... N;t=1,....Tik=1,....,K. We let Y* be
YO, t=1,...,T;). Define ¥; = (¥* k=

the vector of (¥;,”,

I,...,K).

In the prospective and retrospective multivariate linear
mixed effects models, we define the design matrices for
person i and biomarker & to be X l.(k) and X l.(k) respectively.
Let X, =@®K , x;® and X; = DK, f(fk). To reduce no-
tation, we include the baseline biomarker measures Y;q
as columns within these design matrices. Similar naming
conventions are used in the competing risks multinomial
models, where the prospective and retrospective design
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Hllustration of follow-up time orientation in the prospective and retrospective models. The prospective model aligns a patient’s biomarker

data on admission date (left-most axis) and follows them forward in time along the t-axis until clinical event. The retrospective model aligns a
patient’s biomarker data on clinical event day (right-most axis) and follows them backward in time along the u-axis until admission date.

matrices are called G; and G, respectively. Finally, in the
retrospective model (Figure 5, right), patients are aligned
according to their event days as shown by the y-axes, so
we introduce u;; =t — T; to represent the day until the
event occurred for patient .

B.2 Prospective Model

As mentioned in Section 2.2, examples of COVID-19
prediction models using biomarker history over time are
limited but do include Chen et al. [8] and Wongvibulsin
et al. [35]. Both methods rely on machine learning al-
gorithms. The former work combines machine learning
methods to select time varying predictor variables with
joint models of mortality and biomarkers to produce dy-
namic mortality predictions. Wongvibulsin et al. [35] use
an extension of random forests for longitudinal, multivari-
ate and survival data to predict the occurrence of severe
disease in the next 24 hours or 7 days given the history
of dynamic biomarkers to date. The joint model in the
Chen et al. [8] article is similar to the prospective ap-
proach described below, however, it does not take account
of the competing risks of discharge, ventilation and death.
The Wongvibulsin et al. [35] approach is entirely machine
learning to predict severe disease. A separate algorithm is
needed for each of two future interval lengths, one and 7
days. Neither of the methods forecasts the biomarkers.

B.2.1 Multivariate linear mixed effects model. We use
a multivariate linear mixed effects model to estimate the
average trajectories of the K biomarkers and the covari-
ance matrix of observations across measures and time. To
simplify the exposition, we assume the number of obser-
vations is the same for all K measures but this assumption
is easily relaxed in practice. We define X l-(k) and Zl-(k) to
be the (T; x px), (T; x q) known matrices of full rank,
where Zl-(k) is a subset of X l-(k). ,B(k) and b® are ( Px x 1)
and (g x 1) vector of parameters for fixed and random
effects respectively. The model is specified as follows:

Y, 0 = x, 00 L 7.5 0 4 @)

where the correlations among the biomakers are mod-

eled via the random effect b; = (b;l),,...,blgm,)/ nd

Gky(0,D) and via correlated noises €; = (el.(l) s

X'y ™ Gy (0, Ry).

In the prospective model, the fixed effect covariates X;
include baseline patient characteristics, basis functions
(e.g., natural splines) representing a smooth function of
days since admission for each biomarker, and possibly in-
teractions. The random effect covariates Z; include the
basis functions for time to allow the biomarker trajecto-
ries for an individual to deviate from the mean trajec-
tories. The covariance matrix of the random effects and
the residual covariance matrix are assumed to be unstruc-
tured. In some applications, they might also depend on
baseline covariates but that possibility was not pursued
here. At any time ¢, this prospective model defines the
conditional Gaussian distribution of the unobserved fu-
ture biomarker values Y;1.7;) given the observed values
Y;(1.1) for patient i. Hence, we can simulate from this con-
ditional distribution and obtain a predictive distribution
for future biomarker values. This model can be imple-
mented using multivariate linear mixed effects softwares
such as MCMCglmm, RStan or the equivalent.

B.2.2 Competing risks model given baseline covari-
ates and past biomarkers. We construct the discrete-time
cause-specific hazards as a multinomial logistic model
for the conditional probability that an at-risk person has
event type m on day ¢. Let 74, be this discrete time haz-
ard, m =1,..., M where M = 3 in our application and
m = 0 is the reference category of no event at time .
Let fi; = f(Yi1, ..., Yir—1) be an r-vector of known func-
tions of past biomarkers. We then assume the competing
risks model has the form

(nitm
log

Tit0
where g;; is the rth row of G;; G; is the (T; X pg)
full rank design matrix for each event type m including

):gitym+fit05m, m=1,...,M,
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the baseline covariates and basis functions that define a
smooth baseline hazard function; y,, is a (pg x 1) event
m-specific vector of parameters; and o, is a (r x 1) vector
of regression coefficients representing the influence of the
biomarkers on the risk of event m. In this application, we
use r = 2 functions of each biomarkers, the most recent
value and the linear slope over the past two times. That is,

fit = (Yit—l, Yii—1— Yit—z)-

B.2.3 Prediction. Given that an individual remains at
risk on day ¢ and given the observed biomarker process
until day ¢, the clinician needs risk estimates for a range
of future days. However, the competing risks model above
depends on as-yet unobserved biomarkers starting on day
t 4+ 1. To calculate estimates of the discrete hazards on
future days, we must integrate over the distribution of
the as-yet unobserved predictors given their past observed
values. We use Monte Carlo integration by simulating
S realizations of the future biomarkers from this condi-
tional Gaussian distribution, calculating the correspond-
ing fi;,t' > t values for each simulation, calculating the
predicted discrete hazards on future days from the com-
peting risk model using the simulated fs, and then av-
eraging these across all S simulations. To assure that the
Monte Carlo integration error is negligible, we compare
the predictions for S and S/2 to assure the predictions are
equivalent.

B.3 Retrospective Model

The prospective modeling approach is more common,
but the retrospective approach has also been beneficial in
other related problems. Sliced inverse regression (SIR) is
one example where the goal is to identify and fit a rel-
atively small number of linear combinations of a large
number of potential predictors [12]. SIR corresponds to
modeling X given Y rather than Y given X. Jiang, Yu and
Wang extended the SIR approach for application to lon-
gitudinal predictors as in our problem [19]. Their focus
is on the theory of this approach in the context of con-
tinuous outcome variable, not competing risks. Another
closely related decomposition is pattern mixture models
used to handle possibly nonignorable missingness in anal-
yses of longitudinal data [22]. In that context, W is the
indicator of whether a person dropped out of the study or
not. The scientific focus is on the relationship of ¥ with
X absent dropouts. To account for possibly informative
dropout process, Little [22] and Michiels, Molenberghs
and Lipsitz [23] model the conditional distribution of Y
given X and given the observed dropout time W.

B.3.1 Events stratified model. To retrospectively
model biomarker trajectories, we stratify the the event
outcome W, = m and use a m-specific multivariate Gaus-
sian mixed-effects model for [Yl-(k)lff l.(k)] for measure k
that can be written as follows:

v;® = 050 4 050 4 2k

where m = 1, 2, 3. In the applications below, the predic-
tor variables include a separate set of natural spline ba-
sis functions Bj(u;), j =1,...,df, of the time until the
event (1) and baseline biomarker measures and baseline
covariates. The retrospective model is completed by spec-
ifying the dependence of the random effects covariance
matrix and residual variances on the event outcome m.
Other assumptions follow the prospective model specifi-
cation as summarized above.

B.3.2 Competing risks model given baseline measures
and baseline covariates. In the retrospective model, the
competing risks depend only on the baseline biomarker
measures and covariates, not on subsequent biomarker
values as in the prospective model. Otherwise the two
models take the same form.

B.3.3 Prediction. From the retrospective competing
risks model and the multivariate linear mixed effects
model, we obtain the distribution of the day and type
of event given observed biomarker values for patient i
and their baseline covariates, [T;, Wi, | T > 1, Yi(1.1), 5(1-],
using a prediction updating algorithm. Thus, we can
calculate the target distribution [7;, Wit Yi¢y1.1)| T >
t, Y1), X;] for this patient by multiplying the proba-
bility distribution above with the conditional Gaussian
likelihood of the future biomarker values given the past
observations, baseline Value~s and patient characteristics,
Yigvrm) 1 T Wiy, Yiaen, Xil.

An advantage of the prospective model is that it explic-
itly expresses the risks of events in terms of known func-
tions of the previously observed biomarkers. The form of
this dependence is indirectly specified in the retrospec-
tive model. More recent biomarker values are not as em-
phasized in the retrospective prediction as they are in the
prospective prediction. In practice, we found that condi-
tioning on a few proximal observations improves calibra-
tion and discrimination in the COVID-19 application. To
do this, we let a < ¢ be the dimension of the desired sub-
space of Y;,t" <t and let A be an aK x T; K matrix so
that Y;* = AY; is taken as the new data. For a given type m
and date 7; of the future event, the conditional mean and
variance of Y* can be calculated from the fitted retrospec-
tive multivariate linear mixed effects model. We combine
this local likelihood with the initial probabilities to pro-
duce updated probabilities of the day and type of future
events.
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