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Glauber-Exclusion dynamics: rapid mixing regime*
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Abstract

We show that for any attractive Glauber-Exclusion process on the one-dimensional
lattice of size N with periodic boundary condition, if the corresponding hydrodynamic
limit equation has a reaction term with a strictly convex potential, then the total-
variation mixing time is of order O(logN). In particular, the result covers the full
high-temperature regime in the original model introduced by De Masi, Ferrari and
Lebowitz (1985).
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1 Introduction

The Glauber-Exclusion dynamics is a stochastic spin system which is a superposition
of a Glauber dynamics and a speeded-up symmetric simple exclusion process (SSEP)
on lattices. The model was introduced by De Masi, Ferrari and Lebowitz in [DMFL85]
and in [DMFL86], where they showed that the hydrodynamic scaling limit yields a
reaction-diffusion equation (see also [KOV89] and [DMP91]). The family of limiting
equations possibly interpolates dynamics of different natures in the macroscopic scale
where the reaction term admits a single-well or a double-well potential. A salient feature
of this model is that both types can arise even when the dynamics is constrained in
the one-dimensional lattice. It seems plausible to expect, but still challenging to verify
that the time needed for the stochastic model to reach an equilibrium would reflect the
corresponding type in the hydrodynamic limit. The purpose of this article is to show
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Glauber-Exclusion dynamics

a rapid mixing property of the underlying stochastic model when it is hinted by the
hydrodynamic equation. More precisely, we consider a general class of Glauber-Exclusion
models on the one-dimensional integer lattice of size N with periodic boundary condition,
and show that if the limiting reaction-diffusion equation has a strictly convex single
well potential, then the total-variation mixing time is of order O(logN). In particular,
this covers the full high-temperature regime in the original model of De Masi et al.
[DMFL85, DMFL86].

For any integer N ≥ 1, let ZN := Z/NZ and ΩN := {−1, 1}ZN . The generator of
Glauber (spin flip) dynamics is defined by

LGf(η) :=
∑
x∈ZN

c(x, η) (f(ηx)− f(η)) for η ∈ ΩN ,

where ηx is the configuration whose spin is −η(x) at x and coincides with the spin of
η at the other sites, and c(x, η) is a positive value called jump rate. In the associated
continuous-time Markov chain, the transition η → ηx occurs at rate c(x, η). We assume
that c(x, η) depends only on (η(y))|y−x|≤K for some K ≥ 0 independent of N , is periodic,
i.e., c(x, η) = f(η·+x) for some function f where η·+x := (η(y + x))y∈ZN , and that there
exists a constant c0 > 0 independent of N such that c(x, η) ≥ c0 for all (x, η) ∈ ZN × ΩN .
The generator of SSEP is defined by

LEf(η) :=
1

2

∑
x∈ZN

(
f(ηx,x+1)− f(η)

)
for η ∈ ΩN ,

where ηx,x+1 is the configuration whose spins are obtained by exchanging the spins of η
at x and x+ 1. Let us consider the sum of generators where the SSEP is speeded-up at
rate N2,

LN := LG +N2LE ,

and call the associated continuous-time Markov chain {ηt}t≥0 on ΩN a Glauber-Exclusion
process 1. Further if the jump rate c(x, η) for the Glauber dynamics is attractive (see
the definition in Section 2.1), then we call the corresponding processes an attractive
Glauber-Exclusion process. Note that the Glauber-Exclusion process is irreducible on
ΩN since the jump rate in the Glauber part is positive, and thus there exists a unique
stationary distribution πN on ΩN . We point out that except for a very special case the
process is not reversible as it was observed by Gabrielli et al. [GJLLV97, Section 3] (see
Remark 1.5), and no explicit description of the stationary distribution is available.

For any η ∈ ΩN , let Pη be the distribution of the process {ηt}t≥0 starting from η. We
define the total-variation mixing time for each 0 < δ < 1,

tNmix(δ) := inf
{
t ≥ 0 : max

η∈ΩN
‖Pη(ηt ∈ · )− πN‖TV ≤ δ

}
,

where the total-variation distance is defined by

‖µ− ν‖TV := max
A⊂ΩN

|µ(A)− ν(A)| = 1

2

∑
η∈ΩN

|µ(η)− ν(η)|,

for any pair of probability distributions µ, ν on ΩN . For ρ ∈ [−1, 1], let us define R(ρ) :=

E νρ [−2η(0)c(0, η)] where νρ is the product of Bernoulli measures on {−1, 1} with mean
ρ. The function R : [−1, 1] → R is referred to as the reaction function and R(ρ) as it
appears in (1.2) is referred to as the reaction term. A function V is called a potential if
V ′(ρ) = −R(ρ) for ρ ∈ [−1, 1]. We say that V is strictly convex if V ′′(ρ) > 0 on [−1, 1].

1This is also called a Glauber+Kawasaki process in literature.
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Glauber-Exclusion dynamics

Theorem 1.1. For any attractive Glauber-Exclusion process on ZN , if the corresponding
reaction function R admits a strictly convex potential function V , then there exists a
constant C such that for all 0 < δ < 1, we have

tNmix(δ) ≤ 1

κ
log

N

δ
+ C,

for all large enough N , where κ := minρ∈[−1,1] V
′′(ρ) > 0.

For example, let us consider the jump rate in the Glauber part introduced by De Masi
et al. [DMFL85, DMFL86]: for 0 ≤ γ < 1,

c(x, η) := 1− γη(x)(η(x+ 1) + η(x− 1)) + γ2η(x+ 1)η(x− 1), (1.1)

for (x, η) ∈ ZN × ΩN . This jump rate is positive and attractive for any 0 ≤ γ < 1. The
reaction term R(ρ) = E νρ [−2η(x)c(x, η)] = −2(1 − 2γ)ρ − 2γ2ρ3 has a strictly convex
potential function if 0 ≤ γ < 1/2. Therefore this range 0 ≤ γ < 1/2 may be considered as
the high temperature regime analogous to the mean-field setting. Theorem 1.1 implies
that for every 0 ≤ γ < 1/2 there exists a constant C such that for all 0 < δ < 1, we have

tNmix(δ) ≤ 1

2(1− 2γ)
log

N

δ
+ C,

for all large enough N . However, we believe that the constant in front of logN in
Theorem 1.1 would not be optimal and leave it open to find an exact constant which
might lead to a cutoff particularly for the special case (1.1) by De Masi et al. For
background and discussions on the cutoff phenomenon, see [LP17, Chapter 18].

Let us recall the result from the hydrodynamic limit which has been obtained by
Kipnis, Olla and Varadhan [KOV89, Appendix] in the case of finite volume ZN and by
De Masi et al. [DMFL86] and [DMP91, Chapter VI] in the case of infinite volume Z.
For background information in the theory of hydrodynamic limit, see [KL99]; for recent
progresses, see [BBP19] and references therein. For each fixed time t ≥ 0, as N →∞
under an appropriate condition of convergence of the initial data, the density field

µNt (dx) =
1

N

∑
x∈ZN

ηt(x)δ x
N

(dx) on R/Z,

converges weakly to a unique weak solution of the reaction-diffusion equation:

∂ρ

∂t
=

1

2

∂2ρ

∂x2
+R(ρ), (1.2)

where R(ρ) is the reaction term defined just before the statement of Theorem 1.1.
The following is a reason why the reaction term is obtained by the average under the
Bernoulli measure: for a fixed time T > 0 since the SSEP is speeded-up by N2 whereas
the spin-flip dynamics occurs slowly O(N) in a unit time, in each (macroscopically small)
box of size εN for ε > 0 the distribution at time T is approximately the Bernoulli measure
whose parameter is the empirical average of spins in the box. There one should be
able to replace the distribution by the Bernoulli at each fixed time T — the proof of
deriving (1.2) is basically devoted to verify this heuristic rigorously. Let us point out that
this has been verified only for a fixed time T , which is not enough to understand the full
dynamics up to the equilibrium. One observes that a combination of (microscopically)
slow reaction with a fast stirring creates a non-local interaction among spins even
though the Glauber updates depend only on configurations in bounded ranges (e.g.,
nearest-neighbors). Because of this particular nature of the dynamics our analysis
would not simply boil down to either the Glauber dynamics or the SSEP, where much
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Glauber-Exclusion dynamics

sharper results have been established for the total-variation mixing time in [LS16] and
[Lac16, Lac17], respectively. Concerning the Glauber-Exclusion process, very little is
known for the stationary distribution, which has attracted intensive studies recently
(e.g., [FLT19]). Although it is not always necessary to have full understanding of the
stationary distribution (e.g., a sharp result on the mixing time has been established for a
large class of noisy voter models in [CPS16]), it had been unknown that the mixing time
was actually O(logN) in the present setting. Given the result on the hydrodynamic limit,
our result would not be valid beyond the strict convexity condition on potentials: even
for the particular example by De Masi et al. (1.1), it is tempting to determine the exact
order of total-variation mixing time in the range 1/2 ≤ γ < 1.

Our proof is based on an enhancement of the above replacement which is now valid
in time range up to Nε for a small enough ε > 0 with a uniform error control. We call
it a replacement lemma (see the precise statement in Lemma 3.3); the proof uses a
classical coupling between a SSEP and independent simple random walks and it sharpens
estimates in [DMFL86]. The idea has a lot of similarities to the “v-function” method in
[DMP91, Chapter IX], however our proof is self-contained and enables us to expose an
explicit constant factor in the upper bound if not optimal. We use this estimate under
the standard monotone coupling process in order to control error terms. After obtaining
a recursive estimate with a fine error control, we find a coalescing time of the coupling
process and this leads an upper bound of the total-variation mixing time (Section 2).
In the entire part of this paper, we focus on the one-dimensional lattice with periodic
boundary condition, but this is mainly for simplicity of notations; the methods we employ
are valid in the higher dimensional lattices.

Let us give some other explicit examples to which our result applies.

Example 1.2 (The De Masi-Ferrari-Lebowitz model and its variants). Brassesco et al.
have considered the following jump rate with external field [BPSV00b] (compare with
[BPSV00a]):

cµ(x, η) := c(x, η)− µ

2
η(x),

where c(x, η) is the jump rate of De Masi et al. (1.1), and µ is a real value. If 0 ≤ µ < 2(1−
γ)2, then cµ(x, η) > 0. Note that introducing the parameter µ breaks the flip symmetry
η ↔ −η of the stationary distribution and still keeps the jump rate attractive. The reaction
term has the following form: R(ρ) = E νρ [−2η(x)c(x, η)] = −2(1− 2γ)ρ− 2γ2ρ3 +µ, which
has a strictly convex potential function if 0 ≤ γ < 1/2. (It should be noted however
that the main purpose to introduce µ is to understand the dynamics when γ > 1/2 in
[BPSV00b].) Concerning a more general class of processes in the one-dimensional lattice,
see [Fer90, Section 4]. 2

Remark 1.3. For any d ≥ 1, one is able to generalize the process on the d-dimensional
lattice by setting the jump rate

c(x, η) =
1

d

d∑
i=1

(
1− γη(x) (η(x− ei) + η(x+ ei)) + γ2η(x− ei)η(x+ ei)

)
,

where {ei}i=1,...,d is the standard basis in Rd.

Example 1.4 (The Chafee-Infante model). This model has been analyzed in [FLT19,
Section 8]. Let us fix a0, a1, a2 > 0, and define

c(x, η) := a01{η(x−1)=η(x+1) 6=η(x)} + a11{η(x−1)=η(x)=η(x+1)} + a21{η(x−1) 6=η(x+1)}.

2In the same paper, there is a typographical error where the Glauber-Exclusion process with the jump
rate (1.1) is analyzed; it is in fact γ < 1/3 instead of γ ≤ 1/2 [Fer90, p.1528, line 22].
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Note that this jump rate is positive and attractive if a0 ≥ a2 ≥ a1. A computation yields

E νρ [−2η(x)c(x, η)] =
1

2

(
(a0 − 3a1 − 2a2)ρ− (a0 + a1 − 2a2)ρ3

)
.

Fix a, b > 0. If we define a1 := a, a2 := a + 2b and a0 := a + 8b, then the jump rate is
positive and monotone and we have

a0 − 3a1 − 2a2 = 4(b− a) and a0 + a1 − 2a2 = 4b.

Hence
R(ρ) = E νρ [−2η(x)c(x, η)] = 2(b− a)ρ− 2bρ3,

where R(ρ) has a strictly convex potential function if b < a.

Remark 1.5. In general, an explicit form of the stationary distribution πN is not available
even in the setting which we are focusing on in this article. Gabrielli et al. have shown
that the Glauber-Exclusion process on periodic integer lattices is reversible if and only if
the jump rate has the form

c(x, η) = (a1 + a2η(x))h(x, η),

where h(x, η) is independent of η(x) with some constants a1, a2, and in this particular
case πN is a Bernoulli measure [GJLLV97, Section 3].

The rest of this article is organized as follows: in Section 2 we prove Theorem 1.1
provided Lemma 2.2 whose full proof is deferred until subsequent sections, in Section 3
we prove Lemma 2.2 by using a key replacement lemma Lemma 3.3, in Section 4 we
prove Lemma 3.3 and complete the proof of upper bound for the mixing time, and in
Appendix A and B we give the proofs of technical lemmas which we use in the proof of
Lemma 3.3 in Section 4.

Notation: Throughout the article, we use C,C ′, C ′′, . . . to denote numerical constants
whose exact values may change from line to line, and Cε, C

′
ε, C

′′
ε , . . . to indicate its

dependency only on ε for a parameter ε. For a set A, we denote the indicator function of
A and the cardinality of A by 1A and |A|, respectively. When A is a Lebesgue measurable
subset of R, we also denote the normalized Lebesgue measure of A in R by |A|, for
which we believe there is no danger of confusion from the context. For a real-valued
function f(N) in positive integers N , we write f(N) = O(N) if there exists a constant
C ≥ 0 such that |f(N)| ≤ CN for all large enough N , and f(N) = o(1) if |f(N)| → 0 as
N →∞. For any real number x, we denote by bxc the largest integer at most x and by
dxe the smallest integer at least x.

2 Proof of Theorem 1.1

2.1 Monotone coupling

We define a partial order in ΩN by setting

η ≥ ζ ⇐⇒ η(x) ≥ ζ(x) for any x ∈ ZN .

A jump rate c(x, η) (x ∈ ZN , η ∈ ΩN ) is called attractive if η ≥ ζ implies that

c(x, η) ≤ c(x, ζ) for η(x) = ζ(x) = 1, and c(x, η) ≥ c(x, ζ) for η(x) = ζ(x) = −1.

An attractive jump rate yields a monotone coupling of the associated chains (η+
t , η

−
t ),

i.e., a coupling where the order of configurations are kept preserved η+
t ≥ η−t for all

t ≥ 0 almost surely if they have started with η+
0 ≥ η

−
0 [Lig10, Theorem 4.11, p.143]. We
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construct a monotone coupling (η+
t , η

−
t ) for the Glauber-Exclusion process based on this

coupling, for which we provide the explicit form for the sake of convenience: given η ≥ ζ
(otherwise we define the jump rate 0 from (η, ζ)), for each x ∈ ZN ,

(η, ζ) 7→ (ηx,x+1, ζx,x+1) at rate
N2

2
,

and the states of (η, ζ) at x are updated according to the monotone coupling of Glauber
dynamics with the same (attractive) jump rate, namely, we change the states of (η, ζ) at
x by the following rates;

(η(x), ζ(x)) = (−1,−1) =⇒

{
(1, 1) with rate c(x, ζ)

(1,−1) with rate c(x, η)− c(x, ζ),

(η(x), ζ(x)) = (1,−1) =⇒

{
(−1,−1) with rate c(x, η)

(1, 1) with rate c(x, ζ),

(η(x), ζ(x)) = (1, 1) =⇒

{
(−1,−1) with rate c(x, η)

(1,−1) with rate c(x, ζ)− c(x, η).

The joint process {(η+
t , η

−
t )}t≥0 yields a Markovian coupling, whose distribution we

denote by the same symbol P as long as there is no danger of confusion. If we define

τ := inf{t ≥ 0 : η+
t = η−t },

then it holds that τ < ∞ and η+
t = η−t for all t ≥ τ almost surely if η+

0 ≥ η−0 since the
chain is irreducible. Let 1 and −1 be the configurations whose states are all 1 and all
−1, respectively.

Lemma 2.1. For any attractive Glauber-Exclusion process, if the corresponding reaction
term R(ρ) has a potential V (ρ), i.e., R(ρ) = −V ′(ρ) such that

κ := min
ρ∈[−1,1]

V ′′(ρ) > 0,

then for the monotone coupling (η+
t , η

−
t ) with the initial configurations (1,−1), there

exists a constant C > 0 such that for any 0 < δ < 1 and

tN,δ :=
1

κ
log

N

δ
+ C,

we have P(τ > tN,δ) ≤ δ for all large enough N .

We show Lemma 2.1 in Section 2.2.

Proof of Theorem 1.1. Let η, ζ ∈ ΩN be two arbitrary configurations (not necessarily
η ≥ ζ). We consider the monotone coupling {(η+

t , η
−
t )}t≥0 with initial configurations

(1,−1). Note that 1 ≥ η, ζ ≥ −1; enlarging the probability space, we construct a coupling
P (denoted by the same symbol) among four copies of original chains η+

t , η
−
t , ηt, ζt such

that
η+
t ≥ ηt, ζt ≥ η−t for all t ≥ 0 almost surely,

with η0 = η and ζ0 = ζ, and further any two of η+
t , ηt and η−t (resp. η+

t , ζt and η−t ) are
monotone coupling. Then η+

t = η−t implies that ηt = ζt almost surely, and thus letting

τ := inf{t ≥ 0 : η+
t = η−t },

we have that

‖Pη(ηt ∈ · )− Pζ(ζt ∈ · )‖TV ≤ P(ηt 6= ζt) ≤ P(η+
t 6= η−t ) ≤ P(τ > t).
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By Lemma 2.1 for any 0 < δ < 1 if tN,δ = (1/κ) log(N/δ) + C for some constant C, then
P(τ > tN,δ) ≤ δ. Noting that

max
η∈ΩN

‖Pη(ηt ∈ · )− πN‖TV ≤ max
η,ζ∈ΩN

‖Pη(ηt ∈ · )− Pζ(ζt ∈ · )‖TV,

we obtain

tNmix(δ) ≤ 1

κ
log

N

δ
+ C,

for all large enough N and conclude the proof.

2.2 The upper bound

For a continuous-time Markov chain {ηt}t≥0 generated by LN on the state space
ΩN = {−1, 1}ZN , we define the normalized magnetization by

S(ηt) :=
1

N

∑
x∈ZN

ηt(x).

We say that f : {−1, 1}ZN → R is a local function if there exists an integer 0 ≤ K < N

independent of N and a subset I in ZN with |I| ≤ K such that f(η) depends only on
{ηx}x∈I for any η ∈ {−1, 1}ZN . Let us denote by supp f the smallest such subset I
for a local function f . For example, f(η) := η(−1)η(0)η(1) for η ∈ {−1, 1}ZN is a local
function with supp f = {−1, 0, 1}. Let f∅(η) = 1. For a non-empty subset I in ZN , let
fI(η) :=

∏
x∈I η(x) and call it an elementary local function. Note that any local function

f is a linear combination of elementary local functions:

f(η) =
∑

I⊂supp f

aIfI(η) for η ∈ ΩN ,

where the summation is over all subsets in supp f and aI ∈ R and this follows from the
Fourier expansion of f on {−1, 1}K .

For η ∈ ΩN and for x ∈ ZN , denoting LNfx(η) where fx(η) := η(x) simply by (LNη)(x),
we have

(LNη)(x) = −2η(x)c(x, η) +
N2

2
(η(x+ 1) + η(x− 1)− 2η(x)) ,

and thus

LNS(η) =
1

N

∑
x∈ZN

−2η(x)c(x, η).

Since for a given jump rate c(x, η), the function η(0)c(0, η) is local, expanding it by
elementary local functions in the way above, we have

2η(0)c(0, η) =
∑
y∈ZN

ayfy(η) + g(η) where g(η) :=
∑
|I| 6= 1

aIfI .

Note that η(x)c(x, η) = η·+x(0)c(0, η·+x) and that 1
N

∑
y∈ZN fy(η·+x) = S(η) to obtain the

following decomposition:

LNS(η) = −αS(η)− F (η) where α =
∑
y∈ZN

ay and F (η) :=
1

N

∑
x∈ZN

g(η·+x).

Note that the reaction term R(ρ) is obtained from LNS(η) by

R(ρ) = E νρ [LNS(η)].
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Letting G(ρ) := E νρF (η), one has R(ρ) = −αρ−G(ρ). If V (ρ) is a potential function of
R(ρ), i.e., V ′(ρ) = −R(ρ), then we have that V ′′(ρ) = α+G′(ρ).

For a pair of configurations η+
0 , η

−
0 such that η+

0 ≥ η
−
0 , we run the monotone coupling

{(η+
t , η

−
t )}t≥0 and denote by Ft := σ ({η+

s , η
−
s }0≤s≤t) the σ-algebra generated by the

monotone coupling process up to time t for t ≥ 0. Letting

ξt := S(η+
t )− S(η−t )

for t ≥ 0, we have that

E [ξt+T | Ft] = ξt − α
∫ t+T

t

E [ξs | Ft] ds−
∫ t+T

t

E [F (η+
s )− F (η−s ) | Ft] ds, (2.1)

where E [ · | Ft] stands for the conditional expectation with respect to the σ-algebra Ft.
For each x ∈ ZN , we define the local average of η ∈ ΩN around x up to time t by letting
{w(t)}t≥0 be the simple random walk (SRW) starting from x with rate 1,

Φx(η, t) := E xη(w(t)) for η ∈ ΩN and t ≥ 0,

where E x denotes the expectation with respect to the distribution of {w(t)}t≥0 such that
w(0) = x.

Lemma 2.2 (Main replacement lemma). For all small enough ε > 0, there exist constants
C > 0 and T0 such that for all T0/N

2 ≤ t ≤ 1/N1−ε and all η̃ = (η+, η−) with η+ ≥ η−, we
have∣∣∣∣∣E η̃[F (η+

t )− F (η−t )]− 1

N

∑
x∈ZN

[G(Φx(η+, N2t))−G(Φx(η−, N2t))]

∣∣∣∣∣
≤ C

tε/4N2ε
ξ0 + C

∫ t

0

E ξs ds+ C exp(−(N2t)ε/8).

We show Lemma 2.2 in Section 3 and now prove Lemma 2.1. We note that the proof
of Lemma 3.3 reveals that 0 < ε < 1/28 is sufficient for the argument. The proof of
Lemma 2.1 is based on showing a strong contraction (see (2.2)) between two coupled
magnetization chains. This is achieved by dealing with the function F , which is a main
‘non-linear’ term in this discrete setting.

Proof of Lemma 2.1. Fix 0 < ε < 1/28 and let T∗ := 1/N1−ε. We first claim that for all
t ≥ 0,

E ξt+T∗ ≤
(

1− κ

N1−ε +
Cε

N1+ε2

)
E ξt +

C ′ε
N2

. (2.2)

We prove this inequality later and let us conclude Lemma 2.1 by invoking this estimate.
For any 0 < δ < 1, if we define

tN,δ :=
1

κ

(
logN + log

4

δ
+ C ′ε

)
,

then applying (2.2) inductively btN,δ/T∗c-times and using the monotone coupling E ξt ≤
E ξs for t ≥ s yield

E ξtN,δ ≤
(

1− κ

N1−ε +
Cε

N1+ε2

)btN,δ/T∗c

E ξ0 +
C ′ε
N2

btN,δ/T∗c−1∑
n=0

(
1− κ

N1−ε +
Cε

N1+ε2

)n
≤ ξ0 exp (−κtN,δ + C ′ε) +N1−εC

′′
ε

N2
≤ δ

2N
+

C ′′ε
N1+ε

,
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Glauber-Exclusion dynamics

for all large enough N , where we have used ξ0 ≤ 2 in the last inequality. Recalling that
τ := inf{t ≥ 0 : ξt = 0}, we obtain by the Markov inequality,

P
(
τ > tN,δ

)
= P

(
ξtN,δ ≥ 1/N

)
≤ N · E ξtN,δ ≤

δ

2
+
C ′′ε
Nε

< δ,

for all large enough N , as required.
Let us turn to the claim (2.2). We run the monotone coupling with the initial state

(1,−1). Note that for all s, t > 0,∣∣∣∣∫ s+t

s

E [ξu | Fs] du− tξs
∣∣∣∣ ≤ Ct2. (2.3)

Indeed, since the SSEP dynamics given by LE preserves S(η), the difference |ξu − ξs|
is at most 2/N times the number of Glauber updates within the time interval [s, u] for
0 ≤ s < u, which is stochastically dominated by the Poisson random variable with
intensity O(N(u− s)). Integrating in u,

E [ξu − ξs | Fs] ≤ E [|ξu − ξs| | Fs] ≤ C(u− s),

we obtain (2.3). For each t ≥ 0, we integrate

E [F (η+
s )− F (η−s ) | Ft] for t ≤ s ≤ t+ T∗,

where we decompose the time interval for the integration into two parts; for the first
part t ≤ s ≤ t+ T0/N

2, we use the following elementary estimate∣∣∣∣∣
∫ t+

T0
N2

t

E [F (η+
s )− F (η−s ) | Ft] ds

∣∣∣∣∣ ≤ 2‖g‖∞T0

N2
,

(for the definition of g, see the third paragraph in Section 2.2) and for the second part
t + T0/N

2 ≤ s ≤ T∗, we will apply to the Markov property and Lemma 2.2. By (2.3), it
follows that ∫ t+s

t

E [ξu | Ft] du ≤ sξt + Cs2,

which we integrate over t ≤ s ≤ t + T∗ (and we note that this factor comes from the
second term in the right hand side in the inequality in Lemma 2.2). Direct computations
yield ∫ T∗

0

(
s+

1

sε/4N2ε

)
ds =

1

2
T 2
∗ +

1

(1− ε/4)N2ε
T

1−ε/4
∗ ≤ Cε

N1+ε2
,

(which is a factor in front of ξt; we have used (1− ε)(1− ε/4) + 2ε ≥ 1 + ε2), and∫ T∗

0

(
s2 + exp

(
−(N2s)ε/8

))
ds ≤ 1

3
T 3
∗ +

1

N2

∫ ∞
0

exp
(
−sε/8

)
ds ≤ C ′ε

N2
,

(which is a remaining error term), combining above estimates, we have that∫ t+T∗

t

E [F (η+
s )− F (η−s ) | Ft] ds ≥ −

C ′′ε
N2
− Cε
N1+ε2

ξt

+

∫ T∗

0

1

N

∑
x∈ZN

[G(Φx(η+
t , N

2s))−G(Φx(η−t , N
2s))] ds,

(2.4)
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where we have used ξt ≥ 0, the Markov property and Lemma 2.2. For any pairs of
configurations with η+ ≥ η−, it holds that for s ≥ 0,

Φx(η+, N2s) ≥ Φx(η−, N2s).

Recall that a potential function V (ρ) of R(ρ) satisfies that V ′′(ρ) = α + G′(ρ). Letting
κ := minρ∈[−1,1] V

′′(ρ) > 0, we have that by the Taylor theorem for ρ+ ≥ ρ−,

G(ρ+)−G(ρ−) = −α(ρ+ − ρ−) + (V ′(ρ+)− V ′(ρ−)) ≥ (−α+ κ)(ρ+ − ρ−).

Plugging into this inequality Φx(ηt, N
2s) and noting that

1

N

∑
x∈ZN

Φx(ηt, N
2s) =

1

N

∑
x∈ZN

E xηt(w(N2s)) = S(ηt),

we obtain by averaging over all sites x ∈ ZN , for all s ≥ 0,

1

N

∑
x∈ZN

[G(Φx(η+
t , N

2s))−G(Φx(η−t , N
2s))] ≥ (−α+ κ)(S(η+

t )− S(η−t )). (2.5)

For all large enough N , taking expectation in (2.4), we obtain from (2.1) and (2.5) for all
t ≥ 0,

E [ξt+T∗ | Ft] ≤
(

1 +
Cε

N1+ε2

)
ξt − α

∫ t+T∗

t

E [ξs | Ft] ds+ (α− κ)T∗ξt +
C ′ε
N2

. (2.6)

By the monotone coupling, if the initial state is (1,−1), then E ξt ≤ E ξs for t ≥ s, whence
taking expectation in (2.6) yields(

1 +
α

N1−ε

)
E ξt+T∗ ≤

(
1 +

C

N1+ε2

)
E ξt + (α− κ)T∗E ξt +

C ′ε
N2

.

Since T∗ = 1/N1−ε, multiplying the inverse of 1+α/N1−ε in both sides yields (2.2), which
completes the proof of Lemma 2.1.

3 Proof of Lemma 2.2

For any positive integer K ≥ 1 independent of N such that K ≤ N , let us fix K-
distinct sites {x1, . . . , xK} in ZN . We consider an SSEP generated by LE with particles
marked by labels {1, . . . ,K} as a stirring dynamics, i.e., a K-marked SSEP {z(t)}t≥0 with
rate 1 starting from zi(0) = xi where z(t) = (zi(t))i=1,...,K ∈ (ZN )K , and for each bond
{x, x+ 1} in ZN , an exchange occurs at random times which are independent Poisson
point processes with intensity 1/2. Note that for the N -marked SSEP z̃(t) = (z̃x(t))x∈ZN
with rate 1 starting from z̃x(0) = x for x ∈ ZN , we naturally identify z(t) with a subset
of z̃(t) such that zi(t) = z̃xi(t) for all i = 1, . . . ,K and for all t ≥ 0 almost surely. Let us
define

ηz(t)(x) :=

{
η(zi(t)) if x = xi for i = 1, . . . ,K,

η(x) if x /∈ {x1, . . . , xK},

for x ∈ ZN and η ∈ ΩN . This process is constant for all x /∈ {x1, . . . , xK} and records the
values observed by zi(t) on η at time t and each xi for i = 1, . . . ,K.

Lemma 3.1. For any local function f : ΩN → R, let

F (η) :=
1

N

∑
x∈ZN

f(η ·+x) for η ∈ ΩN ,
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and {z(t)}t≥0 be the N -marked SSEP with rate 1 starting from each site in ZN . Then
there exists a constant C > 0 depending only on ‖f‖∞ = maxη∈ΩN |f(η)|, the size of
the support |supp f | and the jump rate such that the following holds: for any t > 0 and
for any monotone coupling (η+

t , η
−
t ) with the initial configurations η̃ := (η+, η−) where

η+ ≥ η−,∣∣∣E η̃[F (η+
t )− F (η−t )]−E [F (η+z(N2t))− F (η−z(N

2t))]
∣∣∣ ≤ C ∫ t

0

E (S(η+
s )− S(η−s )) ds,

where η+z(N2t) and η−z(N
2t) are ηz(N

2t) for η = η+ and η−, respectively, and E stands for
the expectation with respect to {z(t)}t≥0.

We defer the proof for a moment and state a technical lemma needed for it. For any
t > 0, if we define

f̃t−s(η) := E f(ηz(N
2(t−s))) for s ∈ [0, t] and η ∈ ΩN ,

then

E f̃0(ηt)− E f̃t(η) =

∫ t

0

E (LN + ∂s) f̃t−s(ηs) ds,

where ∂s := ∂/∂s. Noting that

∂sf̃t−s(η) = −N2LE f̃t−s(η),

by the definition of generator LN = LG +N2LE , we have

(LN + ∂s)f̃t−s(ηs) = LN f̃t−s(ηs)−N2LE f̃t−s(ηs) = LGf̃t−s(ηs),

and E f̃0(ηt) = E f(ηt) and E f̃t(η) = E f(ηz(N
2t)), we obtain

E f(ηt)−E f(ηz(N
2t)) =

∫ t

0

ELGf̃t−s(ηs) ds for t > 0. (3.1)

We use the following lemma to show Lemma 3.1.

Lemma 3.2. For any local function f : {−1, 1}ZN → R, it holds that

f(η+)− f(η−) =
∑

x∈supp f

(
η+(x)− η−(x)

)
ϕx,f (η+, η−),

for any (η+, η−) ∈ Ω2
N , where ϕx,f (η+, η−) is a polynomial with respect to η+(y), η−(y)

for y ∈ supp f \ {x} for each x ∈ supp f . Moreover, we have

max
η+,η−∈ΩN

|ϕx,f (η+, η−)| ≤ 2|supp f | max
η∈ΩN

|f(η)|.

Proof. For any nonempty subset I in ZN , let ϕI(η) :=
∏
x∈I η(x) and ϕ∅(η) ≡ 1 for

η ∈ ΩN , and recall that any local function f : ΩN → R is a linear combination of
{ϕI}I⊂supp f with coefficients in R. Hence it suffices to show the claim for each ϕI
with I 6= ∅. This follows from the induction on the size of I; indeed, if |I| = 1, then
ϕI(η

+)− ϕI(η−) = η+(x)− η−(x) with I = {x}. For y /∈ I,

ϕI∪{y}(η
+)− ϕI∪{y}(η−) = η+(y)ϕI(η

+)− η−(y)ϕI(η
−)

= (η+(y)− η−(y))ϕI(η
+) + η−(y)

(
ϕI(η

+)− ϕI(η−)
)
.

This shows that for the base of elementary local functions ϕI ,

ϕI(η
+)− ϕI(η−) =

∑
x∈I

(η+(x)− η−(x))ϕx,I(η
+, η−),
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where ϕx,I(η+, η−) is a polynomial with respect to η+(y), η−(y) for y ∈ I \ {x} for each
x ∈ I, and further |ϕx,I(η+, η−)| ≤ 1. Since f =

∑
I⊂supp f aIϕI , where aI := Esuppf [fϕI ],

with Esuppf the expectation with respect to the product of the 1/2-Bernoulli distribution
on {−1, 1}suppf , |aI | ≤ ‖f‖∞ := maxη∈ΩN |f(η)| and we have that

f(η+)− f(η−) =
∑

I⊂supp f

aI(ϕI(η
+)− ϕI(η−))

=
∑

I⊂supp f

aI
∑

x∈supp f

(η+(x)− η−(x))ϕx,I(η
+, η−)1{x∈I}

=
∑

x∈supp f

(η+(x)− η−(x))
∑

I⊂supp f

aIϕx,I(η
+, η−)1{x∈I}.

Letting ϕx,f (η+, η−) :=
∑
I⊂supp f aIϕx,I(η

+, η−)1{x∈I}, we obtain |ϕx,f (η+, η−)| ≤
2|supp f |‖f‖∞, as required.

Proof of Lemma 3.1. For any local function f , let I := supp f = {x1, . . . , x|I|}, and we
consider |I|-marked SSEP {z(t)}t≥0 with rate 1 and the initial state zi(0) = xi for i =

1, . . . , |I|. For any fixed η ∈ ΩN , let us write f̃t−s(η) := E f(ηz(N
2(t−s))), where E stands

for the expectation with respect to z(N2(t− s)). Since for now we fix t, s and N , we just
write for the sake of brevity with no danger of confusion

f̃t−s(η) := E f(ηZ) where Z := z(N2(t− s)),

and Z is also considered as a subset in ZN . Then we have

LGf̃t−s(η) =
∑
x∈ZN

c(x, η)
(
f̃t−s(η

x)− f̃t−s(η)
)

=
∑
x∈ZN

c(x, η)
(
E f((ηx)Z)−E f(ηZ)

)
= E

∑
x∈ZN

c(x, η)
(
f((ηx)Z)− f(ηZ)

)
.

Since f(ηZ) depends only on η(y) for y ∈ Z, if x /∈ Z, then f((ηx)Z) − f(ηZ) = 0, and
thus ∑

x∈ZN

c(x, η)
(
f((ηx)Z)− f(ηZ)

)
=
∑
x∈Z

c(x, η)
(
f((ηx)Z)− f(ηZ)

)
.

Given Z and x ∈ Z, the term c(x, η)f(ηZ) is a local function depending only on ηy for
y ∈ Z ∪ Ix, where Ix := supp c(x, · ), i.e., the support of c(x, · ). Hence Lemma 3.2 implies
that for η+, η− ∈ ΩN , we have

c(x, η+)f(η+Z)− c(x, η−)f(η−Z) =
∑

y∈Z∪Ix

(η+(y)− η−(y))ϕy,Z(η+, η−),

where ϕy,Z(η+, η−) is a polynomial with respect to η+(z), η−(z) for z ∈ Z ∪ Ix, and more-
over, there exists a constant C depending only on the size of the support for c(x, η)f(ηZ)

(which is at most |supp f | + |supp c(x, ·)|), and maxη∈ΩN |c(x, η)f(ηZ)| ≤ ‖c(0, · )‖∞‖f‖∞,
such that

max
η+,η−∈ΩN

|ϕy,Z(η+, η−)| ≤ C.

This shows that

|c(x, η+)f(η+Z)− c(x, η−)f(η−Z)| ≤ C
∑

y∈Z∪Ix

|η+(y)− η−(y)|,

and we note that the same bound holds for |c(x, η+)f((η+x)Z)− c(x, η−)f((η−x)Z)|:

|c(x, η+)f((η+x)Z)− c(x, η−)f((η−x)Z)| ≤ C
∑

y∈Z∪Ix

|η+(y)− η−(y)|.
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Summarizing the above discussion, we have that for any η+, η− ∈ ΩN ,

|LGf̃t−s(η+)− LGf̃t−s(η−)| ≤ E
∑
x∈Z

2C
∑

y∈Z∪Ix

|η+(y)− η−(y)|.

Therefore applying the above inequality to η+
s , η

−
s , we obtain

E |LGf̃t−s(η+
s )− LGf̃t−s(η−s )| ≤ 2CEE

∑
x∈Z

∑
y∈Z∪Ix

|η+
s (y)− η−s (y)|

= 2CE
∑
x∈Z

∑
y∈Z∪Ix

E |η+
s (y)− η−s (y)|,

where we have used the Fubini theorem in the last equality. Since η+
s ≥ η−s under the

monotone coupling, taking the average η+
s − η−s by the translation on ZN in the last term,

namely, plugging η+
·+z,s−η−·+z,s into the above inequality and taking the arithmetic mean

over z ∈ ZN , we obtain

2CE
∑
x∈Z

∑
y∈Z∪Ix

E (S(η+
s )− S(η−s )) ≤ 2C|I|(|I|+ |I0|)E (S(η+

s )− S(η−s )),

and thus

1

N

∑
x∈ZN

E |LGf̃t−s(η+
·+x,s)− LGf̃t−s(η−·+x,s)| ≤ C ′E (S(η+

s )− S(η−s )),

for a constant C ′ > 0, where η+
·+x,s := (η+

s (y+x))y∈ZN and η−·+x,s is defined similarly. We
recall that F (η) = (1/N)

∑
x∈ZN f(η·+x) and note that (LGF )(η) =

∑
x∈ZN (LGf)(η·+x).

Hence integrating in s from 0 to t, we have that by (3.1),∣∣∣E [F (η+
t )− F (η−t )]−E [F (η+z(N2t))− F (η−z(N

2t))]
∣∣∣ ≤ C ′ ∫ t

0

E (S(η+
s )− S(η−s )) ds.

Note that the constant C ′ depends only on ‖f‖∞ and |supp f | as well as ‖c(0, ·)‖∞ and
|supp c(0, ·)|. This shows the claim.

The proof of Lemma 2.2 is based on the following lemma, which we prove in Section 4.

Lemma 3.3. For K-distinct sites x1, . . . , xK in ZN where K ≥ 1, let ψ : ΩN 7→ R be a
local function of the form

ψ(η) :=

K∏
i=1

η(xi), for η ∈ ΩN .

Let z(t) = {zi(t)}i=1,...,K for t ≥ 0 be a K-marked SSEP on ZN starting from {xi}i=1,...,K .
If we define

∆T (η) := Eψ(ηz(T ))−
K∏
i=1

E η(zi(T )) for η ∈ ΩN and T ≥ 0,

then for all 0 < ε < 1/28 there exist constants C > 0 and T0 such that for all T0 ≤ T ≤
N2+ε the following holds: for all η+, η− ∈ ΩN ,

|∆T (η+)−∆T (η−)| ≤ C

T ε/4

K∑
i=1

E |η+(zi(T ))− η−(zi(T ))|+ C exp(−T ε/8),

where the implied constant C depends only on K and ε.
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Proof of Lemma 2.2. Fix an arbitrary η̃ = (η+, η−) with η+ ≥ η−. For each x ∈ ZN , let
z(t) = (zi(t))i=1,...,K for t ≥ 0 be a K-marked SSEP starting from {xi + x}i=1,...,K and
E x be the corresponding expectation. Then for all T ≥ T0 and for all configurations
η+, η− ∈ ΩN , we have

∣∣∣∣∣ ∑
x∈ZN

( K∏
i=1

E xη
+(zi(T ))−

K∏
i=1

E xη
−(zi(T ))

)
−
∑
x∈ZN

(
Φx(η+, T )K − Φx(η−, T )K

)∣∣∣∣∣
≤ C√

T

∑
x∈ZN

K∑
i=1

∣∣E xη
+(zi(T ))−E xη

−(zi(T ))
∣∣ . (3.2)

Indeed, recall that Φzi(0)(η, T ) = E η(zi(T )), and a “smoothing effect” of SRW (Lemma B.1)
implies that for i 6= j,

|Φzi(0)(η, T )− Φzj(0)(η, T )| ≤ 2‖Pzi(0)(zi(T ) ∈ · )− Pzj(0)(zj(T ) ∈ · )‖TV

≤ 2C|xi − xj |√
T

≤ 2CD√
T

for all T ≥ T0 and η ∈ ΩN , (3.3)

where D := maxi,j=1,...,K |xi−xj |. For a short hand notation, we write Φ+
i := Φzi(0)(η

+, T )

for i = 1, . . . ,K and similarly for Φ−i . Let us use the following decomposition:

K∏
i=1

Φ+
i −

K∏
i=1

Φ−i =
(
Φ+

1 −Φ−1
)∏
i6=1

Φ+
i +Φ−1

(
Φ+

2 −Φ−2
) ∏
i 6=1,2

Φ+
i +· · ·+

∏
i 6=K

Φ−i

(Φ+
K−Φ−K

)
.

(3.4)

Expanding the product in a similar way, we obtain by (3.3) for 1 ≤ l < K,

∣∣∣ ∏
i=i1,...,il

Φ+
i − (Φ+

j )l
∣∣∣ ≤ 2CDl√

T
≤ 2CDK√

T
for j, i1, . . . , il = 1, . . . ,K,

for all T ≥ T0 and the same for Φ−i . We combine those estimates and see that by triangle
inequalities the difference between

∏K
i=1 Φ+

i −
∏K
i=1 Φ−i and

(
Φ+

1 − Φ−1
)

(Φ+
1 )K−1 + Φ−2

(
Φ+

2 − Φ−2
)

(Φ+
2 )K−2 + · · ·+ (Φ−K)K−1

(
Φ+
K − Φ−K

)
is at most

2CDK√
T

K∑
i=1

(Φ+
i − Φ−i ).

Note that the second sum of the left-hand side in (3.2) can be written as the sum of the
penultimate display by the translation on ZN . Therefore summing up over all x ∈ ZN ,
and abbreviating the constant, we obtain (3.2).

Denote by ψx(η) =
∏
i=1,...,K η(x + xi). Combining Lemma 3.3 with (3.2) for any

ε < 1/28, we have that for all T0 ≤ T ≤ N2+ε (this restriction on the range for T is
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required to apply Lemma 3.3),∣∣∣∣∣ 1

N

∑
x∈ZN

E x[ψx(η+z(T ))− ψx(η−z(T ))]− 1

N

∑
x∈ZN

[Φx(η+, T )K − Φx(η−, T )K ]

∣∣∣∣∣
≤

∣∣∣∣∣ 1

N

∑
x∈ZN

E x[ψx(η+z(T ))− ψx(η−z(T ))]− 1

N

∑
x∈ZN

( K∏
i=1

E xη
+(zi(T ))−

K∏
i=1

E xη
−(zi(T ))

)∣∣∣∣∣
+

C√
TN

∑
x∈ZN

K∑
i=1

∣∣E xη
+(zi(T ))−E xη

−(zi(T ))
∣∣

≤ C

T ε/4N

∑
x∈ZN

K∑
i=1

E x

(
η+(zi(T ))− η−(zi(T ))

)
+ Ce−T

ε/8

=
CK

T ε/4N

∑
x∈ZN

(
Φx(η+, T )− Φx(η−, T )

)
+ Ce−T

ε/8

,

where we have used (3.2) in the first inequality and Lemma 3.3 and ε is less than 1/2 in
the second inequality. If we define F (η) = (1/N)

∑
x∈ZN ψx(η), then by Lemma 3.1 for

t = T/N2 and for η̃ = (η+, η−) where η+ ≥ η−,∣∣∣E η̃[F (η+
t )− F (η−t )]−E [F (η+z(T ))− F (η−z(T ))]

∣∣∣ ≤ C ∫ t

0

E (S(η+
s )− S(η−s )) ds,

and plugging T = tN2 in the penultimate display, we conclude that for all T0/N
2 ≤ t ≤

Nε, ∣∣∣∣∣E η̃[F (η+
t )− F (η−t )]− 1

N

∑
x∈ZN

[Φx(η+, N2t)K − Φx(η−, N2t)K ]

∣∣∣∣∣
≤ CK

tε/4N1+2ε

∑
x∈ZN

(
Φx(η+, N2t)− Φx(η−, N2t)

)
(3.5)

+ C

∫ t

0

E (S(η+
s )− S(η−s )) ds+ C exp(−(N2t)ε/8).

Note that for any s ≥ 0,

ξ0 = S(η+)− S(η−) =
1

N

∑
x∈ZN

(
Φx(η+, s)− Φx(η−, s)

)
.

Recall that in the general case F (η) has the form F (η) = (1/N)
∑
x∈ZN

∑
|I|6=1 aIfI(η·+x)

and G(ρ) =
∑
|I|6=1 aIρ

|I|. Taking a linear combination and applying to the above inequal-
ity (3.5), we conclude the proof of Lemma 2.2.

4 Replacement lemma: Proof of Lemma 3.3

For an integer K ≥ 1 we consider the K-marked SSEP z(t) := {zi(t)}i=1,...,K on
ZN , and the K-marked independent SRWs z0(t) := {z0

i (t)}i=1,...,K with rate 1, i.e., each
particle runs as a SRW having an independent Poisson clock with intensity 1 (see
the explicit generator in Appendix A). We use the following coupling between these
two processes; the result is known (e.g. [DMP91]) and has been used extensively in
[DMFL86]. Since we need to clarify the dependence on every constant involved in the
processes and we also need to refer to the construction of the coupling, we include the
proof of the following claim.
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Lemma 4.1. For any integers N ≥ 2 and K ≥ 1 with N ≥ K, fix any initial condition
z(0) = z0(0) = {x1, . . . , xK} in ZN where xi 6= xj for i 6= j, i, j = 1, . . . ,K. Then there
exists a coupling P between a K-marked SSEP {z(t)}t≥0 and K-marked independent
SRWs {z0(t)}t≥0 with rate 1 such that the following holds: for any ε > 0 there exists T0

such that for all T0 ≤ T ≤ N2+ε,

P

(
max

j=1,...,K
max

0≤t≤T
|zj(t)− z0

j (t)| ≥ KT 1
4 +3ε

)
≤ 4K2 exp

(
−T ε/4

)
,

and z1(t) = z0
1(t) for all t ≥ 0 almost surely.

In the following, we will use several results on the SRW on ZN ; all of them are
classical — we include the proofs for the sake of completeness in Appendix A and B.

Proof of Lemma 4.1. We construct a coupling from the graphical representation on
ZN × [0,∞). For each bond {x, x+ 1} in ZN , we define random exclusion times Ex,x+1 =

{Ex,x+1
n ;n ≥ 1} where Ex,x+1 are independent Poisson point processes with intensity 1.

Furthermore, for each bond {x, x+1}, we define a sequence of independent 1/2-Bernoulli
random variables {Ux,x+1

n ;n ≥ 1} where Ux,x+1
n ∈ {0, 1} for n ≥ 1 and these sequences

are independent of each other and of everything else. For each t = Ex,x+1
n , we draw a

double arrow between (x, t) and (x+ 1, t) with mark Ux,x+1
n .

Given the initial condition zi(0) = xi for i = 1, . . . ,K, the K-particles evolve as follows:
for t > s ≥ 0, given zi(s), i = 1, . . . ,K, we put zi(t) = zi(s) for all i = 1, . . . ,K as far as
there is no double arrow in time (s, t]. Starting from time t = 0, for each i = 1, . . . ,K, if
there is a double arrow with mark 1 between (zi(t−), t) and (x, t), then we let zi(t) = x,
and do nothing otherwise. Then {(zi(t))i=1,...,K}t≥0 is almost surely defined and has the
distribution of K-marked SSEP starting from zi(0) = xi for i = 1, . . . ,K.

Concerning the K-marked independent SRWs, let us define {(z0
i (t))i=1,...,K}t≥0 de-

pending on the number i = 1, . . . ,K. Suppose that there is a double arrow between x

and x+ 1 at time t for x ∈ ZN and t ≥ 0. There are three cases according to the possible
configurations on the sites x, x+ 1:

(1) There are no particles from z on the sites x, x+ 1. In this case we do nothing.

(2) There is a single particle from z on the sites x, x+ 1. Suppose that zi(t−) = x or
x+ 1. If the double arrow has the mark 1, then we define

z0
i (t) := z0

i (t−) + (zi(t)− zi(t−)),

and keep everything else, and if the double arrow has the mark 0, then we do
nothing.

(3) There are two particles zi(t−), zj(t−) on the sites x, x+ 1. Assume that i < j and
the double arrow has the mark U ∈ {0, 1}. Then we define

U = 1 =⇒ z0
i (t) := z0

i (t−) + (zi(t)− zi(t−)) and z0
j (t) := z0

j (t−),

and
U = 0 =⇒ z0

j (t) := z0
j (t−) + (zi(t)− zj(t−)) and z0

i (t) := z0
i (t−),

and we keep everything else.

The construction gives K-independent SRWs {(z0
i (t))i=1,...,K}t≥0 with rate 1 (cf. Figure

1).
Let us show that the resulting coupling P is the desired one. We analyze zi(t)− z0

i (t)

for t ≥ 0 and for each i = 1, . . . ,K. Note that in this construction we have z0
1(t) = z1(t) for

all t ≥ 0. For j > 1, zj(t)− z0
j (t) can differ only during the period when |zj(t)− zi(t)| = 1
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t

ZN
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1

0

1

1

0
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Figure 1: Left: 3-marked SSEP starting from x1 = 1, x2 = 2, x3 = 3. Right: 3-independent
SRWs starting from x1 = 1, x2 = 2, x3 = 3. Three paths (which are solid, dotted, and
densely dotted, respectively) correspond to trajectories of three marked particles in the
processes, respectively.

for some i < j. For each i < j, denoting by wi,j(t) the difference created in that period
up to time t, we have

zj(t)− z0
j (t) =

∑
i<j

wi,j(t) for j = 2, . . . ,K.

For i < j, if we define τ? := inf{t ≥ 0 : |zi(t) − zj(t)| = 1}, then τ? < ∞ almost surely,
and given τ? and zi(τ?), zj(τ?), let

T? := inf{s ≥ 0 : |zi(s+ τ?)− zj(s+ τ?)| > 1}.

Then the strong Markov property shows that T? conditioned on the σ-algebra Gτ? associ-
ated with the filtration Gt := σ({z(s)}0≤s≤t) for t ≥ 0 and the stopping time τ? has the
exponential distribution with rate 1, and is independent of the random exchange times
between zi(τ?) and zj(τ?) since T? depends only on the random exchange times after τ?
on (x− 1, x) and (x+ 1, x+ 2) for {zi(τ?), zj(τ?)} = {x, x+ 1}. Let us define for t ≥ 0 and
i < j,

θi,j(t) := |{s ∈ [0, t] : |zi(s)− zj(s)| = 1}|,
where | · | is the normalized Lebesgue measure. Conditioned on the random variable
θi,j(t), each wi,j(t) has the distribution of a SRW with rate 1 starting from 0 on ZN at
time θi,j(t). (Note however that for each j > 2, {wi,j(t)}i<j are not independent.)

We observe that for each i, j with i < j, the random variable θi,j(t) is stochastically
dominated by the occupation time of SRW with rate 2 on the 3-sites {−1, 0, 1} on ZN
starting from z0 := zi(0)− zj(0). Hence by Lemma A.2, letting θ(T ) be the occupation
time at 0 up to time T for the continuous-time SRW on ZN with rate 2 starting from 0,
we have that for any ε > 0, there exists T0 such that for all T0 ≤ T ≤ N2+ε and for each
pair i, j with i < j,

P
(
θi,j(T ) ≥ 6T

1
2 +2ε

)
≤ 3P

(
θ(T ) ≥ 2T

1
2 +2ε

)
≤ 3 exp

(
−T ε/4

)
. (4.1)

Then, it holds that for all large enough T satisfying that T ≤ N2+ε for each pair i < j,

P

(
max

0≤t≤θi,j(T )
|wi,j(t)| ≥ T

1
4 +3ε

)
≤ P

(
max

0≤t≤6T
1
2
+2ε

|wi,j(t)| ≥ T
1
4 +3ε

)
+ P

(
θi,j(T ) ≥ 6T

1
2 +2ε

)
≤ 3 exp

(
−1

6
T 2ε

)
+ 3 exp

(
−T ε/4

)
≤ 4 exp

(
−T ε/4

)
,
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where we have used Lemma A.1 with (6T
1
2 +2ε)

1
2 +ε < T

1
4 +3ε for T ≥ T0 (a re-chosen T0 if

necessary) and (4.1) in the second inequality.
Noting that for each j > 1 and for t, T > 0,

P

(
max

0≤t≤T
|zj(t)− z0

j (t)| ≥ KT
)
≤
∑
i<j

P

(
max

0≤t≤T
|wi,j(t)| ≥ T

)
,

we have that for any ε > 0 and for all large enough T with T ≤ N2+ε,

P

(
max

0≤t≤T
|zj(t)− z0

j (t)| ≥ KT 1
4 +3ε

)
≤ 4K exp

(
−T ε/4

)
.

Therefore the union bound over j = 1, . . . ,K implies that for any ε > 0 there exists T ′0
such that for all T ′0 ≤ T ≤ N2+ε,

P

(
max

j=1,...,K
max

0≤t≤T
|zj(t)− z0

j (t)| ≥ KT 1
4 +3ε

)
≤ 4K2 exp

(
−T ε/4

)
,

as required.

In order to prove Lemma 3.3, we use a coupling between a K-marked SSEP and
K-marked independent SRWs as it is constructed in Lemma 4.1. A heuristic explanation
for the proof of Lemma 3.3 is as follows. Let sT := T − T 1

2 +7ε. Decomposing the time
interval [0, T ] as [0, sT ] and [sT , T ], we construct some events (which will be denoted by
G,H1 and H2) to ensure that K-particles in the K-marked SSEP are fairly well-separated
at time sT and behave like independent SRWs during the time range [sT , T ]. Since in the
first stage [0, sT ] those particles are already fairly separated, they remain sufficiently
separated during [sT , T ]. Moreover, the ‘good’ event G ∩ H1 ∩ H2 happens with high
probability. The construction of these events is a key ingredient to prove Lemma 3.3.

Proof of Lemma 3.3. Recall that we consider a local function ψ(η) =
∏K
i=1 η(xi) for

K-distinct sites x1, . . . , xK in ZN . We consider a coupling P between {z(t)}t≥0 and K-
marked independent SRWs {z0(t)}t≥0 with rate 1 such that zi(0) = z0

i (0) for i = 1, . . . ,K

as it is constructed in Lemma 4.1. For all 0 < ε < 1/28, let sT := T − T 1
2 +7ε. First we

define the event G where it holds that for all i = 1, . . . ,K, if i 6= j, then

|z0
i (sT )− z0

j (sT )| ≥ T 1
2−ε.

Note that z0
1(t) = z1(t) holds for all t ≥ 0 almost surely in the coupling P. By a classical

estimate for the SRW (Lemma B.2) applied to

z0
i (t)− z0

j (t) for i, j = 1, . . . ,K with i 6= j conditioned on {z0
1(t)}0≤t≤T ,

there exists T0 such that for all T0 ≤ T ≤ N2+ε, we have almost surely in P,

P
(
Gc | {σ(z0

1(t))}0≤t≤T
)
≤ CK2

T ε/4
,

in particular, since z0
1(t) = zt(t) for all t ≥ 0 almost surely in P, we have that

P (Gc | σ(z1(T ))) ≤ CK2

T ε/4
almost surely in P, (4.2)

where Gc stands for the complement of the event G. Next we define the event H1 where
it holds that for all i = 1, . . . ,K,

|zi(sT )− z0
i (sT )| ≤ KT 1

4 +3ε.
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Then Lemma 4.1 shows that

P (Hc1) ≤ 4K2 exp(−T ε/4) for all T0 ≤ T ≤ N2+ε, (4.3)

where we take another T0 if necessary and denote it by the same symbol. Based on the
coupling P, we couple {z(t)}sT≤t<T and K-marked independent SRWs {w0(t)}t≥0 with
rate 1 such that w0

i (0) = zi(sT ) for each i = 1, . . . ,K in the same way as in Lemma 4.1—
–we denote the resulting coupling by the same symbol P. Let us define the event H2

where it holds that for all i = 1, . . . ,K,

|zi(t+ sT )− w0
i (t)| ≤ KT

1
8 +4ε for all 0 ≤ t ≤ T 1

2 +7ε

and for all i 6= j,

|w0
i (t)− w0

j (t)| ≥
1

2
T

1
4 +ε for all 0 ≤ t ≤ T 1

2 +7ε.

Lemma 4.1 and an application of the maximal inequality (the second claim of Lemma A.1
with λ = 2 applied to {w0

i (t) − w0
j (t)} for 0 ≤ t ≤ T

1
2 +7ε with i 6= j) imply that by the

Markov property of {z(t)}t≥0,

P
(
Hc2 | σ(z(sT ), z0(sT ))

)
1G ≤ 4K2 exp(−T ε/8) + 3K2 exp(− 1

12
T ε)

≤ 5K2 exp(−T ε/8) for all T0 ≤ T ≤ N2+ε, (4.4)

where we have used(
T

1
2 +7ε

) 1
4 +3ε

= T
1
8 + 13

4 ε+21ε2 < T
1
8 +4ε for 0 < ε <

1

28
, and

T ( 1
2 +7ε)( 1

2 +ε) > T
1
4 +ε for ε > 0,

and further we choose another T0 depending only on ε if necessary. Note that given the
event G ∩ H1 ∩H2, we have by the triangle inequality

|zi(t+ sT )− zj(t+ sT )| ≥ |w0
i (t)− w0

j (t)| − |zi(t+ sT )− w0
i (t)| − |zj(t+ sT )− w0

j (t)|

≥ 1

2
T

1
4 +ε − 2KT

1
8 +4ε > 1

for all i 6= j, for all 0 ≤ t ≤ T − sT and for all T0 ≤ T ≤ N2+ε, choosing another T0

depending only on ε and K if necessary, and thus by the construction of coupling between
{z(t)}sT≤t≤T and {w0(t)}t≥0, we have that for all i = 1, . . . ,K,

zi(t+ sT ) = w0
i (t) for all 0 ≤ t ≤ T − sT .

Let us decompose

Eψ(ηz(T )) = Eψ(ηz(T ))1G + Eψ(ηz(T ))1Gc , (4.5)

and estimate the second term of (4.5). For each i = 1, . . . ,K, if we define gi(η) :=∏
j 6=i η(xj) for η ∈ ΩN , then gi(ηz(T )) =

∏
j 6=i η(zj(T )), and we have

Eψ(ηz(T ))1Gc = E
[
E [ψ(ηz(T ))1Gc | σ(zi(T ))]

]
= E

[
η(zi(T ))E [gi(η

z(T ))1Gc | σ(zi(T ))]
]
.

Letting r(i, η, T ) := E [gi(η
z(T ))1Gc | σ(zi(T ))], by (4.2) we obtain |r(i, η, T )| ≤ C/T ε/4 for

all T0 ≤ T ≤ N2+ε. Note that for all η+, η− ∈ ΩN ,

|E (η+(zi(T ))− η−(zi(T )))gi(η
+z(T ))1Gc | = |E r(i, η+, T )

(
η+(zi(T ))− η−(zi(T ))

)
|

≤ C

T ε/4
E |η+(zi(T ))− η−(zi(T ))|.

EJP 27 (2022), paper 141.
Page 19/26

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP865
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Glauber-Exclusion dynamics

For η+, η− ∈ ΩN , using the decomposition

K∏
i=1

η+(xi)−
K∏
i=1

η−(xi) = (η+(x1)− η−(x1))
∏
j 6=1

η+(xj)

+ η−(x1)(η+(x2)− η−(x2))
∏
j 6=1,2

η+(xj) + · · ·+

∏
i6=K

η−(xi)

 (η+(xK)− η−(xK)),

and permuting the role of xi for i = 1, . . . ,K, we obtain∣∣∣Eψ(η+z(T ))1Gc −Eψ(η−z(T ))1Gc
∣∣∣ ≤ C

T ε/4

K∑
i=1

E |η+(zi(T ))− η−(zi(T ))|. (4.6)

Concerning the first term of (4.5), we have by (4.3) and (4.4) for all T0 ≤ T ≤ N2+ε,

Eψ(ηz(T ))1G = Eψ(ηz(T ))1G∩H1∩H2
+O

(
e−T

ε/8
)
,

and Eψ(ηz(T ))1G∩H1∩H2
= E

[
E
[
ψ(ηz(T ))1H2

| FsT
]
1G∩H1

]
. Given G ∩ H1, one has

E
[
ψ(ηz(T ))1H2 | FsT

]
= E

K∏
i=1

η(w0
i (T − sT ))1H2 = E

K∏
i=1

η(w0
i (T − sT )) +O(e−T

ε/8

),

and

E

K∏
i=1

η(w0
i (T − sT )) =

K∏
i=1

E η(w0
i (T − sT )) =

K∏
i=1

Φzi(sT )(η, T − sT ),

where the first equality follows since {w0(t)}t≥0 are independent SRWs and we recall
Φx(η, t) = E xη(w(t)) a local average of η by the SRW with rate 1 around x. Then we use
the following estimate on SRW: for all t > 0,

‖Pzi(sT ) (w(t) ∈ ·)− Pz0i (sT ) (w(t) ∈ ·) ‖TV ≤
C|zi(sT )− z0

i (sT )|√
t

,

(Lemma B.1), and we have that given H1 for each i = 1, . . . ,K,

|Φzi(sT )(η, T − sT )− Φz0i (sT )(η, T − sT )|

≤ 2‖Pzi(sT ) (w(T − sT ) ∈ ·)− Pz0i (sT ) (w(T − sT ) ∈ ·) ‖TV

≤ 2C|zi(sT )− z0
i (sT )|√

T − sT
≤ 2CKT

1
4 +3ε√

T
1
2 +7ε

=
2CK

T ε/2
,

for all T0 ≤ T ≤ N2+ε. This implies that given H1, for each i = 1, . . . ,K,∏
j 6=i

Φzj(sT )(η, T − sT ) =
∏
j 6=i

Φz0j (sT )(η, T − sT ) +O

(
1

T ε/2

)
. (4.7)

For the simplicity of notation, let

Φ+
i := Φzi(sT )(η

+, T − sT ) and Φ+0
i := Φz0i (sT )(η

+, T − sT ),

and similarly Φ−i and Φ−0
i . Since z1(t) = z0

1(t) under the coupling, we have Φ±1 = Φ±0
1 .

Hence by (4.7) we obtain given H1,(
Φ+

1 − Φ−1
)∏
j 6=1

Φ+
j =

(
Φ+0

1 − Φ−0
1

)∏
j 6=1

Φ+
j

=
(
Φ+0

1 − Φ−0
1

)∏
j 6=1

Φ+0
j +O

(
1

T ε/2

)(
Φ+0

1 − Φ−0
1

)
.
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Changing the role of i = 1, . . . ,K, we obtain given H1∏
j<i

Φ−j

 (Φ+
i − Φ−i )

∏
j>i

Φ+
j


=

∏
j<i

Φ−0
j

 (Φ+0
i − Φ−0

i )

∏
j>i

Φ+0
j

+O

(
1

T ε/2

)
(Φ+0

i − Φ−0
i ).

Then using (3.4) and the same decomposition for Φ+0
i and Φ−0

i we obtain given H1,

K∏
i=1

Φ+
i −

K∏
i=1

Φ−i =

K∏
i=1

Φ+0
i −

K∏
i=1

Φ−0
i +O

(
1

T ε/2

) K∑
i=1

(
Φ+0
i − Φ−0

i

)
.

Therefore

E
(
ψ(η+z(T ))− ψ(η−z(T ))

)
1G = E

(
K∏
i=1

Φ+0
i −

K∏
i=1

Φ−0
i

)
1G∩H1

+O

(
1

T ε/2

) K∑
i=1

E
(
Φ+0
i − Φ−0

i

)
1G∩H1

+O(e−T
ε/8

).

(4.8)

By a similar discussion as we did for (4.6), we have

E

∣∣∣∣∣
K∏
i=1

Φ+0
i −

K∏
i=1

Φ−0
i

∣∣∣∣∣1Gc = O

(
1

T ε/4

) K∑
i=1

E
∣∣Φ+0
i − Φ−0

i

∣∣ . (4.9)

Finally, we note that

E

K∏
i=1

Φz0i (sT )(η, T − sT ) =

K∏
i=1

EΦz0i (sT )(η, T − sT ) =

K∏
i=1

Φzi(0)(η, T ), (4.10)

where the first equality holds since {z0(t)}t≥0 are independent SRWs and the second
equality follows from the Markov property of each z0

i (t). Thus, by (4.5), (4.6), (4.8), (4.9)
and (4.10), we conclude that

|∆T (η+)−∆T (η−)| ≤ E

∣∣∣∣∣
K∏
i=1

Φ+0
i −

K∏
i=1

Φ−0
i

∣∣∣∣∣1Gc∪Hc1 +O

(
1

T ε/2

) K∑
i=1

E
∣∣Φ+0
i − Φ−0

i

∣∣
+

C

T ε/4

K∑
i=1

E |η+(zi(T ))− η−(zi(T ))|+O(e−T
ε/8

)

≤ C

T ε/4

K∑
i=1

E |η+(zi(T ))− η−(zi(T ))|+O(e−T
ε/8

),

for all T0 ≤ T ≤ N2+ε, and this concludes the proof of Lemma 3.3.

A Classical results on SRW

Fix an integer N ≥ 2, let ZN := Z/NZ be the state space, where we identify ZN with
natural representatives {0, 1, . . . , N − 1} by abusing notations. We consider the SSEP
{ηt}t≥0 given by the generator

LEf(η) =
1

2

∑
x∈ZN

(f(ηx,x+1)− f(η)), η ∈ {0, 1}ZN ,
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where f : {0, 1}ZN → R, and the continuous-time SRW {w(t)}t≥0 with rate λ > 0 defined
by the generator

L0,λ
N f(x) =

λ

2

∑
y=x±1

(f(y)− f(x)) , x ∈ ZN ,

where f : ZN → R. Note that the SRW with rate λ runs as follows: a random particle
has a Poisson clock with intensity λ, and it moves to one of two neighbors with equal
probability at each time when the clock rings.

Lemma A.1. Fix λ > 0. Let {w(t)}t≥0 be a continuous-time SRW on ZN with rate λ and
w(0) = 0. Then for any ε > 0 and for any T > 0, we have

P

(
max

0≤t≤T
|w(t)| ≥ T 1

2 +ε

)
≤ 3 exp

(
−λ

6
T 2ε

)
.

Moreover, if |w(0)| = dT 1
2 +εe < N/2, then for any ε > 0 and for any T > 0, we have

P

(
min

0≤t≤T
|w(t)| ≤ 1

2
dT 1

2 +εe
)
≤ 3 exp

(
− λ

24
T 2ε

)
.

Proof. Let us consider a discrete-time SRW {S̃t}t=0,1,... on Z with S̃0 = 0. If we define

St := S̃t mod N , then {St}t=0,1,... is a discrete-time SRW on ZN with S0 = 0. Then the
maximal inequality yields for any positive integers M ≥ 1 and D ≥ 1,

P

(
max

0≤k≤M
|Sk| ≥ D

)
≤ P

(
max

0≤k≤M
|S̃k| ≥ D

)
≤ 2e−

D2

2M .

For each T > 0, the number of jumps nT in time [0, T ] in the continuous-time SRW
{w(t)}t≥0 with rate λ has the Poisson distribution with intensity λT , and thus we have

P (nT ≥ 3λT ) ≤ e−3λTE enT = e−3λT e(e−1)λT ≤ e−λT . (A.1)

Therefore we obtain

P

(
max

0≤t≤T
|w(t)| ≥ D

)
≤ P

(
max

0≤k≤nT
|S̃k| ≥ D,nT < 3λT

)
+ P (nT ≥ 3λT )

≤ P
(

max
0≤k≤b3λTc

|S̃k| ≥ D
)

+ e−λT ≤ 2e−
D2

6λT + e−λT ,

and letting D = λT
1
2 +ε for any T > 0 and for any ε > 0 yields the first claim.

The second claim follows from the above discussion applying to a continuous-time
SRW w(t)− w(0) for t ≥ 0 starting from 0; we omit the details.

For an integer K ≥ 1 we consider the K-marked SSEP z(t) := {zi(t)}i=1,...,K on
ZN running according to the SSEP, and the K-marked independent SRWs z0(t) :=

{z0
i (t)}i=1,...,K with rate λ, where each particle runs as a SRW having an independent

Poisson clock with intensity λ.
We have used the following lemma in the proof of Lemma 4.1 in Section 4.

Lemma A.2. Let {w(t)}t≥0 be a continuous-time SRW on ZN with w(0) = 0 and rate 2.
For any T > 0, we define the occupation time at 0 for {w(t)}t≥0 up to time T by

θ(T ) := |{t ∈ [0, T ] : w(t) = 0}|,

where |A| stands for the normalized Lebesgue measure of a measurable set A ⊂ R. Then
for any ε > 0 there exists T0 such that for all T0 ≤ T ≤ N2+ε,

P
(
θ(T ) ≥ 2T

1
2 +2ε

)
≤ exp

(
−T ε/4

)
.
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Proof. For any positive real λ > 0, let {w(t)}t≥0 be a continuous-time SRW on ZN with
w(0) = 0 and rate λ to which we will apply λ = 2. Since for the continuous-time SRW
{w(t)}t≥0 each waiting time for the next jump has the exponential distribution with

parameter λ, the occupation time θ(T ) has the distribution
∑VT
i=1 Ti where VT is the

number of visits of {w(t)}t≥0 at 0 up to time T and Ti, i = 1, 2, . . . are independent
exponential random variable with parameter λ. We use a discrete-time SRW {St}t=0,1,...

on ZN with S0 = 0 to obtain a bound for VT and for the occupation time θ(T ).
Since the times of jumps for w(t) are given by a Poisson point process on [0,∞) with

intensity λ, the number of jumps nT up to time T satisfies that for all T ≥ 0, by (A.1),

P (nT ≥ 3λT ) ≤ e−λT .

If we denote by Un the number of visits at 0 up to time n for discrete-time SRW
{St}t=0,1,..., then by (A.1),

P (VT ≥M) ≤ P (VT ≥M ∩ {nT < 3λT}) + P (nT ≥ 3λT ) ≤ P
(
Ub3λTc ≥M

)
+ e−λT .

Let {S̃t}t=0,1,... be a discrete-time SRW on Z with S̃0 = 0 and for x ∈ Z, let Ũn(x) be the

number of visits at x up to time n for {S̃t}t=0,1,.... Noting that S̃t mod N has the same
distribution as St, we observe that for any positive integer L > 0,

P (Un ≥M) ≤
∑

x∈(−L,L]∩NZ

P

(
Ũn(x) ≥M

⌈2L

N

⌉−1
)

+ P

(
max

1≤k≤n
|S̃k| > L

)
, (A.2)

where we have taken the union bound over d2L/Ne points in (−L,L] ∩ NZ. For each
x ∈ Z, it holds that for any integer m > 0,

P
(
Ũn(x) ≥ m

)
≤ P

(
Ũn(0) ≥ m

)
≤
(

1− 1

2
√
n

)m−1

≤ 2 exp

(
− m

2
√
n

)
, (A.3)

for all large enough n independent of x; indeed the first inequality holds by the stochastic
domination as S̃t starts at 0, and the second inequality follows since the first return
time R to 0 after S̃t leaves 0 satisfies that P (R > 2n) ≥ (2

√
n)−1 for all large enough n.

Noting that the maximal inequality yields

P

(
max

1≤k≤n
|S̃k| ≥ L

)
≤ 2 exp

(
−L

2

2n

)
,

we have by (A.2) and (A.3) there exists n0 such that for all integers M,N and L > 0 and
for all large enough n ≥ n0,

P (Un ≥M) ≤
⌈2L

N

⌉
exp

(
− MN

4L
√
n

)
+ 2 exp

(
−L

2

2n

)
.

Summarizing the above estimates, we have that there exists T0 (depending on n0) such
that for all T ≥ T0 and all integers M,L > 0,

P (VT ≥M) ≤
⌈2L

N

⌉
exp

(
− MN

4L
√
b3λT c

)
+ 2 exp

(
− L2

2b3λT c

)
+ e−λT .

Hence fixing the parameter λ = 2, and for any ε > 0 lettingM = bT 1
2 +2εc and L = bT 1

2 +εc,
we obtain

P
(
VT ≥ T

1
2 +2ε

)
≤ 2T

1
2 +ε

N
exp

(
− T εN

4
√

6T

)
+ 2 exp

(
−T

2ε

12

)
+ e−2T .
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If T ≤ N2+ε, then T 1−ε ≤ N2 and thus the first term in the right hand side is at most

2T 3ε/2 exp

(
−T

ε/2

4
√

6

)
≤ exp

(
−T ε/3

)
,

for all large enough T . Therefore for any ε > 0 there exists T0 such that for all T0 ≤ T ≤
N2+ε,

P
(
VT ≥ T

1
2 +2ε

)
≤ 3 exp

(
−T ε/3

)
. (A.4)

Returning to the estimate on the occupation time θ(T ), we have that for a sum of
independent exponential random variables with parameter 2, for any positive integer
V ≥ 1,

P

(
V∑
i=1

Ti ≥ 2V

)
≤ e−2V

V∏
i=1

E eTi = e−2V · 2V ≤ e−V ,

where we have used E eTi = 2 for each i. Therefore combining with (A.4), we have that
for any ε > 0, there exists T ′0 such that for all T ′0 ≤ T ≤ N2+ε,

P
(
θ(T ) ≥ 2T

1
2 +2ε

)
≤ P

(
VT∑
i=1

Ti ≥ 2bT 1
2 +2εc, VT < T

1
2 +2ε

)
+ P

(
VT ≥ T

1
2 +2ε

)
≤ exp

(
−bT 1

2 +2εc
)

+ 3 exp
(
−T ε/3

)
≤ exp

(
−T ε/4

)
,

and this shows the claim.

B Proofs of miscellaneous lemmas

Lemma B.1. Fix λ > 0. There exists a constant C > 0 such that the following holds:
for x, y ∈ ZN , let {w1(t)}t≥0 and {w2(t)}t≥0 be continuous-time SRWs on ZN with rate λ
such that w1(0) = x and w2(0) = y. Then for all t > 0,

‖Px (w1(t) ∈ ·)− Py (w2(t) ∈ ·) ‖TV ≤
C|x− y|√

t
.

Proof. Let us run {w1(t)}t≥0 and {w2(t)}t≥0 independently; then w1(t) − w2(t) is a
continuous-time SRW on ZN with rate 2λ starting from x− y. Letting τ0 be the first time
w1(t)− w2(t) to hit 0, we have that for any t ≥ 0,

‖Px (w1(t) ∈ ·)− Py (w2(t) ∈ ·) ‖TV ≤ P (τ0 > t) .

If we consider a discrete-time SRW {St}t=0,1,... on Z starting from |x− y| and let τ∗ be
the first time when it hits 0, then there exists a constant n0 > 0 such that for any x, y ∈ Z
for n > n0,

P (τ∗ > n) ≤ 6|x− y|√
n

,

[LP17, Theorem 2.17]. Since for a continuous-time chain the number of jumps happening
in [0, t] has the Poisson distribution with intensity 2λt, and

∞∑
n=1

e−2λ (2λt)n

n!

1√
n

=
∑

|n−2λt|≤λt

e−2λ (2λt)n

n!

1√
n

+
∑

|n−2λt|>λt

e−2λ (2λt)n

n!

1√
n
≤ 1√

λt
+

2

λt
,

where we have used the Chebyshev inequality in the second term, we obtain

P (τ0 > t) ≤
∞∑
n=1

e−2λ (2λt)n

n!
P (τ∗ > n) ≤ 18|x− y|√

λt
,
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for λt ≥ n0, and upon replacing the constant factor 18/
√
λ by a positive constant C, we

have the claim as stated.

Lemma B.2. Fix λ > 0. Let {w(t)}t≥0 be a continuous-time SRW on ZN with rate λ such
that w(0) = 0. Suppose that we have a sequence sT such that sT /T → 1 as T →∞. Then
for any ε > 0, there exists a constant C such that for all large enough T and N with
T ≤ N2+ε and for all y ∈ ZN ,

P
(
|w(sT )− y| ≤ T 1

2−2ε
)
≤ C

T ε/2
.

Proof. Let {St}t=0,1,... be a discrete-time SRW on ZN with S0 = 0. For any subset I in
ZN of size |I| ≤ T 1

2−2ε, let us fix a subset I0 of size |I| in {0, 1, . . . , N −1} such that I = I0
mod N , and define Ĩ := [−dt1/2+εe, dt1/2+εe] ∩ (I0 + NZ) in Z for t ≥ 0. Taking a SRW
{S̃t}t=0,1,... on Z such that St = S̃t mod N , we apply to S̃t on Z the local limit theorem
and the maximal inequality:

P(St ∈ I) ≤ P
(
S̃t ∈ Ĩ

)
+ P

(
max

0≤k≤t
|S̃k| ≥ t1/2+ε

)
≤ |I| t

1
2 +ε

N
(1 + o(1))

1√
πt

+ 2 exp

(
− t

2ε

2

)
as t→∞,

where we have used |Ĩ| ≤ |I|t 1
2 +ε/N in the second inequality. Note that the number of

jumps up to time sT in a continuous-time SRW is λsT with an additive error at most
λsT /2 with probability at least 1− 4/λsT . Hence if sT /T → 1, then for any ε > 0 and for
all large enough T and N with T ≤ N2+ε (where we recall that |I| ≤ T 1

2−2ε),

P (w(sT ) ∈ I) ≤ T 1
2−2εT

1
2 +ε

N
(1 + o(1))

1√
πT

+ 2 exp

(
−(1− o(1))

T 2ε

2

)
+O

(
1

T

)
= O

(
T

1
2−ε

N

)
+O

(
exp

(
−T

2ε

3

))
+O

(
1

T

)
= O

(
1

T ε/2

)
.

Therefore for any ε > 0 for all large enough T and N with T ≤ N2+ε and for any y ∈ ZN ,

P
(
|w(sT )− y| ≤ T 1

2−2ε
)

= O

(
1

T ε/2

)
as desired.
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