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Abstract

We investigate the kinetic Schrödinger problem, obtained considering Langevin
dynamics instead of Brownian motion in Schrödinger’s thought experiment. Under a
quasilinearity assumption we establish exponential entropic turnpike estimates for
the corresponding Schrödinger bridges and exponentially fast convergence of the
entropic cost to the sum of the marginal entropies in the long-time regime, which
provides as a corollary an entropic Talagrand inequality. In order to do so, we benefit
from recent advances in the understanding of classical Schrödinger bridges and
adaptations of Bakry–Émery formalism to the kinetic setting. Our quantitative results
are complemented by basic structural results such as dual representation of the
entropic cost and the existence of Schrödinger potentials.
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Kinetic Schrödinger problem

1 Introduction and statement of the main results

In two seminal contributions [43, 44] E. Schrödinger considered the problem of find-
ing the most likely evolution of a cloud of independent Brownian particles conditionally
to observations. This problem is nowadays known as Schrödinger problem and may
be viewed [38, 35] as a more regular and probabilistic proxy for the Optimal transport
(Monge-Kantorovich) problem. This observation has motivated recent interest from both
the engineering and statistical machine learning communities [16, 41]. Moreover, over
the past few years, various kinds of Schrödinger problems have been introduced and
studied in the literature with different aims and scopes such as, for example, the multi-
plicative Schrödinger problem [40] and the mean field Schrödinger problem [1]. In this
article we investigate the Kinetic Schrödinger Problem, henceforth KSP, with particular
emphasis on the long-time and ergodic behaviour of the corresponding Schrödinger
bridges. A heuristic formulation of KSP is naturally given in terms of the celebrated
Schrödinger’s thought experiment. Consider a system of N � 1 independent stationary
particles (X1

t , . . . , X
N
t )t∈[0,T ] evolving according to the Langevin dynamics{

dXi
t = V it dt,

dV it = −∇U(Xi
t)dt− γV it dt+

√
2γ dBit, i = 1, . . . , N,

and assume that two snapshots of the particle system at the initial time t = 0 and at the
terminal time t = T have been taken. The Schrödinger problem is that of finding the
most likely evolution of the particle system conditionally on this information. In order
to turn this heuristic description into a sound mathematical problem, we introduce the
empirical path measure

µN :=
1

N

∑
δ(Xi· ,V i· )

that is a random probability measure on the space C([0, T ];R2d) := Ω of continuous
trajectories and consider two probability measures µ, ν on Rd, representing the observed
configuration at initial and final time, that is to say

1

N

N∑
i=1

δXi0 ≈ µ,
1

N

N∑
i=1

δXiT ≈ ν.

Then, leveraging Sanov’s Theorem [22, Theorem 6.2.10], whose message is that the
likelihood of a given evolution ρ is measured through the relative entropy

Prob
[
µN ≈ ρ

]
≈ exp(−NH(ρ|R)),

we finally arrive at the variational problem

CT (µ, ν) := inf

{
H(P|R) : P ∈ P(C([0, T ];R2d)), (X0)#P = µ, (XT )#P = ν

}
. (KSPd)

In the above, R is the reference probability measure, that is the law of
dXt = Vtdt

dVt = −∇U(Xt)dt− γVtdt+
√

2γ dBt

(X0, V0) ∼ m,

(1.1)

where the invariant (probability) measure m is given by

m(dx, dv) =
1

Z
e−U(x)− |v|

2

2 dx dv,
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Kinetic Schrödinger problem

with Z being a normalising constant. Moreover, (Xt, Vt)t∈[0,T ] denotes the canonical
process on Ω, # is the push-forward and H(·|R) is the relative entropy functional defined
on P(Ω) as

H(P|R) :=

{
EP

[
log dP

dR

]
if P� R,

+∞ otherwise.

Given that Schrödinger’s thought experiment is motivated by statistical mechanics and
the physical relevance of the Langevin dynamics and its various applications, the study
of the kinetic Schrödinger problem appears to be quite natural. Nevertheless, to the
best of our knowledge, it seems that there has been no dedicated study so far, with
the exception of [15]. The objective of this paper is to take some steps forward in this
direction, in particular by gaining a quantitative understanding of optimal solutions,
called Schrödinger bridges.

Turnpike property for Schrödinger bridges

The turnpike property is a general principle in optimal control theory stipulating that
solutions of dynamic control problems are made of three pieces: first a rapid transition
from the initial state to the steady state, the turnpike, then a long stationary phase
localised around the turnpike, and finally another rapid transition to reach the final
state. In order to link this concept to KSPd, we need to rephrase it as a stochastic
control problem. This task is easily accomplished thanks to classical results on the
representation of path measures with finite entropy, see e.g. [26, 36] and we get
that KSPd is equivalent to

inf

{
H((X0, V0)#P|m) +

1

4γ
EP

[ ∫ T

0

|αP
t |2dt

]
: P ∈ P(Ω), P admissible

}
, (1.2)

where a path probability measure P is admissible if and only if under P, there exist a
Brownian motion (Bt)t∈[0,T ] adapted to the canonical filtration and an adapted process

(αPt )t∈[0,T ] such that EP[
∫ T

0
|αP|2dt] < +∞ and the canonical process satisfies

dXt = Vtdt,

dVt = −∇U(Xt)dt− γVtdt+ αPt dt+
√

2γdBt,

X0 ∼ µ,XT ∼ ν.
(1.3)

For the control problem (1.2), the turnpike is the invariant measure m. Indeed, the
natural tendency of the particle system is that of reaching configuration m and since
Schrödinger bridges aim at approximating as much as possible the unconditional dynam-
ics while matching the observed configurations, they should also favour configurations
close to m. Obtaining a quantitative rigorous version of this statement is one of the main
objectives of this article and, in view of (1.3), it is equivalent to show that Schrödinger
bridges satisfy the turnpike property. In the field of deterministic control, the turn-
pike phenomenon is rather well understood both in a finite and infinite dimensional
setting, see either [49, 48] and references therein, or the monographs [51, 52]. The
understanding of this phenomenon in stochastic control seems to be much more limited:
see [10, 11, 12] for results on mean field games and [17, 1] for results on the classi-
cal and mean field Schrödinger problems. The reason why the turnpike property for
Schrödinger bridges in the present context cannot be deduced from existing results lies
in the hypocoercive [50] nature of the kinetic Fokker-Planck equation

∂tft(x, v) = γ∆vft(x, v)− γ v · ∇vft(x, v) +∇U · ∇vft(x, v)− v · ∇xft(x, v), (1.4)
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Kinetic Schrödinger problem

describing the probability density of (1.1) with respect to m. It is well known that the
problem of quantifying the trend to equilibrium of this PDE is more challenging than
for the classical (overdamped) Fokker-Planck equation and this difficulty is of course
reflected in the problem of establishing the turnpike property for the corresponding
Schrödinger bridges. In this work, we rely on the important progresses made in the study
of the long-time behaviour of (1.4) over the last fifteen years using either an analytical
approach see e.g. [4, 23, 31, 50] and references therein, or a probabilistic approach,
see e.g. [25, 29], as well as on the new developments around the long-time behaviour
of Schrödinger bridges, in order to gain some understanding on controlled versions of
the kinetic Fokker-Planck equation. Leaving a more accurate comparison between our
results and the existing literature to the text below, let us first present a very concise
summary of our contributions and explain how this article is structured.

Organisation

The document is organised as follows. In the upcoming sections 1.1, 1.2 and 1.3 we
state and comment our main results. In particular, Section 1.1 contains additional back-
ground material on the Schrödinger problem and structural results such as existence,
uniqueness, duality and existence of Schrödinger-Kantorovich potentials for KSPd. Sec-
tion 1.2 is devoted to the study of the long-time behaviour of the entropic cost, whereas
in Section 1.3 we state exponential turnpike estimates for the Fisher information and
relative entropy along Schrödinger bridges. Section 2 contains preliminary results on
the Langevin dynamics and the associated semigroup that are needed for the proof of
the main results, that we carry out in Section 3 working at first under an extra regularity
assumption on the marginal measures µ and ν that we eventually remove thanks to the
technical results of Section 4.

1.1 The kinetic Schrödinger problem

This article is devoted to the analysis of a stochastic mass transportation problem,
that we name kinetic Schrödinger problem, owing to the fact that it is obtained from the
classical Schrödinger problem by replacing Brownian particles with a system of indepen-
dent particles following the Langevin dynamics in Schrödinger’s thought experiment.
The first formulation KSPd, that we proposed on the basis of Sanov’s Theorem, is in terms
of an entropy minimisation problem over path probability measures. Besides the change
of the reference measure, another difference with respect to classical instances of the
Schrödinger problem lies in the fact that it is not the full marginal that is constrained at
initial and final time, but only its spatial component. Even though KSPd seems to be a
more faithful representation of Schrödinger’s thought experiment, also the problem with
fully constrained marginals

CFT (µ̄, ν̄) := inf

{
H(P|R) : P ∈ P(Ω), (X0, V0)#P = µ̄, (XT , VT )#P = ν̄

}
. (KFSPd)

where µ̄, ν̄ ∈ P(R2d) is worth studying and we shall work on both problems in the sequel.
Through a classical argument [26] it is possible to reduce the dynamic formulations
(cf. KSPd and KFSPd) to static ones. For example, KSPd is equivalent to solving

inf

{
H(π|R0,T ) : π ∈ ΠX(µ, ν)

}
, (KSP)

where R0,T := ((X0, V0), (XT , VT ))# R is the joint law of R at initial and terminal time
and the set ΠX(µ, ν) is defined as

ΠX (µ, ν) :=
{
π ∈ P

(
R2d ×R2d

)
| (projx1

)#π = µ, (projx2
)#π = ν

}
,
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with projxi
(
(x1, v1), (x2, v2)

)
:= xi for any i = 1, 2. In a similar fashion, the static

formulation of KFSPd is

inf

{
H(π|R0,T ) : π ∈ Π(µ̄, ν̄)

}
, (KFSP)

where Π(µ̄, ν̄) is the (usual) set of couplings of µ̄ and ν̄. The equivalence between the
static and dynamic formulations is obtained mixing optimal static solutions with the
bridges of the reference measure, see [37] for details. Finally, one can also derive a fluid
dynamic (Benamou-Brenier [5]) formulation as well a stochastic control formulation of
both problems. In particular, the latter one, that we sketched at (1.2) is the one that
motivated us to investigate the turnpike phenomenon. We now proceed to establish
some basic though fundamental structural results on the kinetic Schrödinger problems
at hand. But before doing so, let us present the assumptions under which our main
results hold.

1.1.1 Assumptions

We state here the assumptions on the potential U and on the constraints µ, ν, µ̄ and ν̄
that we use in the sequel. We define mX , mV ∈ P(Rd) to be the respectively the space
and velocity marginals of m, in particular m = mX ⊗mV .

(H1) U is a C∞ strongly convex potential with bounded derivatives of order k ≥ 2.

(H2) There exist 0 < α < β such that√
β −
√
α ≤ γ , and α Idd ≤ ∇2U(x) ≤ β Idd , for all x ∈ Rd ,

where γ > 0 is the friction parameter in (1.1).

(H3) The probability measures µ and ν on Rd satisfy

H(µ|mX) < +∞ and H(ν|mX) < +∞ .

(H4) µ, ν � mX , dµ
dmX

, dν
dmX

∈ L∞(mX) and are compactly supported on Rd.

(FH3) The probability measures µ̄ and ν̄ on R2d satisfy

H(µ̄|m) < +∞ and H(ν̄|m) < +∞ .

(FH4) µ̄, ν̄ � m, dµ̄
dm ,

dν̄
dm ∈ L

∞(m) and are compactly supported on R2d.

Assumption (H2) implies local gradient contraction bounds for the semigroup gener-
ated by the Langevin dynamics with a certain rate κ > 0 (see Proposition 2.2 or [4]). The
exponential rate κ of Theorems 1.6 and 1.7 below is precisely the one, computed e.g. in
[39, 6], at which the synchronous coupling is contractive for the (uncontrolled) Langevin
dynamics.

For each of the main results, we will make it explicit which assumptions from the
above list are needed.

1.1.2 Duality

We begin with a duality result, analogous to the Monge-Kantorovich duality of optimal
transport and the more recent dual representations of the entropic cost for the classical
Schrödinger problem [27]. It is worth noticing that, since the stationary Langevin dynam-
ics is not a reversible measure, CFT (·, ·) is not symmetric in its arguments. Nevertheless,
due to the “physical reversibility” of the dynamics [15], that is, reversibility up to a sign
flip in the velocities, it is not hard to show that CT (·, ·) is symmetric in its arguments.
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Proposition 1.1. Grant (H1) and (H3). Then CT (µ, ν) <∞ and

CT (µ, ν) = sup
ϕ,ψ∈Cb(Rd)

{∫
Rd
ϕdµ+

∫
Rd
ψ dν − log

∫
R4d

eϕ⊕ψ dR0,T

}
. (1.5)

Similarly, grant (H1) and (FH3) it holds CFT (µ̄, ν̄) <∞ and

CFT (µ̄, ν̄) = sup
ϕ,ψ∈Cb(R2d)

{∫
R2d

ϕdµ̄+

∫
R2d

ψ dν̄ − log

∫
R4d

eϕ⊕ψ dR0,T

}
. (1.6)

1.1.3 The fg-decomposition

Optimal couplings in the Schrödinger problem are characterised by the fact that
their density against the reference measure takes a product form, often called fg-
decomposition [37]. In KSPd f and g have the additional property of depending only on
the first and second space variables respectively.

Proposition 1.2. Grant (H1), (H3). Then, for all T > 0, KSP and KSPd admit unique
solutions µT ,PT with µT = ((X0, V0), (XT , VT ))#PT and there exist two non-negative
measurable functions fT , gT on Rd such that

ρT (x, v, y, w) :=
dµT

dR0,T
(x, v, y, w) = fT (x)gT (y), R0,T -a.s. (1.7)

Moreover, fT , gT solve the Schrödinger system:{
dµ

dmX
(x) = fT (x)ER

[
gT (XT )|X0 = x

]
,

dν
dmX

(y) = gT (y)ER

[
fT (X0)|XT = y

]
.

(1.8)

For KFSP and KFSPd, the uniqueness of solutions (hereafter µ̄T and P̄T respectively)
and the fg-decomposition are a direct consequence of known results, see e.g. [42],
whereas the case KSP requires some more work. We remark here that for both dual
representation of the cost and the fg-decomposition the strict convexity of U and its
smoothness are not really necessary, a bounded Hessian would suffice.

1.2 Long-time behaviour of the entropic costs

Let us now turn the attention to the ergodic properties of KSP and KFSP by investi-
gating the long-time behaviour of the entropic cost. To explain the upcoming results, we
remark that (H1) implies ergodicity of the Langevin dynamics [20, Theorem 11.14] and
in particular one has the weak convergence

R0,T ⇀ m⊗m.

Intuitively, this implies that the variational problem KSP converges, in a sense to be
made precise, to the problem

min
π∈ΠX(µ,ν)

H(π | m⊗m), (1.9)

whose optimal solution and optimal value are easily seen to be (µ ⊗ mV ) ⊗ (ν ⊗ mV )

and H(µ|mX) + H(ν|mX) respectively. From the point of view of the particle system,
this means that in the long-time limit, initial and final states of the system become
essentially independent of one another. Moreover, the initial and final velocities are
well approximated by independent Gaussians, and are independent from the spatial
variables. The result below turns this intuition into a solid argument, including a
quantitative version of the convergence of the entropic cost towards the sum of the
marginal entropies. For the classical Schrödinger problem, an analogous statement can
be found in [19].
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Theorem 1.3. Grant (H1) and (H3). Then

lim
T→∞

CT (µ, ν) = H(µ | mX) +H(ν | mX) <∞ . (1.10)

Moreover as T →∞
µT ⇀ (µ⊗mV )⊗ (ν ⊗mV ) ∈ ΠX(µ, ν) , (1.11)

weakly and, granted (H2), there exists a positive constant Cd,α,β,γ (depending only on

d, α, β and γ) such that for any 0 < δ ≤ 1, as soon as T > ( 1
κ logCd,α,β,γ+2δ)∨ 1

κ log
Cd,α,β,γ

δ3 ,
it holds

|CT (µ, ν)−H (µ|mX)−H (ν|mX)| ≤ Cd,α,β,γ δ−3 e−κT
[
H (µ|mX) +H (ν|mX)

]
, (1.12)

and as a consequence the following entropic Talagrand inequality holds

CT (µ, ν) ≤
(

1 + Cd,α,β,γ δ
−3 e−κT

)[
H (µ|mX) +H (ν|mX)

]
. (1.13)

Remark 1.4. Equation (1.11) implies in particular that µT0 ⇀ µ⊗mV and µTT ⇀ ν ⊗mV .
This convergence is also exponential, as we show in Theorem 3.8.

Theorem 1.5. Under the (H1) and (FH3) it holds

lim
T→∞

CFT (µ̄, ν̄) = H (µ̄|m) +H (ν̄|m) <∞ . (1.14)

Moreover as T →∞
µ̄T ⇀ µ̄⊗ ν̄ ∈ Π (µ̄, ν̄) , (1.15)

weakly and, granted (H2), there exists a positive constant Cd,α,β,γ such that for any

0 < δ ≤ 1, as soon as T > ( 1
κ logCd,α,β,γ + 2δ) ∨ 1

κ log
Cd,α,β,γ

δ3 , it holds

∣∣CFT (µ̄, ν̄)−H (µ̄|m)−H (ν̄|m)
∣∣ ≤ Cd,α,β,γ δ−3 e−κT

[
H (µ̄|m) +H (ν̄|m)

]
, (1.16)

and as a consequence the following entropic Talagrand inequality holds

CFT (µ̄, ν̄) ≤
(

1 + Cd,α,β,γ δ
−3 e−κT

)[
H (µ̄|m) +H (ν̄|m)

]
. (1.17)

The proof of the qualitative statements in the above results rely on Γ-convergence
and some simple consequences of the heat kernel estimates in [21]. The key ingredient
in the proof of the exponential estimates is a representation formula for the difference

CT (µ, ν)−H (µ|mX)−H (ν|mX)

that we establish at Lemma 3.1 and allows to profit from the turnpike estimates at
Theorem 1.6 and 1.7 below.

1.3 Long-time behaviour of Schrödinger bridges

One of the main contributions of this article are the upcoming quantitative results on
the long-time behaviour of Schrödinger bridges, which imply in particular exponential
convergence to m when looking at timescales of order T and exponential convergence
in T to the Langevin dynamics when looking at the Schrödinger bridge over a fixed
time-window [0, t].
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1.3.1 Entropic turnpike property

We propose two turnpike results in which distance from equilibrium is measured through
the relative entropy H(·|m) and the Fisher information I(·), see (1.18) below. The use of
H(·|m) is natural in light of the fact that the costs CT (µ, ν) and CFT (µ̄, ν̄) are also relative
entropies, but computed on different spaces. On the other hand, the bound on I(·)
is reminiscent of the celebrated Bakry-Émery estimates [2]. It is worth noticing that
entropic turnpike estimates seem to be very rare in the existing literature and even less
so are bounds on the Fisher information: we shall elaborate more on this at Remark 1.9.
The key assumption for obtaining (1.20) and (1.23) is (H2), asking U to be strongly
convex and such that the difference between the smallest and largest eigenvalues of
∇2U(x) is controlled by the friction parameter γ uniformly in x. This assumption is often
encountered in works dealing with the long-time behaviour of the (uncontrolled) kinetic
Fokker-Planck equation, see e.g. [6]. Although exponential L2 estimates are known
to hold under considerably weaker assumptions (see e.g. [31] and [9, 32] for singular
potentials), and entropic estimates assuming a bounded and positive Hessian have been
known for more than a decade [50], it is only recently [29] that entropic estimates have
been obtained beyond the bounded Hessian case. In light of this, the question of how
to improve our results is quite interesting and deserves to be further investigated. Let
us state the announced results, beginning with KSPd. To do so, we need another bit of
notation: if PT is the unique solution of KSPd, we call entropic interpolation (µTt )t∈[0,T ]

the marginal flow of PT and denote ρTt its density against m, i.e.

∀t ∈ [0, T ], µTt = (Xt, Vt)#PT , ρTt :=
dµTt
dm

.

With the obvious small modifications, we also define the entropic interpolation (µ̄Tt )t∈[0,T ]

and their densities (ρ̄Tt )t∈[0,T ] in the framework of KFSPd. Furthermore, we introduce
the functional I to be the Fisher information with respect to m, defined for any q � m ∈
P(R2d) as

I(q) :=


∫
R2d

∣∣∣∇ log dq
dm

∣∣∣2 dq if ∇ log dq
dm ∈ L

2(q),

+∞, otherwise.
. (1.18)

Theorem 1.6 (Entropic turnpike for KSP). Grant (H1), (H2) and (H3). There exists a
positive constant Cd,α,β,γ such that for any 0 < δ ≤ 1 and t ∈ [δ, T − δ], as soon as
T > 1

κ logCd,α,β,γ + 2δ, it holds

I(µTt ) ≤ Cd,α,β,γ δ−3 e−2κ[t∧(T−t)] CT (µ, ν) , (1.19)

H(µTt |m) ≤ Cd,α,β,γ δ−3 e−2κ[t∧(T−t)] CT (µ, ν) . (1.20)

Moreover, as soon as T > ( 1
κ logCd,α,β,γ + 2δ) ∨ 1

κ log
Cd,α,β,γ

δ3 , we have

H(µTt |m) ≤ Cd,α,β,γ δ−3 e−2κ[t∧(T−t)]
[
H(µ|mX) +H(ν|mX)

]
. (1.21)

Theorem 1.7 (Entropic turnpike for KFSP). Grant (H1), (H2) and (FH3).There exists a
positive constant Cd,α,β,γ such that for any 0 < δ ≤ 1 and t ∈ [δ, T − δ], as soon as
T > 1

κ logCd,α,β,γ + 2δ, it holds

I(µ̄Tt ) ≤ Cd,α,β,γ δ−3 e−2κ[t∧(T−t)] CFT (µ̄, ν̄) , (1.22)

H(µ̄Tt |m) ≤ Cd,α,β,γ δ−3 e−2κ[t∧(T−t)] CFT (µ̄, ν̄) . (1.23)

Moreover, as soon as T > ( 1
κ logCd,α,β,γ + 2δ) ∨ 1

κ log
Cd,α,β,γ

δ3 , we have

H(µ̄Tt |m) ≤ Cd,α,β,γ δ−3 e−2κ[t∧(T−t)]
[
H(µ̄|m) +H(ν̄|m)

]
. (1.24)
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Remark 1.8. If we compare our results with what is known in deterministic control we
remark that, quite curiously, exponential estimates for the deterministic noiseless version
of (1.2), obtained removing the Brownian motion form the controlled state equation,
do not seem to be covered from existing results, even in the case when µ and ν are
Dirac measures.1 For linear-quadratic problems though, the result is well known, see
e.g. [8] for precise estimates. Theorems 1.6 and 1.7 provide global turnpike estimates,
that is to say we do not ask µ and ν to be close to m. We do ask H(µ|m),H(ν|m) < +∞,
but this condition is very mild and necessary for the Schrödinger problem to have
a finite value. This is in contrast with most exponential turnpike estimates we are
aware of in deterministic control (see e.g. [49, Theorem 1]). The passage from local
to global estimates seems to be possible [47, 46] under some extra assumptions, such
as the existence of a storage function, but this comes at the price of losing quite some
information on the multiplicative constants appearing in (1.20). Moreover, the condition
T > 1

κ logCd,α,β,γ + 2δ of Theorem 1.6 should be replaced with a condition of the form
T > T0 with T0 depending on the initial conditions and potentially very large.

Remark 1.9. The bound on the Fisher information is our strongest result as it implies
immediately an entropic bound thanks to the logarithmic Sobolev inequality (2.4). More-
over, entropic bounds are stronger than bounds expressed by means of a transport
distance such as W1 or W2, since m satisfies Talagrand’s inequality (2.2).

Remark 1.10. Proving the turnpike property for Schrödinger bridges in this context is
harder than in the classical setting, and we need to work under stronger assumptions
on the potential U than its strong convexity. This is not a surprise. Indeed, proving
the exponential convergence to equilibrium for the kinetic Fokker-Planck equation is
a difficult problem that has been, and still is, intensively studied by means of either a
probabilistic or an analytic approach, see [13, 25, 45, 29] for some references on the
probabilistic approach. Following the terminology introduced by Villani in his monograph
[50], this obstruction is a manifestation of the hypocoercive nature of the kinetic Fokker-
Planck equation. KSP may indeed be regarded as the prototype of an hypocoercive
stochastic control problem. For the moment, we have been able to show the turnpike
property under a quasilinearity assumption. Assumptions of this type, where the friction
parameter has to be in some sense large in comparison with the spectrum of ∇2U are
commonly encountered in the literature. In the language of probability, they ensure that
the synchronous coupling is contracting for the Langevin dynamics [6, 39]. On the other
hand, from an analytical standpoint, Assumption (H2) implies local gradient bounds
for the semigroup generated by the Langevin dynamics [4]. Finally, we recall that the
exponential rate κ of Theorems 1.6 and 1.7 is precisely the one, computed e.g. in [39, 6],
at which synchronous coupling is contractive for the (uncontrolled) Langevin dynamics.

Proof strategy A general idea to obtain exponential speed of convergence to equilib-
rium for hypocoercive equations systematically exploited in [50] is that of modifying the
“natural” Lyapunov function of the system by adding some extra terms in such a way
that proving exponential dissipation becomes an easier task. For the Langevin dynamics,
a suitable modification of the natural Lyapunov functional, that is the relative entropy
H(·|m), is obtained considering

µ 7→ aH(µ|m) + I(µ)

for a carefully chosen constant a > 0. Emulating Bakry-Émery Γ-calculus [4] it is possible
to show that the modified Lyapunov functional decays exponentially along solutions

1For example, if we compare with the reference work [49], the matrix W defined at Eq. (10) therein would
not be invertible for the problem under consideration, which thus fails to satisfy the hypothesis of the main
turnpike result obtained there.
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of the kinetic Fokker-Planck equation. Our proof of the turnpike property consists in
implementing this abstract idea on the fg-decomposition of the entropic interpolation, as
we now briefly explain. Indeed, in order to bound I(µTt ) one is naturally led to consider
the quantities ∫

R2d

∣∣∇ log fTs
∣∣2 fTs gTs dm , (1.25a)∫

R2d

∣∣∇ log gTs
∣∣2 fTs gTs dm . (1.25b)

However, it is not clear how to obtain a differential inequality ensuring exponential
(forward) dissipation of (1.25a) and exponential (backward) dissipation of (1.25b). But,
as we show at Lemma 3.2, it is possible to find two norms | · |M−1 and | · |N−1 , that are
equivalent to the Euclidean norm and such that if we define

ϕT (s) :=

∫
R2d

∣∣∇ log fTs
∣∣2
N−1 f

T
s g

T
s dm and ψT (s) :=

∫
R2d

∣∣∇ log gTs
∣∣2
M−1 f

T
s g

T
s dm ,

(1.26)
then ϕT (s) and ψT (s) satisfy the desired exponential estimates. To complete the proof,
one needs to take care of the boundary conditions. This part is non trivial as it demands to
prove certain regularity properties of the fg-decomposition and it is accomplished in two
steps: we first show at Proposition 3.4 a regularising property of entropic interpolations,
namely that if H(µ|mX),H(ν|mX) are finite, then the Fisher information I(µTt ) is finite
for any t ∈ (0, T ). The proof of this property is based on a gradient bound obtained
in [30] and is of independent interest. The second step (Proposition 3.3) consists in
showing that for a fixed small δ, ϕT (δ) and ψT (T − δ) can be controlled with by the sum
of I(µTδ ) and I(µTT−δ). We prove this estimate adapting an argument used in [49] in the
analysis of deterministic finite dimensional control problems.

1.3.2 Convergence to the Langevin dynamics over a fixed time-window

We are able to precisely analyse the behaviour of entropic interpolations for a fixed
time t, while T grows large. More precisely, we show that the (uncontrolled) Langevin
dynamics and the Schrödinger bridge are exponentially close in the long-time regime
T → ∞, for all time-windows [0, t]. Note that this result cannot be deduced from the
turnpike estimates of the former section.

Theorem 1.11. Under hypotheses (H1), (H2) and (H3), there exists a positive constant
Cd,α,β,γ such that for any 0 < δ ≤ 1 and t ∈ [0, T − δ], as soon as T > 1

κ logCd,α,β,γ + 2δ,
it holds

W2(µTt , µ
∞
t ) ≤ Cd,α,β,γ δ−

3
2 e−κ(T−t)

√
CT (µ, ν) ,

µ∞t is the law of (Xt, Vt) satisfying
dXt = Vtdt,

dVt = −∇U(Xt)dt− γVtdt+
√

2γ dBt,

(X0, V0) ∼ µ⊗mV .

(1.27)

A similar statement holds true for KFSP replacing Assumption (H3) with (FH3) and
with initial condition in (1.27) given by µ̄.

2 Preliminaries

In this section we collect useful results about the Markov semigroup associated to the
kinetic Fokker-Planck equation. In what follows we write . to indicate that an inequality
holds up to a multiplicative positive constant depending possibly on the dimension d, the
bounds on the spectrum of ∇2U , α and β, or the friction parameter γ.
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2.1 On the assumptions

In this short section we report some straightforward consequences of the various
assumptions listed at Section 1.1.1 that we shall repeatedly use from now on. We begin
by observing that assumption (H1) guarantees that m ∈ P2(R2d) and that mX satisfies
Talagrand’s inequality because of [3, Corollary 9.3.2], i.e. for any q ∈ P(Rd)

W2(q, mX)2 . H(q|mX) . (2.1)

Since the Talagrand inequality holds also for the Gaussian measure mV , from [3, Propo-
sition 9.2.4] it follows that for any q ∈ P(R2d)

W2(q, m)2 . H(q|m) . (2.2)

Let us also point out that (H4) implies (H3) and that under (H1) and (H3) it easily follows
that µ, ν ∈ P2(Rd). Indeed,∫

Rd
|x|2 dµ .

∫
Rd
|x|2 dmX +W2(µ,mX)2

(2.1)

.
∫
Rd
|x|2 dmX +H(µ|mX) < +∞ , (2.3)

and similarly for the measure ν. We also remark that (FH4) implies (FH3). Moreover,
from (H1) and (FH3), by means of (2.2), it follows that µ̄, ν̄ ∈ P2(R2d).

Finally, let us also notice that (H1) and (H2) guarantee the validity of a log-Sobolev
inequality for mX because of [3, Corollary 5.7.2], and by means of [3, Proposition 5.2.7
and Proposition 5.5.1] it follows that m satisfies a log-Sobolev inequality. Therefore for
any q � m it holds

H(q|m) . I(q) . (2.4)

2.2 Markov semigroups and heat kernel

The generator L associated to the SDE (1.1) is given by

L = γ∆v − γv · ∇v −∇U · ∇v + v · ∇x

while its adjoint in L2(m) reads as

L∗ = γ∆v − γv · ∇v +∇U · ∇v − v · ∇x .

Under assumption (H1), it is well known that Hörmander’s Theorem for parabolic
hypoellipticity applies [33, Theorem 1.1] to the operator L, and thus the associated
semigroup (Pt)t≥0 admits a probability kernel pt((x, y), (y, w)), which is C∞ in all of the
parameters, with respect to the invariant probability measure

dm(x, v) =
1

Z
e−U(x)− |v|

2

2 dxdv,

where Z is a normalising constant. Sometimes, with a slight abuse of notation we will
write m(x, v) to denote the density of m with respect to the Lebesgue measure. Similarly,
we will denote by (P ∗t )t≥0 the semigroup associated to L∗. Note that the function pt also
represents the density of R0,t (the joint law at time 0 and t of the solution to (1.1)) with
respect to dm⊗m. Moreover, according to [21, Theorem 1.1], pt(·, ·) satisfies two-sided
Gaussian estimates. Importantly, pt is locally bounded away from zero and infinity, but
with constants that might depend non-trivially on the time horizon T .

For some of our proofs, we need lower bounds that are uniform in T . To this aim, we
have the following consequence of the results of [21], whose proof is postponed to the
appendix.
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Lemma 2.1. Let T0 > 0 be fixed. Under assumption (H1), there exists a constant cT0
> 0

such that for all T ≥ T0 and all (x, v), (y, w) ∈ R2d

log pT ((x, v), (y, w)) ≥ −cT0

(
1 + |x|2 + |v|2 + |y|2 + |w|2

)
. (2.5)

We stress that the Langevin dynamics (1.1) are not reversible, and in particular the
probability kernel pt is not symmetric. However, it is symmetric up to a sign-flip in the
velocities,

pt
(
(x, v), (y, w)

)
= pt

(
(y,−w), (x,−v)

)
∀t ≥ 0, ∀(x, v), (y, w) ∈ R2d . (2.6)

As we said above, this useful property is sometimes called physical reversibility.

2.3 Contraction of the semigroup

In our setup, due to the lack of a curvature condition, the standard Bakry-Emery
machinery does not apply to obtain a commutation estimate for the semigroup of the
type

|∇Pth(z)| ≤ e−c t Pt
(
|∇h|

)
(z) , (2.7)

for some c > 0. It is still possible to obtain a commutation estimate similar to (2.7) by
replacing the Euclidean norm | · | by a certain twisted norm |ξ|M :=

√
ξ ·Mξ on R2d for

some well chosen positive definite symmetric matrix M ∈ R2d×2d. This is a common idea
in the kinetic setting and it is exploited for example in [4, 29, 39].

For instance, in Theorem 1 of [39] the author studies the contraction properties of
the semigroup Pt associated to the SDE on Rm

dZt = b(Zt)dt+ ΣdBt , (2.8)

with the drift b : Rm → Rm being globally Lipschitz and Σ a constant positive-semidefinite
symmetric matrix. The author shows that the condition on the Jacobian matrix Jb of the
drift

ξ · (MJb(z))ξ ≤ −κ ξ ·Mξ = −κ |ξ|2M ∀ξ ∈ Rm, ∀z ∈ Rm , (2.9)

where κ ∈ R and M is a positive definite symmetric matrix, is equivalent to the commu-
tation estimate

|∇Pth(z)|M−1 ≤ e−κ t Pt
(
|∇h|M−1

)
(z) .

Our setup, which is also discussed in [39, Section 3.3], corresponds to the choice m = 2d,
and

b(x, v) =

(
v

−∇U(x)− γv

)
Σ =

(
0 0

0
√

2γ Id

)
and therefore the Jacobian reads as

Jb(x, v) =

(
0 Id

−∇2U(x) −γ Id

)
.

In [39, Proposition 5], the author shows that (2.9) holds with κ > 0 as long as α and β
from assumption (H2) are close enough. By exploiting the symmetry of the heat kernel up
to a sign flip, we obtain a similar commutation estimate also for the reversed dynamics.

In view of the above discussion we have the following.

Proposition 2.2. Assume that (H1) and (H2) hold. Then, there exist a constant κ > 0

and positive definite symmetric matrices M,N ∈ R2d×2d such that (2.9) holds and

(i) For all h ∈ C1
c (R2d), t ≥ 0 and z ∈ R2d

|∇Pth(z)|M−1 ≤ e−κ t Pt
(
|∇h|M−1

)
(z) . (2.10)
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(ii) For all h ∈ C1
c (R2d), t ≥ 0 and z ∈ R2d

|∇P ∗t h(z)|N−1 ≤ e−κ t P ∗t
(
|∇h|N−1

)
(z) . (2.11)

Proof. A proof of (2.9) with κ > 0 under (H1) and (H2) can be obtained by mimicking
the computations in Theorem 2.12 of [4], where the case γ = 1 is discussed. Given (2.9),
(i) follows from Theorem 1 in [39].

We now derive (ii) from (i) with the help of (2.6). For any function f on R2d define
the transformation Sf(x, v) = f(x,−v) and set

N =

(
Id 0

0 − Id

)
M

(
Id 0

0 − Id

)
.

Note that S2 = Id, moreover in view of (2.6), for all h ∈ C1
c (R2d), P ∗t (Sh) = S(Pth) and

S|∇h|M−1 = |∇(Sh)|N−1 . It is then immediate to derive

|∇P ∗t h|N−1 = S |∇Pt(Sh)|M−1 ≤ e−κ t S
(
Pt
(
|∇(Sh)|M−1

))
= e−κ t P ∗t

(
|∇h|N−1

)
,

which is the desired conclusion.

As a result of Proposition 2.2 and Theorem 1 in [39] we have the equivalent state-
ments, with M,N and κ > 0 as above, and all q1, q2 ∈ P(R2d),

WM,2(q1Pt, q2Pt) ≤ e−κ tWM,2(q1, q2) , (2.12)

WN,2(q1P
∗
t , q2P

∗
t ) ≤ e−κ tWN,2(q1, q2) , (2.13)

whereWM,2(q1, q2) is theW2-Wasserstein distance on P(R2d) with the Euclidean metric
replaced by dM (x, y) = |x− y|M and similarly forWN,2(q1, q2).

3 Proof of the main results

3.1 Duality and fg-decomposition for KSP

Proof of Proposition 1.2. We only sketch the proof as it is rather standard. We consider
the measure RX

0,T := (projx1
,projx2

)#R0,T = (X0, XT )#R and the minimisation problem,

min
q∈Π(µ.ν)

H
(
q|RX

0,T

)
, (3.1)

where Π(µ.ν) is the set of couplings of µ, ν ∈ P(Rd × Rd). In view of the heat kernel
lower bound in Lemma 2.1, we know that for some C > 0 and uniformly in x, y it holds

dRX
0,T

d(mX ⊗mX)
(x, y) ≥ 1

C
e−C(1+|x|2+|y|2) .

which in combination with (H3) implies that H(µ⊗ ν|RX
0,T ) <∞. Indeed the bound above

implies that for any T > T0, T0 fixed, there is a constant Cd,α,β,γ,T0
> 0 such that

H(µ⊗ ν|RX
0,T ) =H(µ⊗ ν|mX ⊗mX)−

∫
R4d

log
dRX

0,T

d(mX ⊗mX)
dµ⊗ ν

(2.3)
≤ Cd,α,β,γ,T0

[
1 +H(µ|mX) +H(ν|mX)

]
.

(3.2)

Thus, Proposition 2.5 in [37] applies and the above minimisation problem has indeed
a unique solution π ∈ Π(µ, ν). By applying [28, Proposition 2.1], there exist two non-
negative measurable functions fT , gT on Rd such that

dπ

dRX
0,T

(x, y) = fT (x)gT (y), RX
0,T -a.s., (3.3)
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from which (1.8) directly follows. Now, in view of the additive property of the relative
entropy, we get for any P ∈ P(Ω)

H(P|R) = H
(
PX0,T |RX

0,T

)
+

∫
R2d

H (Px,y|Rx,y) dPX0,T (x, y),

with Rx,y = R( · |X0 = x,XT = y) and similarly for Px,y. Therefore, a minimizer to KSPd
can be found by defining

PT (·) =

∫
Rd×Rd

R( · |X0 = x,XT = y) dπ(x, y),

which satisfies (X0, XT )#PT = π and CT (µ, ν) = H(PT |R) = H(π|RX
0,T ) <∞. In particu-

lar, in view of (3.2), for all T > T0, T0 fixed, there is Cd,α,β,γ,T0
> 0 such that

CT (µ, ν) ≤ Cd,α,β,γ,T0

[
1 +H(µ|mX) +H(ν|mX)

]
. (3.4)

Similarly, for any q ∈ ΠX(µ, ν), denoting qX = (projx1
,projx2

)#q, we have H(q|R0,T ) ≥
H(qX |RX

0,T ) ≥ H(π|RX
0,T ) with equality if and only if q = µT where

µT (·) =

∫
Rd×Rd

R0,T ( · |X0 = x,XT = y) dπ(x, y). (3.5)

Note that µT = ((X0, V0), (XT , VT ))#PT and H(PT |R) = H(µT |R0,T ) = H(π|RX
0,T ) < ∞.

The solutions are unique by strict convexity of the entropy and the linearity of the
constraint. Equation (3.5) implies equality of the conditional distributions of µT and R0,T

given the space variables. But then, R0,T -a.s.

dµT

dR0,T
(x, v, y, w) =

d(projx1
,projx2

)#µ
T

d(projx1
,projx2

)#R0,T
(x, y) =

dπ

dRX
0,T

(x, y) = fT (x)gT (y).

Proof of Proposition 1.1. We have already seen in the previous proof that CT (µ, ν) is
finite. Now, since KSP is equivalent to the minimisation problem (3.1), from [34, Proposi-
tion 6.1] it follows

CT (µ, ν) = sup
ϕ,ψ∈Cb(Rd)

{∫
Rd
ϕdµ+

∫
Rd
ψ dν −

∫
R2d

(
eϕ⊕ψ − 1

)
dRX

0,T

}
≤ sup
ϕ,ψ∈Cb(Rd)

{∫
Rd

(
ϕ⊕ ψ

)
dπ − log

∫
R2d

eϕ⊕ψ dRX
0,T

}
≤ sup

h∈Cb(R2d)

{∫
R2d

hdπ − log

∫
R2d

eh dRX
0,T

}
(†)
= H

(
π|RX

0,T

)
= CT (µ, ν) ,

where π is the unique optimizer in (3.1), while (†) is the Donsker-Varadhan variational
formula [24, Lemma 1.4.3a]. This concludes the proof since RX

0,T := (projx1
,projx2

)#R0,T .

The Schrödinger system (1.8) is particularly useful when fT and gT are regular
enough. Under (H1) and (H4) they inherit the regularity (smoothness and integrability)
of the densities of µ, ν respectively. This follows from the identities

dµ

dmX
= fT

∫
Rd
PT g

T dmV ,
dν

dmX
= gT

∫
Rd
P ∗T f

T dmV ,

and since P ∗T f
T and PT gT are smooth and positive (as a result of the lower bound (2.5)).

Moreover, arguing exactly as in Lemma 2.1 in [19], owing to the lower bound in (2.5),
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and the continuity of pT , we have that there is cT0
> 0, (possibly depending on µ and ν)

such that for all T ≥ T0

‖fT ‖L∞(m)‖gT ‖L1(m) ≤ cT0

∥∥∥ dµ

dmX

∥∥∥
L∞(m)

, ‖fT ‖L1(m)‖gT ‖L∞(m) ≤ cT0

∥∥∥ dν

dmX

∥∥∥
L∞(m)

.

These bounds are pivotal to prove that fT → dµ/dmX and gT → dν/dmX as T → ∞ in
Lp(m) for all p ∈ [1,∞) akin to what is done in Lemma 3.6 of [19].

To ensure that fT , gT are in L∞(m) and with compact support, we work under
assumption (H1) and (H4) for the rest of the section. With the help of the forward and
adjoint semigroup, and (1.7) we can write{

µT0 = fT PT g
T m ,

µTT = gT P ∗T f
T m ,

(3.6)

where we recall that µTt = (Xt, Vt)#PT , with PT being optimal for KSPd. Furthermore,
if we set,

fTt := P ∗t f
T and gTt := PT−tg

T ,

then µTt , t ∈ [0, T ], can be represented as

dµTt = fTt g
T
t dm . (3.7)

It is also immediate to check that it holds{
∂tf

T
t = L∗fTt

∂tg
T
t = −LgTt

and

{
∂t log fTt = L∗ log fTt + Γ(log fTt )

∂t log gTt = −L log gTt − Γ(log gTt ) ,
(3.8)

where Γ(h) = γ |∇vh|2 is the carré du champ operator associated to the generator L.

The fg-decomposition gives us a nice representation formula for the relative entropy
along the entropic interpolation (µTt )t∈[0,T ]. Indeed, if we introduce the functions

hTf (t) :=

∫
R2d

log fTt ρ
T
t dm and hTb (t) :=

∫
R2d

log gTt ρ
T
t dm ∀t ∈ [0, T ] ,

then it easily follows that

H(µTt |m) = hTf (t) + hTb (t), ∀t ∈ [0, T ] . (3.9)

Moreover, we have

∂th
T
f (t) = −

∫
R2d

Γ(log fTt )ρTt dm and ∂th
T
b (t) =

∫
R2d

Γ(log gTt )ρTt dm . (3.10)

For a proof of (3.10) we refer to Lemma 3.8 in [18] where the classical setting is studied,
the only difference in the kinetic setting being that the operator that acts on fTt should
be replaced with L∗, since L is not self-adjoint.

In addition to (3.9), the fg-decomposition gives the following representation for the
kinetic entropic cost

CT (µ, ν) =H(µT |R0,T ) = ER0,T

[
ρT log ρT

]
=

∫
R2d

log fT ρT0 dm +

∫
R2d

log gT ρTT dm = hTf (0) + hTb (T ) .
(3.11)
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As a byproduct of (3.9), (3.10), and (3.11), we get the identities2

CT (µ, ν) =H(µT0 |m) +

∫ T

0

∫
R2d

Γ(log gTt )ρTt dm dt ,

CT (µ, ν) =H(µTT |m) +

∫ T

0

∫
R2d

Γ(log fTt )ρTt dmdt .

(3.12)

A straightforward consequence of the previous identities is the following

Lemma 3.1. Under the assumptions (H1), (H4), for any t ∈ [0, T ] it holds

CT (µ, ν) = H(µT0 |m) +H(µTT |m) +

∫ t

0

∫
R2d

Γ(log gTs )ρTs dmds

+

∫ T

t

∫
R2d

Γ(log fTs )ρTs dmds−H
(
µTt |m

)
.

(3.13)

Proof. From (3.12) we can write

CT (µ, ν) = H(µT0 |m) +

∫ t

0

∫
R2d

Γ(log gTs )ρTs dm ds+

∫ T

t

∫
R2d

Γ(log gTs )ρTs dmds .

Applying the identities (3.10) we obtain that the last summand equals∫ T

t

∫
R2d

Γ(log gTs )ρTs dmds =

∫ T

t

∫
R2d

Γ(log fTs )ρTs dmds+

∫ T

t

∂sh
T
b (s) + ∂sh

T
f (s) ds

=

∫ T

t

∫
R2d

Γ(log fTs )ρTs dmds+

∫ T

t

∂sH(µTs |m) ds

=

∫ T

t

∫
R2d

Γ(log fTs )ρTs dmds+H(µTT |m)−H
(
µTt |m

)
,

and we reach our conclusion.

3.2 Corrector estimates and proof of Theorem 1.6

Throughout we assume (H1), (H2) and (H4) to be true and we will point out whenever
the latter can be relaxed to (H3). Let us start by defining a few key objects whose
behaviour will help us in controlling the convergence rates for the turnpike property.

We define the correctors as the functions ϕT , ψT : [0, T ]→ R given by

ϕT (s) :=

∫
R2d

∣∣∇ log fTs
∣∣2
N−1 ρ

T
s dm and ψT (s) :=

∫
R2d

∣∣∇ log gTs
∣∣2
M−1 ρ

T
s dm , (3.14)

where M, N ∈ R2d×2d are the matrices appearing in Proposition 2.2. Let us also note
that by the fg-decomposition it follows I(µTs ) . ϕT (s) + ψT (s).

With the next lemma we show that the contraction properties introduced in the
previous section translate into an exponentially fast contraction for ϕT and ψT .

Lemma 3.2. Under (H1), (H2) and (H4), for any 0 < t ≤ s ≤ T it holds

ϕT (s) ≤ ϕT (t)e−2κ(s−t) and ψT (T − s) ≤ ψT (T − t)e−2κ(s−t) . (3.15)

Proof. By definition fTs = P ∗s−tf
T
t and thus

ϕT (s) =

∫
R2d

∣∣∇ log fTs
∣∣2
N−1 ρ

T
s dm =

∫
R2d

∣∣∇P ∗s−tfTt ∣∣2N−1 (P ∗s−tf
T
t )−1gTs dm (3.16)

2Let us point out that when considering the optimal solution PT ∈ P(Ω) in (1.2), the optimal control is given
by αP

t = 2γ∇v log gTt (Xt) and the stochastic control formulation (1.2) reads as the first identity in (3.12).

EJP 27 (2022), paper 131.
Page 16/32

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP850
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Kinetic Schrödinger problem

An application of the gradient estimate (2.11) and Cauchy-Schwartz inequality yields

ϕT (s)
(2.11)
≤ e−2κ(s−t)

∫
R2d

(
P ∗s−t

∣∣∇fTt ∣∣N−1

)2
(P ∗s−tf

T
t )−1PT−sg

T dm

≤ e−2κ(s−t)
∫
R2d

P ∗s−t

(∣∣∇fTt ∣∣2N−1

fTt

)
PT−sg

T dm

= e−2κ(s−t)
∫
R2d

∣∣∇ log fTt
∣∣2
N−1 ρ

T
t dm ≤ e−2κ(s−t)ϕT (t),

(3.17)

which concludes the proof for the first inequality. The analogous inequality for ψT runs
as above by using inequality (2.10) for the semigroup (Pt)t∈[0,T ].

Proposition 3.3. Grant (H1), (H2) and (H4). There exists Cd,α,β,γ > 0 such that for any
0 < δ ≤ 1 and for any t ∈ [δ, T ], as soon as T > 1

κ logCd,α,β,γ + 2δ, it holds

ϕT (t) . e−2κt
[
I
(
µTδ
)

+ I
(
µTT−δ

)]
and ψT (T − t) . e−2κt

[
I
(
µTδ
)

+ I
(
µTT−δ

)]
.

(3.18)

Proof. Without loss of generalities we may assume I
(
µTδ
)

and I
(
µTT−δ

)
to be finite,

otherwise the above bounds are trivial. From Lemma 3.2 and the fg-decomposition of
ρTt = fTt g

T
t we know that

ϕT (T − δ) ≤ e−2κT+4κδϕT (δ)

= e−2κT+4κδ

∫ ∣∣∇ log ρTδ −∇ log gTδ
∣∣2
N−1 dµTδ

. e−2κT+4κδI
(
µTδ
)

+ e−2κT+4κδψT (δ)

. e−2κT+4κδI
(
µTδ
)

+ e−4κT+8κδψT (T − δ) .

Using the basic inequality |a− b|2 ≥ a2/2− b2 we obtain

ϕT (T − δ) =

∫
R2d

∣∣∇ log gTT−δ −∇ log ρTT−δ
∣∣2
N−1 dµTT−δ & ψT (T − δ)− 2I

(
µTT−δ

)
.

As a result, we get

ψT (T − δ)− 2I
(
µTT−δ

)
. e−2κT+4κδI

(
µTδ
)

+ e−4κT+8κδψT (T − δ) .

Therefore, as soon as T > 1
κ logCd,α,β,γ + 2δ for some constant Cd,α,β,γ > 0, we find

ψT (T − δ) . I
(
µTδ
)

+ I
(
µTT−δ

)
.

Plugging this bound into the contraction estimate (3.15) gives the second inequality
in (3.18) for any t ∈ [δ, T ]. The first inequality is obtained by exchanging the roles of ϕ
and ψ in the above discussion.

Proposition 3.4. Assume (H1), (H2) and (H3). Let 0 < δ ≤ 1 be fixed. Then, for all
t ∈ [δ, T − δ]

I(µTt ) . δ−3
(
CT (µ, ν)−H(µTt | m)

)
. (3.19)

Proof. Let us first work under (H4). We claim that for any t ∈ [δ, T − δ] it holds∣∣∇PT−tgT ∣∣2 . δ−3
[
PT−t(g

T log gT )− (PT−t g
T ) log(PT−t g

T )
]
PT−t g

T . (3.20)
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Indeed by applying Corollary 3.2 in [30] to any directional derivative we have∣∣∂xiPT−tgT ∣∣2 ≤ 4 inf
s∈(0,T−t]

Ψs(1, 0)
[
PT−t(g

T log gT )− (PT−t g
T ) log(PT−t g

T )
]
PT−t g

T ,∣∣∂viPT−tgT ∣∣2 ≤ 4 inf
s∈(0,T−t]

Ψs(0, 1)
[
PT−t(g

T log gT )− (PT−t g
T ) log(PT−t g

T )
]
PT−t g

T ,

where Ψs(a, b) is defined for any a, b > 0 as the quantity

Ψs(a, b) :=
1

2γ
s

[
a

(
6

s2
+ β +

3γ

2s

)
+ b

(
4

s
+

4β

27
s+ γ

)]2

.

By considering s = δ ∈ (0, 1] we can bound the above RHS with δ−3, up to a multiplicative
constant. Particularly this yields (3.20). Similarly one can prove that it holds∣∣∇P ∗t fT ∣∣2 . δ−3

[
P ∗t (fT log fT )− (P ∗t f

T ) log(P ∗t f
T )
]
P ∗t f

T .

Therefore because of the fg-decomposition (3.7) we obtain

I(µTt ) ≤ 2

∫
R2d

[∣∣∇PT−tgT ∣∣2
PT−tgT

P ∗t f
T +

∣∣∇P ∗t fT ∣∣2
P ∗t f

T
PT−tg

T

]
dm

. δ−3

∫
R2d

{[
PT−t(g

T log gT )− (PT−t g
T ) log(PT−t g

T )
]
P ∗t f

T

+
[
P ∗t (fT log fT )− (P ∗t f

T ) log(P ∗t f
T )
]
PT−tg

T

}
dm

By integration by parts and (3.7) this last displacement equals

δ−3

(∫
Rd

log gT dν +

∫
Rd

log fT dµ−
∫
R2d

log ρTt ρ
T
t dm

)
,

and the thesis follows in view of (3.11).
Now let us just assume (H3). Firstly, define the probability measure qTn as the measure

whose R0,T -density is given by

dqTn
dR0,T

:=
(
ρT ∧ n

) 1Kn
Cn

, (3.21)

where (Kn)n∈N is an increasing sequence of compact sets in R4d and Cn is the normalis-
ing constant. Then, by applying Lemma 4.1 we know that the marginals µn := (projx1

)#q
T
n

and νn := (projx2
)#q

T
n satisfy (H4) and by means of Proposition 4.2 and Corollary 4.3 it

follows that there exists a unique minimizer µn,T ∈ P(Ω) for KSP with marginals µn, νn,
and as soon as n diverges it holds

µn,Tt ⇀ µTt and CT (µn, νn)→ CT (µ, ν) . (3.22)

Then, the thesis in the general case follows from the one under (H4) and the lower
semicontinuity of I(·) and H(·|m).

As a byproduct of Proposition 3.3 and Proposition 3.4 we get

Corollary 3.5. Under (H1), (H2) and (H4), there exists Cd,α,β,γ > 0 such that for any
0 < δ ≤ 1 and t ∈ [δ, T ], as soon as T > 1

κ logCd,α,β,γ + 2δ, it holds

ϕT (t) . δ−3 e−2κt CT (µ, ν) and ψT (T − t) . δ−3 e−2κt CT (µ, ν) . (3.23)
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Proof of Theorem 1.6. We start proving the result under (H4). Since I(µTt ) . ϕT (t) +

ψT (t), the first inequality (cf. (1.19)) is an immediate consequence of Corollary 3.5. The
relative entropy bound (cf. (1.20)) follows from the first one by means of (2.4). In order
to extend (1.19) and (1.20) to (H3), it is enough to consider the approximation of the
optimizer (cf. (3.21) and (3.22)) together with the lower semicontinuity of I(·) andH(·|m).
Finally, (1.21) follows from (1.20) by means of Lemma 3.9 below.

3.3 Long-time behaviour of the kinetic entropic cost

Throughout the whole section we will always assume (H1) and (H3) to be true. Let
us remark that (H1) implies that m ∈ P2(R2d). In what follows we are going to prove
Theorem 1.3, but first we need some preparation. The first two claims in Theorem 1.3
will be proved via a Γ-convergence approach (cf. Proposition 3.6 and Lemma 3.7) similar
to the one used in [19] for the classical Schrödinger problem. The main difference
with [19] is the lack of compactness for the set ΠX(µ, ν). On the other hand, the proof
of the latter two bounds in Theorem 1.3 will rely on the corrector estimates given in
Section 3.2.

Proposition 3.6 (A Γ-convergence result). Let (Tn)n∈N be a sequence of positive real
numbers converging to ∞, and for each n ∈ N consider the functional H (· | R0,Tn)

defined on ΠX(µ, ν) endowed with the weak topology. Then

Γ− lim
n→∞

H(·|R0,Tn) = H(·|m⊗m) .

Proof. (Γ-convergence lower bound inequality) We prove that for any sequence (qn)n∈N ⊂
ΠX (µ, ν) that converges weakly to some q ∈ ΠX(µ, ν)

lim inf
n→∞

H (qn | R0,Tn) ≥ H (q | m⊗m) . (3.24)

Note that since Pt is strongly mixing [20, Theorem 11.14] for any ψ, φ ∈ Cb(R2d) it holds∫
R2d

∫
R2d

ψ(x, v)φ(y, w)dR0,Tn =

∫
R2d

ψ PTnφ dm
n→∞−→

∫
R2d

∫
R2d

ψ(x, v)φ(y, w)dm⊗ dm.

From the Portmanteau Theorem, it follows that R0,Tn ⇀ m⊗m. Then (3.24) follows from
the lower semicontinuity of the relative entropy.

(Γ-convergence upper bound inequality) We prove that for any q ∈ ΠX(µ, ν) it holds

lim sup
n→∞

H (q | R0,Tn) ≤ H (q | m⊗m) . (3.25)

We may assume H(q|m⊗m) <∞ otherwise the above inequality is trivial. Note that this
implies q ∈ P2(R4d) since µ, ν ∈ P2(Rd) (cf. (2.3)) while∫

Rd
|v|2 d(projv1)#q ≤ 2

∫
Rd
|v|2 dmV + 2W2((projv1)#q,mV )2

(2.2)

. 1 + H((projv1)#q|mV ) ≤ 1 +H(q|m⊗m) <∞ ,

and similarly for the measure (projv2)#q. Then we have

H (q | R0,Tn) = H (q | m⊗m)−
∫
R2d×R2d

log pTn
(
(x, v), (y, w)

)
dq ,

Thanks to the lower bound given in Lemma 2.1 and the fact that q ∈ P2(R4d), we can
apply Fatou’s Lemma and get

lim sup
n→∞

H (q | R0,Tn) ≤ H (q | m⊗m)−
∫
R2d×R2d

lim inf
n→∞

log pTn
(
(x, v), (y, w)

)
dq . (3.26)
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Now, for all t > 0 and for all (x, v), (y, w) ∈ R2d

pTn
(
(x, v), (y, w)

)
= PTn−t

(
pt
(
· , (y, w)

))
(x, v) .

For any M > 0, we introduce the function pMt (· , (y, w)) := pt(· , (y, w)) ∧M ∈ Cb(R2d).
Then, since PT is strongly mixing (cf. [20, Theorem 11.14]), we get

pTn
(
(x, v), (y, w)

)
≥ PTn−t

(
pMt
(
· , (y, w)

))
(x, v)

n→∞−→
∫
R2d

pMt
(
(x, v), (y, w)

)
dm(x, v) .

Taking the limit as M →∞, by dominated convergence we get that∫
R2d

pMt
(
(x, v), (y, w)

)
dm(x, v)

M→∞−→
∫
R2d

pt
(
(x, v), (y, w)

)
dm(x, v) = 1 ,

where the last equality follows from (2.6). Therefore it holds

lim inf
n→∞

log pTn
(
(x, v), (y, w)

)
≥ 0 , m⊗m− a.s.

which, together with q � m⊗m (since H (q | m⊗m) <∞), leads to

lim inf
n→∞

log pTn
(
(x, v), (y, w)

)
≥ 0 , q-a.s.

Therefore, from (3.26) we get inequality (3.25). The desired Γ-convergence follows as a
byproduct of (3.24) and (3.25).

Even though here we are just interested in the Γ-convergence (as introduced by De
Giorgi) on ΠX(µ, ν) equipped with the weak topology, the previous result is actually
stronger: indeed we have actually proven the Mosco convergence of the functional
H (· | R0,Tn) since we have considered a constant sequence qn = q for the upper bound
inequality.

Lemma 3.7 (Equicoerciveness). The family of functionalsH(· | R0,Tn) : ΠX(µ, ν)→ [0,∞],
n ∈ N is equicoercive, i.e. for any h ∈ R there exists a (weakly) compact subset
Kh ⊂ ΠX(µ, ν) such that{

q ∈ ΠX (µ, ν) s.t. H(q | R0,Tn) ≤ h
}
⊆ Kh ∀n ∈ N .

Proof. Since (R0,Tn)n∈N is tight, a proof of this result is obtained by following the same
argument given in [24, Lemma 1.4.3c].

The next two results are a consequence of the corrector estimates of Section 3.2. In
the first one we consider the long-time behaviour of the marginals of the solution to KSP
at times t = 0, T ; in the second one we give a bound for the entropic cost, uniformly in
time.

Theorem 3.8. Under assumptions (H1),(H2) and (H4) there exists a positive constant
Cd,α,β,γ such that for any 0 < δ ≤ 1 and T > 1

κ logCd,α,β,γ + 2δ it holds∣∣H(µT0 |m)−H(µ|mX)
∣∣ ≤ Cd,α,β,γ δ−3 CT (µ, ν) e−2κT ,∣∣H(µTT |m)−H(ν|mX)
∣∣ ≤ Cd,α,β,γ δ−3 CT (µ, ν) e−2κT .

(3.27)

Proof. We will prove only the first bound since the second one can be proved similarly.
Since dµ

dmX
(·) =

∫
Rd
ρT0 (·, v)dmV (v), the log-Sobolev inequality for the Gaussian measure
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mV gives

H(µT0 |m)−H(µ|mX) =

∫
Rd

[∫
Rd
ρT0 log ρT0 −

(∫
Rd
ρT0 dmV

)
log

(∫
Rd
ρT0 dmV

)
dmV

]
dmX

≤
∫
Rd

[∫
Rd

∣∣∣∇v√ρT0 ∣∣∣2 dmV

]
dmX =

∫
R2d

1

2

∣∣∣∣∇vρT0ρT0

∣∣∣∣2 ρT0 dm

=
1

2

∫
R2d

∣∣∇v log(fTPT g
T )
∣∣2 ρT0 dm =

1

2

∫
R2d

∣∣∇v log fT +∇v logPT g
T
∣∣2 ρT0 dm

=
1

2

∫
R2d

∣∣∇v log gT0
∣∣2 ρT0 dm . ψT (0)

(3.23)

. δ−3 CT (µ, ν) e−2κT ,

where the equality in the last line follows from the fact that fT = fT (x) does not depend
on the velocity variable. Finally, since (projx)# µT0 = µ we know that the left hand side
term above is positive.

Since it holds H(µ|mX) = H
(
(X0)#µ

T |(X0)#R0,T

)
≤ H

(
µT |R0,T

)
= CT (µ, ν), and

similarly H(ν|mX) ≤ CT (µ, ν), the following lower bound is always true

CT (µ, ν) ≥ H(µ|mX) +H(ν|mX)

2
. (3.28)

We now give a corresponding upper bound for sufficiently large times.

Lemma 3.9. Under (H1) and (H2) there exists a constant Cd,α,β,γ > 0 such that for any

0 < δ ≤ 1 and T > ( 1
κ logCd,α,β,γ + 2δ) ∨

(
1
κ log

Cd,α,β,γ
δ3

)
it holds

CT (µ, ν) ≤ Cd,α,β,γ
[
H(µ|mX) +H(ν|mX)

]
. (3.29)

Proof. Firstly, let us assume (H4) to hold. Owing to |∇v log gTs |2 . |∇ log gTs |2M−1 and
|∇v log fTs |2 . |∇ log fTs |2N−1 , from (3.13) it follows

CT (µ, ν) ≤ H(µT0 |m) +H(µTT |m) +

∫ T
2

0

ψT (s) ds+

∫ T

T
2

ϕT (s) ds

(3.27)

. H(µ|mX) +H(ν|mX) + 2 δ−3 CT (µ, ν) e−2κT +

∫ T
2

0

ψT (s) ds+

∫ T

T
2

ϕT (s) ds .

We first consider
∫ T
T/2

ϕT (s) ds. For any s ∈ [T/2, T ] from Corollary 3.5 we have

∫ T

T
2

ϕT (s) ds . δ−3 CT (µ, ν)

∫ T

T
2

e−2κ s ds . δ−3 CT (µ, ν)
(
e−κT − e−2κT

)
. (3.30)

By reasoning in the same way, this time by using the fact that s ∈ [0, T/2], we get∫ T
2

0

ψT (s) ds . δ−3 CT (µ, ν)

∫ T
2

0

e−2κ (T−s) ds . δ−3 CT (µ, ν)
(
e−κT − e−2κT

)
. (3.31)

Therefore there exists a positive constant Cd,α,β,γ such that

CT (µ, ν) ≤ Cd,α,β,γ
[
H(µ|mX) +H(ν|mX) + δ−3 CT (µ, ν)

(
e−κT − e−2κT

)]
,

which yields our thesis as soon as T > 1
κ log

Cd,α,β,γ
δ3 for a well chosen Cd,α,β,γ > 0.
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Now, let us prove the result under (H2). Firstly, notice that we may assume that µ and
ν satisfy (H3), otherwise the bound is trivial. The main idea is defining the probability
measures µMn and νMn onRd, approximating µ and ν, as the measures whose mX -densities
are given by

dµMn
dmX

:=

(
dµ

dmX
∧ n
)

1Kn
Cµn

and
dνMn
dmX

:=

(
dν

dmX
∧ n
)

1Kn
Cνn

, (3.32)

where (Kn)n∈N is an increasing sequence of compact sets in Rd and Cµn , C
ν
n are the

normalising constants. Then, µMn and νMn satisfy (H4) and by means of (4.2) it follows

H(µMn |mX)
n→∞−→ H(µ|mX) and H(νMn |mX)

n→∞−→ H(ν|mX) . (3.33)

Owing to Lemma 4.4 and (3.29) for the approximated µMn , ν
M
n , we conclude our proof.

The results given in Theorem 3.8 and Lemma 3.9 will come at hand while proving the
exponential convergence in (1.12).

Proof of Theorem 1.3. We start with the proof of (1.10) and (1.11). Firstly note that the
unique minimizer in (1.9) is given the probability measure µ∞ := (µ⊗mV )⊗ (ν ⊗mV ).
Now let us consider (Tn)n∈N to be any diverging sequence of positive real times. Then,
from the optimality of µTn it follows

lim sup
n→∞

H(µTn |R0,Tn) ≤ lim sup
n→∞

H(µ∞|R0,Tn)
(3.25)
≤ H(µ∞|m⊗m) = H(µ|mX) +H(ν|mX),

which is finite by our assumptions. Then Lemma 3.7 implies that the subsequence
(µTn)n∈N is weakly relatively compact. Then, from Proposition 3.6, the Fundamental
theorem of Γ-convergence [7, Theorem 2.10], the uniqueness of the minimizer in (1.9) and
from the metrizability of the weak convergence on P(R4d) we deduce (1.10) and (1.11).

We continue with the proof of (1.12) and of the entropic Talagrand inequality (1.13).
We firstly assume (H4) to hold. By (3.13) and owing to |∇v log gTs |2 . |∇ log gTs |2M−1 and
|∇v log fTs |2 . |∇ log fTs |2N−1 , we know that

∣∣CT (µ, ν)−H(µT0 |m)−H(µTT |m)
∣∣ . H(µTT

2
|m) +

∫ T
2

0

ψT (s) ds+

∫ T

T
2

ϕT (s) ds ,

and from (3.30), (3.31) and the entropic turnpike (1.20) it follows∣∣CT (µ, ν)−H(µT0 |m)−H(µTT |m)
∣∣ . δ−3 e−κT CT (µ, ν) + δ−3 CT (µ, ν) e−κT .

As a byproduct of the above inequality and Theorem 3.8 we get

|CT (µ, ν)−H (µ|mX)−H (ν|mX)| ≤ Cd,α,β,γ δ−3 e−κT CT (µ, ν) . (3.34)

Let us now assume that µ and ν satisfy (H3) only. Firstly, consider the approximating
sequence (µTn )n∈N of the optimizer (cf. (3.21) and (3.22)). Then, by means of (3.34) under
(H4) and the lower semicontinuity of the relative entropy we have

H (µ|mX) +H (ν|mX)− CT (µ, ν)
(3.22)
≤ lim inf

n→∞

[
H (µn|mX) +H (νn|mX)− CT (µn, νn)

]
(3.34)

. δ−3e−κT lim inf
n→∞

CT (µn, νn) = δ−3e−κT CT (µ, ν)
(3.29)

. δ−3 e−κT
[
H (µ|mX) +H (ν|mX)

]
.
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For the other bound we are going to use the approximation on the marginals
(cf. (3.32)). Therefore, let us consider µMn , ν

M
n such that (H4) holds. Then, from

Lemma 4.4 and the convergence of the relative entropies in (3.33), we get

CT (µ, ν)−H (µ|mX)−H (ν|mX) ≤ lim inf
n→∞

[
CT (µMn , ν

M
n )− H(µMn |mX)−H(ν̄Mn |m)

]
(3.34)

. δ−3 e−κT lim inf
n→∞

CT
(
µMn , ν

M
n

) (3.29)

. δ−3 e−κT lim inf
n→∞

[
H
(
µMn |mX

)
+H

(
νMn |mx

)]
= δ−3 e−κT

[
H (µ|mX) +H (ν|mX)

]
.

3.4 Corrector estimates for KFSP and proof of Theorems 1.5 and 1.7

In this section we collect results in the kinetic-full setting analogous to the ones
already presented for KSP. We omit the proofs since the arguments are very similar and
do not present any new difficulty with respect to the KSP case.

Let us start by mentioning that also in this case KFSP and KFSPd admit unique
solutions µ̄T , P̄T with µ̄T = ((X0, V0), (XT , VT ))#P̄T which can be decomposed as

ρ̄T (x, v, y, w) :=
dµ̄T

dR0,T
(x, v, y, w) = f̄T (x, v)ḡT (y, w) R0,T -a.s. (3.35)

where f̄T , ḡT are two non-negative measurable functions on R2d solving the Schrödinger
system {

dµ̄
dm (x, v) = f̄T (x, v)ER

[
ḡT (XT , VT )|X0 = x, V0 = v

]
,

dν̄
dm (y, w) = ḡT (y, w)ER

[
f̄T (X0, V0)|XT = y, VT = w

]
.

(3.36)

Note that in this case f and g are function of both space and velocity. Moreover, if we
define for any t ∈ [0, T ]

f̄Tt := P ∗t f̄
T and ḡTt := PT−tḡ

T ,

then µ̄Tt = (Xt, Vt)#P̄T can be written as µ̄Tt = f̄Tt ḡ
T
t m and, similarly to (3.13), under (H1)

and (FH4) it holds that, for any t ∈ [0, T ]

CFT (µ̄, ν̄) = H(µ̄|m) +H(ν̄|m)−H(µ̄Tt |m)

+

∫ t

0

∫
R2d

Γ(log ḡTs )ρ̄Ts dmds+

∫ T

t

∫
R2d

Γ(log f̄Ts )ρ̄Ts dmds .
(3.37)

We can therefore define the correctors as the functions ϕ̄T , ψ̄T : [0, T ]→ R given by

ϕ̄T (s) :=

∫
R2d

|∇ log f̄Ts |2N−1 ρ̄Ts dm and ψ̄T (s) :=

∫
R2d

|∇ log ḡTs |2M−1 ρ̄Ts dm , (3.38)

where M, N ∈ R2d×2d are positive definite symmetric matrices as appearing in Proposi-
tion 2.2. In the next result we collect all the contraction properties satisfied by the above
correctors, which correspond to the ones proven for KSP in Lemma 3.2, Proposition 3.3,
Proposition 3.4 and Corollary 3.5.

Lemma 3.10. Grant (H1), (H2), (FH4) and fix δ ∈ (0, 1]. For any 0 < t ≤ s ≤ T it holds

ϕ̄T (s) ≤ ϕ̄T (t)e−2κ (s−t) and ψ̄T (T − s) ≤ ψ̄T (T − t)e−2κ (s−t) ∀ 0 < t ≤ s ≤ T .

Moreover, for any fixed δ ∈ (0, 1] as soon as T > 1
κ logCd,α,β,γ + 2δ the followings hold

true
ϕ̄T (t) . e−2κt

[
I
(
µ̄Tδ
)

+ I
(
µ̄TT−δ

)]
, ∀t ∈ [δ, T ] ,

ψ̄T (T − t) . e−2κt
[
I
(
µ̄Tδ
)

+ I
(
µ̄TT−δ

)]
, ∀t ∈ [δ, T ] ,

(3.39a)
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I(µ̄Tt ) . δ−3
(
CFT (µ̄, ν̄)−H(µ̄Tt | m)

)
, ∀t ∈ [δ, T − δ] , (3.39b)

ϕ̄T (t) . δ−3 e−2κ t CFT (µ̄, ν̄) and ψ̄T (T − t) . δ−3 e−2κ t CFT (µ̄, ν̄) , ∀t ∈ [δ, T ] . (3.39c)

Proof of Theorem 1.7. The proof of the result under (FH4) follows the same reasoning
presented in the first part of the proof of Theorem 1.6 and for this reason is omitted.
An approximating argument akin to the one in the proof of Theorem 1.6, this time
considering the full marginals µ̄n, ν̄n and the corresponding KFSP, gives

µ̄n,Tt ⇀ µ̄Tt and CFT (µ̄n, ν̄n)→ CFT (µ̄, ν̄) .

Therefore the first two bounds follow from the lower semicontinuity of I(·) and H(·|m).
Finally, (1.24) follows from (1.23) by means of (3.40) presented below.

Proof of Theorem 1.5. The proof of (1.14) and (1.15) runs similarly to the one given
above in the kinetic setting and for this reason it is omitted. The main difference is that
in this case the equicoerciveness is not needed since we have the weak compactness of
Π (µ̄, ν̄).

We now discuss (1.16) and (1.17). With similar arguments as for KSP one can show
that under (H1) and (H2), there exists a constant Cd,α,β,γ > 0 such that for any 0 < δ ≤ 1

and T > ( 1
κ logCd,α,β,γ + 2δ) ∨

(
1
κ log

Cd,α,β,γ
δ3

)
it holds

CFT (µ̄, ν̄) ≤ Cd,α,β,γ
[
H(µ̄|m) +H(ν̄|m)

]
. (3.40)

Further, by means of (3.37), the corrector estimates (3.39c) and the turnpike esti-
mate (1.23), at least under (FH4), it follows that for any 0 < δ ≤ 1, as soon as
T > ( 1

κ logCd,α,β,γ + 2δ) ∨ 1
κ log

Cd,α,β,γ
δ3 ,

∣∣CFT (µ̄, ν̄)−H (µ̄|m)−H (ν̄|m)
∣∣ ≤ Cd,α,β,γ δ−3 e−κT

[
H (µ̄|m) +H (ν̄|m)

]
,

and from this immediately deduce (1.17). The extension to (FH3) is a consequence of a
standard approximation argument.

3.5 Convergence over a fixed time-window

In this section we show in Theorem 3.11 that the entropic interpolations for KSP
and KFSP enjoy a turnpike property with respect to the Wasserstein distance.

Notice that a turnpike property in the Wasserstein distance could be deduced from
the entropic one (cf. Theorem 1.6 and 1.7) by means of the Talagrand inequality (2.2).
However, below we provide a different proof that is of independent interest for two
reasons. Firstly, the inequality below holds for any t ∈ [0, T ], while the entropic turnpike
is restricted to the sub-interval [δ, T − δ]. Secondly, the argument in the proof, which
uses the optimal control formulation of the Schrödinger problem, will be instrumental
for the study of the short-time behaviour of the Schrödinger bridge.

Theorem 3.11 (Wasserstein turnpike). Under hypotheses (H1), (H2) and (H3), there
exists a positive constant Cd,α,β,γ such that for any 0 < δ ≤ 1, as soon as T >
1
κ logCd,α,β,γ + 2δ, for any t ∈ [0, T ] it holds

W2(µTt , m) ≤ Cd,α,β,γ δ−
3
2 e−κ [t∧(T−t)]

√
CT (µ, ν) .

Proof. Let us firstly assume (H4). We we will prove our result for the distorted
Wasserstein distance WM,2 induced by the metrics |·|M . Fix δ ∈ (0, 1) and assume
t ∈ [0, T − δ]. Define µ̃T· as the marginal flow generated by the uncontrolled process
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Z0,T
s := (X0,T

s , V 0,T
s )s∈[0,T ] solution of (1.1) started at the initial distribution µT0 ∈ P(R2d).

Then, since µ̃T0 = µT0 , it holds

WM,2(µTt ,m) ≤ WM,2(µTt , µ̃
T
t ) +WM,2(µ̃Tt ,m)

(2.12)
≤ WM,2(µTt , µ̃

T
t ) + e−κ tWM,2(µT0 ,m) ,

(3.41)
The second term in the right hand side can be handled with the Talagrand inequality:

WM,2(µT0 ,m) .W2(µT0 ,m)
(2.2)

.
√
H(µT0 |m) ≤

√
CT (µ, ν) ,

where the last step holds since CT (µ, ν) ≥ H
(
(projx1

)#µ
T |(projx1

)#R0,T

)
.

Let us now focus on WM,2(µTt , µ̃
T
t ). We will use a synchronous coupling between

these two measures. Therefore we introduce the process Zu,T
s := (Xu,T

s , V u,T
s ) ∼ µTs , i.e.

the solution of (1.3) (driven by the same Brownian motion for Z0,T
s ) when considering

the control us = 2γ∇v log gTs (Xu,T
s , V u,T

s ). Particularly, from (3.8) it follows that u is the
optimal control and Zu,T

s ∼ µTs . For notation’s sake set Z∆,T
s := Zu,T

s − Z0,T
s . Then it

holds

dZ∆,T
s =

[
b
(
Zu,T
s

)
− b

(
Z0,T
s

)]
ds+

(
0

us

)
ds ,

where b(z) denotes the drift of the Langevin dynamics (1.1). By Itô’s Formula we obtain

d
∣∣Z∆,T
s

∣∣2
M

= 2MZ∆
s ·

(
b(Zu

s )− b(Z0
s )
)

ds+ 2MZ∆
s ·

(
0

us

)
ds

= 2

∫ 1

0

Z∆,T
s ·MJb

(
rZu,T

s + (1− r)Z0,T
s

)
Z∆,T
s dr ds+ 2MZ∆,T

s ·
(

0

us

)
ds

≤ −2κ
∣∣Z∆,T
s

∣∣2
M

ds+ 2MZ∆,T
s ·

(
0

us

)
ds ,

where the last inequality follows from (2.9). By taking the expectation, and applying
Hölder’s inequality we get

d

ds
ER

[∣∣Z∆,T
s

∣∣2
M

]
≤ −2κER

[∣∣Z∆,T
s

∣∣2
M

]
+ 2ER

[∣∣Z∆,T
s

∣∣2
M

] 1
2

ER

[∣∣(0,us)T
∣∣2
M

] 1
2

.

Therefore it holds

d

ds

√
ER

[∣∣Z∆,T
s

∣∣2
M

]
≤ −κ

√
ER

[∣∣Z∆,T
s

∣∣2
M

]
+ ER

[∣∣(0,us)T
∣∣2
M

] 1
2

.

Recalling that the optimal control is given by us = 2γ∇v log gTs (Xu,T
s , V u,T

s ) we obtain
that

d

ds

√
ER

[∣∣Z∆,T
s

∣∣2
M

]
.

(∫
R2d

∣∣∇v log gTs
∣∣2 ρTs dm

) 1
2

. ψT (s)
1
2 .

Therefore, by integrating over s ∈ [0, t] we get√
ER

[∣∣Z∆,T
t

∣∣2
M

]
=

∫ t

0

d

ds

√
ER

[∣∣Z∆,T
s

∣∣2
M

]
ds

(3.23)

. δ−
3
2 e−κ (T−t)

√
CT (µ, ν) ,

and hence it holds
WM,2(µTt , µ̃

T
t ) . δ−

3
2 e−κ (T−t)

√
CT (µ, ν) . (3.42)

Then, from (3.41) we deduce that for any t ∈ [0, T − δ] it holds

WM,2(µTt ,m) . δ−
3
2 e−κ (T−t)

√
CT (µ, ν) + e−κ t

√
CT (µ, ν)

. δ−
3
2 e−κ [t∧(T−t)]

√
CT (µ, ν) .
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By considering the contraction along P ∗, the same argument gives us the same bound
for t ∈ [δ, T ] and therefore on the whole domain [0, T ].

In order to relax the assumption to (H3), it is enough to consider once again the
approximation of the optimizer (as in the proof of Theorem 1.6) together with the lower
semicontinuity of the Wasserstein distance.

The previous argument can also be applied in order to prove Theorem 1.11.

Proof of Theorem 1.11. At first, let us assume (H4). We have

W2

(
µTt , µ

∞
t

)
≤W2

(
µTt , µ̃

T
t

)
+W2

(
µ̃Tt , µ

∞
t

)
(3.42),(2.12)

. δ−
3
2 e−κ (T−t)

√
CT (µ, ν) + e−κ tW2

(
µT0 , µ⊗mV

)
,

(3.43)

where µ̃T· is the marginal flow defined in the previous proof, i.e. the flow generated by the
uncontrolled process (X0,T

s , V 0,T
s )s∈[0,T ] started at the initial distribution µT0 ∈ P(R2d).

Using the inequality

W2

(
µT0 , µ⊗mV

)2 ≤ ∫
Rd
W2

(
µT0 (·|x),mV

)2
dµ(x) ,

applying Talagrand’s inequality for mV and using the additivity of relative entropy [37,
Formula A.8] we obtain

W2

(
µT0 , µ⊗mV

)2 ≤ 2

∫
Rd
H
(
µT0 (·|x)|mV

)
dµ(x) = 2H

(
µT0 |µ⊗mV

)
= 2H(µT0 |m)− 2

∫
R2d

log
d (µ⊗mV )

dm
dµT0

=2H(µT0 |m)− 2

∫
Rd

log
dµ

dmX
dµ

= 2H(µT0 |m)− 2H(µ|mX)
(3.27)

. δ−3 CT (µ, ν) e−2κT .

By combining the above inequalities with (3.43) we get our result.
The extension of the result to the weaker (H3) follows from the same approximating

argument discussed in the previous proof.

With a similar reasoning one can prove that the Wasserstein turnpike holds also for
KFSP under (FH3). Notice that since in this setting we fix the whole marginals at time
0 and T , it holds µ̄T0 = µ̄ and µ̄TT = ν̄ and therefore in this case we do not need a result
similar to Theorem 3.8. Therefore we have the following

Theorem 3.12 (Wasserstein turnpike). Under hypotheses (H1),(H2) and (FH3), there
exists a positive constant Cd,α,β,γ such that for any 0 < δ ≤ 1, as soon as T >
1
κ logCd,α,β,γ + 2δ, for any t ∈ [0, T ] it holds

W2(µ̄Tt , m) ≤ Cd,α,β,γ δ−
3
2 e−κ [t∧(T−t)]

√
CFT (µ̄, ν̄) .

4 From compact support to finite entropy

In this section we discuss two types of approximating sequences that we have used
in order to extend our main results from (H4) to (H3).

In Section 4.1 we deal with the Approximation of the optimizer where we are able to
prove the convergence of the entropic cost of the approximated problem to the original
entropic cost but not the convergence of the associated entropies of the marginals at
time t = 0, T . On the other hand in Section 4.2, we investigate the Approximation of
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the marginals, by approximating directly the marginals and consider the associated
Schr̈odinger problems. In this case, we get the convergence of the marginals’ relative
entropies, but not the one of the entropic cost. The two aforementioned strategies
produce complementary bounds which can be applied together in order to relax the
assumptions from (H4) to (H3).

We will deal exclusively with the approximations and proofs for KSP and omit those
for KFSP, since the latter can be treated in the same way.

4.1 Approximating the optimizer

Fix a couple of marginals µ, ν ∈ P(Rd) satisfying (H3). We already know that there
exists a unique minimizer µT ∈ ΠX (µ, ν) for KSP, with R0,T -density given by ρT . Now
consider an increasing sequence of rectangular compact sets (Kn)n∈N in R4d whose
union gives the whole space. For each n ∈ N define the probability measure qTn as the
measure whose R0,T -density is given by

ρ̂Tn =
dqTn

dR0,T
:=
(
ρT ∧ n

) 1Kn
Cn

,

where Cn :=
∫
Kn

(ρT ∧ n) dR0,T is the normalising constant. Notice that Cn ↑ 1 by

monotone convergence and ρ̂Tn → ρT . For convenience, we fix in this section some n̄ ∈ N
such that Cn ≥ 1/2 for any n ≥ n̄.

Lemma 4.1. The following properties hold true.

(i) The marginals µn := (projx1
)#q

T
n and νn := (projx2

)#q
T
n satisfy (H4).

(ii) qTn ⇀ µT .

(iii) H
(
qTn |R0,T

)
→ H

(
µT |R0,T

)
= CT (µ, ν).

Proof. We start with i). Since qTn has compact support, so do its marginals µn, νn.
Moreover if B ⊆ Rd is a Borel set, then

µn(B) = qTn (B ×R3d) ≤ n

Cn

∫
B×R3d

dR0,T =
n

Cn
R0,T (B ×R3d) =

n

Cn
mX(B)

and therefore ‖dµn/dmX‖L∞(mX) ≤
n
Cn

. The same reasoning applies also to νn.
The weak convergence in (ii) follows from dominated convergence.
Let us prove point (iii). Notice that for each n ≥ n̄ it holds∣∣ρ̂Tn log ρ̂Tn

∣∣ ≤ max
{
e−1, (ρTC−1

n̄ ) log(ρTC−1
n̄ )
}
,

and the above RHS is R0,T -integrable since it holds∫
R4d

(ρTC−1
n̄ ) log(ρTC−1

n̄ ) dR0,T =
1

Cn̄
CT (µ, ν) +

1

Cn̄
log

(
1

Cn̄

)
<∞ ,

which is finite under (H3). From the Dominated Convergence Theorem we get (iii).

Proposition 4.2. Assume (H1) and (H3) to be true for µ, ν ∈ P(Rd). Let µT be the
unique minimizer in KSP with marginals µ, ν. Suppose we are given a sequence(
qTn
)
n∈N ⊂ P(R4d) such that such that

(i) qTn ⇀ µT ,

(ii) H
(
qTn |R0,T

)
→ H

(
µT |R0,T

)
.
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Moreover for each n ∈ N define the marginals µn := (projx1
)#q

T
n and νn := (projx2

)#q
T
n .

Then, for each n ∈ N, there exists a unique minimizer µTn ∈ ΠX (µn, νn) in KSP with
marginals µn, νn. Moreover it holds

µTn ⇀ µT and CT (µn, νn) ⇀ CT (µ, ν) .

Proof. Firstly, (H3) and the convergence of the entropies in the assumptions imply that
H(µn|mX) ,H(νn|mX) ≤ H

(
qTn |R0,T

)
< C for some positive constant C, uniformly in

n ∈ N. Hence (H3) holds also for µn, νn. This gives the existence and uniqueness of the
minimizer in KSP with marginals µn and νn for each n ∈ N.

Then, from (3.4) we deduce

sup
n∈N
H
(
µTn |R0,T

)
= sup
n∈N
CT (µn, νn) . 1 + sup

n∈N

[
H(µn|mX) +H(νn|mX)

]
. 1 + 2C .

Since the relative entropy H(·|R0,T ) has compact level sets [24, Lemma 1.4.3], there is
a subsequence

(
µTnk

)
k∈N and a probability measure µ̃T ∈ P(R4d) such that µTnk ⇀ µ̃T

weakly. Moreover, from the lower semicontinuity of H(·|R0,T ) and the optimality of µTnk
we get

H
(
µ̃T |R0,T

)
≤ lim inf

k→∞
H
(
µTnk |R0,T

)
≤ lim inf

k→∞
H
(
qTnk |R0,T

)
= H(µT |R0,T ) . (4.1)

Now, we claim that µ̃T ∈ ΠX(µ, ν). Indeed we have for any i = 1, 2

(projxi)#µ̃
T = lim

k→∞
(projxi)#µ

T
nk

= lim
k→∞

(projxi)#q
T
nk

= (projxi)#µ
T =

{
µ i = 1

ν i = 2 ,

where the second equality holds because µTnk and qTnk share the same marginals, while
the third follows from our hypotheses. Therefore, from the bound (4.1) and the optimality
of µT as unique minimizer in ΠX(µ, ν) for KSP, it follows µ̃T = µT .

Hence, as k →∞, it holds µTnk ⇀ µT and

∃ lim
k→∞

CT (µnk , νnk) = lim
k→∞

H
(
µTnk |R0,T

)
= H(µT |R0,T ) = CT (µ, ν) .

Since in both the limits above the limit objects do not depend on the subsequence and
since the weak convergence is metrizable, we get the desired thesis.

Corollary 4.3. Under the same setting of the previous proposition, if µn,T ∈ P(Ω)

denotes the minimizer in KSPd, then for each t ∈ [0, T ]

µn,T ⇀ µT and µn,Tt ⇀ µTt .

Proof. From the relation between KSPd and KSP, for any φ ∈ Cb(Ω) we have∫
Ω

φdµn,T =

∫
R4d

(∫
Ω

φ dRx,v,y,w

)
dµTn →

∫
R4d

(∫
Ω

φdRx,v,y,w

)
dµT =

∫
Ω

φdµT ,

where Rx,v,y,w denotes the bridge of the reference measure. Let us just justify the middle
step. Since φ is bounded, so does

∫
Ω
φdRx,v,y,w. Moreover since the bridge Rx,v,y,w is

weakly continuous with respect to its extremes [14, Corollary 1], from the continuity of
φ, it follows the continuity of the function (x, v, y, w) 7→

∫
Ω
φdRx,v,y,w. Hence the above

function is bounded and continuous on R4d and from the weak convergence µTn ⇀ µT it
follows µn,T ⇀ µT . The other limit follows by taking the time marginals of µn,T .
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4.2 Approximating the marginals

In this section we are going to perform the approximating arguments directly on
the fixed marginals. This will not lead to the convergence of the respective kinetic
entropic costs, nevertheless it will be useful in proving the bounds where the previous
approximating argument fails. The idea is similar to the one performed previously:
consider an increasing sequence of compact sets (Kn)n∈N in Rd whose union gives the
whole space and for any q ∈ P(Rd), satisfying (H3) and n ∈ N large enough so that
q(Kn) > 0, define the probability measure qMn as the measure whose mX -density is given
by

dqMn
dmX

:=

(
dq

dmX
∧ n
)

1Kn
Cq
n
,

where Cq
n :=

∫
Kn

( dq
dmX

∧ n) dmX ≥ 0 is the normalising constant. Note that monotone

convergence yields Cq
n ↑ 1. Then it follows that qMn satisfies (H4), qMn ⇀ q and by

mimicking the argument performed in the Lemma 4.1 it follows that

H(qMn |mX)
n→∞−→ H(q|mX) . (4.2)

Lemma 4.4. Fix µ, ν ∈ P(Rd) satisfying (H3). Then, up to restricting ourselves to a
subsequence, it holds

CT (µ, ν) ≤ lim inf
n→∞

CT (µMn , ν
M
n ) .

Proof. Let µTM,n denotes the optimizer for CT (µMn , ν
M
n ). Then we have

H(µTM,n|R0,T ) = CT (µMn , ν
M
n )

(3.4)

. 1 +H(µMn |mX) +H(νMn |mX)
n→∞−→ 1 +H(µ|mX) +H(ν|mX) ,

which is finite because of (H3). SinceH(·|R0,T ) has compact level set, we know that there
exists µ? ∈ P(R4d) such that µTM,n ⇀ µ?, up to considering a subsequence. We claim
that µ? ∈ ΠX(µ, ν). Indeed we have (X0)#µ

T
M,n ⇀ (X0)#µ

? but (XT )#µ
T
M,n = µMn ⇀ µ

and hence (X0)#µ
? = µ. Similarly it holds (XT )#µ

? = ν. Therefore we have CT (µ, ν) ≤
H(µ?|R0,T ) and from the lower semicontinuity of H(·|R0,T ) we deduce our thesis.

Appendix

Proof of Lemma 2.1

Let T0 > 0 be fixed. From Jensen’s inequality we know that

log pT ((x, v), (y, w)) = log

∫
R2d

pT−T0/2 ((x, v), (z, u)) pT0/2 ((z, u), (y, w)) dm(z, u)

≥
∫
R2d

log pT−T0/2 ((x, v), (z, u)) dm(z, u) +

∫
R2d

log pT0/2 ((z, u), (y, w)) dm(z, u) .

(.3)

By Theorem 1.1 in [21], there exists C ≥ 1 depending on T0 such that

pT0/2 ((z, u), (y, w)) & pT0/2((z, u), (y, w))m(y, w) ≥ C−1 e−C|θT0/2(z,u)−(y,w)T |2

where θt(x0, v0) = (θxt , θ
v
t )
T denotes the solution of the denoised Langevin ODE system{

d
dtθ

x
t = θvt

d
dtθ

v
t = −θvt −∇U(θxt )

with θ0 = (x0, v0)T .
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Since under (H1) there exists a large enough positive r ∈ R such that (2.9) holds for
(Id,−r), from [39, Theorem 1] (with Σ = 0) it follows

|θt(y, w)− θt(0, 0)| ≤ er t
∣∣(y, w)T

∣∣ , ∀ (y, w)T ∈ R2d, ∀t ≥ 0 . (.4)

Therefore, up to changing the constants C from line to line, we have∫
R2d

log pT0/2 ((z, u), (y, w)) dm(z, u) ≥ logC−1 − C
∫
R2d

∣∣θT0/2(z, u)− (y, w)T
∣∣2 dm(z, u)

≥ −C
(

1 + |y|2 + |w|2 +

∫
R2d

∣∣θT0/2(z, u)
∣∣2 dm(z, u)

)
≥ −C

(
1 + |y|2 + |w|2

)
,

(.5)
where the last step holds since m ∈ P2(R2d), and therefore∫

R2d

∣∣θT0/2(z, u)
∣∣2 dm(z, u) ≤ 2

∣∣θT0/2(0, 0)
∣∣2 + 2

∫
R2d

∣∣θT0/2(z, u)− θT0/2(0, 0)
∣∣2 dm(z, u)

(.4)
≤ 2

∣∣θT0/2(0, 0)
∣∣2 + 2 e2r

∫
R2d

(
|z|2 + |u|2

)
dm(z, u) ≤ C .

Now, notice that we can rewrite the first integral of the RHS in (.3) as∫
R2d

log pT−T0/2 ((x, v), (z, u)) dm(z, u)

=

∫
R2d

log

[∫
R2d

pT0/2 ((x, v), (q, r)) pT−T0
((q, r), (z, u)) dm(q, r)

]
dm(z, u).

Because of (2.6), we know that pT−T0/2 ((q, r), (z, u)) dm(q, r) is a probability measure
over R2d and therefore by Jensen’s inequality and Fubini the above displacement can be
lower bounded by∫

R2d

∫
R2d

log
[
pT0/2 ((x, v), (q, r))

]
pT−T0 ((q, r), (z, u)) dm(q, r)dm(z, u)

=

∫
R2d

log pT0/2 ((x, v), (q, r)) dm(q, r)
(2.6)
=

∫
R2d

log pT0/2 ((q,−r), (x,−v)) dm(q, r)

=

∫
R2d

log pT0/2 ((q, r), (x,−v)) dm(q, r)
(.5)
≥ −C

(
1 + |x|2 + |v|2

)
.

Putting the above lower bound and (.5) into inequality (.3), we get

log pT ((x, v), (y, w)) ≥ −cT0

(
1 + |x|2 + |v|2 + |y|2 + |w|2

)
.
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