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Abstract

The N -particle branching random walk is a discrete time branching particle system
with selection. We have N particles located on the real line at all times. At every time
step each particle is replaced by two offspring, and each offspring particle makes a
jump of non-negative size from its parent’s location, independently from the other
jumps, according to a given jump distribution. Then only the N rightmost particles
survive; the other particles are removed from the system to keep the population size
constant. Inspired by work of J. Bérard and P. Maillard, we examine the long term
behaviour of this particle system in the case where the jump distribution has regularly
varying tails and the number of particles is large. We prove that at a typical large time
the genealogy of the population is given by a star-shaped coalescent, and that almost
the whole population is near the leftmost particle on the relevant space scale.
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1 Introduction

1.1 The N-BRW model

We investigate a particle system called N -particle branching random walk (N -BRW).
In this discrete time stochastic process, at each time step, we have N particles located
on the real line. We say that the particles at the nth time step or at time n belong to the
nth generation. The locations of the particles change at every time step according to the
following rules. Every particle has two offspring. The offspring particles have random
independent displacements from their parents’ locations, according to some prescribed
displacement distribution supported on the non-negative real numbers. Then from the
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Genealogy and spatial distribution of N -BRW with polynomial tails

2N offspring particles, only the N particles with the rightmost positions survive to form
the next generation. That is, at each time step we have a branching step in which the
2N offspring particles move, and we have a selection step, in which N out of the 2N

offspring are killed. Ties are decided arbitrarily. We describe the process more formally
in Section 2.1.

We will use the notation [N ] := {1, . . . , N} and N0 := N ∪ {0} throughout. A pair (i, n)

with i ∈ [N ] and n ∈ N0 will represent the ith particle from the left in generation n. We
also refer to the rightmost particle (N,n) as the leader at time n. Furthermore, we will
denote the locations of the N particles in the nth generation by the ordered set of N real
numbers

X (n) = {X1(n) ≤ · · · ≤ XN (n)} , (1.1)

where Xi(n) is the location of particle (i, n). We sometimes call X (n) the particle cloud.
The long term behaviour of theN -BRW heavily depends on the tail of the displacement

distribution. Motivated by the work of Bérard and Maillard [2], we investigate the N -
BRW in the case where the displacement distribution is regularly varying, and N is
large.

We say that a function f is regularly varying with index α ∈ R if for all y > 0,

f(xy)

f(x)
→ yα as x→∞. (1.2)

Let X be a random variable and let the function h be defined by

P(X > x) =
1

h(x)
for x ≥ 0. (1.3)

We assume throughout that P(X ≥ 0) = 1, that h is regularly varying with index α > 0,
and that the displacement distribution of the N -BRW is given by (1.3). These are the
same assumptions under which the results of [2] were proved. The reader may wish
to think of the particular regularly varying function given by h(x) = xα for x ≥ 1 and
h(x) = 1 for x ∈ [0, 1). We do not expect significant change in the behaviour of the
N -BRW if jumps of negative size are allowed, but we do not prove this; we use the
assumption that the jumps are non-negative several times in our argument.

1.2 Time and space scales

Before explaining our main result, we describe the time and space scales we will be
working with. We define

`N := dlog2Ne , (1.4)

for N ≥ 2; this is the time scale we will be using throughout. To avoid trivial cases we
always assume that N ≥ 2. The time scale `N is the time it takes for the descendants of
one particle to take over the whole population, if none are killed in selection steps.

For the space scale we choose

aN := h−1(2N`N ), (1.5)

where h is as in (1.3), and h−1 denotes the generalised inverse of h defined by

h−1(x) := inf {y ≥ 0 : h(y) > x} . (1.6)

It is worth thinking of the particular case h(x) = xα for x ≥ 1, for which we have
aN = (2N`N )1/α and h(aN ) = 2N`N .

With the choice of aN in (1.5), for any positive constant c, the expected number of
jumps which are larger than caN in a time interval of length `N is of constant order, as

EJP 27 (2022), paper 93.
Page 2/65

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP806
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Genealogy and spatial distribution of N -BRW with polynomial tails

N goes to infinity. The heuristic picture in [2] says that jumps of order aN govern the
speed, the spatial distribution, and the genealogy of the population for N large. Besides
the main result of [2] on the asymptotic speed of the particle cloud, it is conjectured that
at a typical time the majority of the population is close to the leftmost particle, and that
the genealogy of the population is given by a star-shaped coalescent. In this paper we
prove these conjectures.

1.3 The main result (in words)

Stating our main result precisely involves introducing some more notation and
defining some rather intricate events. We will do this in Section 2. In this section
we instead aim to explain the main message of the theorem. When we say ‘with high
probability’, we mean with probability converging to 1 as N →∞.

For all η > 0, M ∈ N and t > 4`N , the N -BRW has the following properties with high
probability:

• Spatial distribution: At time t there are N − o(N) particles within distance ηaN
of the leftmost particle, i.e. in the interval [X1(t),X1(t) + ηaN ].

• Genealogy: The genealogy of the population on an `N time scale is asymptotically
given by a star-shaped coalescent, and the time to coalescence is between `N and
2`N .

That is, there exists a time T ∈ [t − 2`N , t − `N ] such that with high probability,
if we choose M particles uniformly at random at time t, then every one of these
particles descends from the rightmost particle at time T . Furthermore, with high
probability no two particles in the sample of size M have a common ancestor after
time T + εN`N , where εN is any sequence satisfying εN → 0 and εN`N → ∞, as
N →∞.

The star-shaped genealogy might seem counter-intuitive because every particle has
only two descendants. Indeed, if we take a sample of M > 2 particles at time t, and look
at the lineages of these particles, they certainly cannot coalesce in one time step. Our
result says that all coalescences of the lineages of the sample occur within o(`N ) time.
Therefore, looking on an `N time scale the coalescence appears instantaneous.

1.4 Heuristic picture

We construct our heuristic picture based on the tribe heuristics for the N -BRW with
regularly varying tails described in [2]. The tribe heuristics say that at a typical large
time there are N−o(N) particles close to the leftmost particle if we look on the aN space
scale. We call this set of particles the big tribe. Furthermore, there are small tribes of
size o(N) to the right of the big tribe. The number of such small tribes is O(1). While the
position of the big tribe moves very little on the aN space scale, the number of particles
in the small tribes doubles at each time step. As a result, the big tribe eventually dies
out, and one of the small tribes grows to become the new big tribe and takes over the
population.

To escape the big tribe and create a new tribe that takes over the population, a
particle must make a big jump of order aN . As we explained in Section 1.2, jumps of this
size occur on an `N time scale, and `N is the time needed for a new tribe to grow to a
big tribe of size N .

Take t > 4`N . Building on the tribe heuristics, we describe the following picture.
Assume that a particle becomes the leader with a big jump of order aN . We claim that
this particle will have of order N surviving descendants `N time after the big jump.
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Moreover, the particle that makes the last such jump before time t1 := t− `N will be the
common ancestor of the majority of the population at time t. We denote the generation
of this ancestor particle by T , and assume that T ∈ [t1 − `N , t1]. In Figure 1 we illustrate
how a new tribe is formed at time T , and how it grows to a big tribe by time t. We will
prove the main result described in Section 1.3 by showing that the picture in Figure 1
develops with high probability.

< ηaN

T

t1

T + `N

t

A

B

C

D

Figure 1: A particle that makes a big jump of order aN at time T is the common ancestor
of almost the whole population at time t. The vertical axis represents time, and the particles’

locations are depicted horizontally, increasing from left to right. The black dots represent particles.

Horizontal dotted lines in an ellipse or circle show where the majority of the population (the

big tribe) is. The arrows represent jumps from the big tribe. We use circles to zoom in on the

population. The particles circled in red are killed in the selection step. The events labelled A to D

are described in the main text.

We introduce the notation

ti := t− i`N , (1.7)

for t, i ∈ N. The message of Figure 1, which we will prove later, is that the following
occurs with high probability.

A: At time T ∈ [t2, t1], particle (N,T ) has taken a big jump of order aN and escaped the
big tribe. It now leads by a large distance, and its descendants will be the leaders at
least until time t1.

There are two main reasons for this. First, we define T as the last time before time
t1 when a big jump of order aN creates a new leader, so particles with big jumps in the
time interval [T, t1] cannot become leaders. Second, particles with smaller jumps not
descending from particle (N,T ) are unlikely to catch up with the leading tribe, because
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paths with small jumps move very little on the aN space scale. This is an important
property of random walks with regularly varying tails, which we will state and prove in
Lemma 4.3 and apply in Corollary 4.5.

B: After time t1, there might be particles which do not descend from particle (N,T ),
but which, by making a big jump of order aN , move beyond the tribe of particle (N,T ).
However, these particles have substantially less than `N time to produce descendants by
time t, and so each of them can only have o(N) descendants at time t. Particles which do
not descend from (N,T ) are unlikely to move beyond the tribe of particle (N,T ) without
making a big jump.

There will only be O(1) big jumps of order aN between times t1 and t, because jumps
of order aN happen with frequency of order 1/`N . Therefore, until time t, the total
number of particles to the right of the tribe of particle (N,T ) is at most o(N).

C: The tribe of particle (N,T ) doubles in size at each step up to (almost) time T + `N .
Selection does not affect these particles significantly, because the number of particles to
the right of this tribe is at most o(N) before time T + `N , as we explained in part B.

D: At time T + `N there are N particles to the right of the position of particle (N,T ).
This is an elementary property of the N -BRW, following from the non-negativity of the
jump sizes. The N particles are mainly in the tribe of particle (N,T ), and there may be
o(N) particles ahead of the tribe. From this point on, the N leftmost offspring particles
in the tribe of particle (N,T ) do not survive.

Then, between times T + `N and t, the number of particles in the tribe of particle (N,T )

will remain N − o(N), where the o(N) part doubles at each time step but does not reach
order N by time t. Therefore, almost every particle at time t descends from particle
(N,T ).

Furthermore, as the number of descendants of particle (N,T ) only reaches order N
at (roughly) time T + `N , the descendants of particle (N,T ) are unlikely to make big
jumps of order aN before time T + `N . We will prove this property (and many others)
in Lemma 4.6. Only O(1) descendants of particle (N,T ) make big jumps of order aN
between times T and t, and these big jumps are likely to happen after time T + `N , and
so significantly after time t1. Therefore, most time-t descendants of particle (N,T ) will
not have an ancestor which made a big jump between times T and t, thus they will not
move far from their ancestor’s position XN (T ) on the aN space scale.

In order to prove our statements in Section 1.3 we also need to show that there is
at least one particle which becomes the new leader with a jump of order aN during the
time interval [t2, t1]. The existence of such a particle will imply that indeed there exists
T ∈ [t2, t1] as in Figure 1. We give a heuristic argument for this in Section 2.3, where
we also explain the idea for proving that if we take a sample of M particles at time t
then the coalescence of the ancestral lineages of these particles happens within a time
window of width o(`N ).

1.5 Optimality of our main result

In order to show that our main result is more or less optimal, we will prove two
additional results.

Spatial distribution: Our main theorem says that most particles in the population are
likely to be within distance ηaN of the leftmost at time t, for arbitrarily small η > 0 when
N and t are large. We will show that this is not true of all particles: the distance between
the leftmost and rightmost particles is typically of order aN , and is arbitrarily large on
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the aN space scale with positive probability. Therefore our result that most particles are
close to the leftmost particle on the aN space scale gives meaningful information on the
shape of the particle cloud at a typical time. We state this formally in Proposition 2.3
and then prove it in Section 6.

Genealogy: Our main theorem says that the generation T of the most recent common
ancestor of a sample from the population at time t is between times t2 and t1 with high
probability. We will prove that this is the strongest possible result in the sense that for
any subinterval of [t2, t1] with length of order `N there is a positive probability that T is
in that subinterval. This will be the main message of Proposition 2.2, which we prove in
Section 6.

We also mention here that the precise statement of our main result, Theorem 2.1,
implies that the distribution of the rescaled time to coalescence, (t− T )/`N , has no atom
at 1 or 2 in the limit N →∞.

1.6 Related work

The N -BRW shows dramatically different behaviours with different jump distributions;
this includes the speed at which the particle cloud moves to the right, the spatial
distribution within the population, and the genealogy. Below we discuss existing results
and conjectures on these properties of the N -BRW. We start by summarising the results of
Bérard and Maillard, who studied the speed of the particle cloud when the displacement
distribution is heavy-tailed.

Heavy-tailed displacement distribution

Bérard and Maillard [2] introduced the stairs process, the record process of a shifted
space-time Poisson point process. They proved that it describes the scaling limit of the
pair of trajectories of the leftmost and rightmost particles’ positions (X1(n),XN (n))n∈N0

when the jump distribution has polynomial tails. The correct scaling is to speed up time
by log2N and to shrink the space scale by aN . Using the relation between the N -BRW
and the stairs process they prove their main result: the speed of the particle cloud grows
as aN/ log2N in N , and the propagation is linear or superlinear (but at most polynomial)
in time. The propagation is linear if the jump distribution has finite expectation, and
superlinear otherwise; the asymptotics follow from the behaviour of the stairs process.
This behaviour is different from that of the classical branching random walk without
selection, where the propagation is exponentially fast in time in a heavy-tailed setting
[13].

The tribe heuristics in [2] predict—but do not prove—that the majority of the popula-
tion is located close to the leftmost particle, that the genealogy should be star-shaped,
and that the relevant time scale for coalescence of ancestral lineages is `N . We will
prove the above properties in Theorem 2.1, and therefore the present paper and [2]
together provide a comprehensive picture of the N -BRW with regularly varying tails,
including the behaviour of the speed, spatial distribution and genealogy.

Light-tailed displacement distribution

Particle systems with selection have been studied with light-tailed displacement distribu-
tion in the physics literature as a microscopic stochastic model for front propagation.
First Brunet and Derrida [9, 10], and later Brunet, Derrida, Mueller and Munier [8, 7]
made predictions on the behaviour of particle systems with branching and selection.

Speed: For the N -BRW, Bérard and Gouéré [1] proved the existence of the asymp-
totic speed of the particle cloud as time goes to infinity, which in fact applies for any
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jump distribution with finite expectation. They also proved that the asymptotic speed
converges to a finite limiting speed as the number of particles N goes to infinity, with a
surprisingly slow rate (logN)−2, which was predicted by Brunet and Derrida [9, 10]. The
limiting speed is the same as the speed of the rightmost particle in a classical branching
random walk without selection with exponentially decaying tails [16, 17, 5].

Spatial distribution: The spatial distribution in the light-tailed case is also predicted
in [9, 10]. The authors argue that the fraction of particles to the right of a given position
at a given time should evolve according to an analogue of the FKPP equation. The FKPP
equation is a reaction-diffusion equation admitting travelling wave solutions. Rigorous
results on the relation between particle systems with selection and free boundary
problems with travelling wave solutions have been proved in [14] and [4, 11].

Genealogy: On the genealogy of the N -BRW with light-tailed displacement distribu-
tion, the papers [8, 7] arrived at the following conjecture (see also [18]). If we pick two
particles at random in a generation, then the number of generations we need to go back
to find a common ancestor of the two particles is of order (logN)3. Furthermore, if we
take a uniform sample of k particles in a generation and trace back their ancestral lines,
the coalescence of their lineages is described by the Bolthausen-Sznitman coalescent, if
time is scaled by (logN)3. This property has been shown for a continuous time model,
a branching Brownian motion (BBM) with absorption [3], where particles are killed
when hitting a deterministic moving boundary. For the N -BRW and its continuous time
analogue, the N -BBM, no rigorous proof has yet been given.

Displacement distribution with stretched exponential tail

As we have seen, the behaviour of the N -BRW is significantly different in the light-
tailed and heavy-tailed cases. It is then a natural question to ask what happens in
an intermediate regime, where the jump distribution has stretched exponential tails.
Random walks and branching random walks with stretched exponential tails have been
investigated in the literature [12, 15], but questions about the N -BRW with such a jump
distribution, such as asymptotic speed, spatial distribution, and genealogy, remain open.
In the future we intend to investigate the N -BRW in the stretched exponential case.

1.7 Organisation of the paper

In Section 2 we state Theorem 2.1 and Propositions 2.2 and 2.3, our main results,
which we have explained in Sections 1.3 and 1.5. Furthermore, we give a heuristic argu-
ment for the proof of Theorem 2.1, introduce the notation we will be using throughout,
and carry out the first step towards proving Theorem 2.1 in Lemma 2.5. As a result, the
proof of Theorem 2.1 will be reduced to proving Propositions 2.6 and 2.7. We prove the
former in Sections 3 and 4 and the latter in Section 5.

In Section 3 we give a deterministic argument for the existence of a common ancestor
between times t1 and t2 of almost the whole population at time t. The argument will also
imply that almost every particle in the population at time t is near the leftmost particle.
Then in Section 4 we check that the events of the deterministic argument occur with high
probability. A key step in the proof is to see that paths cannot move a distance of order
aN in `N time without making at least one jump of order aN . We prove a large deviation
result to show this, taking ideas from [13] and [15]. The other important tool, which we
will use to estimate probabilities, is Potter’s bound for regularly varying functions.

In Section 5 we prove that the genealogy is star-shaped. We will use concentration
results from [19] to see that a single particle at time T + εN`N cannot have more than
of order N1−εN surviving descendants at time t, which will be enough to conclude the
result.
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In Section 6 we prove Propositions 2.2 and 2.3 using some of our ideas from the
deterministic argument in Section 3.

Section 7 is a glossary of notation, where we collect the notation most frequently used
in this paper with a brief explanation, and with a reference to the section or equation
where the notation is defined. In Section 7 we also list the most important intermediate
steps of the proof of our main result.

We note here that sometimes we explain or justify an equation or inequality shortly
after the statement appears; we encourage any reader who is struggling to understand
a logical step to read a few lines ahead.

2 Genealogy and spatial distribution result

2.1 Formal definition of the N-BRW

Let Xi,b,n, i ∈ [N ], b ∈ {1, 2}, n ∈ N0 be i.i.d. random variables with common law given
by (1.3). Each Xi,b,n stands for the jump size of the bth offspring of particle (i, n). Let
X (0) = {X1(0) ≤ . . . ≤ XN (0)} be any ordered set of N real numbers, which represents
the initial locations of the N particles. Now we describe inductively how X (0) and the
random variables Xi,b,n, i ∈ [N ], b ∈ {1, 2}, n ∈ N0 determine the N -BRW, that is, the
sequence of locations of the N particles, (X (n))n∈N0 .

We start with the initial configuration of particles X (0). Once X (n) has been de-
termined for some n ∈ N0, then X (n + 1) is defined as follows. Each particle has two
offspring, each of which performs a jump from the location of its parent. The 2N in-
dependent jumps at time n are then given by the i.i.d. random variables Xi,b,n, i ∈ [N ],
b ∈ {1, 2} as above. After the jumps, only the N rightmost offspring particles survive;
that is, X (n+1) = {X1(n+ 1) ≤ · · · ≤ XN (n+ 1)} is given by the N largest numbers from
the collection (Xi(n) +Xi,b,n)i∈[N ],b∈{1,2}. Ties are decided arbitrarily.

Note that since the jumps are non-negative, the sequences Xi(n) are non-decreasing
in n for all i ∈ [N ]. Indeed, at time n there are at least N − i+ 1 particles to the right of
or at position Xi(n), and so there are at least min(N, 2(N − i+ 1)) particles to the right
of or at Xi(n) at time n+ 1, so we must have Xi(n+ 1) ≥ Xi(n). We refer to this property
as monotonicity throughout.

2.2 Statement of our main result

We explained the message of our main result in Section 1.3. In this section we provide
the precise statement in Theorem 2.1. First we introduce the setup for the theorem.

For n, k ∈ N0 and i ∈ [N ] we will denote the index of the time-n ancestor of the
particle (i, n+ k) by

ζi,n+k(n),

i.e. particle (ζi,n+k(n), n) is the ancestor of (i, n+ k). Recall that the relevant space scale
for our process is aN , defined in (1.5). For r ≥ 0 and n ∈ N0, let Lr,N (n) denote the
number of particles which are within distance raN of the leftmost particle at time n:

Lr,N (n) := max {i ∈ [N ] : Xi(n) ≤ X1(n) + raN} . (2.1)

Define a sequence (εN )N∈N such that εN `N is an integer for all N ≥ 1, and which satisfies

εN`N →∞ and εN → 0 as N →∞. (2.2)

We introduce two events which describe the spatial distribution and the genealogy of the
population at a given time t. Our main result, Theorem 2.1, says that these two events
occur with high probability. We define the events for all N ≥ 2 and t > 4`N . For η > 0
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and γ ∈ (0, 1), the first event says that at least N −N1−γ particles (i.e. almost the whole
population if N is large) are within distance ηaN of the leftmost particle at time t. We let

A1 = A1(t,N, η, γ) :=
{
Lη,N (t) ≥ N −N1−γ} . (2.3)

Recall the notation ti from (1.7). We illustrate the second event in Figure 2. We sample
M ∈ N particles uniformly at random from the population at time t. Let P = (P1, . . . ,PM )

be the index set of the sampled particles. The event says that there exists a time T

between t2 and t1 such that all of the particles in the sample have a common ancestor
at time T , but no pair of particles in the sample have a common ancestor at time
T + εN `N . Moreover, the common ancestor at time T is the leader particle (N,T ).
Additionally, the event says that the time T is not particularly close to t1 or t2, in that
T ∈ [t2 + dδ`Ne , t1 − dδ`Ne] for some δ > 0. We let

A2 = A2(t,N,M, δ) :=

{
∃T ∈ [t2 + dδ`Ne , t1 − dδ`Ne] : ζPi,t(T ) = N ∀i ∈ [M ] and
ζPi,t(T + εN`N ) 6= ζPj ,t(T + εN `N ) ∀i, j ∈ [M ], i 6= j

}
.

(2.4)

For convenience, we will often write A1 and A2 for the two events above, omitting the
arguments. We will prove the following result.

Theorem 2.1. For all η > 0 and M ∈ N there exist γ, δ ∈ (0, 1) such that for all N ∈ N
sufficiently large and t ∈ N0 with t > 4`N ,

P(A1 ∩ A2) > 1− η,

where `N is given by (1.4), and A1 = A1(t,N, η, γ) and A2 = A2(t,N,M, δ) are defined
in (2.3) and (2.4) respectively.

We explained two additional results in Section 1.5 which show the optimality of
Theorem 2.1. We state these results precisely below.

We define the event A′2 as a modification of the event A2. Whereas A2 said that
the coalescence time T is roughly in [t2, t1], the event A′2 says that T is in the smaller
interval [t2 + ds1`Ne , t2 + ds2`Ne] for 0 < s1 < s2 < 1; and whereas A2 occurs with high
probability, we will show that A′2 occurs with probability bounded away from 0. For
M ∈ N and 0 < s1 < s2 < 1, we define

A′2 = A′2(t,N,M, s1, s2)

:=

{
∃T ∈ [t2 + ds1`Ne , t2 + ds2`Ne] : ζPi,t(T ) = N ∀i ∈ [M ] and
ζPi,t(T + εN`N ) 6= ζPj ,t(T + εN`N ) ∀i, j ∈ [M ], i 6= j

}
. (2.5)

Proposition 2.2 below says that for all 0 < s1 < s2 < 1 and r > 0, with probability
bounded below by a constant depending on r and s2 − s1, the event A′2 occurs and the
diameter at time t1 is at least raN . The diameter of the particle cloud at time n will be
denoted by d(X (n)); that is,

d(X (n)) := XN (n)−X1(n). (2.6)

Proposition 2.2. For all 0 < s1 < s2 < 1, M ∈ N and r > 0, there exists πr,s2−s1 > 0

such that for N sufficiently large and t > 4`N ,

P (A′2 ∩ {d(X (t1)) ≥ raN}) > πr,s2−s1 ,

where A′2(t,N,M, s1, s2) is defined in (2.5).
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T

T + εN`N

t

o(`N )
t−

T
∈

[`
N
,2`

N
]

Figure 2: Coalescence of the ancestral lineages of M = 6 particles. We go backwards
in time from top to bottom in the figure. To each particle in the sample we associate
a vertical line, representing its ancestral line. Two lines coalesce into one when the
particles they are associated with have a common ancestor for the first time going
backwards from time t. All coalescences of the lineages of the sample happen within a
time window of size o(`N ). Time T is the generation of the most recent common ancestor
of the majority of the whole population at time t. The three dots in each line indicate
that the picture is not proportional: the time between t and T is of order `N , whereas
the time between all coalescences and T is o(`N ).

Our second result about the diameter says that for all r, the probability that d(X (n)) ≥
raN is bounded away from zero, and it tends to 1 as r → 0, and tends to 0 as r →∞, if
N is sufficiently large and n > 3`N . This shows that the probability that after a long
time the diameter is not of order aN is small, and therefore the part of Theorem 2.1
that says most of the population is within distance ηaN of the leftmost particle with high
probability, for arbitrarily small η > 0, is meaningful.

Proposition 2.3. There exist 0 < pr ≤ qr ≤ 1 such that qr → 0 as r →∞ and pr → 1 as
r → 0, and for all r > 0,

0 < pr ≤ P(d(X (n)) ≥ raN ) ≤ qr,

for N sufficiently large and n > 3`N .

2.3 Heuristics for the proof of Theorem 2.1

We first prove a simple lemma which will be helpful in the course of the proof of
Theorem 2.1 and also helpful for understanding the heuristics. The lemma says that the
number of particles that are to the right of a given position at least doubles at every time
step until it reaches N . The statement follows deterministically from the definition of
the N -BRW. The proof serves as a warm-up for several more deterministic arguments to
come. For x ∈ R and n ∈ N0, we write the set of particles to the right of position x at
time n as

Gx(n) := {i ∈ [N ] : Xi(n) ≥ x} . (2.7)

Lemma 2.4. Let x ∈ R and n, k ∈ N0. Then

|Gx(n+ k)| ≥ min
(
N, 2k|Gx(n)|

)
.
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Proof. The statement is clearly true when Gx(n) = ∅. Now assume that Gx(n) 6= ∅. Let
us first consider the case in which every descendant of the particles in Gx(n) survives
until time n + k. Since there are 2k|Gx(n)| such descendants, each of which is to the
right of x since all jumps are non-negative, in this case we have |Gx(n+ k)| ≥ 2k|Gx(n)|.

Now let us consider the case in which not every descendant of the particles in Gx(n)

survives until time n + k. This means that there exist m ∈ [n, n + k − 1], j ∈ [N ] and
b ∈ {1, 2} such that (j,m) is a descendant of a particle in Gx(n) and

Xj(m) +Xj,b,m ≤ X1(m+ 1).

Since particle (j,m) descends from Gx(n), and all jumps are non-negative, we also have
x ≤ Xj(m) +Xj,b,m, and therefore x ≤ X1(m+ 1) ≤ X1(n+ k), and the result follows.

Now we turn to the heuristics for the proof of Theorem 2.1. The heuristic picture to
keep in mind when thinking about both the statement and the proof is Figure 1. As in
Section 1.4, we let T denote the last time at which a particle takes the lead with a big
jump of order aN before time t1. In Section 1.4, we argued that if T ∈ [t2, t1] then with
high probability, particle (N,T ) will be the common ancestor of almost every particle in
the population at time t, and almost the whole population at time t is close to XN (T ) on
the aN space scale. We will use a rigorous version of this heuristic argument to show
that the event A1 occurs with high probability, and that the time T satisfies the first line
in the event A2 with high probability. That is, every particle from a uniform sample of
fixed size M at time t descends from particle (N,T ) with high probability.

If T is as described above, then we can only have T ∈ [t2, t1] if there is a particle which
takes the lead with a jump of order aN in the time interval [t2, t1]. It is not straightforward
to show that this happens with high probability. It could be the case that the diameter is
large on the aN space scale during the time interval [t2, t1], say greater than CaN , where
C > 0 is large. In this situation, if the jumps of order aN in the time interval [t2, t1] come
from close to the leftmost particle, and they are all smaller than CaN , then these jumps
will not make a new leader, and time T will not be in the time interval [t2, t1]. We will
prove that this is unlikely. A key property which is helpful in seeing this is the following.
If no particle takes the lead with a big jump of order aN for `N time, e.g. between times
s ∈ N and s+ `N , then the diameter of the particle cloud will be very small on the aN
space scale at time s+ `N . Indeed, all the N particles, including the leftmost, are to the
right of position XN (s) at time s+ `N by Lemma 2.4. But with high probability, particles
cannot move far to the right from this position without making big jumps of order aN . We
will prove this in Corollary 4.5. Therefore, provided that no unlikely event happens, if no
particle takes the lead with a big jump between times s and s+ `N , then every particle
will be near the position XN (s) at time s+ `N . We formally prove this in Lemma 3.9.

We will be able to use this property for s = t2 − c′`N with small c′ > 0. We will
conclude that if no particle takes the lead with a jump of order aN in the time interval
[t2 − c′`N , t1 − c′`N ] then the diameter at time t1 − c′`N is likely to be small on the aN
space scale, i.e. d(X (t1 − c′`N )) < caN , for some c > 0 which we can choose to be much
smaller than c′. If the diameter is less than caN , then any particle performing a jump
larger than caN becomes the new leader.

The expected number of jumps larger than caN in c′`N time is c′`N2Nh(caN )−1,
because there are 2N jumps at each time step and the jump distribution is given by (1.3),
which is roughly c′/cα for N sufficiently large. If cα is much smaller than c′, then
with high probability there will be a jump of size greater than caN in the time interval
[t1 − c′`N , t1], and the particle performing it will become the new leader. Therefore the
last time before time t1 when a particle becomes the leader with a jump of order aN will
be after time t2, which gives us T ∈ [t2, t1].
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The above idea works for the case where no particle takes the lead with a big jump
of order aN in the time interval [t2 − c′`N , t2] for some small c′ > 0. If instead there is
such a particle then we will argue that in a short interval of length c′`N it is likely that
the jump made by this particle will not be too large on the aN scale and therefore the
particle’s descendants will be surpassed by larger jumps of order aN at some point in
the much longer time interval [t2, t1].

In order to show that the coalescence is star shaped, we also need the second line of
the event A2, which says that all coalescences of the lineages of a sample of M particles
at time t happen within a time window of size εN`N ; that is, instantaneously on the `N
time scale (see Figure 2).

To prove that no pair of particles in the sample of M have a common ancestor at time
T +εN`N , it will be enough to prove that every particle at time T +εN`N has a number of
time-t descendants which is at most a very small proportion of the total population size N
(we will check this in Lemma 2.5). With high probability, most of the population at time t
descends from the leading 2εN `N ≈ NεN particles at time T + εN`N (the descendants of
particle (N,T )). If these particles share their time-t descendants fairly evenly, then a
particle in this leading tribe will have roughly N1−εN = o(N) descendants. Indeed, we
will prove using concentration results from [19] that with high probability the number of
time-t descendants of a particle from the leading tribe at time T + εN`N will not exceed
the order of N1−εN .

2.4 Notation

We now introduce the notation we will be using throughout the proof of Theorem 2.1.
We recall from Section 2.1 that the jump of the ith particle’s bth offspring at time n will be
referred to using the random variable Xi,b,n, and that these contain all the randomness
in the system, with ties between two particles with the same position broken using some
arbitrary but deterministic rule. We define the filtration (Fn)n∈N0 by letting Fn be the
σ-algebra generated by the random variables (Xi,b,m, i ∈ [N ], b ∈ {1, 2} ,m < n). Since
X (n) is defined in such a way that it only depends on jumps performed before time n,
the process (X (n))n∈N0 is adapted to the filtration (Fn)n∈N0 . Since (Xi,b,m, i ∈ [N ], b ∈
{1, 2} ,m ∈ N0) are i.i.d., the jumps (Xi,b,n, i ∈ [N ], b ∈ {1, 2}) are independent of the
σ-algebra Fn. In Theorem 2.1 we assume that t > 4`N , as in the proof we will examine
the process in the time interval [t4, t], where t4 is given by (1.7). Since jumps at time t
are not Ft-measurable, we will be interested in jumps performed in the time interval
[t4, t− 1].

In order to study the genealogy of the N -BRW system, we will need notation which
says when two particles are related. We introduce the partial order . on the set of
pairs {(i, n), i ∈ [N ], n ∈ N0}. First, for i ∈ [N ] and n ∈ N0 we say that (i, n) . (i, n) and,
for j ∈ [N ], we write (i, n) . (j, n + 1) if and only if the jth particle at time n + 1 is an
offspring of the ith particle at time n. Then in general, for n, k ∈ N0 and i0, ik ∈ [N ]

we write (i0, n) . (ik, n+ k) if and only if particle (ik, n+ k) is a descendant of particle
(i0, n):

(i0, n) . (ik, n+ k) ⇐⇒ ∃i1, . . . , ik−1 : (ij−1, n+ j − 1) . (ij , n+ j), ∀j ∈ [k]. (2.8)

Then the particles ((ij , n + j), j ∈ [k]) represent the ancestral line between (i0, n) and
(ik, n+k). Recall that for n, k ∈ N0 and i ∈ [N ] we denote the index of the time-n ancestor
of the particle (i, n+ k) by ζi,n+k(n). Thus, using our partial order above, we can write
for j ∈ [N ],

ζi,n+k(n) = j ⇐⇒ (j, n) . (i, n+ k). (2.9)

We also introduce a slightly different (strict) partial order .b, which will be convenient
later on. For i0, ik ∈ [N ], n ∈ N0 and k ∈ N we write (i0, n) .b (ik, n+ k) if and only if the
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bth offspring of particle (i0, n) is the time-(n + 1) ancestor of particle (ik, n + k). Note
that if (i0, n) .b (ik, n+ k) then there exists i1 ∈ [N ] such that

Xi1(n+ 1) = Xi0(n) +Xi0,b,n and (i1, n+ 1) . (ik, n+ k).

Using the above partial order, we define the path between particles (i0, n) and
(ik, n + k) (and between positions Xi0(n) and Xik(n + k)), as the sequence of jumps
connecting the two particles. For i0, ik ∈ [N ] and n ∈ N0, if k ∈ N and (i0, n) . (ik, n+ k),
we let

P ik,n+k
i0,n

:=
{

(ij , bj , n+ j) : j ∈ {0, . . . , k − 1} and (ij , n+ j) .bj (ik, n+ k)
}
, (2.10)

and we let P ik,n+k
i0,n

:= ∅ otherwise. Then if k ∈ N and (i0, n) . (ik, n+ k),

Xik(n+ k) = Xi0(n) +
∑

(j,b,m)∈P ik,n+k

i0,n

Xj,b,m. (2.11)

For i ∈ [N ] and n, k ∈ N0 with n ≤ k, let Ni,n(k) denote the set of descendants of
particle (i, n) at time k:

Ni,n(k) := {j ∈ [N ] : (i, n) . (j, k)} , (2.12)

and if n < k, for b ∈ {1, 2}, letN b
i,n(k) be the set of time-k descendants of the bth offspring

of particle (i, n):
N b
i,n(k) := {j ∈ [N ] : (i, n) .b (j, k)} . (2.13)

(Note that the sets Ni,n(k) and N b
i,n(k) may be empty.) We write |Ni,n(k)| and |N b

i,n(k)|
for the number of descendants in each case.

Finally, as time is discrete, it will be useful to introduce a notation for the set of
integers in an interval; for 0 ≤ s1 ≤ s2, we let

Js1, s2K := [s1, s2] ∩N0.

2.5 Big jumps and breaking the record

As discussed in Section 1.4, the common ancestor of the majority of the population at
time t is a particle which made an unusually big jump, of order aN , between times t2 and
t1. The set of unusually big jumps will play an essential role in the proof of Theorem 2.1.
We will be particularly interested in particles which become ‘leaders’ after performing
such jumps. These particles are the candidates to become the common ancestor of
almost the whole population at time t.

We now introduce the necessary notation for the above concepts. In the definitions
we will indicate the dependence on a new parameter ρ ∈ (0, 1), as the choice of ρ will be
important later on. Furthermore, everything we define will depend on N and t, which
we do not always indicate.

For ρ ∈ (0, 1) we introduce the term big jump for jumps of size greater than ρaN , and

we denote the set of big jumps on an interval [s1, s2] ⊆ [t4, t− 1] by B[s1,s2]
N :

B
[s1,s2]
N = B

[s1,s2]
N (ρ) := {(k, b, s) ∈ [N ]× {1, 2} × Js1, s2K : Xk,b,s > ρaN} , (2.14)

where aN is given by (1.5). We also let

BN := B
[t4,t−1]
N . (2.15)

We say a particle breaks the record if it takes the lead with a big jump. If one of the
current leader’s descendants makes a small jump (that is, a non-big jump) to become
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the leader, then that does not count as breaking the record in our terminology. Let SN
denote the set of times when the record is broken by a big jump between times t4 and t:

SN = SN (ρ) :=

{
s ∈ Jt4, t− 1K : ∃(k, b) ∈ [N ]× {1, 2} such that
(k, s) .b (N, s+ 1) and Xk,b,s > ρaN

}
. (2.16)

Next, we define T as the last time when the leader broke the record with a big jump
before time t1, if there is any such time. We let

T = T (ρ) := 1 + max {SN (ρ) ∩ [t4, t1 − 1]} , (2.17)

and let T = 0 if SN (ρ) ∩ [t4, t1 − 1] = ∅. Note that the big jump which takes the lead
happens at time T − 1, and T is the time right after the jump. In the proof it turns out
that with high probability, T ∈ [t2 + dδ`Ne , t1 − dδ`Ne] for some δ > 0, and particle (N,T )

is the common ancestor of almost the whole population at time t.
We will have a separate notation, ŜN , for the times when the leader is surpassed by a

particle which performs a big jump. Note that this is not exactly the same set of times
as SN : it might happen that a particle (i, s) has an offspring (j, s+ 1), which beats the
current leader (N, s) with a big jump, but it does not become the next leader at time
s+ 1 because it is beaten by another offspring particle which did not make a big jump.
We define

ŜN = ŜN (ρ) :=

{
s ∈ Jt4, t− 1K : ∃(k, b) ∈ [N ]× {1, 2} such that
Xk,b,s > ρaN and Xk(s) +Xk,b,s > XN (s)

}
. (2.18)

We will see in Corollary 3.8 below that with high probability, SN and ŜN coincide on
certain time intervals. Sometimes we will also need to refer to the set of times when
big jumps do not take the lead or beat the current leader. Therefore, with a slight abuse
of notation, we will write ScN and ŜcN to denote the sets of times Jt4, t − 1K \ SN and
Jt4, t− 1K \ ŜN respectively.

2.6 Reformulation

In this section, we break down the event A2 of Theorem 2.1. Our ultimate goal is to
show, for a suitable choice of ρ, that T = T (ρ), as defined in (2.17), has the properties
required inA2. To this end we introduce new events which implyA2 with high probability,
and only involve T and the number of time-t descendants of particle (N,T ) and of the
particles at time T + εN `N . We will use the following notation:

T εN = T εN (ρ) := T (ρ) + εN `N , (2.19)

where εN is defined in (2.2). Recalling (2.12), for i ∈ [N ], we write

Ni := Ni,T εN (t) (2.20)

for the set of time-t descendants of the ith particle at time T εN , and

Di = Di,T εN (t) := |Ni,T εN (t)| (2.21)

for the size of this set.
For γ, δ, ρ ∈ (0, 1), we introduce the event

A3 = A3(t,N, δ, ρ, γ) := {T (ρ) ∈ [t2 + dδ`Ne , t1 − dδ`Ne]} ∩
{
|NN,T (ρ)(t)| ≥ N −N1−γ} .

(2.22)
This event says that almost the whole population at time t descends from particle (N,T ),
which will imply with high probability that each particle in the uniform sample of M
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particles in the event A2 is a descendant of (N,T ). The final part of the definition of
the event A2 says that no two particles at time t in the uniform sample of M particles
share an ancestor at time T εN . We now define an event which says that every time-T εN

particle has at most a very small proportion of the N surviving descendants at time t,
so that with high probability none of them have two descendants in the sample of M
particles. For ν > 0 and ρ ∈ (0, 1), we let

A4(ν) = A4(t,N, ρ, ν) :=

{
max

i∈NN,T (T εN )
Di,T εN (t) ≤ νN

}
. (2.23)

Note that in the definition of A4(ν) we take the maximum only over the time-T εN

descendants of particle (N,T ). It will be easy to deal with the remaining particles at time
T εN , because the event A3 implies that for ν > 0, if N is large, particles not descended
from (N,T ) cannot have more than νN descendants at time t. In the following result,
we reduce the proof of Theorem 2.1 to showing that A1, A3 and A4(ν) occur with high
probability.

As part of the proof we show that the probability that two particles in the sample of
M at time t have a common ancestor at time T εN can be upper bounded by little more
than the sum of the probabilities of the events Ac3 and A4(ν)c when ν is small. We will
use this intermediate result in another argument later on in Section 6, so we state it as
part of Lemma 2.5 below.

Lemma 2.5. Take M ∈ N and γ, δ, ρ, η ∈ (0, 1), and let 0 < ν < η/M2. Then for all N
sufficiently large and t > 4`N ,

P(∃j, l ∈ [M ], j 6= l : ζPj ,t(T
εN ) = ζPl,t(T

εN )) ≤ P(Ac3) + P(A4(ν)c) + η/2,

and
P(Ac2) ≤ 2P(Ac3) + P(A4(ν)c) + η,

where A2(t,N,M, δ), A3(t,N, δ, ρ, γ) and A4(t,N, ρ, ν) are defined in (2.4), (2.22) and
(2.23) respectively, Pj is the index of a particle in the uniform sample of M particles at
time t, and ζPj ,t(T

εN ) is the index of the time-T εN ancestor of particle (Pj , t), defined
in (2.9).

Proof. Fix M ∈ N and γ, δ, ρ, η ∈ (0, 1). Note that by the definition of A2 in (2.4),

{T ∈ [t2 + dδ`Ne , t1 − dδ`Ne]} ∩
{
ζPj ,t(T ) = N ∀j ∈ [M ]

}
∩
{
ζPj ,t(T

εN ) 6= ζPl,t(T
εN ) ∀j, l ∈ [M ], j 6= l

}
⊆ A2. (2.24)

First we aim to show that for N sufficiently large,

P({T /∈ [t2 + dδ`Ne , t1 − dδ`Ne]} ∪
{
∃j ∈ [M ] : ζPj ,t(T ) 6= N

}
) ≤ P(Ac3) + η/2. (2.25)

Note that if A3 occurs then T ∈ [t2 + dδ`Ne , t1 − dδ`Ne], and A3 is Ft-measurable, so

P({T /∈ [t2 + dδ`Ne , t1 − dδ`Ne]} ∪
{
∃j ∈ [M ] : ζPj ,t(T ) 6= N

}
)

≤ E
[
1A3

P(∃j ∈ [M ] : ζPj ,t(T ) 6= N | Ft)
]

+ P (Ac3) .

Now, on the event A3, at most N1−γ time-t particles are not descended from (N,T ), and
therefore a union bound on the uniformly chosen sample (which is not Ft-measurable)
gives that the above is at most MN1−γ/N +P (Ac3). This implies (2.25) for N sufficiently
large.

Now fix ν ∈ (0, η/M2). Our second step is to prove that for N sufficiently large,

P(∃j, l ∈ [M ], j 6= l : ζPj ,t(T
εN ) = ζPl,t(T

εN )) ≤ P(Ac3) + P(A4(ν)c) + η/2, (2.26)
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which is the first part of the statement of the lemma. The event on the left-hand side
means that there is a particle at time T εN which has at least two descendants in the
sample of M particles at time t. That is

P(∃j, l ∈ [M ], j 6= l : ζPj ,t(T
εN ) = ζPl,t(T

εN ))

= P (∃i ∈ [N ], j, l ∈ [M ], j 6= l : {Pj ,Pl} ⊆ Ni) . (2.27)

We will use that if all the Ni sets have size smaller than νN then it is unlikely that
two particles of the uniformly chosen sample will fall in the same Ni set. Since Di is
Ft-measurable for all i, a union bound gives

P (∃i ∈ [N ], j, l ∈ [M ], j 6= l : {Pj ,Pl} ⊆ Ni)

≤ E

[
1{maxi∈[N]Di≤νN}

N∑
i=1

∑
1≤j<l≤M

P({Pj ,Pl} ⊆ Ni | Ft)
]

+ P

(
max
i∈[N ]

Di > νN

)
.

(2.28)

Since the sample is chosen uniformly at random, the first term on the right-hand side is
equal to

E

[
1{maxi∈[N]Di≤νN}

N∑
i=1

(
M

2

)(Di
2

)(
N
2

) ] ≤ E

[
1{maxi∈[N]Di≤νN} max

j∈[N ]
Dj

(
M

2

) ∑N
i=1Di

N(N − 1)

]

≤
(
M

2

)
νN

N − 1
, (2.29)

where in the second inequality we exploit the indicator and use that
∑N
i=1Di = N .

In order to deal with the second term on the right-hand side of (2.28), note that the
maximum is taken over all particles at time T εN (because of the definition of Di in (2.21)).
Suppose N is sufficiently large that N1−γ ≤ νN . Then if the event A3 occurs, particles
not descended from particle (N,T ) (i.e. particles not in NN,T (T εN )) have at most νN
descendants at time t. Therefore, by the definition of A4(ν),

P

(
max
i∈[N ]

Di > νN

)
≤ P(A4(ν)c) + P

(
max

i∈[N ]\NN,T (T εN )
Di > νN

)
≤ P(A4(ν)c) + P(Ac3),

(2.30)
for N sufficiently large.

Putting (2.27)-(2.30) together, since we chose ν < η/M2 we have that (2.26) holds
for N sufficiently large. By (2.24), (2.25) and (2.26), the result follows.

We now state the two main intermediate results in the proof of Theorem 2.1, which
say that, for well-chosen γ, δ, and ρ, the events A1, A3 and A4(ν) occur with high
probability. In Sections 3 and 4 we give the proof of Proposition 2.6, and in Section 5 we
prove Proposition 2.7.

Proposition 2.6. For η ∈ (0, 1] there exist 0 < γ < δ < ρ < η such that for N sufficiently
large and t > 4`N ,

P(A1 ∩ A3) > 1− η,
where A1(t,N, η, γ) and A3(t,N, δ, ρ, γ) are defined in (2.3) and (2.22) respectively.

Proposition 2.7. Let η ∈ (0, 1] and ν > 0. Then for ρ ∈ (0, η) as in Proposition 2.6, for N
sufficiently large and t > 4`N ,

P(A4(ν)) > 1− 2η,

where A4(t,N, ρ, ν) is defined in (2.23).

Proof of Theorem 2.1. Lemma 2.5, Proposition 2.6 and Proposition 2.7 immediately
imply Theorem 2.1.
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2.7 Strategies for the proofs of Propositions 2.6 and 2.7

Our strategy for the proof of Proposition 2.6 is based on the picture in Figure 1. For
t > 4`N , we will show that the following happens between times t2 and t with probability
close to 1.

1. There will be particles which lead by a large distance at times in [t2, t1]. The last
such particle will be at time T ∈ [t2 + dδ`Ne , t1 − dδ`Ne] with position XN (T ).

2. The descendants of this particle are close together and far away from the the rest
of the population at time t1, forming a small (size o(N)) leader tribe.

3. At time t, the descendants of the small leader tribe from time t1 form a big tribe
of N − o(N) particles, which descend from particle (N,T ) and are close to the
leftmost particle.

The first part of the proof is a deterministic argument given in Section 3, which shows
that if ‘all goes well’ between times t4 and t, then steps 1-2-3 above roughly describe
what happens, which will imply that the events A1 and A3 in Proposition 2.6 occur. For
the deterministic argument we will introduce a number of events, which will describe
sufficient criteria for A1 and A3 to happen. Once we have shown that the intersection
of these events is contained in A1 ∩ A3, it is enough to prove that the probability of
this intersection is close to 1. This part will be carried out in Section 4, and consists of
checking that ‘all goes well’ with high probability.

We describe our strategy for showing Proposition 2.7 in detail in Section 5.1. The
main idea is to give a lower bound on the position of the leftmost particle at time t with
high probability, and then use concentration inequalities from [19] to bound the number
of time-t descendants of each particle in NN,T (T εN ) which can reach that lower bound
by time t. A key intermediate step will be to see that with high probability, particles can
reach the lower bound only if they have an ancestor which made a jump larger than a
certain size.

3 Deterministic argument for the proof of Proposition 2.6

In this section we provide the main component of the proof of Proposition 2.6. We
follow the plan explained in the previous section; we define new events and show that
they imply A1 and A3. In Section 4, we will prove that the new events occur with high
probability. The events describe a strategy designed to make sure that the majority of the
population at time t has a common ancestor at some time between t2 and t1; that is, to
ensure that A3 occurs. The strategy will also show that most of the particles descended
from particle (N,T ) cannot move too far from position XN (T ) by time t. Thus it will be
easy to see that these descendants are near the leftmost particle at time t, and so A1

must occur. So although the strategy is designed for the event A3, it will imply A1 too.

In the course of the proof we will use several constants. We first give a guideline,
which shows how the constants should be thought of throughout the rest of the paper,
then we describe the specific assumptions we need for the rest of this section. Recall that
we fixed α > 0 as in (1.3) and that we have η ∈ (0, 1] from the statement of Proposition 2.6.
The other constants can be thought of as

0 < γ < δ � ρ� c1 � c2 � c3 � c4 � c5 � c6 � η < 1 and K � ρ−α. (3.1)

As everything is constant in (3.1), we only use� as an informal notation to say that the
left-hand side is much smaller than the right-hand side.
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More specifically, for the rest of this section we fix the constants γ, δ, ρ, c1, c2, . . . , c6, η
and K, and assume that they satisfy

0 < γ < δ < ρ, (3.2)

10ρ < c1, (3.3)

10cj < cj+1 < η < 1, j = 1, . . . , 5, (3.4)

K > ρ−α. (3.5)

We will have additional conditions on these constants in Section 4, which will be consis-
tent with the assumptions (3.2)-(3.5).

Every event we introduce below will depend on N , t (with t > 4`N ) and on some of
the constants above. In the definitions we will not indicate this dependence explicitly.
Note furthermore that in the statement of Proposition 2.6, taking N sufficiently large
may depend on γ, δ, or ρ.

3.1 Breaking down event A3

We begin by breaking down the event A3 from Proposition 2.6 into two other events.
Then we will define a strategy for showing that these two events occur. The first event
describes the particle system at time t1; it says that there is a small leader tribe of
size less than 2N1−δ, and every other particle is at least c2aN to the left of this tribe.
Moreover, each particle in the leading tribe descends from the same particle, (N,T ).
The common ancestor (N,T ) is the last particle which breaks the record with a big jump
before time t1 (see (2.17) and also Figure 1). We also require T ∈ [t2 + dδ`Ne , t1−dδ`Ne],
which is part of the event A3.

To keep track of the size of the leader tribe we introduce notation for the number of
particles which are within distance εaN of the leader at time n:

Rε,N (n) := max {i ∈ [N ] : XN−i+1(n) ≥ XN (n)− εaN} , for n ∈ N0 and ε > 0. (3.6)

Note that if Rε,N (t1) < N then particle (N − Rε,N (t1) + 1, t1) is within distance εaN of
the leader, but particle (N −Rε,N (t1), t1) is not. In the event we introduce below, we set
ε = c1 and require the distance between these two particles to be at least c2aN , showing
that there is a gap between the leader tribe and the other particles. The event is defined
as follows:

B1 :=


Rc1,N (t1) ≤ min

{
N − 1, 2N1−δ} ,

XN−Rc1,N (t1)(t1) ≤ XN−Rc1,N (t1)+1(t1)− c2aN ,

T ∈ [t2 + dδ`Ne , t1 − dδ`Ne] and NN,T (t1) = {N −Rc1,N (t1) + 1, . . . , N}

 ,

(3.7)
where T = T (ρ) and NN,T (t1) are given by (2.17) and (2.12) respectively.

In the description of Figure 1 in Section 1.4, we explained that the descendants of
particle (N,T ) are likely to lead at time t1. The event B1 requires more; it also says that
the leading tribe leads by a large distance, which is important to ensure that no other
tribes can interfere with our heuristic picture and will be useful in Section 3.2. The most
involved part of the deterministic argument in the remainder of Section 3 is to break up
the event B1 into other events which happen with probability close to 1.

We now define another event which says that particles which are not in the leading
tribe at time t1 have at most N1−γ (i.e. much less than N for N large) descendants
in total at time t. This will imply that the leading tribe at time t1 will dominate the
population at time t. We let

B2 :=


N−Rc1,N (t1)∑

j=1

|Nj,t1(t)| ≤ N1−γ

 , (3.8)
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where Nj,t1(t) is given by (2.12). The events which we will introduce to break down the
event B1 will easily imply B2 as well. Before defining the new events we check that B1

and B2 indeed imply A3.

Lemma 3.1. LetA3, B1 and B2 be the events given by (2.22), (3.7) and (3.8) respectively.
Then for all N ≥ 2 and t > 4`N ,

B1 ∩ B2 ⊆ A3.

Proof. On the event B1, the descendants of particle (N,T ) are the Rc1,N (t1) rightmost
particles at time t1. Thus NN,T (t) is a disjoint union of the sets Nj,t1(t) for j ∈ JN −
Rc1,N (t1) + 1, NK. We deduce that on the event B1 ∩ B2,

|NN,T (t)| =
N∑

j=N−Rc1,N (t1)+1

|Nj,t1(t)| ≥ N −N1−γ .

Since T ∈ [t2 + dδ`Ne , t1 − dδ`Ne] on the event B1, the result follows.

3.2 Breaking down events B1 and B2

We now break down the events B1 and B2 into new events C1 to C7 whose probabilities
will be easier to estimate. The majority of the work in this section consists of showing
that the intersection of the new events implies B1. We can then quickly conclude that
the intersection implies both B2 and A1. One of the new events will need to be further
broken down in Section 3.3.

3.2.1 New events C1 to C7

Recall that Js1, s2K denotes the set of integers in the interval [s1, s2] and that the constants
γ, δ, ρ, c1, c2, . . . , c6, η and K satisfy (3.2)-(3.5). We first introduce τ1 to denote the first
time after t2 when a gap of size 2c3aN appears between the leader and the second
rightmost particle:

τ1 := inf {s ≥ t2 + 1 : XN (s) > XN−1(s) + 2c3aN} . (3.9)

The first new event we define says that such a gap appears by time t1, that is

C1 := {τ1 ∈ Jt2 + 1, t1K} . (3.10)

The next event C2 ensures that the current leading tribe keeps distance from the
other tribes during the time interval [τ1, t1]. This is important, since B1 requires a gap
behind the leading tribe at time t1. The event C2 says that if a particle is far away (at
least c3aN ) from the leader, then it cannot jump to within distance 2c2aN of the leader’s
position with a single big jump (recall from (3.1) that c2 � c3). That is, a particle far
from the leader either stays at least 2c2aN behind the leader, or it beats the leader by
more than 2c2aN . Jumping close to the leader would require a large jump, of size greater
than c3aN , restricted to an interval of size 4c2aN , which is much smaller than the size of
the jump. We will see in Section 4 that the probability that such a jump occurs between
times t3 and t1 is small. Let Zi(s) denote the gap between the rightmost and the ith
particle at time s:

Zi(s) := XN (s)−Xi(s), for s ∈ N0 and i ∈ [N ]. (3.11)

Now we can define our next event

C2 :=

{
@(i, b, s) ∈ [N ]× {1, 2} × Jt3, t− 1K such that
Zi(s) ≥ c3aN and Xi,b,s ∈ (Zi(s)− 2c2aN , Zi(s) + 2c2aN ]

}
. (3.12)
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We need to introduce several more events to make sure that ‘all goes well’; that is,
particles which we do not expect to make big jumps indeed do not make big jumps, and
smaller jumps do not make too much difference on the aN space scale. The next event
says that if a particle makes a big jump, then it will not have a descendant which makes
another big jump within `N time:

C3 :=

{
BN ∩ P k2,s2k1,s1

= {(k1, b1, s1)}
∀(k1, b1, s1) ∈ BN , ∀s2 ∈ Js1 + 1,min {s1 + `N + 1, t}K, ∀k2 ∈ N b1

k1,s1
(s2)

}
,

(3.13)
where BN , P k2,s2k1,s1

and N b1
k1,s1

(s2) are defined in (2.15), (2.10) and (2.13) respectively.
The next event says the following. Take any path between two particles in the time

interval [t4, t]. If we omit the big jumps from the path then it does not move more than
distance c1aN . In particular, if there are no big jumps at all then the path moves at most
c1aN . The event is given by

C4 :=

{ ∑
(i,b,s)∈Pk2,s2k1,s1

Xi,b,s1{Xi,b,s≤ρaN} ≤ c1aN
∀(k1, s1) ∈ [N ]× Jt4, t− 1K, ∀s2 ∈ Js1 + 1, tK, ∀k2 ∈ Nk1,s1(s2)

}
, (3.14)

where P k2,s2k1,s1
and Nk1,s1(s2) are defined in (2.10) and (2.12) respectively.

The last three events are simple. On C5, two big jumps cannot happen at the same
time:

C5 := {|BN ∩ {(k, b, s) : (k, b) ∈ [N ]× {1, 2}} | ≤ 1 ∀s ∈ Jt4, t− 1K} . (3.15)

Then C6 excludes big jumps which happen either right after time t2 or very close to time
t1:

C6 :=
{
B

[t2,t2+dδ`Ne]
N ∪B[t1−dδ`Ne,t1+dδ`Ne]

N = ∅
}

(3.16)

where B[s1,s2]
N is defined in (2.14). Finally, C7 gives a bound on the number of big jumps:

C7 := {|BN | ≤ K} , (3.17)

where we recall that we chose K to be a positive constant at the start of Section 3.
Now we can state the main result of this subsection. It says that on the events C1 to C7

the events B1, B2 and A1 occur, and therefore A3 occurs as well. We have an additional
event in Proposition 3.2 below, which says that the diameter of the particle cloud at time
t1 is larger than 3

2c3aN . As part of the proposition we also show that C1 to C7 imply this
event, because it will be useful in another argument later on in Section 6.

Proposition 3.2. Let η ∈ (0, 1], and assume that the constants γ, δ, ρ, c1, c2, . . . , c6,K
satisfy (3.2)-(3.5). Then for N sufficiently large that 2KN−δ < N−γ < 1 and t > 4`N ,

7⋂
j=1

Cj ⊆ B1 ∩ B2 ∩ A1 ∩
{
d(X (t1)) ≥ 3

2c3aN
}
⊆ A1 ∩ A3 ∩

{
d(X (t1)) ≥ 3

2c3aN
}
,

where B1, B2, A1 and A3 are defined in (3.7), (3.8), (2.3) and (2.22) respectively, and
C1, C2, . . . , C7 are given by (3.10) and (3.12)–(3.17).

Note that the second inclusion in Proposition 3.2 follows directly from Lemma 3.1.

3.2.2 C1 to C7 imply B1, B2 and A1: proof of Proposition 3.2

We start by proving some easy lemmas which hold on the event
⋂7
j=1 Cj , and which will

be applied in the course of the proof of Proposition 3.2.
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The first lemma gives another way of writing the event C4, which will be more
convenient to use in this section. (The definition of C4 will be easier to work with when
we show, in Section 4, that C4 occurs with high probability.) The lemma says that on the
event C4, if a path moves more than c1aN then it must contain a big jump.

Lemma 3.3. On the event C4, for all (k1, s1) ∈ [N ] × Jt4, t − 1K, s2 ∈ Js1 + 1, tK and k2 ∈
Nk1,s1(s2),

Xk2(s2) > Xk1(s1) + c1aN =⇒ BN ∩ P k2,s2k1,s1
6= ∅,

where BN , Nk1,s1(s2) and P k2,s2k1,s1
are defined in (2.15), (2.12) and (2.10) respectively.

Proof. Let (k1, s1) ∈ [N ] × Jt4, t − 1K, s2 ∈ Js1 + 1, tK, and k2 ∈ Nk1,s1(s2). Assume that
BN ∩ P k2,s2k1,s1

= ∅, and the event C4 occurs. Then by (2.11),

Xk2(s2) = Xk1(s1) +
∑

(i,b,s)∈Pk2,s2k1,s1

Xi,b,s = Xk1(s1) +
∑

(i,b,s)∈Pk2,s2k1,s1

Xi,b,s1{Xi,b,s≤ρaN}

≤ Xk1(s1) + c1aN

by the definition of the event C4, which completes the proof.

The next lemma says that on the event C3 ∩ C4, if a path of length at most `N starts
with a big jump then it moves distance at most c1aN after the big jump.

Lemma 3.4. On the event C3 ∩ C4, for all (k1, b1, s1) ∈ BN , s2 ∈ Js1 + 1,min {s1 + `N , t}K
and k2 ∈ N b1

k1,s1
(s2),

Xk2(s2) ≤ Xk1(s1) +Xk1,b1,s1 + c1aN ,

where BN and N b1
k1,s1

(s2) are defined in (2.15) and (2.13) respectively.

Proof. Let l ∈ [N ] be such that (k1, s1) .b1 (l, s1 + 1), so that

Xl(s1 + 1) = Xk1(s1) +Xk1,b1,s1 . (3.18)

If s2 = s1 + 1 then we are done; from now on assume s2 ≥ s1 + 2. Since Xk1,b1,s1 is a
big jump, on the event C3 there are no further big jumps on the path between particles
(l, s1 + 1) and (k2, s2), that is BN ∩ P k2,s2l,s1+1 = ∅. Therefore, by Lemma 3.3 we have
Xk2(s2) ≤ Xl(s1 + 1) + c1aN , which, together with (3.18), completes the proof.

In the next lemma, we describe how we can exploit the fact that on the event C5
there are never two big jumps at the same time. First, the event C5 tells us that if a
particle makes a big jump, then the other particles move very little at the time of the
jump. Second, it also implies that if a particle significantly beats the current leader with
a big jump, then it becomes the new leader, and the gap behind this new leader will
be roughly the distance by which it beat the previous leader. Both statements follow
immediately from the setup, but will be useful for example in the proofs of Corollaries 3.7
and 3.8 below, and later on in the proofs of Propositions 3.11 and 2.2 as well.

Lemma 3.5. On the event C5, for all (k, b, s) ∈ BN ,

(a) Xj(s+ 1) ≤ XN (s) + ρaN for all j ∈ [N ] \ N b
k,s(s+ 1), and

(b) if Xk(s) + Xk,b,s > XN (s) + caN for some c > ρ, then (k, s) .b (N, s + 1) and
XN (s+ 1)−XN−1(s+ 1) > (c− ρ)aN .
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Proof. Assume that C5 occurs and fix k, b, s as in the statement. Let j ∈ [N ] \ N b
k,s(s+ 1)

be arbitrary. Assume that i ∈ [N ] and bi ∈ {1, 2} are such that (i, s) .bi (j, s + 1), and
so Xj(s + 1) = Xi(s) + Xi,bi,s, with (i, bi) ∈ ([N ] × {1, 2}) \ {(k, b)}. By the definition of
the event C5, Xk,b,s is the only big jump at time s. Thus we have Xi,bi,s ≤ ρaN , and by
bounding the ith particle’s position at time s by the rightmost position at time s we get

Xj(s+ 1) = Xi(s) +Xi,bi,s ≤ XN (s) + ρaN ,

which completes the proof of part (a). Furthermore, if the condition in (b) holds, then we
also have

Xj(s+ 1) ≤ XN (s) + ρaN < Xk(s) +Xk,b,s − (c− ρ)aN . (3.19)

Since (3.19) holds for any j ∈ [N ] \ N b
k,s(s+ 1) and we are assuming c > ρ, we conclude

that (k, s) .b (N, s+ 1), and the result follows by taking j = N − 1 in (3.19).

The next lemma says that if C3 ∩ C4 occurs then all big jumps in the time interval
[t3, t− 1] come from close to the leftmost particle. Our heuristics suggest this should be
true, because we expect most particles to be close to the leftmost particle at a typical
time. However, the proof only relies on the assumption that the events C3 and C4 occur.

Lemma 3.6. On the event C3 ∩ C4,

Xk(s) ≤ X1(s) + c1aN ∀(k, b, s) ∈ B[t3,t−1]
N .

Proof. Take s ∈ Jt3, t− 1K, k ∈ [N ] and b ∈ {1, 2}, and assume that we have Xk,b,s > ρaN .
Let ik = ζk,s(s− `N ) be the time-(s− `N ) ancestor of particle (k, s) (recall (2.9)). Since
(k, b, s) ∈ BN , by the definition of the event C3, we must have BN ∩ P k,sik,s−`N = ∅. Then by
Lemma 3.3 we have

Xk(s) ≤ Xik(s− `N ) + c1aN . (3.20)

Furthermore, at time s every particle is to the right of Xik(s− `N ), by Lemma 2.4. This
means Xik(s− `N ) ≤ X1(s), and so Xk(s) ≤ X1(s) + c1aN by (3.20).

We will use Lemma 3.6 to prove the next result, which says that on the event
⋂5
j=2 Cj ,

if the diameter of the cloud of particles is large and a particle makes a big jump, then
either it takes the lead and will be significantly ahead of the second rightmost particle,
or it stays significantly behind the leader.

Corollary 3.7. On the event
⋂5
j=2 Cj , if (k, b, s) ∈ B[t3,t−1]

N and d(X (s)) ≥ (c3 +c1)aN then

(a) if Xk,b,s > Zk(s) then XN (s+ 1) = Xk(s) +Xk,b,s > XN−1(s+ 1) + (2c2 − ρ)aN , and

(b) if Xk,b,s ≤ Zk(s) then Xk(s) +Xk,b,s ≤ XN (s)− 2c2aN ,

where Zk(s) and C2, . . . , C5 are given by (3.11)–(3.15).

Proof. Since Xk,b,s is a big jump, by Lemma 3.6 and the fact that d(X (s)) = XN (s) −
X1(s) ≥ (c3 + c1)aN ,

Xk(s) ≤ X1(s) + c1aN ≤ XN (s)− c3aN .
Hence the gap between the kth particle and the rightmost particle is bounded below by
c3aN :

Zk(s) ≥ c3aN . (3.21)

It follows that if Xk,b,s > Zk(s), by the definition of the event C2 we have Xk,b,s >

Zk(s) + 2c2aN , which implies that

Xk,b,s + Xk(s) > XN (s) + 2c2aN .

Since 2c2 > ρ by (3.3) and (3.4), Lemma 3.5(b) implies the statement of part (a). If instead
Xk,b,s ≤ Zk(s), then by (3.21) and the definition of C2, we have Xk,b,s ≤ Zk(s) − 2c2aN ,
which completes the proof.

EJP 27 (2022), paper 93.
Page 22/65

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP806
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Genealogy and spatial distribution of N -BRW with polynomial tails

The next result says that on the event
⋂5
j=2 Cj , if the diameter of the cloud of particles

is big at some time s, then if at time s or s− 1 a particle makes a big jump which beats
the current leader, this particle becomes the new leader.

Corollary 3.8. On the event
⋂5
j=2 Cj , for all s ∈ Jt3 + 1, t− 1K, if d(X (s)) ≥ 3

2c3aN then

s ∈ SN ⇐⇒ s ∈ ŜN and s− 1 ∈ SN ⇐⇒ s− 1 ∈ ŜN ,

where SN and ŜN are defined in (2.16) and (2.18).

Proof. Take s ∈ Jt3 + 1, t− 1K and suppose d(X (s)) ≥ 3
2c3aN .

If s ∈ SN , then there exists (k, b, s) ∈ BN such that Xk(s)+Xk,b,s = XN (s+1) ≥ XN (s),
where we used monotonicity for the inequality. To show that s ∈ ŜN , we need to show
that in fact Xk(s) + Xk,b,s > XN (s), i.e. the inequality is strict, but this follows from
Corollary 3.7(b), which applies since d(X (s)) ≥ 3

2c3aN ≥ (c1 + c3)aN by (3.4).

Now suppose s ∈ ŜN . Since d(X (s)) ≥ 3
2c3aN ≥ (c1 + c3)aN , and by the definition of

ŜN , the conditions of Corollary 3.7(a) hold for (k, b, s), for some (k, b) ∈ [N ]×{1, 2}. Then
Corollary 3.7(a) implies that s ∈ SN , and therefore the first equivalence in the statement
holds.

If d(X (s− 1)) ≥ (c3 + c1)aN , then we can repeat the proof of the first equivalence to
show that s− 1 ∈ SN ⇐⇒ s− 1 ∈ ŜN .

If instead d(X (s− 1)) < (c3 + c1)aN we argue as follows. Suppose s− 1 ∈ SN . Then
there exists (k, b, s− 1) ∈ BN such that

Xk(s− 1) +Xk,b,s−1 = XN (s) ≥ XN (s− 1),

which means Xk,b,s−1 ≥ Zk(s− 1). Now Xk,b,s−1 = Zk(s− 1) is impossible because, with
the assumption that d(X (s− 1)) < (c3 + c1)aN , it would imply

XN (s) = Xk(s− 1) + Zk(s− 1) = XN (s− 1) < X1(s− 1) + (c3 + c1)aN < X1(s) + 3
2c3aN

by monotonicity and (3.4). This contradicts the assumption d(X (s)) ≥ 3
2c3aN from the

statement of this corollary. Hence, we must have Xk,b,s−1 > Zk(s− 1), and so s− 1 ∈ ŜN .
Now suppose s− 1 ∈ ŜN , and take (k, b, s− 1) ∈ BN such that Xk(s− 1) +Xk,b,s−1 >

XN (s − 1). Then by Lemma 3.5(a) and the assumption on d(X (s − 1)), for all j ∈
[N ] \ N b

k,s−1(s) we have

Xj(s) ≤ XN (s− 1) + ρaN < X1(s− 1) + (c3 + c1 + ρ)aN .

By monotonicity, (3.3) and (3.4) this is strictly smaller than X1(s) + 3
2c3aN . Thus, at time

s, all particles not in N b
k,s−1(s) are closer than distance 3

2c3aN to the leftmost particle.

Hence, since we assumed that d(X (s)) ≥ 3
2c3aN , we must have (k, s− 1) .b (N, s), which

means that s− 1 ∈ SN .

The last property we state before the proof of Proposition 3.2 says the following.
First, if no particle beats the leader with a big jump for a time interval of length at most
`N , then the leader’s position does not change much during this time. We will use the
extra condition that the diameter is not too small to prove this easily; if the diameter is
too small then jumps that are “almost big” could complicate matters. Second, the lemma
says that if the diameter becomes small at some point, then it cannot become too large
within `N time, if there is no particle which beats the leader with a big jump. Recall the
definition of ŜN from (2.18).

Lemma 3.9. On the event
⋂5
j=2 Cj , for all s ∈ Jt3, t1 − 1K and ∆s ∈ [`N ], if s + ∆s ≤ t1

and Js, s+ ∆s− 1K ⊆ ŜcN then the following statements hold:
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(a) If d(X (r)) ≥ 3
2c3aN for all r ∈ Js, s+ ∆s− 1K, then XN (s+ ∆s) ≤ XN (s) + c1aN . In

particular, if ∆s = `N then d(X (s+ `N )) ≤ c1aN .

(b) If there exists r ∈ Js, s+ ∆s− 1K such that d(X (r)) ≤ 3
2c3aN , then d(X (s+ ∆s)) ≤

3
2c3aN + 2c1aN .

Proof. First we prove part (a). Let i, j ∈ [N ] with (i, s) . (j, s+ ∆s). Assume that there is
a big jump on the path between Xi(s) and Xj(s+∆s) at time s′ ∈ Js, s+∆s−1K, i.e. there
exists (k′, b′, s′) ∈ BN ∩ P j,s+∆s

i,s . Since we assume s′ ∈ ŜcN , we have Xk′(s′) +Xk′,b′,s′ ≤
XN (s′). Then since we assume d(X (s′)) ≥ 3

2c3aN > (c3 + c1)aN by (3.4), we can apply
Corollary 3.7(b) to obtain

Xk′(s′) +Xk′,b′,s′ ≤ XN (s′)− 2c2aN . (3.22)

Therefore, first by Lemma 3.4, second by (3.22), and third by monotonicity and (3.4) we
get

Xj(s+ ∆s) ≤ Xk′(s′) +Xk′,b′,s′ + c1aN ≤ XN (s′)− 2c2aN + c1aN < XN (s+ ∆s).

Hence j 6= N , which means that the leader at time s+ ∆s must be a particle which does
not have an ancestor which made a big jump in the time interval [s, s+ ∆s− 1]. That is,
BN ∩ PN,s+∆s

i,s = ∅ for all i ∈ [N ]. But then by Lemma 3.3 we must have

XN (s+ ∆s) ≤ XN (s) + c1aN ,

which shows the first statement of part (a). By Lemma 2.4 we also have X1(s + `N ) ≥
XN (s), and the second statement of part (a) follows.

Now we prove part (b). Let τd denote the last time before s+ ∆s when the diameter
is at most 3

2c3aN , that is

τd = sup
{
r ≤ s+ ∆s : d(X (r)) ≤ 3

2c3aN
}
.

By our assumption in part (b) we have τd ≥ s.
If τd = s + ∆s then we are done. Assume instead that τd < s + ∆s. Then we can

estimate the leftmost particle position at time s+∆s using monotonicity and the definition
of τd:

X1(s+ ∆s) ≥ X1(τd) ≥ XN (τd)− 3
2c3aN . (3.23)

To estimate the rightmost position, we first use the fact that τd ∈ Js, s+ ∆s− 1K ⊆ ŜcN
and d(X (τd + 1)) > 3

2c3aN by the definition of τd. Hence, the second equivalence of
Corollary 3.8 implies that τd ∈ ScN ; that is, no big jump takes the lead at time τd + 1.
Thus, for some (k, b) ∈ [N ]× {1, 2} we have

XN (τd + 1) = Xk(τd) +Xk,b,τd ≤ XN (τd) + ρaN . (3.24)

Now (3.23), (3.24) and (3.3) show that if τd = s + ∆s − 1 then we are done. Assume
instead that τd < s+∆s−1. Then we can apply part (a) for the time interval [τd+1, s+∆s],
because d(X (r)) > 3

2c3aN ∀r ∈ Jτd + 1, s+ ∆sK by the definition of τd. So by part (a) and
then by (3.24) we have

XN (s+ ∆s) ≤ XN (τd + 1) + c1aN ≤ XN (τd) + (ρ+ c1)aN . (3.25)

Now (3.25), (3.23) and (3.3) yield part (b).
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Proof of Proposition 3.2. The main effort of this proof is in showing that the Ci events
imply B1. So we want to see a leader tribe at time t1 in which all the particles are
descended from particle (N,T ), and are significantly to the right of all the particles not
descended from particle (N,T ). We begin by giving an outline of how this will be proved.

Outline of proof that C1 to C7 imply B1

Assume the event ∩7
j=1Cj occurs. On the event C1 there will be a time τ1 ∈ [t2 + 1, t1]

when the leader, particle (N, τ1), is a distance more than 2c3aN ahead of the second
rightmost (and every other) particle. Having this gap at time τ1 will ensure that the
back of the population is further than 3

2c3aN away from the leader at all times up to t1.
That is, the diameter cannot be too small after time τ1, and so we will be able to apply
Corollary 3.7.

It is a possibility that on the time interval [τ1, t1], every particle not descended
from (N, τ1) stays further than roughly 2c2aN to the left of the tribe descending from
(N, τ1). Then we will have the desired leader tribe with a gap behind it at time t1.
Alternatively, the tribe of particle (N, τ1) may be surpassed by other particles. But then,
by Corollary 3.7(a), the leader must be beaten by at least roughly 2c2aN . The new
leader’s descendants might be surpassed too, but again by at least 2c2aN . Then, after
the last time T when a tribe is surpassed before t1 (i.e. the last time when a big jump
takes the lead, see (2.17)), no particle will make a big jump that gets closer to the leader
tribe than 2c2aN , by Corollary 3.7(b). We will see that this implies that at time t1, the
leader tribe will be further away than c2aN from all the other particles. This argument
works if the particles of the tribes do not move far from the position of their ancestor
which made a big jump. We have this property due to Lemma 3.4.

Therefore, the proof will expand on the following steps:

(i) The record is broken by a big jump at time τ1. Therefore time T , the last time when
the record is broken by a big jump before time t1, is either at time τ1 or later.

(ii) The diameter is at least 3
2c3aN between times τ1 and t1.

We will show that the back of the population stays far behind XN (τ1), because of
the small number of big jumps compared to the number of particles. This is useful,
because most of the lemmas and corollaries above will apply if the diameter is not
too small.

(iii) At time T , the last time before t1 when a particle takes the lead with a big jump,
there will be a gap of size at least 3

2c2aN between the leader (N,T ) and the second
rightmost particle (N − 1, T ).

This step follows by Corollary 3.7(a), which we can apply because of step (ii). If the
diameter is big and the leader is beaten, then the new leader will lead by a large
distance.

(iv) Every other particle stays at least distance c2aN behind the descendants of particle
(N,T ) until time t1.

This is mainly due to steps (ii) and (iii) and Corollary 3.7(b): if the diameter is big
and the leader is not beaten by a big jump, then big jumps will arrive far behind the
leader. Therefore, the gap behind the leader tribe created in step (iii) will remain
until time t1.

(v) The leading tribe has the size required by the event B1, and thus the event B1

occurs.
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Proof that C1 to C7 imply B1

We now give a detailed proof, following steps (i)-(v) above, that

7⋂
j=1

Cj ⊆ B1. (3.26)

Assume that
⋂7
j=1 Cj occurs. We first check that we have T ∈ [t2 + dδ`Ne , t1 − dδ`Ne] by

proving the following statement.

Step (i). We have t2 + dδ`Ne < τ1 ≤ T ≤ t1 − dδ`Ne, where τ1 and T are defined in (3.9)
and (2.17).

In order to see this, we will use the following simple property:

Xj(s− 1) ≤ XN−1(s) ∀s ∈ N and j ∈ [N ]. (3.27)

Indeed, since all jumps are non-negative, and particle (N, s− 1) has two offspring, there
are at least two particles to the right of (or at) position XN (s − 1) at time s. Thus
XN (s− 1) ≤ XN−1(s), which shows (3.27).

By the definition of the event C1, we have τ1 ∈ Jt2 + 1, t1K. Let (Ĵ , b̂) ∈ [N ]× {1, 2} be
such that (Ĵ , τ1 − 1) .b̂ (N, τ1), and so XN (τ1) = XĴ(τ1 − 1) + XĴ,b̂,τ1−1. It also follows
from (3.27) that XĴ(τ1 − 1) ≤ XN−1(τ1). Hence the definition of τ1 in (3.9) implies that
XĴ,b̂,τ1−1 > 2c3aN , which means that XĴ,b̂,τ1−1 is a big jump, and so cannot happen on
the time interval [t2, t2 + dδ`Ne] by the definition of C6. This implies the first inequality in
Step (i). We also notice that XĴ,b̂,τ1−1 is a big jump which takes the lead at time τ1, that
is τ1 − 1 ∈ SN (see (2.16)). Then we have T ≥ τ1 by the definition of T in (2.17), which
shows the second inequality of Step (i). Furthermore, the definition of T also shows that
T > t1 − dδ`Ne is not possible on C6, which concludes the third inequality and the proof
of Step (i).

Since we now know that T 6= 0, particle (N,T ) is the last particle which broke the record
with a big jump before time t1. Take (J, b∗) ∈ [N ]× {1, 2} such that (J, T − 1) .b∗ (N,T ),
so

XN (T ) = XJ(T − 1) +XJ,b∗,T−1, (3.28)

with XJ,b∗,T−1 > ρaN . That is, at time T − 1 the Jth particle’s b∗th offspring performed
a big jump XJ,b∗,T−1, with which it became the leader at time T at position XN (T ). We
will show that at time t1 there is a leader tribe in which every particle descends from
particle (N,T ). Our next step towards this statement is to show that the diameter is
large between times τ1 and t1.

Step (ii). We have d(X (s)) ≥ 3
2c3aN for all s ∈ Jτ1, t1K.

We prove Step (ii) by showing that the number of particles within distance 3
2c3aN of the

leader is strictly smaller than N at all times in Jτ1, t1K.
Let s ∈ Jτ1, t1K. Consider an arbitrary particle (i, s) in the population at time s. We

first claim that if

Xi(s) > XN (τ1)− 3
2c3aN , (3.29)

then particle (i, s) has an ancestor which made a big jump at some time s̃ ∈ Jτ1− 1, s− 1K.
That is, if (3.29) holds then

BN ∩ P i,sj,τ1−1 6= ∅, for some j ∈ [N ]. (3.30)
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To see this, we notice that

Xj(τ1 − 1) ≤ XN−1(τ1) < XN (τ1)− 2c3aN ∀j ∈ [N ], (3.31)

where the first inequality follows by (3.27), and the second from the definition of τ1.
Therefore, by (3.29), (3.31) and (3.4), we have

Xi(s) > Xj(τ1 − 1) + c1aN ∀j ∈ [N ]. (3.32)

In particular, this holds for j ∈ [N ] such that (j, τ1 − 1) . (i, s). Therefore (3.30) must
hold by Lemma 3.3, showing that our claim is true.

Thus, every particle which is to the right of XN (τ1)− 3
2c3aN at time s has an ancestor

which made a big jump between times τ1− 1 and s− 1. This gives us the following bound:

#
{
i ∈ [N ] : Xi(s) > XN (τ1)− 3

2c3aN
}
≤

∑
(l,b,r)∈B[τ1−1,s−1]

N

|N b
l,r(s)|, (3.33)

where N b
l,r(s) and B[τ1−1,s−1]

N are defined in (2.13) and (2.14) respectively. On the right-
hand side we sum the number of descendants of all particles which made a big jump
between times τ1 − 1 and s− 1. We want to show that this is smaller than N , because
that means that there must be at least one particle to the left of (or at) XN (τ1)− 3

2c3aN
at time s.

Since [τ1− 1, s] ⊆ [t2 + dδ`Ne , t1] by Step (i), any particle at a time in [τ1− 1, s− 1] has
at most 2t1−(t2+dδ`Ne) descendants at time s. Furthermore, the number of big jumps in
the time interval [τ1 − 1, s− 1] is at most K, by the definition of C7. Hence, by (3.33) and
then since t1 − t2 = `N ,

#
{
i ∈ [N ] : Xi(s) > XN (τ1)− 3

2c3aN
}
≤ K2t1−(t2+dδ`Ne) ≤ 2KN1−δ < N, (3.34)

by our assumption on N in the statement of Proposition 3.2. Therefore, by (3.34) and
monotonicity we must have X1(s) ≤ XN (τ1)− 3

2c3aN ≤ XN (s)− 3
2c3aN , which concludes

the proof of Step (ii).

Next we show that there is a gap between the two rightmost particles at time T .

Step (iii). We have XN−1(T ) + 3
2c2aN < XN (T ).

Note that we have τ1 ≤ T by Step (i). If T = τ1 then the statement of Step (iii) holds by
the definition of τ1 and (3.4).

Suppose instead that T > τ1. We now check the conditions of Corollary 3.7(a).
Recall from (3.28) that XJ,b∗,T−1 is a big jump. Since the particle performing the
jump XJ,b∗,T−1 becomes the leader at time T , we have XJ,b∗,T−1 ≥ ZJ(T − 1), where
ZJ(T − 1) is the gap between the Jth particle and the leader at time T − 1. Also note that

(J, b∗, T − 1) ∈ B[t2,t1]
N , and that by Step (ii) and (3.4) we have d(X (T − 1)) > (c3 + c1)aN .

Therefore Corollary 3.7 (using part (a) when XJ,b∗,T−1 > ZJ(T − 1); part (b) shows that
we cannot have XJ,b∗,T−1 = ZJ(T − 1) since otherwise the particle performing the jump
XJ,b∗,T−1 would not take the lead at time T ) implies

XN (T ) = XJ(T − 1) +XJ,b∗,T−1 > XN−1(T ) + (2c2 − ρ)aN ,

which together with (3.3) and (3.4) shows the statement of Step (iii).

In Step (iv) we show that every particle which does not descend from particle (N,T ) is
to the left of XN (T )− c2aN at time t1.
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Step (iv). Let i ∈ [N − 1] and j ∈ [N ]. If (i, T ) . (j, t1) then Xj(t1) ≤ XN (T )− c2aN .

First we will use Lemma 3.9(a) to bound XN (t1). Since T is the last time when a particle
took the lead with a big jump before time t1, we have JT, t1 − 1K ⊆ ScN , where SN is
defined in (2.16). By Corollary 3.8 and Steps (i) and (ii), it follows that JT, t1 − 1K ⊆ ŜcN .
Therefore the conditions of Lemma 3.9(a) hold with s = T and ∆s = t1 − T . Then
Lemma 3.9(a) yields

XN (t1) ≤ XN (T ) + c1aN . (3.35)

Now we prove the upper bound on Xj(t1) in the statement of Step (iv). Let us first
consider the case in which there is no big jump in the path between particles (i, T )

and (j, t1), i.e. BN ∩ P j,t1i,T = ∅. Then, by Lemma 3.3, Step (iii) and (3.4) we have

Xj(t1) ≤ Xi(T ) + c1aN < XN (T )− 3
2c2aN + c1aN < XN (T )− c2aN ,

which shows that the statement of Step (iv) holds in this case.
Now suppose instead that there exists a big jump on the path between particles (i, T )

and (j, t1), so assume we have some (l, b, r) ∈ BN ∩ P j,t1i,T . We will show that, even with
the big jump Xl,b,r, particle (j, t1) cannot arrive close to the leader particle (N, t1) at
time t1. This fact together with (3.35) will imply Step (iv).

We know that JT, t1 − 1K ⊆ ŜcN , and so, in particular, the leader at time r is not beaten
by the big jump Xl,b,r. Hence by the definition of Zl(r) in (3.11) we have Xl,b,r ≤ Zl(r).
Therefore, because of Steps (i) and (ii) and by (3.4), Corollary 3.7(b) applies, which
implies

Xl(r) +Xl,b,r ≤ XN (r)− 2c2aN . (3.36)

Now by Lemma 3.4 and since t1 − T < `N by Step (i), then by (3.36), and finally by
monotonicity,

Xj(t1) ≤ Xl(r) +Xl,b,r + c1aN ≤ XN (r)− 2c2aN + c1aN ≤ XN (t1)− 2c2aN + c1aN .

(3.37)

Putting (3.37) and (3.35) together and then using (3.4), we obtain

Xj(t1) ≤ XN (T )− 2c2aN + 2c1aN ≤ XN (T )− c2aN ,

which finishes the proof of Step (iv).

Step (v). The event B1, as defined in (3.7), occurs.

Let us simplify the notation by writing R = Rc1,N (t1), where Rc1,N (t1) is given by (3.6).
To prove that B1 occurs, we first show that

NN,T (t1) = {j ∈ [N ] : Xj(t1) ≥ XN (t1)− c1aN} = {N −R+ 1, . . . , N} . (3.38)

The second equality follows directly from the definition of R; we will prove the first
equality.

Note that Step (iv) implies that every descendant of particle (N,T ) survives until
time t1, that is |NN,T (t1)| = 2t1−T > 1. Indeed, by Step (i) and our assumption on N

we have 2t1−T ≤ 2N1−δ < N , thus at time t1 there are at least 2t1−T particles to the
right of (or at) position XN (T ) by Lemma 2.4. By Step (iv), particles not descended from
particle (N,T ) are to the left of position XN (T ) at time t1. Therefore, particle (N,T )

must have 2t1−T surviving descendants at time t1, since otherwise there would not be
2t1−T particles to the right of (or at) position XN (T ).
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The above argument also implies that the leader at time t1 must be a descendant
of particle (N,T ), i.e. N ∈ NN,T (t1). Furthermore, as all jumps are non-negative, and
by (3.35), we have

Xk(t1) ∈ [XN (T ),XN (T ) + c1aN ] ∀k ∈ NN,T (t1). (3.39)

In particular, using the above and (3.35) again, we must have Xk(t1) ≥ XN (T ) ≥ XN (t1)−
c1aN for all k ∈ NN,T (t1).

By Step (iv) and then by monotonicity and (3.4),

Xj(t1) ≤ XN (T )− c2aN < XN (t1)− c1aN ∀j ∈ [N ] \ NN,T (t1),

and (3.38) follows.
Next we check that

XN−R(t1) ≤ XN−R+1(t1)− c2aN . (3.40)

By (3.38) we see that N −R+ 1 ∈ NN,T (t1) and N −R /∈ NN,T (t1). Therefore, Step (iv)
and (3.39) imply (3.40).

Finally, we need to show that

R ≤ 2N1−δ. (3.41)

We have that

R = | {N −R+ 1, . . . , N} | = |NN,T (t1)| ≤ 2t1−(t2+dδ`Ne) ≤ 2N1−δ,

where in the second equality we used (3.38), and the inequality follows since T >

t2 + dδ`Ne by Step (i). Therefore by Step (i), (3.38), (3.40) and (3.41), B1 occurs, which
concludes Step (v).

This completes the proof of (3.26).

Proof that C1 to C7 imply B2

Recall the definition of the event B2 in (3.8). We now prove that

B1 ∩ C4 ∩ C6 ∩ C7 ⊆ B2, (3.42)

which implies
⋂7
j=1 Cj ⊆ B2 because of (3.26).

Assume that B1 ∩ C4 ∩ C6 ∩ C7 occurs. Again write R = Rc1,N (t1), where Rc1,N (t1) is
defined using (3.6). Take j ∈ [N −R] and consider particle (j, t1). Then, by the definition
of the event B1 in (3.7), and since the leader at time t1 is to the right of every particle at
time t1, we have

Xj(t1) ≤ XN−R+1(t1)− c2aN ≤ XN (t1)− c2aN . (3.43)

Now suppose that the ith particle at time t is a descendant of particle (j, t1), i.e. i ∈
Nj,t1(t). Lemma 2.4 implies that every particle at time t is to the right of (or at) XN (t1).
Thus we have Xi(t) ≥ XN (t1), which together with (3.43) and (3.4) implies

Xi(t) > Xj(t1) + c1aN .

Thus, by Lemma 3.3, there must be a big jump in the path between particles (j, t1) and
(i, t); that is, we must have BN ∩ P i,tj,t1 6= ∅.

Therefore we can bound the number of time-t descendants of particles (1, t1), (2, t1),
. . . , (N−R, t1) by the number of descendants of particles which made a big jump between
times t1 and t− 1:

N−R∑
j=1

|Nj,t1(t)| ≤
∑

(k,b,s)∈B[t1,t−1]

N

|N b
k,s(t)|. (3.44)
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By the definition of the event C6, no particle makes a big jump in the time interval
[t1−dδ`Ne , t1 + dδ`Ne]. Hence, any particle which made a big jump between times t1 and
t− 1 can have at most 2t−(t1+dδ`Ne) descendants at time t. Furthermore, by the definition
of C7, |B[t1,t−1]

N | ≤ K. Putting these observations together with (3.44) we obtain

N−R∑
j=1

|Nj,t1(t)| ≤ 2KN1−δ < N1−γ , (3.45)

by our assumption on N in the statement of the proposition. This completes the proof
of (3.42).

Proof that C1 to C7 imply A1

Recall the definition of A1 in (2.3). We now complete the proof of Proposition 3.2 by
showing that

7⋂
j=1

Cj ⊆ A1. (3.46)

Assume
⋂7
j=1 Cj occurs. Let i, j ∈ [N ] be such that (j, t1) . (i, t). Assume first that

BN ∩ P i,tj,t1 = ∅. Then, by Lemma 3.3 and using the leader’s position as an upper bound,
we obtain

Xi(t) ≤ Xj(t1) + c1aN ≤ XN (t1) + c1aN ≤ X1(t) + c1aN ,

where the last inequality follows by Lemma 2.4. Thus, recalling the definition of Lc1,N (t)

in (2.1), we have i ∈ [Lc1,N (t)]. Therefore, if i > Lc1,N (t) then we must have BN∩P i,tj,t1 6= ∅.
It follows that

N − Lc1,N (t) ≤
∑

(k,b,s)∈B[t1,t−1]

N

|N b
k,s(t)| < N1−γ

by the same argument as for (3.45). Since we took c1 < η in (3.4), we now have
Lη,N (t) ≥ N −N1−γ , which finishes the proof of (3.46). The proof of Proposition 3.2 then
follows from (3.26), (3.42), (3.46) and Step (ii).

3.3 Breaking down event C1
We have now broken down the events B1, B2 and A1 into simpler events C1 to C7.

In Section 4 we will be able to show directly that the events C2 to C7 occur with high
probability. However, we will need to break C1 down further, into simpler events that we
will show occur with high probability in Section 4. In this section we carry out the task
of breaking down C1, which says that a gap of size 2c3aN appears behind the rightmost
particle at some point during the time interval [t2 + 1, t1] (see (3.10)), into simpler events.
Recall that we assumed t > 4`N , and that the constants η ∈ (0, 1], γ, δ, ρ, c1, c2, . . . , c6, K
satisfy (3.2)-(3.5).

The first event we introduce is the same as the event C2 in (3.12), except with larger
gaps and jumps. That is, if a particle is more than c4aN away from the leader, then it
does not jump to within distance 3c3aN of the leader’s position with a single big jump
(recall that c3 � c4). We let

D1 :=

{
@(i, b, s) ∈ [N ]× {1, 2} × Jt3, t− 1K such that
Xi,b,s ∈ (Zi(s)− 3c3aN , Zi(s) + 3c3aN ] and Zi(s) ≥ c4aN

}
, (3.47)

where Zi(s) is the gap between the ith and the rightmost particle. The reason behind the
definition of D1 is the following. Assume that a big jump beats the leader at a time when
the diameter is fairly big (> 3

2c4aN ). Then the event D1, together with the events C3, C4
and C5, implies that this particle must become the new leader and it will lead by at least
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(3c3 − ρ)aN , which will be enough to show that C1 occurs. We state this as a corollary
below, which we will use later on in this section.

Corollary 3.10. On the event D1∩C3∩C4∩C5, if (k, b, s) ∈ B[t3,t−1]
N , d(X (s)) ≥ (c4 +c1)aN

and Xk,b,s > Zk(s), then

XN (s+ 1) = Xk(s) +Xk,b,s > XN−1(s+ 1) + (3c3 − ρ)aN ,

where Zk(s),D1 and C3, C4, C5 are given by (3.11), (3.47) and (3.13)-(3.15) respectively,

and B[t3,t−1]
N is defined in (2.14).

Proof. The statement follows by exactly the same argument as for Corollary 3.7(a), if we
replace C2 by D1, c3 by c4 and 2c2 by 3c3.

The next two events will ensure that the record is broken in the time interval [t2+1, t1].
The first event says that there is a jump of size greater than 2c4aN in every interval of
length c5`N in [t3, t1] (recall c4 � c5). We define

D2 := {∀s ∈ Jt3, t1 − c5`N K, ∃(k, b, ŝ) ∈ [N ]× {1, 2} × Js, s+ c5`N K : Xk,b,ŝ > 2c4aN} .
(3.48)

The event D2 will be useful if at some point in the time interval [t2, t1] the diameter is
not too large (≤ 3

2c4aN ). If D2 occurs then shortly after this point a jump of size larger
than 2c4aN happens. We will show that this jump breaks the record, and the particle
performing this jump will lead by at least 2c3aN . The reason for this is that the jump
size (> 2c4aN ) is much greater than the preceding diameter (≤ 3

2c4aN ), and that c3 � c4.
The next event says that there will be a jump of size greater than 2c6aN between

times t2 and t2 + d`N/2e (recall c6 � c5). Let

D3 := {∃(i, b, s) ∈ [N ]× {1, 2} × Jt2, t2 + d`N/2eK : Xi,b,s > 2c6aN} . (3.49)

The next event says that there is no jump of size greater than c6aN shortly before time
t2. We let

D4 := {@(i, b, s) ∈ [N ]× {1, 2} × Jt2 − dc5`Ne , t2K : Xi,b,s > c6aN} (3.50)

(recall c5 � c6). Our last event excludes jumps of size in a certain small range in a
certain short time interval. The starting point of this time interval will be the first time
after t2 when the diameter is at most 3

2c4aN :

τ2 := inf
{
s ≥ t2 : d(X (s)) ≤ 3

2c4aN
}
, (3.51)

and we define the event

D5 :=

{
@(k, b, s) ∈ [N ]× {1, 2} × Jτ2, τ2 + c5`N K :

Xk,b,s ∈ (2c4aN , 2c4aN + 3c3aN ]

}
. (3.52)

We can now state the main result of this subsection.

Proposition 3.11. Let η ∈ (0, 1], and assume that the constants γ, δ, ρ, c1, c2, . . . , c6,K
satisfy (3.2)-(3.5). For all N ≥ 2 sufficiently large that `N −dc5`Ne ≥ d`N/2e and t > 4`N ,

7⋂
j=2

Cj ∩
5⋂
i=1

Di ⊆ C1,

where D1, . . . ,D5 are defined in (3.47)-(3.50) and (3.52) respectively, and C1, . . . , C7 are
defined in (3.10) and (3.12)-(3.17) respectively.
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Before giving a precise proof of Proposition 3.11, we give an outline of the argument,
which is divided into four separate cases. Suppose

⋂7
j=2 Cj ∩

⋂5
i=1Di occurs.

Case 1: Suppose there is a time τ2 ∈ [t2, t1− c5`N ] when the diameter is not too large (at
most 3

2c4aN ). Then shortly after time τ2, there will be a jump of size larger than 2c4aN ,
by the definition of the event D2. We will show that the particle making this jump breaks
the record and will lead by a distance larger than 2c3aN . The proof will also use the
definition of the event D5.

Case 2(a): Suppose the diameter is larger than 3
2c4aN at all times in [t2, t1 − c5`N ], but

the record is broken by a big jump at some point in this time interval. Then Corollary 3.10
tells us that there will be a gap of size greater than 2c3aN behind the new record.

Case 2(b): Suppose the diameter is larger than 3
2c4aN at all times in [t2, t1−c5`N ]. If the

record is not broken on the time interval [t2 − dc5`Ne , t1 − c5`N ], then using Lemma 3.9,
we can show that the diameter is less than 3

2c4aN at time t1 − dc5`Ne, giving us a contra-
diction. Thus this case is impossible.

Case 2(c): Suppose the diameter is larger than 3
2c4aN at all times in [t2, t1 − c5`N ]. Now

consider the case that the record is not broken on the time interval [t2, t1 − c5`N ], but is
broken shortly before t2, during the time interval [t2 − dc5`Ne , t2 − 1]. By the definition
of the event D4, this jump cannot be very big. Therefore, we will see that the new
leader will be beaten by the first jump of size greater than 2c6aN , if the record has not
already been broken before that. There will be a jump of size greater than 2c6aN before
time t2 + d`N/2e because of the event D3, so the record must be broken by a big jump
before time t1 − c5`N . This again gives us a contradiction, meaning that Case 2(c) is also
impossible.

We now prove Proposition 3.11, using cases 1, 2(a), 2(b) and 2(c) as described above.

Proof of Proposition 3.11. Fix η ∈ (0, 1] and take constants γ, δ, ρ, c1, c2, . . . , c6,K as in
(3.2)-(3.5). Let us assume that

⋂7
j=2 Cj ∩

⋂5
i=1Di occurs.

Case 1: t2 ≤ τ2 ≤ t1 − c5`N .
In this case, by the definition of τ2 we have

d(X (τ2)) ≤ 3
2c4aN . (3.53)

Let us now consider the first jump of size greater than 2c4aN after time τ2; that is, let

s∗ = inf {s ≥ τ2 : ∃(k, b) ∈ [N ]× {1, 2} such that Xk,b,s > 2c4aN} ∈ Jτ2, τ2 + c5`N K
(3.54)

by the definition of the event D2 in (3.48). Take (k∗, b∗) ∈ [N ]×{1, 2} such that Xk∗,b∗,s∗ >

2c4aN (there is a unique choice of the pair (k∗, b∗) by the definition of the event C5). We
will show that the jump Xk∗,b∗,s∗ creates a gap of size larger than 2c3aN behind the
leader. We do this in two steps. First we show that the diameter is not too large right
before the jump Xk∗,b∗,s∗ occurs; then we show that a gap is created.

(i) We claim that
d(X (s∗)) ≤ 2c4aN + c2aN . (3.55)

Now we prove the claim. By (3.53), the claim holds if s∗ = τ2. Suppose on the
other hand that s∗ > τ2. Let j ∈ [N ] be arbitrary, and then take i ∈ [N ] such that
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(i, τ2) . (j, s∗). We will show that particle (j, s∗) is within distance (2c4 + c2)aN of
the leftmost particle at time s∗. We consider two cases, depending on whether
there is a big jump on the path between Xi(τ2) and Xj(s∗).

• If BN ∩ P j,s
∗

i,τ2
= ∅, then by Lemma 3.3, (3.53) and monotonicity,

Xj(s∗) ≤ Xi(τ2) + c1aN ≤ X1(τ2) + 3
2c4aN + c1aN ≤ X1(s∗) + 3

2c4aN + c1aN .

(3.56)

• If BN ∩P j,s
∗

i,τ2
6= ∅, then take (k′, b′, s′) ∈ BN ∩P j,s

∗

i,τ2
. Then Xk′(s′) is the position

of the parent of the particle that makes the jump Xk′,b′,s′ . Since (by (3.54))
Xk∗,b∗,s∗ is the first jump of size greater than 2c4aN after time τ2, and since
s′ < s∗, we have Xk′,b′,s′ ≤ 2c4aN . Then since s∗ − s′ ≤ s∗ − τ2 ≤ c5`N , by
Lemma 3.4 we have

Xj(s∗) ≤ Xk′(s′) +Xk′,b′,s′ + c1aN ≤ Xk′(s′) + 2c4aN + c1aN .

Now Lemma 3.6 and monotonicity imply that this is at most

X1(s′) + 2c4aN + 2c1aN ≤ X1(s∗) + 2c4aN + 2c1aN . (3.57)

By (3.56), (3.57) and our choice of constants in (3.4), we conclude that for any
particle position Xj(s∗) in the population at time s∗, Xj(s∗) ≤ X1(s∗)+2c4aN +c2aN ,
which implies (3.55).

(ii) We claim that
XN−1(s∗ + 1) + 2c3aN < XN (s∗ + 1). (3.58)

By the definition of (k∗, b∗, s∗), we have Xk∗,b∗,s∗ > 2c4aN , and we also know
that Xk∗,b∗,s∗ /∈ (2c4aN , 2c4aN + 3c3aN ] by the definition of the event D5, because
s∗ ∈ Jτ2, τ2 + c5`N K. Therefore we have

Xk∗,b∗,s∗ > 2c4aN + 3c3aN . (3.59)

Then by (3.59) and (3.55),

Xk∗(s∗) +Xk∗,b∗,s∗ > X1(s∗) + (2c4 + 3c3)aN ≥ XN (s∗) + (3c3 − c2)aN . (3.60)

Note that 3c3 − c2 > ρ by (3.3)-(3.4), which in particular shows that Xk∗,b∗,s∗ must
be a big jump. Hence by (3.60) and Lemma 3.5(b), we have (k∗, s∗) .b∗ (N, s∗ + 1)

and
XN (s∗ + 1) > XN−1(s∗ + 1) + (3c3 − c2 − ρ)aN ,

which is larger than XN−1(s∗ + 1) + 2c3aN by (3.3)-(3.4). This finishes the proof
of (3.58).

Recall from (3.54) that s∗ ∈ Jτ2, τ2 + c5`N K. Furthermore, event C6 tells us that s∗ /∈
[t1 − dδ`Ne , t1]. Therefore, by the assumption of Case 1 that τ2 ∈ [t2, t1 − c5`N ], we
conclude t2 + 1 ≤ s∗ + 1 ≤ t1, which together with (3.58) shows that C1 occurs. We
conclude that Proposition 3.11 holds in Case 1.

Case 2(a): τ2 > t1 − c5`N and [t2, t1 − c5`N ] ∩ ŜN 6= ∅, where ŜN is defined in (2.18).

This means that there exists (k̂, b̂, ŝ) ∈ B
[t2,t1−c5`N ]
N with Xk̂,b̂,ŝ > Zk̂(ŝ) (recall (3.11)).

Since τ2 > t1−c5`N , we have d(X (ŝ)) > 3
2c4aN . Then by (3.4), we can apply Corollary 3.10

to obtain

XN (ŝ+ 1) = Xk̂(ŝ) +Xk̂,b̂,ŝ > XN−1(ŝ+ 1) + (3c3 − ρ)aN .
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By our choice of constants in (3.3)-(3.4), and because ŝ + 1 ∈ Jt2 + 1, t1K, this shows
that C1 occurs. Therefore we are done with the proof of Proposition 3.11 in Case 2(a).

Case 2(b): τ2 > t1 − c5`N and [t2 − dc5`Ne, t1 − c5`N ] ∩ ŜN = ∅.
We will apply Lemma 3.9 with s = t2 − dc5`Ne and ∆s = `N . By assumption we have
[s, s+ ∆s− 1] ⊆ ŜcN , and therefore applying either part (a) or part (b) of Lemma 3.9 as
appropriate, we have

d(X (s+ ∆s)) = d(X (t1 − dc5`Ne)) ≤ max
{
c1aN ,

3
2c3aN + 2c1aN

}
which is smaller than 3

2c4aN by (3.4), contradicting the assumption that τ2 > t1 − c5`N .
This shows that Case 2(b) cannot occur.

Case 2(c): τ2 > t1 − c5`N and [t2, t1 − c5`N ] ∩ ŜN = ∅, but [t2 − dc5`Ne, t2 − 1] ∩ ŜN 6= ∅.
Define

τ3 := inf
{
s ≤ t2 : Js, t2K ⊆ ŜcN

}
∈ (t2 − dc5`Ne, t2]. (3.61)

Suppose, aiming for a contradiction, that there exists r ∈ Jτ3, t1 − c5`N K such that
d(X (r)) ≤ 3

2c3aN . Then since Jτ3, t2K ⊆ ŜcN and Jt2, t1−c5`N K ⊆ ŜcN , Lemma 3.9(b) applies
with s = r and ∆s = t1 − dc5`Ne − r (which is smaller than `N since r ≥ τ3 > t2 − dc5`Ne),
and says that d(X (t1−dc5`Ne)) ≤ 3

2c3aN+2c1aN . By (3.4), this contradicts the assumption
that τ2 > t1 − c5`N . Thus we must have

d(X (r)) ≥ 3
2c3aN ∀r ∈ Jτ3, t1 − c5`N K. (3.62)

Now note that τ3 − 1 ∈ ŜN . Then by (3.62), the second equivalence in Corollary 3.8
implies that in fact τ3 − 1 ∈ SN . Hence, by the definition of SN in (2.16), there exists
(k, b) ∈ [N ]× {1, 2} such that

XN (τ3) = Xk(τ3 − 1) +Xk,b,τ3−1, (3.63)

whereXk,b,τ3−1 > ρaN . Now Lemma 3.6 provides a bound on Xk(τ3−1), and the definition
of D4 together with the fact that τ3 − 1 ∈ [t2 − dc5`Ne , t2] gives us a bound on Xk,b,τ3−1,
so that we obtain

XN (τ3) ≤ X1(τ3 − 1) + (c1 + c6)aN . (3.64)

Now, on the event D3, there exists (̃i, b̃, s̃) ∈ [N ]× {1, 2} × Jt2, t2 + d`N/2eK such that

Xĩ,b̃,s̃ > 2c6aN > ρaN (3.65)

by (3.3)-(3.4). We show that the particle performing this big jump beats the leader at
time s̃. By our assumption that `N − dc5`Ne ≥ d`N/2e and by (3.61), we have Jτ3, s̃K ⊆ ŜcN
and s̃ − τ3 ≤ `N . Therefore, by (3.62) we can apply Lemma 3.9(a) with s = τ3 and
∆s = s̃− τ3, and then by (3.64) we have

XN (s̃) ≤ XN (τ3) + c1aN ≤ X1(τ3 − 1) + (2c1 + c6)aN . (3.66)

By (3.4), it follows that

XN (s̃) < X1(τ3 − 1) + 2c6aN < X1(s̃) +Xĩ,b̃,s̃ ≤ Xĩ(s̃) +Xĩ,b̃,s̃,

where in the second inequality we use monotonicity and (3.65). Therefore, by the
assumptions that s̃ ∈ Jt2, t2 + d`N/2eK and `N − dc5`Ne ≥ d`N/2e, and by the definition of
ŜN in (2.18), we have s̃ ∈ ŜN ∩ [t2, t1 − c5`N ], which contradicts the assumption of Case
2(c).

We have now shown that if
⋂7
j=2 Cj ∩

⋂5
i=1Di occurs then Cases 2(b) and 2(c) are

impossible, whereas Cases 1 and 2(a) imply that C1 must occur. This concludes the proof
of Proposition 3.11.
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4 Probabilities of the events from the deterministic argument

In the deterministic argument in Section 3 we have provided a strategy which ensures
that the events A1 and A3 occur. In this section we check that the events C2 to C7 and D1

to D5 which make up this strategy all occur with high probability, and use this to finish
the proof of Proposition 2.6.

When bounding the probabilities of these events, it will be useful to consider branch-
ing random walks (BRWs) without selection, where at each time step all particles have
two offspring, the offspring particles make i.i.d. jumps from their parents’ locations,
and every offspring particle survives. Below we describe a construction of the N -BRW
from N independent BRWs, which will allow us to consider our events on the probability
space on which the BRWs are defined. (A similar construction was used in [1].)

4.1 Construction of the N-BRW from N independent BRWs

Consider a binary tree with the following labelling. Let

U0 :=

∞⋃
n=0

{1, 2}n ,

and for convenience we write e.g. 121 instead of (1, 2, 1). Then the root of the binary tree
has label ∅, and for all u ∈ U0 the two children of vertex u have labels u1 and u2. We will
use the partial order � on the set U0; we write u � v if either u = v or the vertex with
label u is an ancestor of the vertex with label v in the binary tree. We also write u ≺ v if
u � v and u 6= v.

The particles of the N independent BRWs will have labels from the set [N ]× U0, and
we have a lexicographical order on the set of labels. We also let U := U0 \ {∅}. The
jumps of the BRWs will be given by random variables (Yj,u)j∈[N ],u∈U , which are i.i.d. with
common law given by (1.3).

The N initial particles of the N independent BRWs are labelled with the pairs (j, ∅)
with j ∈ [N ]. For each j ∈ [N ], we let Yj(∅) ∈ R be the initial location of particle (j, ∅).
Then, at each time step n ∈ N0, each particle (j, u) with j ∈ [N ] and u ∈ {1, 2}n has two
offspring labelled (j, u1) and (j, u2), which make jumps Yj,u1, Yj,u2 from the location Yj(u).
The locations of the offspring particles (j, u1) and (j, u2) will be Yj(u1) = Yj(u) + Yj,u1

and Yj(u2) = Yj(u) + Yj,u2. Note that for u ≺ v, the path between particles (j, u) and
(j, v) is given by the jumps Yj,w with u ≺ w � v, i.e. Yj(v)− Yj(u) =

∑
u≺w�v Yj,w.

Now we construct the N -BRW by defining the surviving set of particles for each
time n ∈ N0 as the N -element set Hn ⊆ [N ]× {1, 2}n, constructed iteratively as follows.
Let H0 := {(1, ∅), . . . , (N, ∅)}. Given Hn for some n ∈ N0, we let H ′n denote the set of
offspring of the particles in the set Hn:

H ′n :=
⋃

(j,u)∈Hn

{(j, u1), (j, u2)} .

Then Hn+1 ⊆ H ′n consists of the particles with the N largest values in the collection
(Yj(u))(j,u)∈H′n , where ties are broken based on the lexicographical order of the labels.
In this way an N -BRW is constructed from the initial configuration (Yj(∅))j∈[N ] and the
jumps (Yj,u)j∈[N ],u∈U .

For n ∈ N, we let F ′n denote the σ-algebra generated by (Yj,u)j∈[N ],u∈∪nm=1{1,2}m . Note
that Hn is F ′n-measurable for each n.

Returning to our original notation in Section 2.1, we can say the following. For all
n ∈ N0, let X (n) denote the ordered set which contains the values (Yj(u))(j,u)∈Hn in
ascending order:

X (n) = {X1(n) ≤ · · · ≤ XN (n)} := {Yj1(u1) ≤ · · · ≤ YjN (uN )} , (4.1)
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where Hn = {(ji, ui) : i ∈ [N ]}, and again ties are broken based on the lexicographical
order of the labels. Then we define the map σ which associates the pair (i, n) ∈ [N ]×N0

with particle (ji, ui) ∈ Hn, where Yji(ui) has the ith position in the ordered set X (n).
That is, for (i, n) ∈ [N ]×N0 we let

σ(i, n) = (ji, ui) ∈ Hn ⊂ [N ]× U0, (4.2)

where (ji, ui) is as in (4.1). The jumps in our original notation are then given by

Xi,1,n := Yji,ui1 and Xi,2,n := Yji,ui2, (4.3)

if σ(i, n) = (ji, ui).
Finally, recall that we introduced the partial order . in (2.8) in Section 2.4 to denote

that two particles are related in the N -BRW. This partial order corresponds to the partial
order � in the N independent BRWs as follows. For all n, k ∈ N0 and i0, ik ∈ [N ], we have
(i0, n) . (ik, n+ k) if and only if for some j ∈ [N ] and u, v ∈ U0, we have σ(i0, n) = (j, u),
σ(ik, n+ k) = (j, v), and u � v. Furthermore, for b ∈ {1, 2} we have (i0, n) .b (ik, n+ k) if
and only if the above holds and additionally k ≥ 1 and ub � v.

Now we can consider the N -BRW constructed from N independent BRWs with the
notation introduced in Sections 2.1 and 2.4. It follows from our construction that for any
path in the N -BRW, there is a path in one of the N independent BRWs that consists of
the same sequence of jumps as the path in the N -BRW. We state and prove this simple
property below. Recall the notation P i2,n2

i1,n1
from (2.10).

Lemma 4.1. For all k ∈ N, i0, ik ∈ [N ] and n ∈ N0, if (i0, n) . (ik, n+ k) with P ik,n+k
i0,n

=

{(il, bl, n+ l) : l ∈ {0, . . . , k − 1}}, then there exists j ∈ [N ] and (ul)
k
l=0 ⊆ U0 such that

(1) (j, ul) ∈ Hn+l, for all l ∈ {0, . . . , k},

(2) ulbl � uk, for all l ∈ {0, . . . , k − 1}, and

(3) Xil,bl,n+l = Yj,ulbl , for all l ∈ {0, . . . , k − 1}.

Proof. Take (il, bl, n+ l) ∈ P ik,n+k
i0,n

(with l ∈ {0, . . . , k − 1}). Then (il, n+ l) .bl (ik, n+ k).
Thus, there exist j ∈ [N ] and ul, uk ∈ U0 such that σ(il, n+l) = (j, ul), σ(ik, n+k) = (j, uk),
and ulbl � uk. This implies Xil,bl,n+l = Yj,ulbl (see (4.3)) and also (j, ul) ∈ Hn+l and
(j, uk) ∈ Hn+k by the definition (4.2) of σ. Since (il, bl, n+ l) ∈ P ik,n+k

i0,n
was arbitrary, the

result follows.

4.2 Paths with regularly varying jump distribution

One of the most important components of the deterministic argument in Section 3
is that paths cannot move very far without big jumps; this is the meaning of the event
C4 defined in (3.14). Corollary 4.5 is the main result of this section and will be used to
bound from below the probability that the event C4 occurs.

As in [2], we use Potter’s bounds to give useful estimates on the regularly vary-
ing function h (with index α) defined in (1.3). We will use the following elementary
consequence of Potter’s bounds.

Lemma 4.2. For ε > 0, there exist B(ε) > 1 and C1(ε), C2(ε) > 0 such that

1

h(x)
≤ C1x

ε−α and h(x) ≤ C2x
α+ε ∀x ≥ B.

Proof. Let ε > 0 be arbitrary. By Potter’s bounds [6, Theorem 1.5.6(iii)], there exists
x0 > 0 depending only on ε such that

h(y)

h(x)
≤ 2 max

(
(y/x)α+ε, (y/x)α−ε

)
∀x, y ≥ x0. (4.4)
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Let x ≥ x0 be arbitrary and let y = x0 in (4.4). Then we have y/x ≤ 1 and so
(y/x)α+ε ≤ (y/x)α−ε, and the first inequality in the statement of the lemma holds
with C1 = 2xα−ε0 h(x0)−1 and B = x0 + 1. Similarly, since we have x/y ≥ 1, we have
(x/y)α−ε ≤ (x/y)α+ε, and hence by (4.4) (with x and y exchanged) the second inequality

holds with C2 = 2h(x0)x
−(α+ε)
0 and B = x0 + 1.

In order to show that C4 occurs with high probability, we prove a lemma about a
random walk with the same jump distribution as our N -BRW, but in which jumps larger
than a certain size are discarded and count as a jump of size zero. The lemma gives
an upper bound on the probability that this random walk moves a large distance xN
in of order `N steps, if the jumps larger than rxN are discarded (for some r ∈ (0, 1)).
For an arbitrarily large q > 0, the parameter r can be taken sufficiently small that the
above probability is smaller than N−q (for large N ). Our lemma is similar to the lemma
on page 168 of [13], where the jump distribution is truncated; jumps greater than a
threshold value are not allowed at all, instead of being counted as zero. We use ideas
from the proof of Theorem 3 in [15], which is a large deviation result for sums of random
variables with stretched exponential tails.

Recall that P(X > x) = h(x)−1 for x ≥ 0, where h is regularly varying with index
α > 0.

Lemma 4.3. Let X1, X2, . . . be i.i.d. random variables with X1
d
= X. For any m ∈ N,

q > 0, λ > 0, 0 < r < 1 ∧ λ(1∧α)
8q , for N sufficiently large, if xN > Nλ then

P

(
m`N∑
j=1

Xj1{Xj≤rxN} ≥ xN

)
≤ N−q.

Before proving Lemma 4.3, we now state and prove an elementary identity which will
be used in the proof. This identity was also used in the proof of Theorem 3 in [15].

Lemma 4.4. Suppose Y is a non-negative random variable. For v > 0 and 0 < K1 <

K2 <∞,

E[exp(vY 1{Y≤K2})1{Y≥K1}]

=

∫ K2

K1

vevuP(Y > u)du+ evK1P(Y ≥ K1)− (evK2 − 1)P(Y > K2). (4.5)

Proof. First note that the random variable in the expectation on the left-hand side of (4.5)
takes the value 1 if Y > K2. The expectation can be written as

E[exp(vY 1{Y≤K2})1{Y≥K1}] = E
[
evY 1{K1≤Y≤K2}

]
+ P(Y > K2). (4.6)

Now we will work on the integral on the right-hand side of (4.5). First, by Fubini’s
theorem we have∫ K2

K1

vevuP(Y > u)du = E

[∫ K2

K1

vevu1{Y >u}du

]
= E

[∫ K2∧Y

K1

vevudu1{Y≥K1}

]
.

By calculating the integral, it follows that∫ K2

K1

vevuP(Y > u)du = E
[(
ev(K2∧Y ) − evK1

)
1{Y≥K1}

]
= E

[
evY 1{K1≤Y≤K2}

]
+ E

[
evK21{Y >K2}

]
− E

[
evK11{Y≥K1}

]
.

The result follows by (4.6).
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Proof of Lemma 4.3. Let X̃ := X1{X≤rxN} and X̃j := Xj1{Xj≤rxN} for all j ∈ N. Take N

sufficiently large that `N ≤ 2 log2N . Then by Markov’s inequality and since X̃1, X̃2, . . .

are i.i.d. with X̃1
d
= X̃, for c > 0,

P

m`N∑
j=1

X̃j ≥ xN

 = P

exp

c`Nx−1
N

m`N∑
j=1

X̃j

 ≥ ec`N


≤ e−c`NE
[
ec`Nx

−1
N X̃

]m`N
≤ N

− c
log 2 + 2m

log 2 logE

[
ec`Nx

−1
N

X̃

]
, (4.7)

since log2N ≤ `N ≤ 2 log2N . We will show that with an appropriate choice of c > 0, for
N sufficiently large, the right-hand side of (4.7) is smaller than N−q. First we require

c > 2q log 2. (4.8)

Second, we will have another condition on c which ensures that E[ec`Nx
−1
N X̃ ] ≤ 1+O(N−ε)

as N →∞ for some ε > 0. We now estimate this expectation and determine the choice
of c.

Take 0 < ε < λ(1∧α)
2(λ+1) , and take B = B(ε) > 1 and C1 = C1(ε) > 0 as in Lemma 4.2.

Suppose N is sufficiently large that rxN > B. We apply Lemma 4.4 with Y = X,
v = c`Nx

−1
N , K1 = B and K2 = rxN , and then use (1.3), to obtain

E
[
ec`Nx

−1
N X̃

]
≤ E

[
e
c`Nx

−1
N X1{X≤rxN}1{X≥B}

]
+ eBc`Nx

−1
N P(X < B)

≤
∫ rxN

B

c`Nx
−1
N ec`Nx

−1
N uh(u)−1du+ eBc`Nx

−1
N . (4.9)

We will choose c such that the first term on the right-hand side of (4.9) is close to
zero. By Lemma 4.2, and then since r < 1, we have∫ rxN

B

c`Nx
−1
N ec`Nx

−1
N uh(u)−1du ≤

∫ rxN

B

C1c`Nx
−1
N ec`Nx

−1
N uu−α+εdu

≤ C1c`Nx
−1
N

∫ rxN

B

ec`Nx
−1
N (rxN )xεNu

−αdu.

Integrating the right-hand side, since we took N sufficiently large that `N ≤ 2 log2N , we
conclude∫ rxN

B

c`Nx
−1
N ec`Nx

−1
N uh(u)−1du ≤


C1c
1−α`NN

2cr
log 2

(
r1−αxε−αN −B1−αxε−1

N

)
, if α 6= 1,

C1c`Nx
ε−1
N N

2cr
log 2 log xN , if α = 1,

(4.10)

where in the α = 1 case we use that B > 1 and that r < 1.
Now, since xN > Nλ and ε < 1 ∧ α, the right-hand side of (4.10) is at most of order

N−ε if

2cr

log 2
+ λ(ε− (1 ∧ α)) < −ε. (4.11)

Since r < λ(1∧α)
8q by the assumptions of the lemma, we can find c such that

2q log 2 < c <
λ(1 ∧ α) log 2

4r
.
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Then since we chose ε < λ(1∧α)
2(λ+1) , c satisfies (4.8) and (4.11). Note furthermore that since

xN > Nλ, the second term on the right-hand side of (4.9) is close to 1 for N large; for N
sufficiently large we have

eBc`Nx
−1
N ≤ eBc`NN

−λ
≤ 1 + 2Bc`NN

−λ. (4.12)

Hence, (4.9), (4.10) and the choice of c, and (4.12) with the fact that ε < λ show that
there exists a constant A > 0 such that

E
[
ec`Nx

−1
N X̃

]
≤ 1 +AN−ε

for N sufficiently large and xN > Nλ. Therefore, by (4.7) and (4.8) we have

P

m`N∑
j=1

X̃j ≥ xN

 ≤ N−2q+ 2m
log 2 log(1+AN−ε) ≤ N−2q+ 2m

log 2AN
−ε
< N−q,

for N sufficiently large, which concludes the proof.

We now apply Lemma 4.3 to the N -BRW, to give us a convenient form of the result
which we will use later in this section and also in Section 5.

Corollary 4.5. Let λ > 0 and 0 < r < 1 ∧ λ(1∧α)
48 . Then there exists C > 0 such that for

N sufficiently large, if xN > Nλ,

P

(
∃(k1, s1) ∈ [N ]× Jt4, t− 1K, s2 ∈ Js1 + 1, tK and k2 ∈ Nk1,s1(s2) :∑

(i,b,s)∈Pk2,s2k1,s1

Xi,b,s1{Xi,b,s≤rxN} ≥ xN

)
≤ CN−1,

where P k2,s2k1,s1
and Nk1,s1(s2) are defined in (2.10) and (2.12) respectively.

Proof. Take (k1, s1), (k2, s2) ∈ [N ]× Jt4, t−1K with (k1, s1) . (k2, s2), and let k′ = ζk1,s1(t4)

be the index of the time-t4 ancestor of (k1, s1) (see (2.9) for the notation). If the path
between particles (k1, s1) and (k2, s2) moves at least xN even with discarding jumps
greater than rxN , then the path between (k′, t4) and (k2, s2) does the same, because all
jumps are non-negative. Therefore we only need to consider paths starting with the N
particles of the population at time t4:

P

(
∃(k1, s1) ∈ [N ]× Jt4, t− 1K, s2 ∈ Js1 + 1, tK and k2 ∈ Nk1,s1(s2) :∑

(i,b,s)∈Pk2,s2k1,s1

Xi,b,s1{Xi,b,s≤rxN} ≥ xN

)

≤ P

(
∃k′ ∈ [N ], s2 ∈ Jt4 + 1, tK and k2 ∈ Nk′,t4(s2) :∑

(i,b,s)∈Pk2,s2
k′,t4

Xi,b,s1{Xi,b,s≤rxN} ≥ xN

)
. (4.13)

Now consider the N -BRW constructed from N independent BRWs (see Section 4.1).
Assume that k′ ∈ [N ], s2 ∈ Jt4 + 1, tK and k2 ∈ Nk′,t4(s2) are such that∑

(i,b,s)∈Pk2,s2
k′,t4

Xi,b,s1{Xi,b,s≤rxN} ≥ xN .

Then by Lemma 4.1 there exists a path in one of the N independent BRWs that contains
the same jumps as the path P k2,s2k′,t4

. Thus Lemma 4.1 implies that there exist (j, u) ∈ Ht4

and (j, v) ∈ Hs2 such that u ≺ v and∑
u≺w�v

Yj,w1{Yj,w≤rxN} ≥ xN .
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That is, there is a path in the N independent BRWs between times t4 and s2 which moves
at least xN even with discarding jumps of size greater than rxN . This means that there
must be a path with the same property between times t4 and t as well, because all jumps
are non-negative. Therefore

P

(
∃k′ ∈ [N ], s2 ∈ Jt4 + 1, tK and k2 ∈ Nk′,t4(s2) :∑

(i,b,s)∈Pk2,s2
k′,t4

Xi,b,s1{Xi,b,s≤rxN} ≥ xN

)

≤ P
(
∃(j, u) ∈ Ht4 and v ∈ {1, 2}t with v � u :

∑
u≺w�v

Yj,w1{Yj,w≤rxN} ≥ xN
)
. (4.14)

Let Xi, i = 1, 2, . . . be i.i.d. with distribution given by (1.3), and take λ > 0, xN > Nλ,
and 0 < r < 1 ∧ λ(1∧α)

48 . Note that the random variables Yj,w are all distributed as the
Xi random variables, and that there are 4`N terms in the sum on the right-hand side
of (4.14). We will give a union bound for the probability of the event on the right-hand
side of (4.14), using that Ht4 is a set of N elements and that a particle in the set Ht4

has 24`N descendants in a BRW (without selection) at time t, which means 24`N possible
labels for v for each (j, u) ∈ Ht4 . Then by (4.13), (4.14) and by conditioning on F ′t4 and
using a union bound,

P

(
∃(k1, s1) ∈ [N ]× Jt4, t− 1K, s2 ∈ Js1 + 1, tK and k2 ∈ Nk1,s1(s2) :∑

(i,b,s)∈Pk2,s2k1,s1

Xi,b,s1{Xi,b,s≤rxN} ≥ xN

)

≤ N24`NP

(
4`N∑
j=1

Xj1{Xj≤rxN} ≥ xN

)
. (4.15)

Then by Lemma 4.3 with m = 4 and q = 6, we have that for N sufficiently large,

P

(
4`N∑
j=1

Xj1{Xj≤rxN} ≥ xN

)
≤ N−6.

The result follows by (4.15).

4.3 Simple properties of the regularly varying function h

In order to bound the probabilities of the events C2 to C7 and D1 to D5, we will need
to use several properties of the function h from (1.3). Recall that h is regularly varying
with index α > 0, and that it determines the jump distribution of the N -BRW in the sense
that for each jump (i, b, s),

P(Xi,b,s > x) = h(x)−1 ∀x ≥ 0. (4.16)

Recall that aN = h−1(2N`N ), and note that aN →∞ as N →∞. Indeed, by the definition
of h−1 in (1.6), aN is non-decreasing, and since h is non-decreasing by (1.3), aN cannot
converge to a finite limit a ∈ R, because this would imply h(a+1) ≥ 2N`N ∀N . Moreover,
letting C2 = C2(α) as in Lemma 4.2, for N sufficiently large that aN + 1 ≥ B = B(α),

2N`N < h(aN + 1) ≤ C2(aN + 1)2α, (4.17)

where in the first inequality we use the definition (1.6) of h−1 and that h is non-decreasing,
and the second inequality follows by the second inequality of Lemma 4.2.

Since h is regularly varying with index α, we have

2N`N
h(aN )

→ 1 as N →∞. (4.18)
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Indeed, since h is non-decreasing, for any ε ∈ (0, 1), by (1.2) and by the definition of aN
we have

(1− ε)α − ε ≤ h(aN (1− ε))
h(aN )

≤ 2N`N
h(aN )

≤ h(aN (1 + ε))

h(aN )
≤ (1 + ε)α + ε,

for N sufficiently large. Often in our proofs it will be enough to use that (4.18) implies

1

2
<

2N`N
h(aN )

< 2, (4.19)

for N sufficiently large.
For convenience we state a few other simple properties of h, which we will apply

several times. Let r ∈ (0, 1) and η < 1/1000. First, we have

1

h(raN )
<

1

h(aN )
(r−α + η4) <

1

h(aN )
2r−α, (4.20)

for N sufficiently large, by (1.2). Second, for N sufficiently large, we also have

2N`N
h(raN )

<
2N`N
h(aN )

(r−α + η4) < (1 + η4)(r−α + η4) < 2r−α, (4.21)

by (4.20) and (4.18). Furthermore, by the same argument as for (4.21), for N sufficiently
large,

2N`N
h(raN )

>
r−α

2
. (4.22)

4.4 Probabilities and proof of Proposition 2.6

Next we will go through the events (Cj)7
j=2 and (Di)5

i=1, which we defined in Section 3,
one by one. We will prove upper bounds on the probabilities of their complement events,
which will then allow us to prove Proposition 2.6. Recall that the events (Cj)7

j=2 and
(Di)5

i=1 all depend on the constants η,K, γ, δ, ρ, c1 . . . , c6 introduced in (3.2)-(3.5), and
Propositions 3.2 and 3.11 hold when the constants satisfy the conditions (3.2)-(3.5). In
order to show that the events in question occur with high probability, the constants need
to satisfy some extra conditions which are consistent with (3.2)-(3.5). We now specify
these choices.

Recall that α > 0. First we assume that η ∈ (0, 1] is very small; in particular, that it is
small enough to satisfy

η2 < min

((
2α+2 log

(
1000

η

))−1/α

,
η

1000 · 2α

)
. (4.23)

Then we choose the remaining constants as follows (we will see shortly that these choices
are consistent with (3.2)-(3.5)):

(a) c6 := η2,

(b) c5 := η6(1∨α),

(c) c4 := c
4/(1∧α)
5 ,

(d) take c3 > 0 small enough to satisfy c3 < c
4(1∨α)
4 and (1− 6c3/c4)

α ≥ 1− 12αc3/c4,

(e) take c2 > 0 small enough to satisfy c2 < c
4(1∨α)
3 and (1− 4c2/c3)

α ≥ 1− 8αc2/c3,

(f) c1 := c22,
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(g) ρ := c1(1 ∧ α)2/(100α),

(h) δ := ρα+1,

(i) γ := δ/2,

(j) K := ρ−α−1.

Note that the constants with the choices above can be thought of as in (3.1). We state a
few simple consequences of these choices, which will be useful in proving upper bounds
on the probabilities of the complement events of C2 to C7 and D1 to D5. First, by (4.23),
we have

η <
1

1000 · 2α
<

1

1000
, (4.24)

and note that all constants γ, δ, ρ, c1 . . . , c6 and 1/K are at most η2. Thus, from (a)-(f)
and (4.24), for j = 1, . . . , 5, we have

cj ≤ c2j+1 ≤ cj+1η
2 <

cj+1

106 · 22α
, (4.25)

which also means

cj <
η2

106
(4.26)

for j = 1, . . . , 5. In particular we will need that

c2
c3
<

1

106(1 ∨ α)
(4.27)

and
c3
c4
<

1

106(1 ∨ α)
, (4.28)

which both follow by (4.25) and by the fact that 22α ≥ eα ≥ 1 ∨ α for α > 0. We will also
use that from (e) we have

c−α−1
3 c2 < c

−2(1∨α)+4(1∨α)
3 ≤ c23 <

c4
106 · 22α

c4
106α

<
η4

16α2α
, (4.29)

where we applied (4.25) and that 22α ≥ α, and then that c4 < η2. Then similarly, from (d)
we have

c−α−1
4 c3 <

η4

24α2α
. (4.30)

Finally, from (g) and (4.26) we have

ρ < c1 <
η

106
. (4.31)

Considering the choices (a)-(j) together with the consequences (4.24) and (4.25), and
noticing that (g) implies ρ ≤ c1/100, we conclude that the constants η,K, γ, δ, ρ, c1 . . . , c6
satisfy (3.2)-(3.5), so we will be able to apply Propositions 3.2 and 3.11 with this choice
of constants.

We can now show that the events C2 to C7 and D1 to D5 occur with high probability.

Lemma 4.6. Suppose the constants η, K, γ, δ, ρ, c1, . . . , c6 > 0 satisfy (4.23) and (a)-(j).
Then for N sufficiently large and t > 4`N ,

P(Ccj ) <
η

1000
and P(Dci ) <

η

1000

for all j ∈ {2, . . . , 7} and i ∈ {1, . . . , 5}, where the events (Cj)7
j=2 and (Di)5

i=1 are defined
in (3.12)-(3.17) and (3.47)-(3.52) respectively.
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Proof. Assume that η > 0 satisfies (4.23). We consider the events (Cj)7
j=2 and (Di)5

i=1

with the constants K, γ, δ, ρ, c1, . . . , c6, and we assume that these constants satisfy
(a)-(j). We will upper bound the probabilities of the events (Ccj )7

j=2 and (Dci )5
i=1 using

(4.25)-(4.31) above, and the properties of the regularly varying function h described in
Section 4.3.

The event Cc2 (see (3.12)) says that there is a time s ∈ [t3, t − 1] when a particle at
distance at least c3aN behind the leader jumps to within distance 2c2aN of the leader’s
position. We use Markov’s inequality, and sum over all the jumps happening between
times t3 and t− 1 to bound the probability of this event. We have

P(Cc2) ≤ E
[
#

{
(i, b, s) ∈ [N ]× {1, 2} × Jt3, t− 1K such that
Zi(s) ≥ c3aN and Xi,b,s ∈ (Zi(s)− 2c2aN , Zi(s) + 2c2aN ]

}]
=

∑
(i,b,s)∈[N ]×{1,2}×Jt3,t−1K

E
[
1{Zi(s)≥c3aN}1{Xi,b,s∈(Zi(s)−2c2aN ,Zi(s)+2c2aN ]}

]
.

Recall from Section 2.4 that for s ∈ N and i ∈ [N ], the distance Zi(s) of the ith particle
from the leader is Fs-measurable, but the jumps performed at time s, Xi,1,s and Xi,2,s,
are independent of Fs. Hence by (4.16),

P(Cc2)

≤
∑

(i,b,s)∈[N ]×{1,2}×Jt3,t−1K

E
[
E
[
1{Zi(s)≥c3aN}1{Xi,b,s∈(Zi(s)−2c2aN ,Zi(s)+2c2aN ]}

∣∣Fs]]
=

∑
(i,b,s)∈[N ]×{1,2}×Jt3,t−1K

E
[
1{Zi(s)≥c3aN}

(
h(Zi(s)− 2c2aN )−1 − h(Zi(s) + 2c2aN )−1

)]
.

(4.32)

Since h is monotone non-decreasing, for any z ≥ c3aN we have

h(z − 2c2aN )−1 − h(z + 2c2aN )−1 ≤ h((c3 − 2c2)aN )−1

(
1− h(z − 2c2aN )

h(z + 2c2aN )

)
. (4.33)

Take ε > 0. For the fraction on the right-hand side of (4.33) we have that for N sufficiently
large, for z ≥ c3aN ,

1 ≥ h(z − 2c2aN )

h(z + 2c2aN )
≥
h
(

(z + 2c2aN ) · (c3−2c2)aN
(c3+2c2)aN

)
h(z + 2c2aN )

≥
(

1− 4c2
c3 + 2c2

)α
− ε ≥ 1− 8α

c2
c3
− ε,

(4.34)

where we first use the monotonicity of h, and in the second inequality we use that
z ≥ c3aN , that the function y 7→ (y − 2c2aN )/(y + 2c2aN ) is increasing in y, and we
again use the monotonicity of h. The third inequality follows by (1.2), and the fourth
holds by the definition of c2 in (e). Then, by (4.20) and the lower bound in (4.34) with
ε = η4(c3 − 2c2)α, we see from (4.33) that for N sufficiently large, for z ≥ c3aN ,

h(z − 2c2aN )−1 − h(z + 2c2aN )−1 ≤ 2(c3 − 2c2)−αh(aN )−1

(
8α
c2
c3

+ η4(c3 − 2c2)α
)

≤ h(aN )−1(16α2αc−α−1
3 c2 + 2η4), (4.35)

where for the first term of the second inequality we used the fact that (c3 − 2c2)−α <

(c3/2)−α, because 2c2 < c3/2 by (4.25).
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Now let us return to (4.32) and notice that we sum over 6N`N jumps. Therefore,
by (4.35) we conclude that for N sufficiently large,

P(Cc2) ≤ 6N`N
h(aN )

(16α2αc−α−1
3 c2 + 2η4) ≤ 6(16α2αc−α−1

3 c2 + 2η4) < 18η4 <
η

1000
,

where we used (4.19) in the second inequality, (4.29) in the third, and (4.24) in the fourth.

The event Cc3 (see (3.13)) says that there exists a big jump in the time interval [t4, t− 1]

such that a descendant also performs a big jump during the time interval [t4, t−1], within
time `N of the first big jump.

Consider the N -BRW constructed from N independent BRWs (see Section 4.1).
If Cc3 occurs then there must be two big jumps in the N -BRW as above; that is, we
must have (i1, s1) .b1 (i2, s2) with s1 ∈ Jt4, t − 2K and s2 ∈ Js1 + 1,min {s1 + `N , t− 1}K,
and (i1, b1, s1), (i2, b2, s2) ∈ BN , where BN is the set of big jumps defined in (2.15).
Then by Lemma 4.1 there are two big jumps with the same properties in the N in-
dependent BRWs; that is, there exist j ∈ [N ], u1, u2 ∈ U0 such that (j, u1) ∈ Hs1 ,
(j, u2) ∈ Hs2 , u1b1 � u2, Xi1,b1,s1 = Yj,u1b1 and Xi2,b2,s2 = Yj,u2b2 . Therefore, since
s2 ∈ Js1 + 1,min {s1 + `N , t− 1}K ⊆ Js1 + 1, s1 + `N K and Hs2 ⊆ [N ]× {1, 2}s2 , we have

P(Cc3) ≤ P

 ∃s1 ∈ Jt4, t− 2K, (j, u1) ∈ Hs1 , b1 ∈ {1, 2} and
s2 ∈ Js1 + 1, s1 + `N K, u2 ∈ {1, 2}s2 , u2 � u1, b2 ∈ {1, 2} :

Yj,u1b1 > ρaN and Yj,u2b2 > ρaN

 . (4.36)

Recall the definition of F ′n in Section 4.1. By a union bound over the possible values of
s1, s2, b1 and b2, and then conditioning on F ′s1 and applying another union bound over
the possible values of (j, u1) and u2,

P(Cc3)

≤
∑

s1∈Jt4,t−2K,
s2∈Js1+1,s1+`N K,

b1,b2∈{1,2}

E

 ∑
(j,u1)∈Hs1 ,u2∈{1,2}s2 ,u2�u1

P
(
Yj,u1b1 > ρaN , Yj,u2b2 > ρaN

∣∣F ′s1)
 .

Then since (Yj,u)j∈[N ],u∈∪m>s1{1,2}m are independent of F ′s1 , for (j, u1) ∈ Hs1 and u2 ∈
{1, 2}s2 we have

P
(
Yj,u1b1 > ρaN , Yj,u2b2 > ρaN

∣∣F ′s1) = h(ρaN )−2.

Hence by summing over the 4`N − 1 possible values for s1, and the two possible values
for b1 and b2, and since |Hs1 | = N , and for u1 ∈ {1, 2}s1 there are 2s2−s1 possible values
of u2 ∈ {1, 2}s2 with u2 � u1, for N sufficiently large we have

P(Cc3) ≤ 4`N · 4
∑

s2∈Js1+1,s1+`N K

N2s2−s1h(ρaN )−2

≤ 16N`N · 2 · 2log2N+1h(ρaN )−2 =

(
2N`N
h(ρaN )

)2

16`−1
N ≤ 4ρ−2α · 16`−1

N <
η

1000
,

(4.37)

where in the third inequality we used (4.21).

The event Cc4 (see (3.14)) can be bounded using Corollary 4.5. We apply the corollary
with xN = c1aN , r = ρ/c1 and λ = 1/(2α). We can make this choice for λ, because we
have

c1aN > N1/(2α) (4.38)

EJP 27 (2022), paper 93.
Page 44/65

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP806
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Genealogy and spatial distribution of N -BRW with polynomial tails

for all N sufficiently large by (4.17). By our choice of ρ in (g), we have r < 1 ∧ λ(1∧α)
48 ,

and so Corollary 4.5 tells us that for some constant C > 0, for N sufficiently large,

P(Cc4) ≤ CN−1 <
η

1000
. (4.39)

The event Cc5 (see (3.15)) says that two big jumps occur at the same time, that is

Cc5 =
{
∃s ∈ Jt4, t− 1K, (k1, b1) 6= (k2, b2) ∈ [N ]× {1, 2}

: Xk1,b1,s > ρaN and Xk2,b2,s > ρaN
}
.

By a union bound over the 4`N time steps and the possible pairs of jumps at each time
step,

P(Cc5) ≤ 4`N

(
2N

2

)
h(ρaN )−2 ≤

(
2N`N
h(ρaN )

)2

2`−1
N ≤ 4ρ−2α · 2`−1

N <
η

1000
(4.40)

for N sufficiently large, where the third inequality follows by (4.21).

The event Cc6 (see (3.16)) says that a big jump happens in (at least) one of two very short
time intervals, [t2, t2+dδ`Ne] and [t1−dδ`Ne , t1+dδ`Ne]. In total there are 2N ·(3 dδ`Ne+2)

jumps performed during these two time intervals. By a union bound over these jumps,
we get

P(Cc6)

= P(∃(i, b, s) ∈ [N ]× {1, 2} × (Jt2, t2 + dδ`NeK ∪ Jt1 − dδ`Ne , t1 + dδ`NeK) : Xi,b,s > ρaN )

≤ 2N(3δ`N + 5)h(ρaN )−1 ≤ 6δρ−α(1 + 2δ−1`−1
N ) <

η

1000
, (4.41)

for N sufficiently large, where in the second inequality we used (4.21), and the last
inequality follows by the choice of δ in (h) and by (4.31).

The event C7 gives an upper bound on the number of big jumps (see (3.17)). There are
8N`N jumps performed in the time interval [t4, t− 1]; by Markov’s inequality and then
by (4.21), we have

P(Cc7) = P(# {(i, b, s) ∈ [N ]× {1, 2} × Jt4, t− 1K : Xi,b,s > ρaN} > K)

≤ 8N`Nh(ρaN )−1

K
≤ 8

K
ρ−α <

η

1000
(4.42)

for N sufficiently large, where the last inequality follows by the choice of K in (j) and
by (4.31).

The event D1 (see (3.47)) has the same definition as that of C2 (see (3.12)), except with
different constants. By the same argument as for (4.35), using the definition of c3 in (d),
for N sufficiently large we have

h(z − 3c3aN )−1 − h(z + 3c3aN )−1 ≤ h(aN )−1(24α · 2αc−α−1
4 c3 + 2η4) ∀z ≥ c4aN . (4.43)

Then continuing in the same way as after (4.35) we obtain

P(Dc1) ≤ 6(24α2αc−α−1
4 c3 + 2η4) < 18η4 <

η

1000
, (4.44)

for N sufficiently large, by (4.30) and (4.24).
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The event D2 in (3.48) says that in every interval of length c5`N in [t3, t1] there is a
particle which performs a jump of size greater than 2c4aN . We introduce a slightly
different event to show that D2 happens with high probability. Let us divide the interval
[t3, t1] into subintervals of length 1

2c5`N , to get
⌈
4c−1

5

⌉
subintervals (the last subinterval

may end after time t1; we also note that 1
2c5`N is not necessarily an integer, but we will

intersect the intervals with N). If a jump of size greater than 2c4aN happens in each of
these subintervals then D2 occurs. We describe this formally by the following event:

D̃2 :=


∀m ∈

{
1, 2, . . . ,

⌈
4c−1

5

⌉}
,

∃(k, b, s) ∈ [N ]× {1, 2} × Jt3 + (m− 1) 1
2c5`N , t3 +m 1

2c5`N K :

Xk,b,s > 2c4aN

 ;

as mentioned above, if D̃2 occurs then D2 occurs. The complement event of D̃2 is that
there is a subinterval in which every jump made by a particle has size at most 2c4aN .
Note that in each subinterval Jt3+(m−1) 1

2c5`N , t3+m 1
2c5`N K, there are at least 2N · 12c5`N

jumps. Therefore, by a union bound, we have

P(Dc2) ≤ P(D̃c2) ≤
⌈
4c−1

5

⌉(
1− 1

h(2c4aN )

)c5`NN
≤ (4c−1

5 + 1) exp

(
− c5N`N
h(2c4aN )

)
≤ 5c−1

5 exp

(
−c5(2c4)−α

4

)
, (4.45)

where in the third inequality we use that 1− x ≤ e−x for x ≥ 0, and the fourth inequality
follows by (4.22) for N sufficiently large and since c5 < 1. Now note that by (c),

c5c
−α
4 = c

1−4α/(1∧α)
5 ≥ c−3

5 > 22+α log
(5000

c5η

)
,

where the last inequality holds because c−1
5 > 22+α by (4.25), 0 < log x < x for x > 1,

and c−1
5 > 5000

η by (4.26). Substituting this into (4.45) shows that P(Dc2) < η/1000.

The event Dc3 defined in (3.49) says that every jump in the time interval [t2, t2 + d`N/2e]
has size at most 2c6aN . There are at least N`N jumps in this time interval, and so for N
sufficiently large, since e−x ≥ 1− x for x ≥ 0, and then by (4.22),

P(Dc3) ≤
(

1− 1

h(2c6aN )

)N`N
≤ exp

(
− N`N
h(2c6aN )

)
≤ exp

(
− (2c6)−α

4

)
. (4.46)

Now (a) and (4.23) tell us that c−α6 = η−2α > 2α+2 log( 1000
η ), and substituting this

into (4.46) shows that P(Dc3) < η/1000.

The event Dc4 (see (3.50)) says that in the time interval [t2 − dc5`Ne , t2], a particle
performs a jump of size greater than c6aN (recall from (a) and (b) that c5 � c6). Since
there are at most 2N(dc5`Ne+1) ≤ 2N(c5`N+2) jumps in the time interval [t2−dc5`Ne , t2],
by a union bound,

P(Dc4) = P(∃(i, b, s) ∈ [N ]× {1, 2} × Jt2 − dc5`Ne, t2K : Xi,b,s > c6aN )

≤ 2N(c5`N + 2)

h(c6aN )
≤ 2c5c

−α
6 (1 + 2c−1

5 `−1
N ) ≤ 4η6(1∨α)η−2α <

η

1000
, (4.47)

for N sufficiently large, where in the second inequality we use (4.21), the third inequality
holds by the choices in (b) and (a) forN sufficiently large, and the fourth follows by (4.24).
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The event Dc5 (see (3.52)) says that in a short time interval after time τ2 (defined
in (3.51)) a jump is performed whose size falls into a small interval, (2c4aN , (2c4 +3c3)aN ].
We can see from the definition of τ2 as the first time after t2 when the diameter is at
most 3

2c4aN , that τ2 is a stopping time. Therefore we can condition on Fτ2 , and apply the
strong Markov property. By Markov’s inequality we have

P(Dc5)

= P(∃(k, b, s) ∈ [N ]× {1, 2} × Jτ2, τ2 + c5`N K : Xk,b,s ∈ (2c4aN , (2c4 + 3c3)aN ])

≤ E [E[# {(k, b, s) ∈ [N ]× {1, 2} × Jτ2, τ2 + c5`N K :Xk,b,s ∈ (2c4aN , (2c4 + 3c3)aN ]} |Fτ2 ]] .

Note that if τ2 < ∞ then during the time interval [τ2, τ2 + c5`N ] there are at most
2N(c5`N + 1) jumps; it follows that

P(Dc5) ≤ E

[ ∑
(k,b,s)∈[N ]×{1,2}×Jτ2,τ2+c5`N K

P (Xk,b,s ∈ (2c4aN , (2c4 + 3c3)aN ]| Fτ2)1{τ2<∞}

]
≤ 2N(c5`N + 1)

(
h(2c4aN )−1 − h((2c4 + 3c3)aN )−1

)
(4.48)

by the strong Markov property. Now we can use the monotonicity of h and then the
upper bound (4.43) to get

h(2c4aN )−1 − h((2c4 + 3c3)aN )−1 ≤ h((2c4 − 3c3)aN )−1 − h((2c4 + 3c3)aN )−1

≤ h(aN )−1(24α · 2αc−α−1
4 c3 + 2η4) (4.49)

for N sufficiently large. Therefore, by (4.48), (4.49), and (4.18), we have that for N
sufficiently large,

P(Dc5) ≤ (1 + c−1
5 `−1

N )c5(1 + η4)(24α2αc−α−1
4 c3 + 2η4) < 4c5 · 3η4 <

η

1000
, (4.50)

where in the second inequality we use (4.30) and that (1 + c−1
5 `−1

N )(1 + η4) < 4 for N
sufficiently large, and the last inequality follows by (4.26) and (4.24). This concludes the
proof of Lemma 4.6.

We have seen in Lemma 4.6 above that with an appropriate choice of constants, the
probabilities of the events C2 to C7 and D1 to D5 which imply A1 and A3 are close to 1.
We can now use this to prove Proposition 2.6.

Proof of Proposition 2.6. Take η ∈ (0, 1]. Without loss of generality, we can assume that η
is sufficiently small that it satisfies (4.23). Then choose K, γ, δ, ρ, c1, . . . , c6 as in (a)-(j) (at
the beginning of Section 4.4). Note that before stating Lemma 4.6 we checked that these
constants also satisfy (3.2)-(3.5). Therefore by Proposition 3.2 and Proposition 3.11, for
N sufficiently large and t > 4`N ,

7⋂
j=2

Cj ∩
5⋂
i=1

Di ⊆ A1 ∩ A3.

Therefore, for N sufficiently large and t > 4`N , by a union bound,

P((A1 ∩ A3)c) ≤ P

 7⋂
j=2

Cj ∩
5⋂
i=1

Di

c ≤ 7∑
j=2

P(Ccj ) +

5∑
i=1

P(Dci ) < η

by Lemma 4.6, which completes the proof.
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5 Proof of Proposition 2.7: star-shaped coalescence

We will prove Proposition 2.7 in this section. So far we have proved Proposition 2.6,
which says that with high probability the common ancestor of the majority of the popula-
tion at time t is particle (N,T ), where T is given by (2.17); in particular, T is between
times t2 and t1. Now recall the notation introduced in (2.19)-(2.23). Proposition 2.7 says
that for ν > 0, with high probability, every particle in the set NN,T (T + εN `N ) has at
most νN surviving descendants at time t, where we may assume that (εN )N∈N0 satisfies

εN`N ∈ N0 ∀N ≥ 1, εN `N →∞ as N →∞ and εN ≤
1

4

log2 `N
`N

∀N ≥ 1. (5.1)

The first two of these assumptions on εN are from (2.2). The third can be made without
loss of generality, because if ε′N > εN , and every particle in NN,T (T + εN `N ) has at most
νN surviving descendants at time t, then certainly every particle in NN,T (T + ε′N`N ) has
at most νN surviving descendants at time t.

Fix η ∈ (0, 1] sufficiently small that it satisfies (4.23). Then choose K, γ, δ, ρ, c1, . . . , c6
as in (a)-(j). Then take N sufficiently large that Proposition 2.6 and Lemma 4.6 hold for
our chosen constants, and take t > 4`N . Let ν > 0 be fixed and let us write A4 := A4(ν)

from now on.

5.1 Strategy

Our strategy for showing Proposition 2.7 is to give a lower bound on the position of
the leftmost particle at time t with high probability, and then bound the number of time-t
descendants of each particle in NN,T (T εN ) which can reach that lower bound by time
t. We will be able to control the number of such descendants because of Corollary 4.5.
Assume that we know X1(t) ≥ XN (T ) + âT,N , where âT,N > Nλ for some λ > 0, but
âT,N � aN . Then Corollary 4.5 implies that with high probability all surviving particles
at time t must have an ancestor which made a jump of size greater than râT,N for an
appropriate choice of r ∈ (0, 1). So given a particle i ∈ NN,T (T εN ), we can find an upper
bound for the number of its time-t descendants with high probability, by considering
the number of its descendants which made a jump of size greater than râT,N before
time t. Thus, we should choose âT,N such that we have X1(t) ≥ XN (T ) + âT,N with
high probability, and also such that we can get a good enough upper bound for each Di

(see (2.21)) from Corollary 4.5 to conclude Proposition 2.7.
We now give a sketch argument to motivate our choice of lower bound on X1(t).

Assume that T ∈ [t2 + dδ`Ne , t1 − dδ`Ne]. We also assume that the record set at time
T is not broken by a big jump before time t1 + δ`N , and so almost all the descendants
of particle (N,T ) survive between times T and T + `N . This all happens with high
probability, as we saw in Section 4; in particular recall the event C6 from (3.16). Set
θT,N := (t1 − T )/`N .

Note that if a descendant of particle (N,T ) makes a jump of size greater than âT,N
at time T + k for some k ∈ [(1− δ)`N , `N ], then it can have 2(1+θT,N )`N−k descendants at
time t, and all of these descendants are to the right of XN (T ) + âT,N . Also, there are
approximately 2k particles in the leading tribe descending from (N,T ) at time T + k.
Therefore, we expect that jumps of size greater than âT,N , performed by the descendants
of (N,T ) in the time interval [T + (1− δ)`N , T + `N ], contribute to the number of particles
to the right of XN (T ) + âT,N at time t by roughly∑

k∈J(1−δ)`N ,`N K

2k · 2(1+θT,N )`N−k 1

h(âT,N )
≈ δ`N2(1+θT,N )`N

1

h(âT,N )
.

If we want to make sure that all the N particles are to the right of XN (T ) + âT,N at
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time t, then the above should be approximately N , and so âT,N should be roughly
h−1(δ`NN

θT,N ).
There are several potential inaccuracies in this argument. For example, the descen-

dants of a particle making a jump of size greater than âT,N do not necessarily all survive
until time t. We will use a reasoning similar to Lemma 2.4 to clarify this issue. Another
problem might occur if a particle (i, T + k) makes a jump of size greater than âT,N , and
then at time T + k + 1, its offspring does the same. In this case our sketch argument
double counts the time-t descendants of particle (i, T + k). We will therefore make some
adjustments in the rigorous proof to avoid double counting.

In Sections 5.2 to 5.5 below, we will make the sketch argument precise, then use
Corollary 4.5 to see that with high probability, particles must have at least one jump
greater than a certain size (roughly but not exactly h−1(δ`NN

θT,N )) in their ancestry to
survive until time t. Finally, for each particle (i, T εN ), we upper bound the number of
particles at time t which descend from particle (i, T εN ) and have a jump greater than
this certain size in their ancestry between times T εN and t.

5.2 Sequence of stopping times

In the strategy above we suggested that h−1(δ`NN
θT,N ) should be a good lower

bound for X1(t)−XN (T ). A problem with this lower bound is that it depends on T , and
conditioning on T would change the distribution of the process, as T is not a stopping
time; see the definition in (2.17).

Note however, that the first, second, . . . , nth times after time t2 at which a jump of
size greater than ρaN breaks the record between times t2 and t1, are stopping times, and
T is equal to one of these times with high probability. Furthermore, the number of such
times is at most K with high probability, by Lemma 4.6 and the definition of the event C7.
Therefore, we can define a finite set of stopping times in such a way that T is in the set
with high probability. Then we can prove a similar statement to Proposition 2.7 for each
stopping time in the finite set with the strategy described in the previous section. This
will be enough to prove Proposition 2.7.

Recall the definition of SN in (2.16). Define a sequence of stopping times by setting
T0 := t2 + dδ`Ne − 1, and

Tn := 1 + inf {SN (ρ) ∩ [Tn−1, t1 − dδ`Ne − 1]} , (5.2)

for n ∈ N; let Tn := t1 if the intersection above is empty.
For all n ∈ N, we introduce some new notation which will be frequently used in the

course of the proof. First we let

T εNn := Tn + εN`N . (5.3)

The set and number of time-t descendants of the ith particle at time T εNn will be denoted
by

Ni,n := Ni,T εNn (t) and Di,n := |Ni,n|. (5.4)

We also introduce

θn,N :=
(t1 − Tn)

`N
≥ 0. (5.5)

Take 0 < δ1 < δ/8 and set

ân,N := h−1(δ1N
θn,N `N ), (5.6)

where h−1, defined in (1.6), is the generalised inverse of h from (1.3). We explained the
motivation for this definition of ân,N in Section 5.1. By the same argument as for (4.18),

EJP 27 (2022), paper 93.
Page 49/65

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP806
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Genealogy and spatial distribution of N -BRW with polynomial tails

for any ε > 0 we can choose N0 sufficiently large (and deterministic, since all quantities
involved are deterministic) such that

x

h(h−1(x))
∈ [1− ε, 1 + ε] for all N ≥ N0 and x ≥ δ1`N ,

and then since δ1Nθn,N `N ≥ δ1`N , we also have for each n ∈ N,

δ1N
θn,N `N

h(ân,N )
∈ [1− ε, 1 + ε] for all N ≥ N0. (5.7)

We note that ân,N is roughly Nθn,N/α; in particular, if h(x) = xα for x ≥ 1 then ân,N =

(δ1N
θn,N `N )1/α.

Take 0 < δ2 < δ2. Throughout Section 5 we will use the term ‘medium jump’ for
jumps of size greater than δ2ân,N , as the relevant space scale in this section is ân,N . We
denote the set of medium jumps on a time interval [s1, s2] ⊆ [t2, t− 1] by

M[s1,s2]
n,N := {(k, b, s) ∈ [N ]× {1, 2} × Js1, s2K : Xk,b,s > δ2ân,N} , (5.8)

and we let

Mn,N :=M[t2,t−1]
n,N . (5.9)

The stopping times (Tn)n∈N allow us to give an upper bound on the probability of Ac4.

Suppose |B[t2,t1]
N | ≤ K and T ∈ [t2 + dδ`Ne , t1 − dδ`Ne]. Then |SN (ρ) ∩ [t2, t1]| ≤ K by the

definition of SN in (2.16), and so by the definition of T in (2.17) and the definition of Tn
in (5.2), it follows that T = Tn for some n ∈ [K]. Hence, by the definition of A4 in (2.23)
and then by a union bound,

P(Ac4) = P

(
max

i∈NN,T (T εN )
Di > νN

)
≤ P

(
∃n ∈ [K] : Tn ≤ t1 − dδ`Ne and max

i∈NN,Tn (T
εN
n )

Di,n > νN

)
+ P

(
|B[t2,t1]
N | > K

)
+ P

(
T /∈ [t2 + dδ`Ne , t1 − dδ`Ne]

)
.

(5.10)

By the definition of the event C7 in (3.17) and by Lemma 4.6,

P(|B[t2,t1]
N | > K) ≤ P(Cc7) <

η

1000
.

Then by the definition of the event A3 in (2.22) and by Proposition 2.6,

P(T /∈ [t2 + dδ`Ne , t1 − dδ`Ne]) ≤ P(Ac3) < η.

Therefore, applying a union bound for the first term on the right-hand side of (5.10), we
obtain

P(Ac4) ≤ E

[
K∑
n=1

1{Tn≤t1−dδ`Ne}P

(
max

i∈NN,Tn (T
εN
n )

Di,n > νN

∣∣∣∣ FTn)
]

+
1001

1000
η. (5.11)

From now on we aim to show that each term of the sum inside the expectation is small.
For all n ∈ N, we let PTn denote the law of the N -BRW conditioned on FTn :

PTn(·) := P( · | FTn) and ETn [·] := E[ · | FTn ]. (5.12)
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5.3 Proof of Proposition 2.7

We now state the most important intermediate results in the proof of Proposition 2.7,
and show that they imply the result. We then prove these intermediate results in
Sections 5.4 and 5.5.

Our first main intermediate result says the probability that a particle in NN,Tn(T εNn )

has a descendant at time t such that there is no medium jump on the path between the
particle and the descendant is small. We prove this result in Section 5.4.

Lemma 5.1. For all N sufficiently large, t > 4`N , and n ∈ N with Tn < t1,

PTn

(
∃i ∈ NN,Tn(T εNn ), k ∈ Ni,n : P k,t

i,T
εN
n
∩Mn,N = ∅

)
<

η

100K
,

where Tn, T εNn and PTn are given by (5.2), (5.3) and (5.12), NN,Tn(T εNn ) and Ni,n are
defined in (2.12) and (5.4), P k,t

i,T
εN
n

in (2.10), andMn,N in (5.9).

Our second main intermediate result says that with high probability, for each i ∈
NN,Tn(T εNn ), there cannot be more than νN time-t descendants of particle (i, T εNn ) if each
descendant has a medium jump on their path. We prove this result in Section 5.5.

Lemma 5.2. For all N sufficiently large, t > 4`N , and n ∈ N with Tn < t1,

PTn

(
∃i ∈ NN,Tn(T εNn ) : Di,n > νN and P k,t

i,T
εN
n
∩Mn,N 6= ∅ ∀k ∈ Ni,n

)
<

η

100K
,

where Tn, T εNn and PTn are given by (5.2), (5.3) and (5.12), NN,Tn(T εNn ), Ni,n and Di,n

are defined in (2.12) and (5.4), P k,t
i,T

εN
n

in (2.10), andMn,N in (5.9).

Proof of Proposition 2.7. Suppose N is sufficiently large that Lemmas 5.1 and 5.2 hold.
Take n ∈ N and suppose Tn < t1 (which also implies Tn ≤ t1−dδ`Ne by the definition (5.2)
of Tn). Suppose a particle in NN,Tn(T εNn ) has more than νN surviving descendants at
time t. Then either all the descendants have an ancestor which performed a medium
jump between times T εNn and t, or there is at least one particle which survives without a
medium jump in its ancestry. Therefore we have

PTn

(
max

i∈NN,Tn (T
εN
n )

Di,n > νN

)
≤ PTn

(
∃i ∈ NN,Tn(T εNn ), k ∈ Ni,n : P k,t

i,T
εN
n
∩Mn,N = ∅

)
+ PTn

(
∃i ∈ NN,Tn(T εNn ) : Di,n > νN and P k,t

i,T
εN
n
∩Mn,N 6= ∅ ∀k ∈ Ni,n

)
<

η

50K
(5.13)

by Lemmas 5.1 and 5.2. Then by (5.11), it follows that

P(Ac4) < K · η

50K
+

1001

1000
η < 2η,

which completes the proof.

5.4 Leaders must take medium jumps to survive: proof of Lemma 5.1

There are two key ideas in the proof. First we show that for a fixed n ∈ N with
Tn < t1, the whole population is to the right of position XN (Tn) + ân,N at time t, with
high probability. Second, we prove that with high probability paths cannot reach position
XN (Tn) + ân,N without having a medium jump on the path.
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Lemma 5.3. For all N sufficiently large, t > 4`N , and n ∈ N with Tn < t1,

PTn(X1(t) < XN (Tn) + ân,N ) <
η

200K
,

where Tn and ân,N are given by (5.2) and (5.6) respectively.

Proof. Recall the definition of Gx(n) in (2.7). Let G := GXN (Tn)+ân,N (t); then, to prove
the statement of the lemma, we aim to show that for N sufficiently large and t > 4`N ,

PTn(|G| < N) <
η

200K
. (5.14)

Recall the definition of δ1 > 0 in (5.6); fix δ′ ∈ (8δ1, δ) and then take δ3 ∈ (8δ1, δ
′) such

that δ3`N is an integer (this is possible for N sufficiently large). Let Sk := Tn + `N − k for
k ∈ J1, δ3`N K. Then for each k ∈ J1, δ3`N K, at time Sk there are at least 2`N−k particles
to the right of (or at) position XN (Tn), by Lemma 2.4. These particles are either in the
interval [XN (Tn),XN (Tn) + ân,N ) or to the right of this interval. Let us denote the set of
particles in [XN (Tn),XN (Tn) + ân,N ) at time Sk by Ak, i.e. for k ∈ J1, δ3`N K let

Ak := {i ∈ [N ] : Xi(Sk) ∈ [XN (Tn),XN (Tn) + ân,N )} .

We will handle the following two cases separately:

(a) the event E :=
{
|Ak| ≥ 1

22`N−k ∀k ∈ J1, δ3`N K
}

occurs,

(b) the event Ec =
{
∃k ∈ J1, δ3`N K : |GXN (Tn)+ân,N (Sk)| > 1

22`N−k
}

occurs.

First we deal with case (a). We give a lower bound on |G| using a similar argument to
the proof of Lemma 2.4. First note that jumps of size greater than ân,N from particles
in Ak arrive to the right of position XN (Tn) + ân,N for all k ∈ J1, δ3`N K. Thus all time-t
descendants of a particle that makes such a jump will be in the set G. For k ∈ J1, δ3`N K,
letM′k denote the set of such jumps:

M′k := {(i, b, Sk) : Xi,b,Sk > ân,N and i ∈ Ak} .

Suppose for all k ∈ J1, δ3`N K, all particles descending from the setM′k survive until time
t. Then the total number of such descendants will be∣∣∣∣∣ ⋃

k∈J1,δ3`N K

⋃
(i,b,Sk)∈M′k

N b
i,Sk

(t)

∣∣∣∣∣ =

δ3`N∑
k=1

2k+θn,N `N−1
∑

i∈Ak,b∈{1,2}

1{Xi,b,Sk>ân,N}. (5.15)

The first term in the sum is the number of time-t descendants of a particle at time
Sk + 1 = Tn + `N − k + 1, and the second sum gives the number of jumps of size greater
than ân,N from particles in Ak.

If instead there exists k ∈ J1, δ3`N K such that not every particle descending from a
jump inM′k survives until time t, then there must be N particles to the right of (or at)
XN (Tn)+ ân,N at some time s ≤ t (and therefore at time t, by monotonicity). We conclude
the following lower bound:

|G| ≥ min

(
N,

δ3`N∑
k=1

2k+θn,N `N−1
∑

i∈Ak,b∈{1,2}

1{Xi,b,Sk>ân,N}

)
. (5.16)

Let ξj,k ∼ Ber(h(ân,N )−1) be i.i.d. random variables, by which we mean that

PTn(ξj,k = 1) =
1

h(ân,N )
= 1− PTn(ξj,k = 0) for all k, j ∈ N.
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The indicator random variables in (5.16) all have this distribution. Thus by (5.16),

PTn({|G| < N} ∩ E) ≤ PTn

({
δ3`N∑
k=1

2k+θn,N `N−1
∑

i∈Ak,b∈{1,2}

1{Xi,b,Sk>ân,N} < N

}
∩ E

)

≤ PTn

(
δ3`N∑
k=1

2k+θn,N `N−1
2`N−k∑
j=1

ξj,k < N

)
, (5.17)

since on the event E there are at least 2`N−k jumps from the set Ak for each k ∈ J1, δ3`N K.
We will use the concentration inequality from [19, Theorem 2.3(c)] to estimate the

right-hand side of (5.17). As the inequality applies for independent random variables
taking values in [0, 1], we consider the random variables 2−δ3`N+kξj,k ∈ [0, 1] for k ∈
J1, δ3`N K and j ∈ [2`N−k]. Let µ denote the expectation of the sum of these random
variables over k and j:

µ := ETn

[
δ3`N∑
k=1

2−δ3`N+k
2`N−k∑
j=1

ξj,k

]
=

δ3`N∑
k=1

2−δ3`N+k 2`N−k

h(ân,N )
≥ δ3`NN

1−δ3

h(ân,N )
≥ 4N1−δ3−θn,N

(5.18)

for N sufficiently large, where the last inequality holds because h(ân,N ) ≤ 2δ1N
θn,N `N

by (5.7) for N sufficiently large, and because we chose δ3/δ1 ≥ 8. Thus

PTn

(
δ3`N∑
k=1

2k+θn,N `N−1
2`N−k∑
j=1

ξj,k < N

)
≤ PTn

(
δ3`N∑
k=1

2−δ3`N+k
2`N−k∑
j=1

ξj,k < 2N1−δ3−θn,N

)

≤ PTn

(
δ3`N∑
k=1

2−δ3`N+k
2`N−k∑
j=1

ξj,k <
1

2
µ

)

for N sufficiently large, where in the first inequality we multiply by 21−(δ3+θn,N )`N to get
terms in [0, 1] in the sum and notice that 2−`N ≤ N−1, and the second inequality holds
by (5.18). We now apply the concentration inequality from [19, Theorem 2.3(c)] to the
independent random variables 2−δ3`N+kξj,k ∈ [0, 1] on the right-hand side above, giving
that

PTn

(
δ3`N∑
k=1

2k+θn,N `N−1
2`N−k∑
j=1

ξj,k < N

)
≤ e−µ/8 ≤ e− 1

2N
δ−δ3

, (5.19)

where in the second inequality we use (5.18) again and that θn,N ≤ 1−δ by (5.5) and since
Tn ≥ t2 + δ`N by (5.2). Now putting (5.17) and (5.19) together, since δ − δ3 > δ − δ′ > 0

we conclude that

PTn({|G| < N} ∩ E) <
η

200K
(5.20)

for N sufficiently large.
In case (b), Ec deterministically implies that |G| = N . Indeed, if Ec occurs then it

follows that there exists k0 ∈ J1, δ3`N K such that |GXN (Tn)+ân,N (Sk0)| > 1
22`N−k0 . Recall

that Sk0 = Tn + `N − k0. Then by Lemma 2.4 we have

|G| ≥ min
(
N, 1

22`N−k02k0+θn,N `N
)

= N (5.21)

for N sufficiently large, because θn,N ≥ δ by (5.5) and (5.2), and since we are assuming
Tn < t1. Thus for N sufficiently large,

PTn({|G| < N} ∩ Ec) = 0,

which together with (5.20) and (5.14) concludes the proof.
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Now we are ready to prove Lemma 5.1. Corollary 4.5 tells us that paths cannot move
a large distance without having jumps which have size at least the order of magnitude
of that large distance. So Lemma 5.3 and Corollary 4.5 together will show that paths
without medium jumps cannot survive until time t with high probability.

Proof of Lemma 5.1. We partition the event in Lemma 5.1 based on the position of the
leftmost particle:

PTn

(
∃i ∈ NN,Tn(T εNn ), k ∈ Ni,n : P k,t

i,T
εN
n
∩Mn,N = ∅

)
= PTn

({
∃i ∈ NN,Tn(T εNn ), k ∈ Ni,n : P k,t

i,T
εN
n
∩Mn,N = ∅

}
∩ {X1(t) < XN (Tn) + ân,N}

)
+ PTn

({
∃i ∈ NN,Tn(T εNn ), k ∈ Ni,n : P k,t

i,T
εN
n
∩Mn,N = ∅

}
∩ {X1(t) ≥ XN (Tn) + ân,N}

)
.

(5.22)

This will be useful, because from Lemma 5.3 we know that the leftmost particle at time t
is to the right of (or at) XN (Tn) + ân,N with high probability. Hence it is enough to focus
on the second term on the right-hand side of (5.22), and show that with high probability,
paths cannot move beyond XN (Tn) + ân,N without medium jumps.

Assume that the event in the second term on the right-hand side of (5.22) occurs with
i ∈ NN,Tn(T εNn ) and k ∈ Ni,n, and so we have P k,t

i,T
εN
n
∩Mn,N = ∅ and Xk(t) ≥ X1(t) ≥

XN (Tn) + ân,N . Note that particle (k, t) is a descendant of particle (N,Tn) as well. The
path between these two particles has to move distance at least ân,N . Thus one of the
following must happen. Either the path between particles (N,Tn) and (k, t) moves ân,N
even without medium jumps, or there must be a medium jump on this path. In the latter
case the medium jump must be in the time interval [Tn, T

εN
n − 1], because we assumed

P k,t
i,T

εN
n
∩Mn,N = ∅. This leads to the following upper bound:

PTn

({
∃i ∈ NN,Tn(T εNn ), k ∈ Ni,n : P k,t

i,T
εN
n
∩Mn,N = ∅

}
∩ {X1(t) ≥ XN (Tn) + ân,N}

)
≤ PTn

(
∃k ∈ NN,Tn(t) :

∑
(i,b,s)∈Pk,tN,Tn

Xi,b,s1{Xi,b,s≤δ2ân,N} ≥ ân,N

)

+ PTn (∃s ∈ JTn, T εNn − 1K, i ∈ NN,Tn(s) and b ∈ {1, 2} : Xi,b,s > δ2ân,N )

≤ CN−1 + PTn (∃s ∈ JTn, T εNn − 1K, i ∈ NN,Tn(s) and b ∈ {1, 2} : Xi,b,s > δ2ân,N )

(5.23)

for N sufficiently large, where the second inequality holds for some constant C > 0

because of Corollary 4.5 applied with xN = ân,N , r = δ2 and λ = δ/(2α). To check
the conditions of Corollary 4.5 we first notice that we chose δ2 < δ2, and claim that
δ2 < 1 ∧ δ(1∧α)

96α . Indeed, at the beginning of Section 5 we chose δ together with the other

constants η, K, γ, ρ, c1, . . . , c6 satisfying (a)-(j). From (h) and (g) we have δ ≤ ρ ≤ c1(1∧α)
100α ,

and since c1 is certainly smaller than 1 (for example by (4.26) and (4.24)) the claim
follows. Regarding the condition that xN > Nλ, we have ân,N > Nθn,N/2α ≥ Nδ/2α for N
sufficiently large, where the first inequality follows by (5.7) and Lemma 4.2 by the same
argument as for (4.17) and (4.38), and the second inequality holds because θn,N ≥ δ

by (5.5), (5.2) and since we are assuming Tn < t1.

Next we use a union bound to control the second term on the right-hand side of (5.23),
using that there are at most 2 · 2k jumps descending from particle (N,Tn) at time Tn + k.
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We have

PTn (∃s ∈ JTn, T εNn − 1K, i ∈ NN,Tn(s) and b ∈ {1, 2} : Xi,b,s > δ2ân,N )

≤
εN `N−1∑
k=0

2 · 2k

h(δ2ân,N )
<

21+εN `N

h(δ2ân,N )
≤ 8NεN

δα2 δ1N
θn,N `N

≤ 8

δα2 δ1
NεN−δ (5.24)

for N sufficiently large, where in the third inequality we use that 2εN `N ≤ 2NεN for N
sufficiently large, and that h(δ2ân,N ) ≥ δα2 δ1Nθn,N `N/2 for N sufficiently large because
of (1.2) and (5.7), and in the fourth inequality we use that θn,N ≥ δ by (5.5), (5.2) and
since we are assuming Tn < t1.

Note that we have εN < δ/2 for N sufficiently large by our assumptions in (5.1).
Therefore, by (5.22), Lemma 5.3, (5.23), and (5.24) we conclude that

PTn

(
∃i ∈ NN,Tn(T εNn ), k ∈ Ni,n : P k,t

i,T
εN
n
∩Mn,N = ∅

)
<

η

100K

for N sufficiently large.

5.5 The number of descendants of medium jumps: proof of Lemma 5.2

Proof of Lemma 5.2. We partition the time interval [T εNn , t − 1] into two subintervals,
and look at the number of medium jumps and the number of time-t descendants of the
medium jumps. Let

I1 := [T εNn , t1 + 2εN`N − 1] and I2 := [t1 + 2εN `N , t− 1]

be the two intervals, and let Aij denote the set of particles in Ni,n which have a medium
jump in their ancestral lines which happened in the time interval Ij:

Aij :=
{
k ∈ Ni,n : P k,t

i,T
εN
n
∩MIj

n,N 6= ∅
}
, i ∈ NN,Tn(T εNn ), j ∈ {1, 2}. (5.25)

If there is a medium jump in I1, then there may be many, possibly of order N , particles
at time t descending from this medium jump. However, we will see that with high
probability there are no medium jumps at all in I1: particle (N,Tn) does not have enough
descendants by the end of I1 for any to have made a medium jump. In contrast, in the
second interval there are many particles to make medium jumps (although not more
than N at any one time), but there is less time to produce many descendants by time t.
Indeed, for each i ∈ NN,Tn(T εNn ) the expected number of time-t descendants of (i, T εNn )

whose path has a medium jump in I2 is of order N1−εN . Using a concentration result
from [19], we will see that the number of descendants itself (rather than the expected
number) is of order N1−εN with high probability, and therefore for each i, the total
contribution of Ai1 and Ai2 is o(N) with high probability. With the above strategy in mind,
we give the following upper bound on the probability in the statement of Lemma 5.2,
using (5.4):

PTn

(
∃i ∈ NN,Tn(T εNn ) : Di,n > νN and P k,t

i,T
εN
n
∩Mn,N 6= ∅ ∀k ∈ Ni,n

)
≤ PTn

(
∃i ∈ NN,Tn(T εNn ) : #

{
k ∈ Ni,n : P k,t

i,T
εN
n
∩Mn,N 6= ∅

}
> νN

)
= PTn(∃i ∈ NN,Tn(T εNn ) : |Ai1 ∪Ai2| > νN)

≤ PTn(∃i ∈ NN,Tn(T εNn ) : Ai1 6= ∅) + PTn
(
∃i ∈ NN,Tn(T εNn ) : |Ai2| > CN1−εN

)
(5.26)

for N sufficiently large and any constant C, since εN `N →∞ as N →∞ by our choice of
εN in (5.1).
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We let Ĩ1 := [Tn, t1 + 2εN`N − 1] ⊃ I1. It is enough to bound the first term on the
right-hand side of (5.26) by the probability that any of the descendants of particle (N,Tn)

makes a medium jump by time t1 + 2εN`N − 1:

PTn(∃i ∈ NN,Tn(T εNn ) : Ai1 6= ∅) ≤ PTn
(
∃(j, b, s) ∈MĨ1

n,N : (N,Tn) . (j, s)
)
. (5.27)

This probability will be very small, as the total number of descendants of (N,Tn) in the
time interval Ĩ1 is not large enough to see jumps of order ân,N . Indeed, applying a union
bound over the jumps made by descendants of (N,Tn) at times Tn + k shows that the
right-hand side of (5.27) is at most

(θn,N+2εN )`N−1∑
k=0

2 · 2k

h(δ2ân,N )
≤ 2 · 2(θn,N+2εN )`N

2

δα2 δ1N
θn,N `N

≤ 8

δα2 δ1
`
−1/2
N (5.28)

for N sufficiently large, where in the first inequality we use the fact that h(δ2ân,N ) ≥
δα2 δ1N

θn,N `N/2 for N sufficiently large by (1.2) and (5.7), and in the second inequality
we use the assumption on εN in (5.1), and that 2θn,N `N ≤ 2Nθn,N .

For the second term on the right-hand side of (5.26) we will give an upper bound
using the concentration inequality from [19, Theorem 2.3(b)]. First we bound |Ai2| for
any i ∈ NN,Tn(T εNn ):

|Ai2| ≤
(1+θn,N )`N−1∑

k=(θn,N+2εN )`N

∑
j∈N

i,T
εN
n

(Tn+k),b∈{1,2}

1{Xj,b,Tn+k>δ2ân,N}|N
b
j,Tn+k(t)|, (5.29)

where we sum up the number of time-t descendants of every particle descended from
(i, T εNn ) which made a jump of size greater than δ2ân,N at a time Tn + k in the time
interval I2. Now let ξij,k ∼ Ber(h(δ2ân,N )−1) be i.i.d. random variables, by which we mean
that

PTn(ξij,k = 1) = h(δ2ân,N )−1 = 1− PTn(ξij,k = 0),

for all i, j, k ∈ N. The indicator random variables in (5.29) all have this distribu-
tion. Considering that we have |Ni,T εNn (Tn + k)| ≤ min(N, 2k−εN `N ) and |N b

j,Tn+k(t)| ≤
2(1+θn,N )`N−k−1 ≤ 2(1+θn,N )`N−k for all k ∈ J(θn,N + 2εN )`N , (1 + θn,N )`N − 1K, and since
NN,Tn(T εNn ) ≤ 2εN `N , we obtain the following upper bound from (5.29):

PTn
(
∃i ∈ NN,Tn(T εNn ) : |Ai2| > CN1−εN

)
≤ PTn

(
∃i ∈ [2εN `N ] :

(1+θn,N )`N∑
k=(θn,N+2εN )`N

2(1+θn,N )`N−k
2 min(N,2k−εN`N )∑

j=1

ξij,k > CN1−εN

)

≤ 2εN `NPTn

(
(1+θn,N )`N∑

k=(θn,N+2εN )`N

2(1+θn,N )`N−k
2 min(N,2k−εN`N )∑

j=1

ξ1
j,k > CN1−εN

)
(5.30)

by a union bound.

Now [19, Theorem 2.3(b)] applies for independent random variables taking values in
[0, 1], so we consider the random variables 2(2εN+θn,N )`N−kξ1

j,k ∈ [0, 1] for each k and j in
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the sum. Let µ denote the expectation of the sum of these random variables over k and j:

µ := ETn

[
(1+θn,N )`N∑

k=(θn,N+2εN )`N

2(2εN+θn,N )`N−k
2 min(N,2k−εN`N )∑

j=1

ξ1
j,k

]

= ETn

[
(1+εN )`N−1∑

k=(θn,N+2εN )`N

2(2εN+θn,N )`N−k 2k−εN `N+1

h(δ2ân,N )

]

+ ETn

[
(1+θn,N )`N∑
k=(1+εN )`N

2(2εN+θn,N )`N−k 2N

h(δ2ân,N )

]
. (5.31)

Now considering that forN sufficiently large, δα2 δ1N
θn,N `N/2 ≤ h(δ2ân,N ) ≤ 2δα2 δ1N

θn,N `N
by (1.2) and (5.7), that N2εN+θn,N ≤ 2(2εN+θn,N )`N ≤ 4N2εN+θn,N , that δ ≤ θn,N ≤ 1 − δ
and that εN < δ/4 for N sufficiently large, it can be seen that we have

K1N
εN ≤ µ ≤ K2N

εN , (5.32)

for some constants K1,K2 > 0. Then, if we multiply both sides of the sum in (5.30) by
2(2εN−1)`N and use that 2(2εN−1)`N ≥ N2εN−1/2, we get

PTn
(
∃i ∈ NN,Tn(T εNn ) : |Ai2| > CN1−εN

)
≤ 2εN `NPTn

(
(1+θn,N )`N∑

k=(θn,N+2εN )`N

2(2εN+θn,N )`N−k
2 min(N,2k−εN`N )∑

j=1

ξ1
j,k >

1

2
CNεN

)
.

By (5.32) we have µ ≥ K1N
εN , and we can choose C > 3K2 so that 1

2CN
εN ≥ 3

2µ for N
sufficiently large. Then by [19, Theorem 2.3(b)] we have for N sufficiently large,

PTn
(
∃i ∈ NN,Tn(T εNn ) : |Ai2| > CN1−εN

)
≤ 2NεN exp

(
−

1
4K1N

εN

2(1 + 1
6 )

)
, (5.33)

which is small if N is large, by our choice of εN in (5.1). Then by (5.26), (5.27), (5.28)
and (5.33) we conclude Lemma 5.2.

6 Proofs of Propositions 2.2 and 2.3

In Proposition 2.2 we need to prove that for any interval of the form [t2 + ds1`Ne , t2 +

ds2`Ne] with 0 < s1 < s2 < 1, the probability that the time of the common ancestor T is
in this interval is bounded away from 0 for large N . The main idea of the proof is that if
there is a big jump in the time interval [t2 + ds1`Ne , t2 + ds2`Ne] which is much larger
than any other jump in the time interval [t3, t1], then that big jump will break the record,
and we will have T ∈ [t2 + ds1`Ne , t2 + ds2`Ne].

More precisely, let r > 0 be as in Proposition 2.2. We will ask that a particle performs
a jump larger than (r+3)aN at some time s∗ ∈ [t2 +ds1`Ne , t2 +ds2`Ne), and all the other
jumps in the time interval [t3, t1] are smaller than aN . We will show that this happens
with a probability bounded below by a positive constant (independent of N ).

Suppose the above event occurs, and also the events C3 and C4 occur. Then we will
also see that d(X (s∗)) ≤ (1 + c1)aN . This will imply that the particle which makes the
jump larger than (r + 3)aN at time s∗ breaks the record, and it will lead by more than
roughly (r + 2)aN at time s∗ + 1. As a result, the tribe of this particle will lead between
times s∗+ 1 and t1, because we assumed that all jumps in [s∗+ 1, t1) are smaller than aN .
Moreover, particles not in the leading tribe cannot get closer than raN to the leading
tribe by time t1; therefore, we will conclude d(X (t1)) ≥ raN as well.

The following lemma will be useful for proving the above statements.
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Lemma 6.1. Take ρ, c1 > 0. Then for N ≥ 2 and t > 4`N , for all s0 ∈ [t4, t1] and r0 > 0,
on the event C3 ∩ C4,

{Xi,b,s ≤ r0aN ∀(i, b, s) ∈ [N ]× {1, 2} × Js0, s0 + `N − 1K}
⊆ {d(X (s0 + `N )) ≤ (r0 + c1)aN} ,

where the events C3 and C4 are defined in (3.13) and (3.14) respectively.

Proof. Let G1 denote the event on the left-hand side in the statement of the lemma:

G1 := {Xi,b,s ≤ r0aN ∀(i, b, s) ∈ [N ]× {1, 2} × Js0, s0 + `N − 1K} .

Let j ∈ [N ] be arbitrary, and let i = ζj,s0+`N (s0). Then, on the event C3, we have
|BN ∩ P j,s0+`N

i,s0
| ≤ 1, and on the event C4, no particle moves further than c1aN once big

jumps have been removed from its path. Thus, on the event C3 ∩ C4 ∩ G1,

Xj(s0 + `N ) ≤ Xi(s0) + c1aN +
∑

(i′,b′,s′)∈BN∩P
j,s0+`N
i,s0

Xi′,b′,s′ ≤ XN (s0) + (r0 + c1)aN .

But by Lemma 2.4, we have XN (s0) ≤ X1(s0 + `N ), and the result follows.

Proof of Proposition 2.2. Recall the definition of A′2 from (2.5), and consider a uniform
sample of M particles at time t with indices P1, . . . ,PM . Also recall the definitions of
T (ρ) in (2.17) and T εN (ρ) in (2.19). For any ρ > 0 we have

{T (ρ) ∈ [t2 + ds1`Ne , t2 + ds2`Ne]} ∩
{
ζPj ,t(T (ρ)) = N ∀j ∈ [M ]

}
∩
{
ζPj ,t(T

εN (ρ)) 6= ζPl,t(T
εN (ρ)) ∀j, l ∈ [M ], j 6= l

}
⊆ A′2. (6.1)

For r > 0, we define A′3 as a modification of the event A3 from (2.22):

A′3 = A′3(t,N, ρ, γ, r, s1, s2) := {T (ρ) ∈ [t2 + ds1`Ne , t2 + ds2`Ne]}
∩
{
|NN,T (ρ)(t)| ≥ N −N1−γ} ∩ {d(X (t1)) ≥ raN} .

(6.2)

We also define the set of jumps in the time interval [t2 + ds1`Ne , t2 + ds2`Ne) which are
larger than (r + 3)aN :

B′N (t, r, s1, s2) :=

{
(i, b, s) ∈ [N ]× {1, 2} × Jt2 + ds1`Ne , t2 + ds2`Ne − 1K :

Xi,b,s > (r + 3)aN

}
, (6.3)

and the event G, which says that there is only one jump in the set B′N , and every other
jump is smaller than aN during the time interval [t3, t1 − 1]:

G = G(t,N, r, s1, s2) :=

{
|B′N | = 1 and Xi,b,s ≤ aN ,
∀(i, b, s) ∈ ([N ]× {1, 2} × [t3, t1 − 1]) \B′N

}
. (6.4)

Fix 0 < s1 < s2 < 1, M ∈ N and r > 0. Choose πr,s2−s1 > 0 such that

πr,s2−s1 <
s2 − s1

8(r + 3)α
· e−8, (6.5)

and then η > 0 sufficiently small that it satisfies (4.23) and

5η <
s2 − s1

8(r + 3)α
· e−8 − πr,s2−s1 . (6.6)

Then choose the constants γ, δ, ρ, c1, c2, . . . , c6,K such that they satisfy (a)-(j). Recall from
Section 4.4 that this implies the properties in (3.2)-(3.5) and (4.24)-(4.31) also hold for η
and γ, δ, ρ, c1, c2, . . . , c6,K. Let 0 < ν < η/M2.

In the course of the proof we will use the events A3 and A4 from (2.22) and (2.23),
and we will show the following for N sufficiently large and t > 4`N :
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1. P ((A′2)c ∪ {d(X (t1)) < raN}) ≤ P((A′3)c) + P(Ac3) + P(A4(ν)c) + η

2.
⋂7
j=2 Cj ∩

⋂5
i=1Di ∩ G ⊆ A′3

3. P(G) ≥ s2−s1
8(r+3)α · e

−8

4. P ((A′2)c ∪ {d(X (t1)) < raN}) ≤ 1− πr,s2−s1 .

We start by proving step 1. Notice that with our choices of constants, the conditions of
Lemma 2.5 hold. Therefore, we know

P(∃j, l ∈ [M ], j 6= l : ζPj ,t(T
εN ) = ζPl,t(T

εN )) ≤ P(Ac3) + P(A4(ν)c) + η/2, (6.7)

for N sufficiently large. Hence, because of (6.1), in order to prove step 1 it remains to
show that

P
(
{T (ρ) /∈ [t2 + ds1`Ne , t2 + ds2`Ne]} ∪

{
∃j ∈ [M ] : ζPj ,t(T ) 6= N

}
∪ {d(X (t1)) < raN}

)
≤ P((A′3)c) + η/2, (6.8)

for N sufficiently large. This follows similarly to the proof of (2.25). Partitioning the
event on the left-hand side of (6.8) using the event A′3, and then conditioning on Ft, we
obtain

P
(
{T (ρ) /∈ [t2 + ds1`Ne , t2 + ds2`Ne]} ∪

{
∃j ∈ [M ] : ζPj ,t(T ) 6= N

}
∪ {d(X (t1)) < raN}

)
≤ E

[
1A′3P(∃j ∈ [M ] : ζPj ,t(T ) 6= N | Ft)

]
+ P ((A′3)c) (6.9)

where we use that if A′3 occurs then T (ρ) ∈ [t2 + ds1`Ne , t2 + ds2`Ne] and d(X (t1)) ≥ raN ,
and that A′3 is Ft-measurable. Now, on the event A′3, at most N1−γ time-t particles
are not descended from (N,T ), and therefore a union bound on the uniformly chosen
sample (which is not Ft-measurable) shows that the right-hand side of (6.9) is at most
MN1−γ/N + P ((A′3)c). This implies (6.8) for N sufficiently large, and by (6.7) and (6.8)
we are done with step 1.

We next prove step 2. Assume the event
⋂7
j=2 Cj ∩ G occurs. Then there exists

(i∗, b∗, s∗) ∈ B′N with s∗ ∈ Jt2 + ds1`Ne , t2 + ds2`Ne − 1K. We notice that every jump in
the time interval [t3, s

∗ − 1] has size at most aN on the event G. Thus, we can apply
Lemma 6.1 with s0 = s∗ − `N > t3, ρ and c1 as chosen at the beginning of the proof, and
with r0 = 1. We then obtain

d(X (s∗)) ≤ (1 + c1)aN . (6.10)

This means that a particle that makes a jump larger than (r + 3)aN at time s∗ must take
the lead at time s∗ + 1. Indeed,

Xi∗(s∗) +Xi∗,b∗,s∗ > X1(s∗) + (r + 3)aN ≥ XN (s∗) + (r + 2− c1)aN , (6.11)

where in the first inequality we use that Xi∗(s∗) ≥ X1(s∗) and that (i∗, b∗, s∗) ∈ B′N , and
the second inequality follows by (6.10). Note that our choice of constants means that
ρ < r + 2− c1 < r + 3 holds (it is enough that ρ < 1 and c1 ∈ (0, 1), which certainly follow
from (4.24) and (4.31)); thus we have B′N ⊆ BN , and Lemma 3.5(b) applies. Therefore,
by Lemma 3.5(b), we have (i∗, s∗) .b∗ (N, s∗ + 1) and

Xi∗(s∗) +Xi∗,b∗,s∗ = XN (s∗ + 1) > XN−1(s∗ + 1) + (r + 2− c1 − ρ)aN , (6.12)

which also shows that s∗ ∈ SN (ρ), where SN (ρ) is the set of times when the record is
broken by a big jump (see (2.16)).
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Now we prove that s∗ + 1 = T (ρ) and d(X (t1)) ≥ raN . Let ŝ ∈ Js∗ + 1, t1 − 1K be
arbitrary (and note that Js∗ + 1, t1 − 1K is not empty for N sufficiently large). We will see
that ŝ /∈ SN (ρ), and therefore T (ρ) /∈ Js∗ + 2, t1K, i.e. T (ρ) = s∗ + 1.

Take k ∈ [N − 1], and assume that j ∈ Nk,s∗+1(ŝ+ 1). Note that |BN ∩ P j,ŝ+1
k,s∗+1| ≤ 1 by

the definition of the event C3, and that every jump in the time interval [s∗ + 1, t1 − 1] is at
most of size aN by the definition of the event G. Hence, by the definition of the event C4
we have

Xj(ŝ+ 1) ≤ Xk(s∗ + 1) + c1aN +
∑

(i,b,s)∈BN∩P j,ŝ+1
k,s∗+1

Xi,b,s

≤ XN−1(s∗ + 1) + (c1 + 1)aN

< XN (s∗ + 1)− (r + 1− 2c1 − ρ)aN

≤ XN (ŝ+ 1)− (r + 1− 2c1 − ρ)aN , (6.13)

where in the second inequality we also use that k ≤ N − 1, the third inequality follows
by (6.12), and the fourth by monotonicity.

Then (6.13) has two consequences. First, it shows that Xj(ŝ + 1) < XN (ŝ + 1) (see
e.g. (4.24) and (4.31)); thus the leader at time ŝ+1 must descend from particle (N, s∗+1);
that is, ζN,ŝ+1(s∗+ 1) = N . Note that we also have Xi,b,ŝ ≤ ρaN for all i ∈ NN,s∗+1(ŝ) and
b ∈ {1, 2} by the definition of the event C3. We conclude that the record is not broken
by a big jump at time ŝ+ 1, which means that ŝ /∈ SN (ρ). Since ŝ ∈ Js∗ + 1, t1 − 1K was
arbitrary, and s∗ ∈ SN (ρ), we must have T (ρ) = s∗ + 1, by the definition (2.17) of T (ρ).
Hence,

7⋂
i=2

Ci ∩ G ⊆ {T (ρ) ∈ [t2 + ds1`Ne , t2 + ds2`Ne]} . (6.14)

The second consequence of (6.13) is that d(X (ŝ+ 1)) > raN , since 2c1 + ρ < 1. Indeed,
we notice that since s∗ + 1 > t2 and ŝ + 1 ≤ t1, the number of descendants of particle
(N, s∗ + 1) is strictly less than N at time ŝ+ 1. Thus, there exists k ∈ [N − 1] such that
Nk,s∗+1(ŝ+ 1) 6= ∅, and for such a k and for some j ∈ Nk,s∗+1(ŝ+ 1) the bound in (6.13)
holds, and shows that d(X (ŝ + 1)) > raN . Since ŝ ∈ Js∗ + 1, t1 − 1K was arbitrary we
conclude

7⋂
i=2

Ci ∩ G ⊆ {d(X (t1)) ≥ raN} . (6.15)

Propositions 3.11 and 3.2 (and the definition of A3 in (2.22)) imply for N sufficiently
large that

7⋂
j=2

Cj ∩
5⋂
i=1

Di ⊆
7⋂
i=1

Ci ⊆ A3 ⊆
{
|NN,T (ρ)(t)| ≥ N −N1−γ} .

The same statement obviously remains true if we also intersect with G on the left-hand
side, and therefore step 2 follows by (6.14) and (6.15) and the definition of A′3 from (6.2).

For step 3, the event G says that out of the 4N`N jumps occurring in the time interval
[t3, t1 − 1], there are 4N`N − 1 jumps of size at most aN , and there is one larger than
(r + 3)aN , which can happen any time during the time interval [t2 + ds1`Ne , t2 + ds2`Ne).
Using that ds2`Ne − 1− ds1`Ne ≥ (s2 − s1)`N/2 for large N , we have for N sufficiently
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large,

P(G) ≥ 2N
(s2 − s1)

2
`N · h((r + 3)aN )−1

(
1− h(aN )−1

)4N`N−1

≥ (s2 − s1)

2

h(aN )

h((r + 3)aN )
· 2N`N
h(aN )

· e−2
4N`N
h(aN )

≥ s2 − s1

8(r + 3)α
· e−8,

where the second inequality holds if N is sufficiently large that 1−h(aN )−1 > e−2h(aN )−1

,
which is possible because h(aN ) → ∞ as N → ∞ by (4.18). In the third inequality we
use that h(aN )/h((r + 3)aN ) ≥ (r + 3)−α/2 for N large enough by (1.2) and (4.17), and
that 1/2 ≤ 2N`N/h(aN ) ≤ 2 for N large enough by (4.19). This completes step 3.

For step 4, we note that we chose the constants η, γ, δ, ρ, c1, c2, . . . , c6, K and ν in
such a way that the probability bounds in Propositions 2.6 and 2.7 and Lemma 4.6 hold
for N sufficiently large and t > 4`N . Hence, putting steps 1 to 3 together we conclude

P ((A′2)c ∪ {d(X (t1)) < raN}) ≤
7∑
j=2

P(Ccj ) +

5∑
i=1

P(Dci ) + P(Gc) + P(Ac3) + P(A4(ν)c) + η

≤ 1− s2 − s1

8(r + 3)α
· e−8 + 5η

< 1− πr,s2−s1 ,

where in the last inequality we used (6.6). This finishes the proof of Proposition 2.2.

The proof of Proposition 2.3 involves some of our previous results. We will use
the statement of Proposition 2.2 about the diameter to prove that for any fixed r > 0,
P (d(X (n)) ≥ raN ) can be lower bounded by a positive constant. Then the statement of
Proposition 3.2 about the diameter shows that on the events C1 to C7 the diameter at
time t1 is greater than c3aN , so, considering Lemma 4.6, we will see that the diameter
is at least of order aN at a typical time with high probability. Finally, we will conclude
that the diameter is at most of order aN with high probability using Lemma 6.1, and also
using that jumps of size raN are unlikely to happen in `N time if r is very large.

Proof of Proposition 2.3. Take η, γ, δ, ρ, c1, c2, . . . , c6,K such that they satisfy (4.23), (a)-
(j), and therefore also (3.2)-(3.5) and (4.24)-(4.31) (and η may be arbitrarily small). Let
r > 0 be arbitrary. Let s1 = 1/4, s2 = 1/2, M = 3. Then we take πr,s2−s1 > 0 and N ∈ N
sufficiently large that the bounds in Proposition 2.2 and Lemma 4.6 and the inclusions in
Propositions 3.2 and 3.11 and in Lemma 6.1 hold with the above constants and for all
t > 4`N . Furthermore, we assume that N is sufficiently large that

e−2h(raN/2)−1

< 1− h(raN/2)−1, (6.16)

h(aN )

h(raN/2)
≤ 2(r/2)−α, (6.17)

and
2N`N
h(aN )

≤ 2. (6.18)

We can take N sufficiently large that (6.16), (6.17) and (6.18) hold because of (4.18),
(4.17) (i.e. aN →∞ as N →∞), (1.2) and (4.19). Having fixed N with these properties,
take n > 3`N .
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First we apply Proposition 2.2 in the above setting with t = n+ `N (and t1 = n). The
proposition implies that

0 < πr,s2−s1 < P (d(X (n)) ≥ raN ) . (6.19)

Now we prove that if r is sufficiently small then we have

P (d(X (n)) < raN ) < η. (6.20)

Assume that r < c3, where c3 was specified at the beginning of this proof.
Consider the events (Cj)7

j=2 and (Di)5
i=1 with the constants γ, δ, ρ, c1, c2, . . . , c6,K and

with t = n+ `N . By Propositions 3.11 and 3.2 we have

7⋂
j=2

Cj ∩
5⋂
i=1

Di ⊆
7⋂
j=1

Cj ⊆
{
d(X (n)) ≥ 3

2c3aN
}
.

Therefore, since r < c3, and then by Lemma 4.6, we have

P(d(X (n)) < raN ) ≤ P(d(X (n)) < 3
2c3aN ) ≤

7∑
j=2

P(Ccj ) +
5∑
i=1

P(Dci ) < η,

which establishes (6.20).
Next we prove that if r is sufficiently large then

P (d(X (n)) ≥ raN ) < η. (6.21)

Assume r > 1. We apply Lemma 6.1 with t = n+ `N , s0 = n− `N and r0 = r/2. Note that
by (4.24) and (4.26) we have r0 + c1 < r. Then Lemma 6.1 implies

P(d(X (n)) ≥ raN ) ≤ P(∃(i, b, s) ∈ [N ]× {1, 2} × Jn− `N , n− 1K : Xi,b,s >
r
2aN )

= 1− (1− h(raN/2)−1)2N`N

≤ 1− exp

(
−2

2N`N
h(raN/2)

)
= 1− exp

(
−2

2N`N
h(aN )

h(aN )

h(raN/2)

)
≤ 1− exp

(
−8(r/2)−α

)
, (6.22)

where in the equality we use the tail distribution (1.3) for the 2N`N jumps in the time
interval Jn−`N , n−1K, the second inequality holds by (6.16), and in the third we use (6.17)
and (6.18). Then (6.22) shows that (6.21) holds for r sufficiently large.

Since η > 0 was arbitrarily small, (6.19) and (6.20) show the existence of pr and (6.21)
proves the existence of qr as in the statement of Proposition 2.3, and therefore we have
finished the proof of this result.

7 Glossary of notation

Below we list the most frequently used notation of this paper. In the second column
of the table we give a brief description, and in the third column we refer to the section
or equation where the notation is defined or first appears.

Notation Meaning Def./Sect.

N number of particles Sect. 1.1
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(i, n) refers to the ith particle from the left at time n Sect. 1.1
Xi(n) location of the ith particle from the left at time

n

Sect. 1.1

h the function 1/h defines the tail of the jump
distribution

(1.3)

α h is regularly varying with index α > 0 (1.2), (1.3)
`N time scale: `N = dlog2Ne (1.4)
aN space scale: aN = h−1(2N`N ), h(aN ) ∼ 2N`N (1.5)
t t ∈ N is an arbitrary time, we assume t > 4`N Sect. 1.3
ti ti = t− i`N , we use t1, t2, t3, t4 (1.7)
Xi,b,n jump size of the bth offspring of particle (i, n) Sect. 2.1
(i, b, n) refers to the jump Xi,b,n of the bth offspring of

particle (i, n)

Sect. 2.4

d(X (n)) diameter of the particle cloud at time n (2.6)
(i, n) . (j, n+ k) particle (i, n) is the time-n ancestor of particle

(j, n+ k)

(2.8)

(i, n) .b (j, n+ k) the bth offspring of particle (i, n) is the time-
(n+ 1) ancestor of particle (j, n+ k)

Sect. 2.4

ζi,n+k(n) ζi,n+k(n) ∈ [N ] is the index of the time-n ances-
tor of the particle (i, n+ k)

(2.9)

P ik,n+k
i0,n

path (sequence of jumps) between particles
(i0, n) and (ik, n+ k), if (i0, n) . (ik, n+ k)

(2.10)

Ni,n(n+ k) Ni,n(n + k) ⊆ [N ] is the set of time-(n + k) de-
scendants of particle (i, n)

(2.12)

N b
i,n(n+ k) N b

i,n(n + k) ⊆ [N ] is the set of time-(n + k) de-
scendants of the bth offspring of particle (i, n)

(2.13)

ρaN jumps of size greater than ρaN are called big
jumps

Sect. 2.5

BN set of big jumps (2.14), (2.15)
SN set of times when the record is broken by a big

jump
(2.16)

ŜN times when the leader is surpassed by a big
jump

(2.18)

T time of the common ancestor of almost every
particle at time t

Sect. 1.3

T = T (ρ) the last time before t1 when a particle breaks
the record with a big jump

(2.17)

(N,T ) the leader (rightmost) particle at time T Sect. 1.4
Zi(s) distance between the ith and the rightmost par-

ticle
(3.11)

Next, we list the events which appear throughout our main argument. We give a brief
explanation of each event and refer to the equation where the event is defined. We also
include short descriptions of the main results involving these events to give a summary
of the major steps of the proof of Theorem 2.1. We write “whp” as shorthand for “with
high probability”.

Event Meaning Def./Sect.

A1 Almost the whole population is close to the leftmost particle at
time t.

(2.3)
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A2 The genealogy of the population at time t is given by a star-
shaped coalescent; there is a common ancestor at time T ∈
[t2, t1].

(2.4)

A1 and A2 occur whp (Theorem 2.1)

A3 Almost every particle at time t descends from the leader at
time T ∈ [t2, t1].

(2.22)

A4 Shortly after time T no particle has a positive proportion of
the population as descendants at time t.

(2.23)

If A3 and A4 occur whp then A2 occurs whp (Lemma 2.5)

The event A4 occurs whp (Proposition 2.7)

The event A1 ∩A3 occurs whp (Proposition 2.6). This is shown
using the events below.

B1 There is a leading tribe, descended from the leader at time
T ∈ [t2, t1], which is a significant distance from the other
particles at time t1.

(3.7)

B2 Particles which are not in the leading tribe at time t1 have o(N)

descendants in total at time t.
(3.8)

B1 ∩ B2 ⊆ A3 (Lemma 3.1)

C1 A particle leads by a large distance compared to the second
rightmost particle at some point in [t2 + 1, t1].

(3.10)

C2 Particles far from the leader stay far behind or beat the leader
by a lot.

(3.12)

C3 There is at most one big jump on a path of length `N . (3.13)
C4 Paths without big jumps move very little on the aN space scale. (3.14)
C5 Two big jumps cannot happen at the same time. (3.15)
C6 No big jumps happen at times very close to t2 or t1. (3.16)
C7 The number of big jumps performed in [t4, t] is bounded above

by a constant independent of N .
(3.17)

⋂7
j=1 Cj ⊆ B1 ∩ B2 ∩ A1 ⊆ A1 ∩ A3 (Proposition 3.2)

D1 Same as C2 with different constants. (3.47)
D2 In every short interval on the `N time scale, at least one big

jump larger than a certain size occurs.
(3.48)

D3 In the first half of [t2, t1] a big jump larger than a certain size
occurs.

(3.49)

D4 Shortly before time t2, only jumps smaller than a certain size
occur.

(3.50)

D5 During a short time interval, jumps of size in a certain small
range do not happen.

(3.52)

⋂7
j=2 Cj ∩

⋂5
i=1Di ⊆ C1 (Proposition 3.11)

The events C2 − C7, D1 −D5 all occur whp (Lemma 4.6)
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