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Abstract

We determine the asymptotics for the variance of the number of zeros of random
linear combinations of orthogonal polynomials of degree at most n associated with
varying weights

{
e−2nQn

}
, with Gaussian coefficients. We deduce asymptotics of the

variance for fixed exponential weights e−2Q. In particular, we show that very generally,
the variance is asymptotic to Cn, where the constant C involves a universal constant
and an equilibrium density associated with the weight(s).

Keywords: Random orthogonal polynomials; exponential weights; variance of real zeros.
MSC2020 subject classifications: 60G15; 42C05.
Submitted to EJP on October 14, 2021, final version accepted on May 21, 2022.

1 Introduction and main results

Consider random linear combinations of polynomials of the form

Gn(x) =

n∑
j=0

ajpn,j(x), n ≥ 0, (1.1)

where {aj}∞j=0 are standard Gaussian N (0, 1) i.i.d. random variables, and {pn,j}nj=0 are
the first n+ 1 orthonormal polynomials with respect to some measure µn that depends
on n.

The study of real zeros for random orthogonal polynomials of the form (1.1) is
motivated to a large extent by classical results on random trigonometric polynomials.
Random cosine polynomials

∑n
j=0 aj cos(jx), x ∈ [0, 2π], with N (0, 1) i.i.d. coefficients

were considered by Dunnage [8], who showed that the expected number of zeros in
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Variance of real zeros

[0, 2π], denoted by ENn([0, 2π]), is asymptotically equal to 2n/
√

3. Qualls [17] studied
trigonometric polynomials

∑n
j=0 ξj1 cos(jx) + ξj2 sin(jx), x ∈ [0, 2π], and showed that

ENn([0, 2π]) for this ensemble is also asymptotically equal to 2n/
√

3.
The first result on random orthogonal polynomials for a fixed measure is due to Das

[5], who proved for random Legendre polynomials that ENn([−1, 1]) is asymptotically
equal to n/

√
3. Wilkins [19], [20] estimated the error term in this asymptotic relation. For

more general random Jacobi polynomials, Das and Bhatt [6] established that ENn([−1, 1])

is asymptotically equal to n/
√

3 too. The same asymptotic for the expected number of
real zeros was shown to hold for very wide classes of random orthogonal polynomials by
Lubinsky, Pritsker and Xie [14], [15]. Their work includes random orthogonal polynomials
with i.i.d. normal coefficients spanned by orthonormal polynomials with respect to
general measures supported compactly or on the whole real line. Do, O. Nguyen and
Vu [7] recently extended the asymptotics ENn(R) to random orthogonal polynomials
with general coefficients that possess finite moments of the order (2 + ε) via universality
methods.

The asymptotics for the variance of real zeros are much more difficult to establish due
to complexity of the corresponding Kac-Rice formula and numerous technical difficulties
associated with the analysis. Bogomolny, Bohigas and Leboeuf [4] conjectured that
Var(Nn([0, 2π])) is asymptotically equal to cn for random trigonometric polynomials,
which was first verified by Granville and Wigman [10] for Qualls’ ensemble, with an
explicit formula for c (see also Azaïs and León [2]). The asymptotic variance for the
trigonometric model of Dunnage was computed by Azaïs, Dalmao and León in [1].

In [16], the authors analyzed the variance for random linear combinations of orthogo-
nal polynomials formed from a fixed measure with compact support. Similar techniques
have recently been used by Gass to study the variance for random trigonometric polyno-
mials, and to develop a general framework for finding the asymptotic variance results
[9]. In this paper, we present analogous results for varying weights and consequently
exponential weights on the real line. For any interval [a, b] ⊂ R, let Nn([a, b]) denote the
number of zeros of Gn lying in [a, b]. Our results involve some functions of the sinc kernel

S (u) =
sinπu

πu
. (1.2)

Let

F (u) = det


1 S (u) 0 S′ (u)

S (u) 1 −S′ (u) 0

0 −S′ (u) −S′′ (0) −S′′ (u)

S′ (u) 0 −S′′ (u) −S′′ (0)

 ; (1.3)

G (u) = det

 1 S (u) −S′ (u)

S (u) 1 0

−S′ (u) 0 −S′′ (0)

 ; (1.4)

H (u) = det

 1 S (u) 0

S (u) 1 −S′ (u)

S′ (u) 0 −S′′ (u)

 ; (1.5)

Ξ (u) =
1

π2


√
F (u)

1− S (u)
2 +

1(
1− S (u)

2
)3/2

H (u) arcsin

(
H (u)

G (u)

)− 1

3
. (1.6)

In [16], we proved that for fixed measures µ with support [−1, 1] and (a, b) ⊂ (−1, 1),

lim
n→∞

1

n
Var [Nn ([a, b])] =

(∫ b

a

ω (x) dx

)(∫ ∞
−∞

Ξ (u) du+
1√
3

)
,
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Variance of real zeros

where ω is the equilibrium density, in the sense of potential theory, for the support of µ.
The hypotheses on µ primarily involved assumptions on the orthonormal polynomials for
µ, such as uniform boundedness in subintervals of the support. In this paper, our main
hypotheses are:

Hypotheses on the Measures
For n ≥ 1, let µn be a measure supported on In, where In is an interval that may be

bounded or unbounded, but contains [−1, 1]. We assume that µn is absolutely continuous
in [−1, 1], and in that interval

µ′n (x) = e−2nQn(x),

and Q′n (x) exists there. We assume that for each n ≥ 1, there are orthonormal polynomi-
als {pn,m (x)}∞m=0 so that pn,j (x) = γn,jx

j + ...+ γn,0, γn,j > 0, and∫
In

pn,jpn,kdµn = δjk.

We let

Kn+1 (x, y) = Kn+1 (µn, x, y) =

n∑
j=0

pn,j (x) pn,k (y)

denote the (n+ 1)st reproducing kernel for µn. More generally, for non-negative integers
r, s, we define the differentiated kernels

K
(r,s)
n+1 (x, y) =

n∑
j=0

p
(r)
n,j (x) p

(s)
n,k (y) (1.7)

and their normalized forms,

K̃
(r,s)
n+1 (x, y) = K

(r,s)
n+1 (x, y)µ′n (x)

1/2
µ′n (y)

1/2
. (1.8)

We need a number of implicit hypotheses:

(I) Uniform Bounds on Orthogonal Polynomials and their Derivatives
For each 0 < ε < 1, there exists C > 0 such that for n ≥ 1, k = n, n+ 1, j = 0, 1, and

|x| ≤ 1− ε, ∣∣∣p(j)
n,k (x)

∣∣∣µ′n (x)
1/2 ≤ Cnj . (1.9)

(II) Bounds on the Ratio of Leading Coefficients
There exists C1 > 1 such that for n ≥ 1,

C−1
1 ≤ γn,n

γn,n+1
≤ C1. (1.10)

(III) Bounds on the Reproducing Kernel
For each 0 < ε < 1, there exists C2 > 1 such that for n ≥ 1 and |x| ≤ 1− ε,

C−1
2 ≤ Kn+1 (x, x)µ′n (x) /n ≤ C2. (1.11)

(IV) Universality Limit
For each 0 < ε < 1, we have uniformly for |x| ≤ 1− ε, and u, v in compact subsets of

the plane,

lim
n→∞

Kn+1

(
x+ u

K̃n+1(x,x)
, x+ v

K̃n+1(x,x)

)
Kn+1 (x, x)

e
− nQ′n(x)

K̃n+1(x,x)
(u+v)

= S (v − u) . (1.12)
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Variance of real zeros

(V) Bounds on {Q′n}
For each 0 < ε < 1, there exists C3 > 0 such that for n ≥ 1 and |x| ≤ 1− ε, we have

|Q′n (x)| ≤ C3. (1.13)

Moreover, given r > 0, we assume that as n→∞,

sup
|x|≤1−ε

sup
|a|≤r

∣∣∣Q′n (x)−Q′n
(
x+

a

n

)∣∣∣ = o (1) . (1.14)

We prove:

Theorem 1.1. Assume the hypotheses (I)–(V) above. If [a, b] ⊂ (−1, 1), then

lim
n→∞

{
1

n
Var [Nn ([a, b])]−

(∫ b

a

1

n
K̃n+1 (x, x) dx

)(∫ ∞
−∞

Ξ (u) du+
1√
3

)}
= 0. (1.15)

Since the orthogonality measures µn are not necessarily related to one another
for different values of n, one should not expect

{
1
nVar[Nn ([a, b])]

}
n≥1

to converge in
general. Indeed, one can construct examples of sequences of measures for which
different subsequence have different limits. However, (1.11) and (1.15) show that{

1
nVar[Nn ([a, b])]

}
n≥1

is a bounded sequence.
In Section 2, we give two examples to which this theorem may be applied: varying

exponential weights and fixed exponential weights on the real line. In both these cases,
1
nK̃n+1 (x, x) may be replaced by a more explicit term. The methods of proof follow those
in [16]. However, there are substantial additional technical difficulties due to the varying
weights.

This paper is organized as follows: In Section 3, we outline the proof of Theorem 1.1,
deferring technical details to later. In Section 4, we present some auxiliary technical
results. In Section 5, we handle the tail term. In Section 6, we handle the central term.
In Section 7, we prove Theorem 2.1. In Section 8, we prove Theorem 2.3 and Corollary
2.4.

In the sequel, C,C1, C2, ... denote constants independent of n, x, y. The same symbol
may be different in different occurrences. We shall frequently need two versions of
formulae that involve the reproducing kernels Kn or their normalized version K̃n. If J is
an expression involving terms such as K(r,s)

n , we let J̃ denote the analogous expression
where every K(r,s)

n is replaced by its normalization K̃(r,s)
n . Thus, for example, if

∆(x, y) := Kn+1(x, x)Kn+1(y, y)−K2
n+1(x, y)

then
∆̃(x, y) := K̃n+1(x, x)K̃n+1(y, y)− K̃2

n+1(x, y).

If {αn} , {βn} are sequences of non-0 real numbers, then we write

αn ∼ βn

if there exists C > 1 such that for n ≥ 1,

C−1 ≤ αn/βn ≤ C.

2 Exponential weights

We begin with varying exponential weights, as studied in [13]. The statement of the
result involves equilibrium measures for external fields. For the notion of the equilibrium
measure in presence of an external field one can consult [11] and [18].
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Variance of real zeros

Theorem 2.1. For n ≥ 1, let In = (cn, dn), where −∞ ≤ cn < dn ≤ ∞. Assume that for
some r∗ > 1, [−r∗, r∗] ⊂ In, for all n ≥ 1. Assume that

µ′n (x) = e−2nQn(x), x ∈ In, (2.1)

where

(i) Qn (x) / log (2 + |x|) has limit∞ as x→ cn+ and x→ dn − .
(ii) Q′n is strictly increasing and continuous in In.

(iii) There exists α ∈ (0, 1), C > 0 such that for n ≥ 1 and x, y ∈ [−r∗, r∗] ,

|Q′n (x)−Q′n (y)| ≤ C |x− y|α . (2.2)

(iv) There exists α1 ∈
(

1
2 , 1
)
, C1 > 0, and an open neighborhood I0 of 1 and −1, such

that for n ≥ 1 and x, y ∈ In ∩ I0,

|Q′n (x)−Q′n (y)| ≤ C1 |x− y|α1 . (2.3)

(v) [−1, 1] is the support of the equilibrium distribution for the external field Qn.

Let [a, b] ⊂ (−1, 1). Then

lim
n→∞

{
1

n
Var [Nn ([a, b])]−

(∫ b

a

σQn (x) dx

)(∫ ∞
−∞

Ξ (u) du+
1√
3

)}
= 0, (2.4)

where for x ∈ (−1, 1),

σQn (x) =

√
1− x2

π2

∫ 1

−1

Q′n (s)−Q′n (x)

s− x
ds√

1− s2
. (2.5)

Note that σQn is the Radon-Nikodym derivative of the equilibrium measure for
the external field Qn. We shall prove Theorem 2.1 in Section 7. Next we turn to
fixed exponential weights. First we define a subclass of the weights presented in [11,
Definition 1.1, p. 7]:

Definition 2.2. Let W = e−Q, where Q : R→ [0,∞) satisfies the following conditions:
(a) Q′ is continuous in R and Q (0) = 0;

(b) Q′′ exists and is positive in R\ {0} ;

(c)
lim
|t|→∞

Q (t) =∞;

(d) The function

T (t) =
tQ′ (t)

Q (t)
, t 6= 0,

is quasi-increasing in (0,∞), in the sense that for some C > 0,

0 < x < y ⇒ T (x) ≤ CT (y) .

We assume, with an analogous definition, that T is quasi-decreasing in (−∞, 0). In
addition, we assume that for some Λ > 1,

T (t) ≥ Λ in R\ {0} .

(e) There exists C1 > 0 such that

Q′′ (x)

|Q′ (x)|
≤ C1

Q′ (x)

Q (x)
a.e. x ∈ R\ {0} .

Then we write W ∈ F
(
C2
)
. We also let

µ (x) = e−2Q(x), x ∈ R.
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Remarks
Examples of weights in this class are W = exp (−Q), where

Q (x) =

{
xα, x ∈ [0,∞)

|x|β , x ∈ (−∞, 0)
,

where α, β > 1. More generally, if expk = exp (exp (... exp ())) denotes the kth iterated
exponential, we may take

Q (x) =

{
expk (xα)− expk (0) , x ∈ [0,∞),

exp`

(
|x|β

)
− exp` (0) , x ∈ (−∞, 0) ,

where k, ` ≥ 1, α, β > 1.
We shall need the Mhaskar-Rakhmanov-Saff numbers a−n < 0 < an. These are

defined for n ≥ 1 by the equations

n =
1

π

∫ an

a−n

xQ′ (x)√
(x− a−n) (an − x)

dx; 0 =
1

π

∫ an

a−n

Q′ (x)√
(x− a−n) (an − x)

dx. (2.6)

In the case where Q is even, a−n = −an. We also define

βn =
1

2
(an + a−n) and δn =

1

2
(an + |a−n|) , (2.7)

which are respectively the center, and half-length of the Mhaskar-Rakhmanov-Saff
interval

∆n = [a−n, an] . (2.8)

The linear transformation

Ln (x) =
x− βn
δn

(2.9)

maps ∆n onto [−1, 1]. Its inverse L[−1]
n (u) = βn+uδn maps [−1, 1] onto ∆n. For 0 < ε < 1,

we let
Jn (ε) = L[−1]

n [−1 + ε, 1− ε] = [a−n + εδn, an − εδn] . (2.10)

The equilibrium density on [a−n, an] is

σn (x) =

√
(x− a−n) (an − x)

π2

∫ an

a−n

Q′ (x)−Q′ (s)
s− x

ds√
(s− a−n) (an − s)

. (2.11)

We also need the scaled density

σ∗n (t) =
δn
n
σn

(
L[−1]
n (t)

)
, t ∈ (−1, 1) , (2.12)

that satisfies ∫ 1

−1

σ∗n = 1. (2.13)

Let {pj} denote the orthonormal polynomials associated with the weight W 2, so that∫ ∞
−∞

pjpkW
2 = δjk.

Random linear combinations of these have the form

Gn (x) =

n∑
j=0

ajpj (x) ,
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Variance of real zeros

where the {aj}nj=0 are standard Gaussian N (0, 1) i.i.d. random variables. One expects
that most zeros of these will lie in the Mhaskar-Rakhmanov-Saff interval, see [15]. It is
hence convenient to scale this interval to [−1, 1]. Accordingly, we consider

G∗n (t) = Gn

(
L[−1]
n (t)

)
.

In particular, when Q is even,
G∗n (t) = Gn (ant) .

We let N∗n [a, b] denote the number of zeros of G∗n in [a, b], or equivalently of Gn in

L
[−1]
n ([a, b]). We prove:

Theorem 2.3. Let W ∈ F
(
C2
)
. Then for [a, b] ⊂ (−1, 1),

lim
n→∞

{
1

n
Var [N∗n ([a, b])]−

(∫ b

a

σ∗n (x) dx

)(∫ ∞
−∞

Ξ (u) du+
1√
3

)}
= 0. (2.14)

Under additional conditions, we can replace σ∗n by a limiting distribution. For α > 0,
define the Nevai-Ullmann density

σα (x) =
α

π

∫ 1

|x|

tα−1

√
t2 − x2

dt, x ∈ (−1, 1) . (2.15)

This is the equilibrium density for the Freud weight exp (−C |x|α) for appropriate C [18,
Theorem 5.1, p. 240]. When α→∞, this approaches the arcsine distribution

σ∞ (x) =
1

π
√

1− x2
, x ∈ (−1, 1) .

Corollary 2.4. Let W ∈ F
(
C2
)

and assume in addition that W is even and for some
α ∈ (1,∞],

lim
x→∞

T (x) = α. (2.16)

Then for [a, b] ⊂ (−1, 1),

lim
n→∞

1

n
Var [N∗n ([a, b])] =

(∫ b

a

σα (x) dx

)(∫ ∞
−∞

Ξ (u) du+
1√
3

)
. (2.17)

3 The proof of Theorem 1.1

We begin with the Kac-Rice formulas for the expectation and variance. These involve
the reproducing kernels defined in (1.7).

Lemma 3.1. Let [a, b] ⊂ R. Then the expected number of real zeros for Gn is

E [Nn ([a, b])] =
1

π

∫ b

a

ρ1 (x) dx, (3.1)

where

ρ1 (x) =
1

π

√√√√K
(1,1)
n+1 (x, x)

Kn+1 (x, x)
−

(
K

(0,1)
n+1 (x, x)

Kn+1 (x, x)

)2

. (3.2)

Moreover,
ρ1 (x) = ρ̃1 (x) . (3.3)

Proof. See [14]. Note that
K̃

(1,1)
n+1 (x,x)

K̃n+1(x,x)
=

K
(1,1)
n+1 (x,x)

Kn+1(x,x) and so on.
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Variance of real zeros

Recall that ρ̃1 is the expression defined by the same formula as ρ1 but with every
occurrence of K(r,s)

n replaced by K̃(r,s)
n . Note that ρ1 depends on n, but we omit this

dependence to simplify the notation. The same applies to ρ2 below. We also need

Σ =


Kn+1 (x, x) Kn+1 (x, y) K

(0,1)
n+1 (x, x) K

(0,1)
n+1 (x, y)

Kn+1 (x, y) Kn+1 (y, y) K
(0,1)
n+1 (y, x) K

(0,1)
n+1 (y, y)

K
(0,1)
n+1 (x, x) K

(0,1)
n+1 (y, x) K

(1,1)
n+1 (x, x) K

(1,1)
n+1 (x, y)

K
(0,1)
n+1 (x, y) K

(0,1)
n+1 (y, y) K

(1,1)
n+1 (x, y) K

(1,1)
n+1 (y, y)

 . (3.4)

The variance of real zeros of Gn is found from the following formula, which was derived
in [21] by using the method of [10].

Lemma 3.2. Let [a, b] ⊂ R, and let Gn be defined by (1.1).

Var [Nn ([a, b])] =

∫ b

a

∫ b

a

{ρ2 (x, y)− ρ1 (x) ρ1 (y)} dxdy +

∫ b

a

ρ1 (x) dx, (3.5)

where

ρ2(x, y) =
1

π2
√

∆

(√
Ω11Ω22 − Ω2

12 + Ω12 arcsin

(
Ω12√

Ω11Ω22

))
= ρ̃2 (x, y) . (3.6)

Here
∆(x, y) = Kn+1(x, x)Kn+1(y, y)−K2

n+1(x, y); (3.7)

∆Ω11 = det

 Kn+1 (y, y) Kn+1 (y, x) K
(0,1)
n+1 (y, x)

Kn+1 (x, y) Kn+1 (x, x) K
(0,1)
n+1 (x, x)

K
(1,0)
n+1 (x, y) K

(0,1)
n+1 (x, x) K

(1,1)
n+1 (x, x)

 ; (3.8)

∆Ω22 = det

 Kn+1 (x, x) Kn+1 (x, y) K
(0,1)
n+1 (x, y)

Kn+1 (y, x) Kn+1 (y, y) K
(0,1)
n+1 (y, y)

K
(1,0)
n+1 (y, x) K

(1,0)
n+1 (y, y) K

(1,1)
n+1 (y, y)

 ; (3.9)

∆Ω12 = det

 Kn+1 (x, x) Kn+1 (x, y) K
(0,1)
n+1 (x, x)

Kn+1 (y, x) Kn+1 (y, y) K
(0,1)
n+1 (y, x)

K
(1,0)
n+1 (y, x) K

(0,1)
n+1 (y, y) K

(1,1)
n+1 (y, x)

 . (3.10)

Moreover,
det (Σ) = ∆

(
Ω22Ω11 − Ω2

12

)
. (3.11)

The formulae above also hold for ∆̃, Ω̃11, Ω̃12, Ω̃22 when every K(r,s)
n term is replaced by

K̃
(r,s)
n .

Proof. See Lemma 2.2 and 3.1 in [16]. For those involving ρ̃2, ∆̃, Ω̃11, Ω̃12, Ω̃22, one can
check that the requisite powers of µ′n (x) and µ′n (y) on both sides match.

To prove Theorem 1.1, we split the first integral in (3.5) into a central term that
provides the main contribution, and a tail term: for some large enough Λ, write∫ b

a

∫ b

a

{ρ2 (x, y)− ρ1 (x) ρ1 (y)} dx dy

=

[∫ ∫
{(x,y):x,y∈[a,b],|x−y|≥Λ/K̃n+1(x,x)}

+

∫ ∫
{(x,y):x,y∈[a,b],|x−y|<Λ/K̃n+1(x,x)}

]
{ρ2 (x, y)− ρ1 (x) ρ1 (y)} dx dy

= Tail + Central.

We handle the tail term by proving the following estimate and a simple consequence.
Throughout this section, we fix ε ∈ (0, 1).
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Lemma 3.3. (a) There exist C1, n0, and Λ0 such that for n ≥ n0, |x| , |y| ≤ 1 − ε and
|x− y| ≥ Λ0

n ,

|ρ2 (x, y)− ρ1 (x) ρ1 (y)| ≤ C1

|x− y|2
. (3.12)

(b) There exist C2, n0, and Λ0 such that for n ≥ n0 and Λ ≥ Λ0,∫ ∫
{(x,y):x,y∈[a,b],|x−y|≥Λ/n}

|ρ2 (x, y)− ρ1 (x) ρ1 (y)| dx dy ≤ C2
n

Λ
. (3.13)

Proof. See Section 5.

Recall that Ξ is defined by (1.6). For the central term we will prove:

Lemma 3.4. (a) Uniformly for u in compact subsets of C\ {0}, for |x| ≤ 1 − ε, and
y = x+ u

K̃n+1(x,x)
,

1

K̃n+1 (x, x)
2 {ρ2 (x, y)− ρ1 (x) ρ1 (y)} = Ξ (u) + o (1) . (3.14)

(b) Let η > 0. There exists C such that for |x| ≤ 1−ε and y = x+ u
K̃n+1(x,x)

, u ∈ [−η, η] ,

|ρ2 (x, y)− ρ1 (x) ρ1 (y)| ≤ Cn2.

(c) For any [a, b] ⊂ [−1 + ε, 1− ε],

1

n

∫ b

a

ρ1 (x) dx− 1√
3

∫ b

a

1

n
K̃n+1 (x, x) dx = o (1) . (3.15)

Proof. See Section 6.

Proof of Theorem 1.1. We fix Λ > η > 0 and split∫ b

a

∫ b

a

{ρ2 (x, y)− ρ1 (x) ρ1 (y)} dy dx

=

∫ b

a

[∫
I

+

∫
J

+

∫
K

]
{ρ2 (x, y)− ρ1 (x) ρ1 (y)} dy dx, (3.16)

where for a given x,

I =
{
y ∈ [a, b] : |y − x| ≥ Λ/K̃n+1 (x, x)

}
;

J =
{
y ∈ [a, b] : η/K̃n+1 (x, x) ≤ |y − x| < Λ/K̃n+1 (x, x)

}
;

K =
{
y ∈ [a, b] : |y − x| < η/K̃n+1 (x, x)

}
.

Recall from (1.11) that K̃n+1 (x, x) ∼ n uniformly for n ≥ 1 and |x| ≤ 1 − ε. If A is a
uniform upper bound for 1

nK̃n+1 (x, x) in [a, b] for n ≥ 1,∣∣∣∣∣
∫ b

a

∫
I

{ρ2 (x, y)− ρ1 (x) ρ1 (y)} dy dx

∣∣∣∣∣
≤

∫ ∫
{(x,y):x,y∈[a,b],|x−y|≥Λ/(nA)}

|ρ2 (x, y)− ρ1 (x) ρ1 (y)| dy dx

≤ C1
nA

Λ
, (3.17)
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by Lemma 3.3(b), provided Λ/A ≥ Λ0. Next,

1

n

∫ b

a

∫
J

{ρ2 (x, y)− ρ1 (x) ρ1 (y)} dy dx

=

∫ b

a

K̃n+1 (x, x)

n

∫
η≤|u|≤Λ,

x+ u
K̃n+1(x,x)

∈[a,b]

{
ρ2

(
x, x+

u

K̃n+1(x, x)

)
−ρ1 (x) ρ1

(
x+

u

K̃n+1 (x, x)

)}
1

K̃n+1 (x, x)
2 du dx.

Note that if η ≤ |u| ≤ Λ and x ∈ [a, b] but x+ u
K̃n+1(x,x)

/∈ [a, b], then x is at a distance of

O
(

Λ
n

)
to a or b, and in view of Lemma 3.4(b) and (1.11), the integral over such (x, u) is

O
(

1
n

)
. Using Lemma 3.4(a) and (1.11), we deduce that∫ b

a

K̃n+1 (x, x)

n

∫
J

{ρ2 (x, y)− ρ1 (x) ρ1 (y)} dydx

=

(∫ b

a

K̃n+1 (x, x)

n
dx

) (∫
η≤|u|≤Λ

Ξ (u) du

)
+ o (1) . (3.18)

Finally, from Lemma 3.4(b) and (1.11), (but with a different fixed η there),

1

n

∣∣∣∣∣
∫ b

a

∫
K

{ρ2 (x, y)− ρ1 (x) ρ1 (y)} dydx

∣∣∣∣∣ ≤ Cη, (3.19)

where C is independent of n, η. Combining the three estimates (3.17)-(3.19), over I, J,K
with (3.5), (3.15) and (3.16), we obtain

lim sup
n→∞

∣∣∣∣∣ 1nV ar [Nn (a, b)]−

(∫ b

a

K̃n+1 (x, x)

n
dx

) (∫
η≤|u|≤Λ

Ξ (u) du+
1√
3

)∣∣∣∣∣
≤ C

(
1

Λ
+ η

)
.

Here C is independent of Λ and η. In [16, Proof of Theorem 1.2] it was shown that∫∞
−∞ Ξ (u) du converges. We can let Λ→∞ and η → 0+ to deduce the result.

4 Auxiliary results

We first record some universality limits. Recall that S is defined by (1.2). We
also introduce some auxiliary parameters that will simplify notation and will be used
throughout the sequel. For a given n and x, we set

κ = K̃n+1 (x, x) (4.1)

and

τ =
nQ′n (x)

K̃n+1 (x, x)
. (4.2)

We do not display this dependence on n and x. From (1.11) and (1.13), uniformly in
[−1 + ε, 1− ε], n ≥ 1,

|τ | ≤ C. (4.3)

We use both κ and Kn+1 (x, x) in the same formulae where convenient.
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Lemma 4.1. Let ε ∈ (0, 1). Then
(a) Uniformly for |x| ≤ 1− ε and u, v in compact subsets of C,

lim
n→∞

{
K

(1,0)
n+1

(
x+ u

κ , x+ v
κ

)
Kn+1 (x, x)

e−τ(u+v)

κ
− τS (v − u)

}
= −S′ (v − u) . (4.4)

lim
n→∞

{
K

(0,1)
n+1

(
x+ u

κ , x+ v
κ

)
Kn+1 (x, x)

e−τ(u+v)

κ
− τS (v − u)

}
= S′ (v − u) . (4.5)

(b)

lim
n→∞

{
K

(1,1)
n+1

(
x+ u

κ , x+ v
κ

)
Kn+1 (x, x)

e−τ(u+v)

κ2
− τ2S (v − u)

}
= −S′′ (v − u.) (4.6)

(c) In particular, uniformly for |x| ≤ 1− ε,

lim
n→∞

{
K

(1,0)
n+1 (x, x)

Kn+1 (x, x)κ
− τ

}
= 0, (4.7)

and

lim
n→∞

{
K

(1,1)
n+1 (x, x)

Kn+1 (x, x)κ2
− τ2

}
=
π2

3
. (4.8)

(d) Uniformly for |x| ≤ 1− ε,

lim
n→∞

K̃
(1,1)
n+1 (x, x) K̃n+1 (x, x)− K̃(0,1)

n+1 (x, x)
2

κ4
=
π2

3
. (4.9)

(e) Uniformly for |x| ≤ 1− ε, and r = 0, 1,

K̃
(r,r)
n+1 (x) ∼ n2r+1. (4.10)

Proof. (a) We start with our hypothesis (1.12) that uniformly for x ∈ [a, b] and u, v in
compact subsets of C,

lim
n→∞

Kn+1

(
x+ u

κ , x+ v
κ

)
Kn+1 (x, x)

e−τ(u+v) = S (v − u) .

Because this holds uniformly for u, v in compact subsets of the plane, we can differentiate
this relation w.r.t. u, v. Differentiating once w.r.t. u gives

lim
n→∞

{
K

(1,0)
n+1

(
x+ u

κ , x+ v
κ

)
Kn+1 (x, x)

e−τ(u+v)

κ
− τ

Kn+1

(
x+ u

κ , x+ v
κ

)
Kn+1 (x, x)

e−τ(u+v)

}
= −S′ (v − u) .

Using (1.12), this simplifies to (4.4). Similarly we obtain (4.5).
(b) Differentiating (4.4) w.r.t. v gives

lim
n→∞

{
K

(1,1)
n+1

(
x+ u

κ , x+ v
κ

)
Kn+1 (x, x)

e−τ(u+v)

κ2
−
K

(1,0)
n+1

(
x+ u

κ , x+ v
κ

)
Kn+1 (x, x)

e−τ(u+v)τ

κ
−τS′ (v−u)

}
= −S′′ (v − u) .

and then using (4.4) again,

lim
n→∞

{
K

(1,1)
n+1

(
x+ u

κ , x+ v
κ

)
Kn+1 (x, x)

e−τ(u+v)

κ2
− τ [τS (v − u)− S′ (v − u)]− τS′ (v − u)

}
= −S′′ (v − u) ,
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which simplifies to (4.6).
(c) Since S (0) = 1; S′ (0) = 0 and S′′ (0) = −π

2

3 [16, p. 13, (3.15)] we obtain also the
results for u = v = 0.

(d) From (c),

K̃
(1,1)
n+1 (x, x) K̃n+1 (x, x)− K̃(0,1)

n+1 (x, x)
2

κ4
=

K
(1,1)
n+1 (x, x)

Kn+1 (x, x)κ2
−

(
K

(0,1)
n+1 (x, x)

κKn+1 (x, x)

)2

=

(
τ2 +

π2

3
+ o (1)

)
− (τ + o (1))

2

=
π2

3
+ o (τ) + o (1) =

π2

3
+ o (1) ,

recall (4.3).
(e) For r = 0, this is our hypothesis (1.11). For r = 1, from (4.8) and (4.3), uniformly

for |x| ≤ 1− ε,
K̃

(1,1)
n+1 (x, x)

κ3
= τ2 +

π2

3
+ o (1) ∼ 1.

Since κ ∼ n as follows from (1.11), we obtain the result for r = 1.

Lemma 4.2. Let ε ∈ (0, 1). Then for r, s = 0, 1, and for all n ≥ 1 and x, y ∈ [−1 + ε, 1− ε] ,∣∣∣K̃(r,s)
n+1 (x, y)

∣∣∣ ≤ C4n
r+s

|x− y|+ 1
n

. (4.11)

Proof. The Christoffel-Darboux formula asserts that

Kn+1 (x, y) =
γn,n
γn,n+1

pn,n+1 (x) pn,n (y)− pn,n (x) pn,n+1 (y)

x− y
,

so that using our bounds (1.9), (1.10),∣∣∣K̃n+1 (x, y)
∣∣∣ ≤ 2C1C

2

|x− y|
.

Moreover, by Cauchy-Schwartz, and our bound (1.11) on K̃n+1,∣∣∣K̃n+1 (x, y)
∣∣∣ ≤ K̃n+1 (x, x)

1/2
K̃n+1 (y, y)

1/2 ≤ C2n.

Combining the last two inequalities yields∣∣∣K̃n+1 (x, y)
∣∣∣ ≤ C3 min

{
1

|x− y|
, n

}
,

giving (4.11) for r = s = 0. Next,

K
(1,0)
n+1 (x, y)

=
γn,n
γn,n+1

(
p′n,n+1 (x) pn,n (y)− p′n,n (x) pn,n+1 (y)

x− y

−pn,n+1 (x) pn,n (y)− pn,n (x) pn,n+1 (y)

(x− y)
2

)
.

(4.12)
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Using our bounds on the orthogonal polynomials and their derivatives,

∣∣∣K̃(1,0)
n+1 (x, y)

∣∣∣ ≤ C5

{
n

|x− y|
+

1

|x− y|2

}
.

Next, by Cauchy-Schwartz, and the bound (4.10) on K̃(1,1)
n+1∣∣∣K̃(1,0)

n+1 (x, y)
∣∣∣ ≤ K̃(1,1)

n+1 (x, x)
1/2

K̃n+1 (x, x)
1/2 ≤ C6n

2.

Thus ∣∣∣K̃(1,0)
n+1 (x, y)

∣∣∣ ≤ C7 min

{
n

|x− y|
+

1

|x− y|2
, n2

}
.

This yields (4.11) for r = 1, s = 0. Of course r = 0, s = 1 follows by symmetry. Finally,

K
(1,1)
n+1 (x, y) =

γn,n
γn,n+1

(
p′n,n+1 (x) p′n,n (y)− p′n,n (x) p′n,n+1 (y)

x− y

+
p′n,n+1 (x) pn,n (y)− p′n,n (x) pn,n+1 (y)

(x− y)
2

+
pn,n (x) p′n,n+1 (y)− p′n,n (y) pn,n+1 (x)

(x− y)
2

−2
pn,n (x) pn,n+1 (y)− pn,n (y) pn.n+1 (x)

(x− y)
3

)
.

Thus using our bounds on
{
p

(j)
k

}
, j = 0, 1, 2, k = n, n+ 1, gives for x, y ∈ [a, b] ,

∣∣∣K̃(1,1)
n+1 (x, y)

∣∣∣ ≤ C8

{
n2

|x− y|
+

n

|x− y|2
+

1

|x− y|3

}

and again Cauchy-Schwartz gives∣∣∣K̃(1,1)
n+1 (x, y)

∣∣∣ ≤ K̃(1,1)
n+1 (x, x)

1/2
K̃

(1,1)
n+1 (y, y)

1/2 ≤ C9n
3.

This and the previous inequality give (4.11) for r = s = 1.

5 The tail term – Lemma 3.3

Recall that ρ1, ρ2 are defined by (3.2) and (3.6). We shall consistently use the ∼
versions of expressions and formulae in this section. First write

ρ̃1 (x) =
1

πK̃n+1 (x, x)

√
Ψ̃ (x) (5.1)

where

Ψ̃ (x) = K̃
(1,1)
n+1 (x, x) K̃n+1 (x, x)− K̃(0,1)

n+1 (x, x)
2
. (5.2)

Next, recall ρj = ρ̃j for j = 1, 2 and write

ρ̃2 (x, y)− ρ̃1 (x) ρ̃1 (y) = T̃1 + T̃2 + T̃3, (5.3)
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where

T̃1 =
1

π2∆̃

(√(
Ω̃11Ω̃22 − Ω̃2

12

)
∆̃−

√
Ψ̃ (x) Ψ̃ (y)

)
;

T̃2 =
1

π2
√

∆̃

∣∣∣Ω̃12

∣∣∣ arcsin


∣∣∣Ω̃12

∣∣∣√
Ω̃11Ω̃22

 ;

T̃3 =
1

π2

(
1

∆̃
− 1

K̃n+1 (x, x) K̃n+1 (y, y)

)√
Ψ̃ (x) Ψ̃ (y). (5.4)

We estimate each T̃ term separately.

Lemma 5.1. There exists Λ0 > 0 such that for all x, y ∈ [−1 + ε, 1− ε], with |x− y| ≥
Λ0/n, ∣∣∣T̃1

∣∣∣ ≤ C(
|x− y|+ 1

n

)2 . (5.5)

Proof. Write

T̃1 =

(
Ω̃11Ω̃22 − Ω̃2

12

)
∆̃− Ψ̃ (x) Ψ̃ (y)

π2∆̃

[√(
Ω̃11Ω̃22 − Ω̃2

12

)
∆̃ +

√
Ψ̃ (x) Ψ̃ (y)

] =
Num

Denom
.

The numerator is (recall (3.11))

Num =
(

Ω̃11Ω̃22 − Ω̃2
12

)
∆̃− Ψ̃ (x) Ψ̃ (y)

= det
(

Σ̃
)
− Ψ̃ (x) Ψ̃ (y)

= det


K̃n+1 (x, x) K̃n+1 (x, y) K̃

(0,1)
n+1 (x, x) K̃

(0,1)
n+1 (x, y)

K̃n+1 (x, y) K̃n+1 (y, y) K̃
(0,1)
n+1 (y, x) K̃

(0,1)
n+1 (y, y)

K̃
(0,1)
n+1 (x, x) K̃

(0,1)
n+1 (y, x) K̃

(1,1)
n+1 (x, x) K̃

(1,1)
n+1 (x, y)

K̃
(0,1)
n+1 (x, y) K̃

(0,1)
n+1 (y, y) K̃

(1,1)
n+1 (x, y) K̃

(1,1)
n+1 (y, y)


−det

[
K̃n+1 (x, x) K̃

(0,1)
n+1 (x, x)

K̃
(0,1)
n+1 (x, x) K̃

(1,1)
n+1 (x, x)

]
det

[
K̃n+1 (y, y) K̃

(0,1)
n+1 (y, y)

K̃
(0,1)
n+1 (y, y) K̃

(1,1)
n+1 (y, y)

]
.

Using Laplace’s determinant expansion exactly as in the proof of Lemma 4.1 in [16,
pp.15-16], we continue this as

= −det

[
K̃n+1 (x, x) K̃n+1 (x, y)

K̃
(0,1)
n+1 (x, x) K̃

(0,1)
n+1 (y, x)

]
det

[
K̃

(0,1)
n+1 (y, x) K̃

(0,1)
n+1 (y, y)

K̃
(1,1)
n+1 (x, y) K̃

(1,1)
n+1 (y, y)

]

−det

[
K̃n+1 (x, x) K̃

(0,1)
n+1 (x, y)

K̃
(0,1)
n+1 (x, x) K̃

(1,1)
n+1 (x, y)

]
det

[
K̃n+1 (y, y) K̃

(0,1)
n+1 (y, x)

K̃
(0,1)
n+1 (y, y) K̃

(1,1)
n+1 (x, y)

]

−det

[
K̃n+1 (x, y) K̃

(0,1)
n+1 (x, x)

K̃
(0,1)
n+1 (y, x) K̃

(1,1)
n+1 (x, x)

]
det

[
K̃n+1 (x, y) K̃

(0,1)
n+1 (y, y)

K̃
(0,1)
n+1 (x, y) K̃

(1,1)
n+1 (y, y)

]

+ det

[
K̃n+1 (x, y) K̃

(0,1)
n+1 (x, y)

K̃
(0,1)
n+1 (y, x) K̃

(1,1)
n+1 (x, y)

]
det

[
K̃n+1 (x, y) K̃

(0,1)
n+1 (y, x)

K̃
(0,1)
n+1 (x, y) K̃

(1,1)
n+1 (x, y)

]
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−det

[
K̃

(0,1)
n+1 (x, x) K̃

(0,1)
n+1 (x, y)

K̃
(1,1)
n+1 (x, x) K̃

(1,1)
n+1 (x, y)

]
det

[
K̃n+1 (x, y) K̃n+1 (y, y)

K̃
(0,1)
n+1 (x, y) K̃

(0,1)
n+1 (y, y)

]
.

We now use the estimate (4.11) and that
(
|x− y|+ 1

n

)−1 ≤ n, on each of the terms in
these deteminants. We obtain, exactly as in the proof of Lemma 4.1 in [16] that this is

O

(
n6

(|x−y|+ 1
n )

2

)
. Thus

Num = O

(
n6(

|x− y|+ 1
n

)2
)
. (5.6)

Also

Denom = π2∆̃

[√(
Ω̃11Ω̃22 − Ω̃2

12

)
∆̃ +

√
Ψ̃ (x) Ψ̃ (y)

]

≥ π2∆̃

√
Ψ̃ (x) Ψ̃ (y).

Here from Lemma 4.1(d) and (1.11),

Ψ̃ (x) = K̃
(1,1)
n+1 (x, x) K̃n+1 (x, x)− K̃(0,1)

n+1 (x, x)
2 ≥ π2

3
K̃n+1 (x, x)

4
(1 + o (1)) ≥ Cn4.

Also from (1.11) and (4.11),

1− ∆̃

K̃n+1 (x, x) K̃n+1 (y, y)
=

K̃2
n+1 (x, y)

K̃n+1 (x, x) K̃n+1 (y, y)
≤ C

(n |x− y|+ 1)
2 ≤

1

2
,

if |x− y| ≥ Λ0/n with Λ0 large enough. Then

∆̃ ≥ 1

2
K̃n+1 (x, x) K̃n+1 (y, y) ≥ Cn2 (5.7)

and
Denom ≥ Cn6. (5.8)

Combined with (5.6), this yields∣∣∣T̃1

∣∣∣ =

∣∣∣∣ Num

Denom

∣∣∣∣ ≤ C(
|x− y|+ 1

n

)2 .

Next, let us deal with T2 :

Lemma 5.2. There exist Λ0 such that for all x, y ∈ [−1 + ε, 1− ε], with |x− y| ≥ Λ0/n,∣∣∣T̃2

∣∣∣ ≤ C(
|x− y|+ 1

n

)2 . (5.9)

Proof. Recall that

∣∣∣T̃2

∣∣∣ = T̃2 =
1

π2
√

∆̃

∣∣∣Ω̃12

∣∣∣ arcsin


∣∣∣Ω̃12

∣∣∣√
Ω̃11Ω̃22

 .

Using |arcsin v| ≤ π
2 |v|, |v| ≤ 1, we obtain

∣∣∣T̃2

∣∣∣ ≤ 1

2π∆̃3/2

∣∣∣Ω̃12∆̃
∣∣∣2√

Ω̃11Ω̃22∆̃2
. (5.10)

EJP 27 (2022), paper 83.
Page 15/32

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP802
https://imstat.org/journals-and-publications/electronic-journal-of-probability/
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Here from (3.10) and (4.11), and expanding by the first row,

Ω̃12∆̃ = det

 K̃n+1 (x, x) K̃n+1 (x, y) K̃
(0,1)
n+1 (x, x)

K̃n+1 (y, x) K̃n+1 (y, y) K̃
(0,1)
n+1 (y, x)

K̃
(1,0)
n+1 (y, x) K̃

(0,1)
n+1 (y, y) K̃

(1,1)
n+1 (y, x)

 = O

(
n4

|x− y|+ 1
n

)
.

(5.11)

Next, we examine Ω̃11 and Ω̃22. From (3.8) and (4.11), and expanding by the first row,

Ω̃11∆̃ = det

 K̃n+1 (y, y) K̃n+1 (y, x) K̃
(0,1)
n+1 (y, x)

K̃n+1 (x, y) K̃n+1 (x, x) K̃
(0,1)
n+1 (x, x)

K̃
(1,0)
n+1 (x, y) K̃

(0,1)
n+1 (x, x) K̃

(1,1)
n+1 (x, x)


= K̃n+1 (y, y)

{
K̃n+1 (x, x) K̃

(1,1)
n+1 (x, x)− K̃(0,1)

n+1 (x, x)
2
}

+O

(
n3(

|x− y|+ 1
n

)2
)

so if |x− y| ≥ Λ0/n, and Λ0 ≥ 1,

Ω̃11∆̃ = K̃n+1 (y, y)
{
K̃n+1 (x, x) K̃

(1,1)
n+1 (x, x)− K̃(0,1)

n+1 (x, x)
2
}

+O

(
n5

Λ2
0

)
≥ Cn5 +O

(
n5

Λ2
0

)
≥ C1n

5,

(5.12)

by (4.9), if Λ0 and n are large enough. In much the same way, if |x− y| ≥ Λ0/n, with
large enough Λ0,

Ω̃22∆̃ = det

 K̃n+1 (x, x) K̃n+1 (x, y) K̃
(0,1)
n+1 (x, y)

K̃n+1 (y, x) K̃n+1 (y, y) K̃
(0,1)
n+1 (y, y)

K̃
(1,0)
n+1 (y, x) K̃

(1,0)
n+1 (y, y) K̃

(1,1)
n+1 (y, y)


= K̃n+1 (x, x)

{
K̃n+1 (y, y) K̃

(1,1)
n+1 (y, y)− K̃(0,1)

n+1 (y, y)
2
}

+O

(
n5

Λ2
0

)
≥ C1n

5.

(5.13)

Then combining (5.10-5.13), followed by (5.7),

T̃2 ≤ C
(

n4

|x− y|+ 1
n

)2
1

∆3/2

1

n5
≤ C

(
1

|x− y|+ 1
n

)2

.

Next, we handle T̃3 :

Lemma 5.3. There exists Λ0 such that for all x, y ∈ [−1 + ε, 1− ε], with |x− y| ≥ Λ0/n,∣∣∣T̃3

∣∣∣ ≤ C(
|x− y|+ 1

n

)2 . (5.14)

Proof. From (5.4), with Ψ given by (5.2),

T̃3 =
1

π2

K̃2
n+1 (x, y)

∆̃K̃n+1 (x, x) K̃n+1 (y, y)

√
Ψ̃ (x) Ψ̃ (y).
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Here from (4.9) and (1.11), ∣∣∣Ψ̃ (x)
∣∣∣ , ∣∣∣Ψ̃ (y)

∣∣∣ ≤ Cn4.

Then

T̃3 ≤
C(

|x− y|+ 1
n

)2 ,
by (4.11) and (5.7). Note too that T̃3 ≥ 0.

Proof of Lemma 3.3(a). Just combine the estimates for T̃1, T̃2, T̃3 from Lemmas 5.1, 5.2,
5.3 and recall (5.3).

Proof of Lemma 3.3(b). From Lemma 3.3(a), for y ∈ [−1 + ε, 1− ε] ,∫
{x∈[a,b],|x−y|≥Λ/n}

|ρ̃2 (x, y)− ρ̃1 (x) ρ̃1 (y)| dx ≤
∫
{x∈[a,b],|x−y|≥Λ/n}

C

|x− y|2
dx

≤
∫
{x∈[a,b],|x−y|≥Λ/n}

2C

|x− y|2 +
(

Λ
n

)2 dx
≤

∫ ∞
−∞

2C

|x− y|2 +
(

Λ
n

)2 dx.
We make the substitution x− y = Λ

n t in the latter integral:

=
n

Λ

∫ ∞
−∞

2C

t2 + 1
dt.

Then (3.13) follows.

6 The central term – Lemma 3.4

Recall that ∆,Ω11,Ω22,Ω12 were defined in (3.7-3.10), while S, F,G,H were defined
in (1.2-1.5). In this section, we use the non-normalized versions of our formulae. Recall
that we defined κ and τ by (4.1) and (4.2) respectively.

Lemma 6.1. Uniformly for u in compact subsets of the plane, and uniformly for x ∈
[−1 + ε, 1− ε] and y = x+ u

K̃n+1(x,x)
,

(a) (
Ω11Ω22 − Ω2

12

)
∆

Kn+1 (x, x)
4

(
e−τu

κ

)4

= F (u) + o (1) ; (6.1)

(b)
∆

Kn+1 (x, x)
2 e
−2τu = 1− S (u)

2
+ o (1) ; (6.2)

(c)
∆Ω11

Kn+1 (x, x)
3

e−2τu

κ2
= G (u) + o (1) ; (6.3)

(d)
∆Ω22

Kn+1 (x, x)
3

e−4τu

κ2
= G (u) + o (1) ; (6.4)

(e)
Ω12∆

Kn+1 (x, x)
3

e−3τu

κ2
= H (u) + o (1) . (6.5)
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Proof. From (1.12) and the limits in Lemma 4.1 (with u = 0 and v taken as u there),
uniformly for u in compact subsets of the plane,

lim
n→∞

Kn+1 (x, y)

Kn+1 (x, x)
e−τu = S (u) ;

lim
n→∞

{
K

(1,0)
n+1 (x, y)

Kn+1 (x, x)

e−τu

κ
− τS (u)

}
= −S′ (u) ;

lim
n→∞

{
K

(0,1)
n+1 (x, y)

Kn+1 (x, x)

e−τu

κ
− τS (u)

}
= S′ (u) ;

lim
n→∞

{
K

(1,1)
n+1 (x, y)

Kn+1 (x, x)

e−τu

κ2
− τ2S (u)

}
= −S′′ (u) ;

lim
n→∞

Kn+1 (y, y)

Kn+1 (x, x)
e−2τu = 1;

lim
n→∞

{
K

(1,0)
n+1 (y, y)

Kn+1 (x, x)

e−2τu

κ
− τ

}
= 0;

lim
n→∞

{
K

(1,1)
n+1 (y, y)

Kn+1 (x, x)

e−2τu

κ2
− τ2

}
= −S′′ (0) =

π2

3
. (6.6)

We shall repeatedly refer to these limits using this single equation number.

(a) Recall that Σ was defined by (3.4). Then (3.11) gives[(
Ω11Ω22 − Ω2

12

)
∆
]

Kn+1 (x, x)
4

(
e−τu

κ

)4

=
det Σ

Kn+1 (x, x)
4

(
e−τu

κ

)4

= det


1 Kn+1(x,y)

Kn+1(x,x)e
−τu K

(0,1)
n+1 (x,x)

Kn+1(x,x)
1
κ

K
(0,1)
n+1 (x,y)

Kn+1(x,x)
e−τu

κ

Kn+1(x,y)
Kn+1(x,x)e

−τu Kn+1(y,y)
Kn+1(x,x)e

−2τu K
(0,1)
n+1 (y,x)

Kn+1(x,x)
e−τu

κ

K
(0,1)
n+1 (y,y)

Kn+1(x,x)
e−2τu

κ

K
(0,1)
n+1 (x,x)

Kn+1(x,x)
1
κ

K
(0,1)
n+1 (y,x)

Kn+1(x,x)
e−τu

κ

K
(1,1)
n+1 (x,x)

Kn+1(x,x)
1
κ2

K
(1,1)
n+1 (x,y)

Kn+1(x,x)
e−τu

κ2

K
(0,1)
n+1 (x,y)

Kn+1(x,x)
e−τu

κ

K
(0,1)
n+1 (y,y)

Kn+1(x,x)
e−2τu

κ

K
(1,1)
n+1 (x,y)e−τu

Kn+1(x,x)
1
κ2

K
(1,1)
n+1 (y,y)

Kn+1(x,x)

(
e−τu

κ

)2

 .

Here we have factored in 1
κ into the 3rd and 4th rows and columns. In addition, we have

factored in e−τu into the second and fourth rows and columns. Using the limits in (6.6)
and that S (0) = 1, S′ (0) = 0, while S (−u) = S (u), we continue this as

= det


1 S (u) τ τS (u) + S′ (u)

S (u) 1 τS (u)− S′ (u) τ

τ τS (u)− S′ (u) τ2 − S′′ (0) τ2S (u)− S′′ (u)

τS (u) + S′ (u) τ τ2S (u)− S′′ (u) τ2 − S′′ (0)

+ o (1)

Now subtract τ×Row 2 from Row 4:

= det


1 S (u) τ τS (u) + S′ (u)

S (u) 1 τS (u)− S′ (u) τ

τ τS (u)− S′ (u) τ2 − S′′ (0) τ2S (u)− S′′ (u)

S′ (u) 0 τS′ (u)− S′′ (u) −S′′ (0)

+ o (1)
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Next, subtract τ×Column 1 from Column 3

= det


1 S (u) 0 τS (u) + S′ (u)

S (u) 1 −S′ (u) τ

τ τS (u)− S′ (u) −S′′ (0) τ2S (u)− S′′ (u)

S′ (u) 0 −S′′ (u) −S′′ (0)

+ o (1)

Next subtract τ×Row 1 from Row 3

= det


1 S (u) 0 τS (u) + S′ (u)

S (u) 1 −S′ (u) τ

0 −S′ (u) −S′′ (0) −τS′ (u)− S′′ (u)

S′ (u) 0 −S′′ (u) −S′′ (0)

+ o (1)

Finally subtract τ×Column 2 from Column 4

= det


1 S (u) 0 S′ (u)

S (u) 1 −S′ (u) 0

0 −S′ (u) −S′′ (0) −S′′ (u)

S′ (u) 0 −S′′ (u) −S′′ (0)

+ o (1) = F (u) + o (1) .

(b) From (3.7) and (6.6),

∆

Kn+1 (x, x)
2 e
−2τu = det

[
1 Kn+1(x,y)

Kn+1(x,x)e
−τu

Kn+1(x,y)
Kn+1(x,x)e

−τu Kn+1(y,y)
Kn+1(x,x)e

−2τu

]

= det

[
1 S (u)

S (u) 1

]
+ o (1) .

(c) From (3.8), and then factoring e−τu into the first row and first column and 1
κ into the

third row and third column, and then using (6.6) as well as S (0) = 1, S′ (0) = 0,

∆Ω11

Kn+1 (x, x)
3

(
e−τu

κ

)2

= det


Kn+1(y,y)
Kn+1(x,x)e

−2τu Kn+1(y,x)
Kn+1(x,x)e

−τu K
(0,1)
n+1 (y,x)

Kn+1(x,x)
e−τu

κ

Kn+1(x,y)
Kn+1(x,x)e

−τu 1
K

(0,1)
n+1 (x,x)

Kn+1(x,x)
1
κ

K
(1,0)
n+1 (x,y)

Kn+1(x,x)
e−τu

κ

K
(0,1)
n+1 (x,x)

Kn+1(x,x)
1
κ

K
(1,1)
n+1 (x,x)

Kn+1(x,x)
1
κ2


= det

 1 S (u) τS (u)− S′ (u)

S (u) 1 τ

τS (u)− S′ (u) τ τ2 − S′′ (0)

+ o (1)

Subtract τ×Row 2 from Row 3

= det

 1 S (u) τS (u)− S′ (u)

S (u) 1 τ

S′ (−u) 0 −S′′ (0)

+ o (1)

Subtract τ×Column 2 from Column 3:

= det

 1 S (u) −S′ (u)

S (u) 1 0

−S′ (u) 0 −S′′ (0)

+ o (1) = G (u) + o (1) ,

recall (1.4).
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(d) From (3.9), and factoring e−τu into the 2nd and 3rd rows and columns and 1
κ into

the 3rd row and column,

∆Ω22

Kn+1 (x, x)
3

e−4τu

κ2
= det


1 Kn+1(x,y)

Kn+1(x,x)e
−τu K

(0,1)
n+1 (x,y)

Kn+1(x,x)
e−τu

κ

Kn+1(y,x)
Kn+1(x,x)e

−τu Kn+1(y,y)
Kn+1(x,x)e

−2τu K
(0,1)
n+1 (y,y)

Kn+1(x,x)
e−2τu

κ

K
(1,0)
n+1 (y,x)

Kn+1(x,x)
e−τu

κ

K
(1,0)
n+1 (y,y)

Kn+1(x,x)
e−2τu

κ

K
(1,1)
n+1 (y,y)

Kn+1(x,x)

(
e−τu

κ

)2


= det

 1 S (−u) τS (u) + S′ (u)

S (u) 1 τ

τS (u) + S′ (u) τ τ2 − S′′ (0)

+ o (1) ,

by (6.6). Subtract τ×Row 2 from Row 3:

= det

 1 S (−u) τS (u) + S′ (u)

S (u) 1 τ

S′ (u) 0 −S′′ (0)

+ o (1)

Subtract τ×Column 2 from Column 3:

= det

 1 S (u) S′ (u)

S (u) 1 0

S′ (u) 0 −S′′ (0)

+ o (1) = G(u) + o(1).

Here we have multiplied the 3rd row and 3rd column in G in (1.4) by −1.
(e) From (3.10), and factoring e−τu into the 2nd and 3rd rows and the 2nd column,

and 1
κ into the 3rd row and 3rd column,

Ω12∆

Kn+1 (x, x)
3

e3τu

κ2
= det


1 Kn+1(x,y)

Kn+1(x,x)e
−τu K

(0,1)
n+1 (x,x)

Kn+1(x,x)
1
κ

Kn+1(y,x)
Kn+1(x,x)e

−τu Kn+1(y,y)
Kn+1(x,x)e

−2τu K
(0,1)
n+1 (y,x)

Kn+1(x,x)
e−τu

κ

K
(1,0)
n+1 (y,x)

Kn+1(x,x)
e−τu

κ

K
(0,1)
n+1 (y,y)

Kn+1(x,x)
e−2τu

κ

K
(1,1)
n+1 (y,x)

Kn+1(x,x) e
−τu 1

κ2


= det

 1 S (−u) τ

S (u) 1 τS (u)− S′ (u)

τS (u) + S′ (u) τ τ2S (u)− S′′ (u)

+ o (1) .

Subtract τ×Row 2 from Row 3:

= det

 1 S (−u) τ

S (u) 1 τS (u)− S′ (u)

S′ (u) 0 τS′ (u)− S′′ (u)

+ o (1) .

Subtract τ×Column 1 from Column 3:

= det

 1 S (−u) 0

S (u) 1 −S′ (u)

S′ (u) 0 −S′′ (u)

+ o (1) = H(u) + o(1),

recall (1.5).

Now we can obtain the asymptotics for ρ2 (x, y)− ρ1 (x) ρ1 (y) stated in (3.14):

Proof of Lemma 3.4(a). Recall as in (5.3), that

ρ2 (x, y)− ρ1 (x) ρ1 (y) = T1 + T2 + T3. (6.7)
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We handle the terms Tj , j = 1, 2, 3 one by one:

Step 1: T1

Firstly from Lemma 4.1(d), and (5.2),

Ψ (x)

Kn+1 (x, x)
2
κ2

=
π2

3
+ o (1) . (6.8)

Then

Ψ (y)

Kn+1 (x, x)
2

e−4τu

κ2
=

[
Ψ (y)

Kn+1 (y, y)
2

1

K̃n+1 (y, y)
2

] [
Kn+1 (y, y) e−2τu

Kn+1 (x, x)

]2
[
K̃n+1 (y, y)

K̃n+1 (x, x)

]2

=

[
π2

3
+ o (1)

]
[1 + o (1)] [1 + o (1)] =

π2

3
+ o (1) .

(6.9)

Here we are using (6.6) and also that

µ′n (y)

µ′n (x)
= e2n[Qn(x)−Qn(y)] = e−2nQ′n(x)(y−x)+o(1) = e−2τu+o(1),

by (1.14). Then using (6.2),

1

π2∆

√
Ψ (x) Ψ (y)

1

κ2
=

1

π2

[
Kn+1 (x, x)

2

∆e−2τu

]√
Ψ (x)

Kn+1 (x, x)
2

1

κ2

Ψ (y)

Kn+1 (x, x)
2

e−4τu

κ2

=
1

π2

1

1− S (u)
2

(
π2

3
+ o (1)

)
.

Then from (6.1) and (6.8), and recalling the definition of T1 at (5.4),

T1

κ2
=

1

π2

[
Kn+1 (x, x)

2

∆e−2τu

]√
(Ω11Ω22 − Ω2

12) ∆

Kn+1 (x, x)
4

(
e−τu

κ

)4

− 1

π2

1

1− S (u)
2

(
π2

3
+ o (1)

)
=

1

π2
(

1− S (u)
2
) (√F (u)− π2

3

)
+ o (1) ,

by (6.1) and (6.2).

Step 2: T2

From (5.4),

T2

κ2
=

1

π2∆3/2
|Ω12∆| arcsin

(
|Ω12∆|√

|Ω11∆| |Ω22∆|

)
1

κ2

=
1

π2

[
Kn+1 (x, x)

2

∆e−2τu

]3/2 ∣∣∣∣∣ Ω12∆

Kn+1 (x, x)
3

e−3τu

κ2

∣∣∣∣∣ arcsin

(
|Ω12∆|√

|Ω11∆| |Ω22∆|

)

=
1

π2
(

1− S (u)
2
)3/2

H (u) arcsin

(
H (u)

G (u)

)
+ o (1) ,

by (6.2)–(6.5).

Step 3: T3
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From (5.4),

T3

κ2
=

1

π2κ2

(
Kn+1 (x, y)

2

∆Kn+1 (x, x)Kn+1 (y, y)

)√
Ψ (x) Ψ (y)

=
1

π2

[
Kn+1 (x, y) e−τu

Kn+1 (x, x)

]2 [
Kn+1 (y, y)

Kn+1 (x, x)
e−2τu

]−1
[
Kn+1 (x, x)

2

∆e−2τu

][√
Ψ (x) Ψ (y)

Kn+1 (x, x)
4

e−4τu

κ4

]

=
1

π2

(
S (u)

2

1− S (u)
2

)
π2

3
+ o (1) ,

by (1.12), (6.2), (6.8), and (6.9). Substituting the asymptotics for Tj , j = 1, 2, 3 into (6.7)
gives

1

κ2
{ρ2 (x, y)− ρ1 (x) ρ1 (y)}

=
1

π2
(

1− S (u)
2
)
√F (u)− π2

3

(
1− S (u)

2
)

+
H (u)√

1− S (u)
2

arcsin

(
H (u)

G (u)

)+ o (1)

= Ξ (u) + o (1) ,

recall (1.6).

We next deal with u near 0, which turns out to be challenging. First, we prove

Lemma 6.2. (a) ∆
(
x, x+ u

κ

)
has a double zero at u = 0, and there is ρ > 0 such that for

all |x| ≤ 1− ε and n large enough, ∆
(
x, x+ u

κ

)
has no other zeros in |u| ≤ ρ. Moreover,

uniformly for u in compact subsets of C, and |x| ≤ 1− ε,

lim
n→∞

∆
(
x, x+ u

κ

)
Kn+1 (x, x)

2
u2
e−2τu =

1− S (u)
2

u2
. (6.10)

The right-hand side is interpreted as its limiting value at u = 0.
(b)

[(
Ω11Ω22 − Ω2

12

)
∆
] (
x, x+ u

κ

)
has a zero of even order at least 4 at u = 0. More-

over, uniformly for u in compact subsets of C, and |x| ≤ 1− ε,

lim
n→∞

(
Ω11Ω22 − Ω2

12

)
∆

1

κ4
=

F (u)(
1− S (u)

2
)2 .

The right-hand side is interpreted as its limiting value at u = 0.

Proof. (a) First,

∆
(
x, x+

u

κ

)
= Kn+1 (x, x)Kn+1

(
x+

u

κ
, x+

u

κ

)
−Kn+1

(
x, x+

u

κ

)2

is a polynomial in u, and by Cauchy-Schwarz is non-negative for real u, with a zero at
u = 0. This then must be a zero of even multiplicity. But since

lim
n→∞

∆
(
x, x+ u

κ

)
Kn+1 (x, x)

2 e
−2τu = 1− S (u)

2
,

uniformly for u in compact subsets of C, by Lemma 6.1(b), and the right-hand side has
an isolated double zero at 0, it follows from Hurwitz’ Theorem and the considerations
above, that necessarily for large enough n, ∆

(
x, x+ u

κ

)
has a double zero at 0, and no

other zeros in some neighborhood of 0 that is independent of n. Since the convergence
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is uniform in x, the neighborhood may also be taken independent of x. But then{
∆(x,x+u

κ )
Kn+1(x,x)2u2 e

−2τu

}
n≥1

is a sequence of entire functions in u that converges uniformly

in compact subsets of C\ {0} and hence also in compact subsets of C.
(b) Recall (3.11). Here det(Σ) is also a polynomial in u when y = x + u

κ . As in the
proof of Lemma 2.2 in the Appendix in [16], Σ is a positive definite matrix when x 6= y,
so is nonegative definite for all x, y. Then det(Σ) ≥ 0 for real x, y while det (Σ) = 0 when
u = 0. Thus as a polynomial in u, det(Σ) can only have an even multiplicity zero at u = 0.
We need to show that it has a zero of multiplicity at least 4 when u = 0. By a classical
inequality for determinants of positive definite matrices and their leading submatrices
[3, p. 63, Thm. 7], when y is real,

0 ≤ det (Σ) ≤ ∆ (x, y) det

[
K

(1,1)
n+1 (x, x) K

(1,1)
n+1 (x, y)

K
(1,1)
n+1 (x, y) K

(1,1)
n+1 (y, y)

]
.

We already know that ∆ has a double zero at u = 0 for y = x + u
nω(x) . But the second

determinant also vanishes when y = x, that is u = 0. It follows that necessarily as a
polynomial in u, det (Σ) has a zero of multiplicity at least 4 at u = 0. Then

Ω11Ω22 − Ω2
12

∆
=

det (Σ)

∆2

has a removable singularity at 0, since the zero of multiplicity 4 in the denominator
is cancelled by the zero of multiplicity ≥ 4 in the numerator. Then from (6.1), (6.2),
uniformly for x ∈ [−1 + ε, 1− ε] and u in some neighborhood of 0,

Ω11Ω22 − Ω2
12

∆

1

κ4
=

(
Ω11Ω22 − Ω2

12

)
∆

Kn+1 (x, x)
4

(
e−τu

κ

)4
[
Kn+1 (x, x)

2

∆e−2τu

]2

=
F (u)(

1− S (u)
2
)2 + o (1) .

Moreover, since S (u) = 1 only at u = 0, this limit actually holds uniformly for u in
compact subsets of C.

Next, we deal with Ω12 :

Lemma 6.3. There exist C, n0, ρ > 0 such that uniformly for n ≥ n0, |u| ≤ ρ, and
|x| ≤ 1− ε,

|Ω12|√
∆κ2

≤ C.

Moreover, uniformly for |u| ≤ ρ, and |x| ≤ 1− ε,

lim
n→∞

Ω12√
∆

1

κ2
=

H (u)

(1− S(u)2)
3/2

.

Proof. We note that this proof is simpler than the corresponding one in [16]. First,
from the previous lemma, there exists ρ > 0 and n0 such that for n ≥ n0 and |u| ≤ ρ,
∆ (x, y) = ∆

(
x, x+ u

κ

)
has a double zero at 0 and no other zeros in the disk |u| ≤ ρ.

Then we may choose a branch of
√

∆
(
x, x+ u

κ

)
in u that is single valued and analytic

in |u| ≤ ρ, with a simple zero at u = 0. Then inasmuch as Ω12∆ is a polynomial in u, by
(3.10),

Ω12√
∆

1

κ2
=

Ω12∆(√
∆
)3

1

κ2
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is for n ≥ n0 analytic in the deleted disc 0 < |u| ≤ ρ with a pole of order at most 3 at 0.
We now show that Ω12∆ has a zero of order at least 3 at u = 0, so that in fact Ω12√

∆
1
κ2 has a

removable singularity at 0, and thus after redefinition at 0, is analytic in the disc |u| ≤ ρ.
First recall that

∆Ω12 = det

 Kn+1 (x, x) Kn+1 (x, y) K
(0,1)
n+1 (x, x)

Kn+1 (y, x) Kn+1 (y, y) K
(0,1)
n+1 (y, x)

K
(1,0)
n+1 (y, x) K

(0,1)
n+1 (y, y) K

(1,1)
n+1 (y, x)

 .
We subtract the first column from the second and u

κ×the third column from the second
and use the symmetry of Kn. To examine the resulting entries in the second column, we
obtain from Taylor series expansions that as u→ 0,

Kn+1 (x, y)−
[
Kn+1 (x, x) +

u

κ
K

(0,1)
n+1 (x, x)

]
=

1

2

(u
κ

)2

K
(0,2)
n+1 (x, x) +O

(
u3
)

;

Kn+1 (y, y)−
[
Kn+1 (y, x) +

u

κ
K

(0,1)
n+1 (y, x)

]
=

1

2

(u
κ

)2

K
(0,2)
n+1 (y, x) +O

(
u3
)

;

K
(0,1)
n+1 (y, y)−

[
K

(0,1)
n+1 (x, y) +

u

κ
K

(1,1)
n+1 (x, y)

]
=

1

2

(u
κ

)2

K
(2,1)
n+1 (x, y) +O

(
u3
)

Using symmetry of Kn, we then obtain as u→ 0,

∆Ω12 =
1

2

(u
κ

)2

det

 Kn+1 (x, x) K
(0,2)
n+1 (x, x) K

(0,1)
n+1 (x, x)

Kn+1 (y, x) K
(0,2)
n+1 (y, x) K

(0,1)
n+1 (y, x)

K
(1,0)
n+1 (y, x) K

(2,1)
n+1 (x, y) K

(1,1)
n+1 (y, x)

+O
(
u3
)
.

Next we subtract the first row from the second and see that each of the resulting terms
in the second row is O (u). So indeed, ∆Ω12 = O

(
u3
)

as u→ 0. Thus after removing the
singularity at 0, Ω12√

∆
1
κ2 = ∆Ω12

(
√

∆)
3

1
κ2 is analytic and single valued on |u| ≤ ρ. Next, from

Lemma 6.1(e), (b), (perhaps with a smaller ρ)

lim
n→∞

Ω12√
∆

1

κ2
= lim
n→∞

[
∆Ω12

Kn+1 (x, x)
3

e−3τu

κ2

][
∆

Kn+1 (x, x)
2 e
−2τu

]−3/2

=
H (u)

(1− S(u)2)
3/2

,

uniformly for u in compact subsets of the deleted disc 0 < |u| ≤ ρ. Here Ω12√
∆

1
κ2 is analytic

on |u| ≤ ρ, and converges uniformly on |u| = ρ, so the maximum modulus principle shows

that the convergence is uniform on |u| ≤ ρ. Hence H (u) /
(
1− S(u)2

)3/2
is analytic in

|u| < ρ, and the result follows.

Now we can deduce the desired bound near the diagonal:

Proof of Lemma 3.4(b). Recall that ρ2 was defined by (3.6). Then for |x| ≤ 1 − ε, and
u ∈ [−η, η],

|ρ2 (x, y)| 1

κ2
≤ 1

π2

(√
Ω11Ω22 − Ω2

12

∆
+
|Ω12|√

∆
arcsin

(
|Ω12|√
Ω11Ω22

))
1

κ2
≤ C,

by Lemmas 6.2–6.3. Next, from (5.1), followed by (6.8),

ρ1 (x)

κ
=

1

π

√
Ψ (x)

Kn+1 (x, x)
2
κ2

=
1√
3

+ o (1) , (6.11)

and a similar asymptotic holds for ρ1 (y). From (1.11) and the above, it follows that

|ρ2 (x, y)− ρ1 (x) ρ1 (y)| ≤ Cκ2 ≤ Cn2.

Proof of Lemma 3.4(c). This follows directly from (6.11) and (1.11).
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7 Proof of Theorem 2.1

We note that the measures in Theorem 2.1 belong to the class Q defined in [13, p. 6].
We turn to verifying the hypotheses (I)–(V) in Section 1. We first recall some results from
[13]. We continue to use the notation κ, τ from (4.1-2).

Lemma 7.1. Assume that {Qn} are as in Theorem 2.1. Let L ≥ 0.

(a) For m = n, n+ 1,

sup
x∈In

|pn,m (x)| e−nQn(x)
[
|1− |x||+ n−2/3

]1/4
∼ 1. (7.1)

(b) For |x| ≤ 1,

Kn+1 (µn, x, x)µ′n (x) ∼ nmax
{

1− |x| , n−2/3
}1/2

. (7.2)

(c) There exists c > 0 such that for |x| ≤ 1− n−c,

1

n
Kn+1 (µn, x, x) = σQn (x) + o (1) . (7.3)

(d) Uniformly for n ≥ 1 and for x ∈ (−1, 1) ,

σQn(x) ∼
√

1− x2. (7.4)

(e) Uniformly for n ≥ 1 and for x, y ∈ (−1, 1) ,∣∣σQn(x) − σQn(x)

∣∣ ≤ C |x− y|α . (7.5)

(f) There exists c > 0 such that for |x| ≤ 1− n−c and for u, v in compact subsets of the
real line,

K̃n+1

(
µn, x+ u

κ , x+ v
κ

)
K̃n+1 (µn, x, x)

= S (v − u) +O
(
n−c

)
. (7.6)

(g) For polynomials P of degree ≤ n+ L,∥∥P ′e−nQn∥∥
L∞(In)

≤ Cn
∥∥Pe−nQn∥∥

L∞(In)
. (7.7)

(h)
γn,n
γn,n+1

=
1

2
+ o (1) . (7.8)

(i) For polynomials P of degree ≤ n+ L∥∥Pe−nQn∥∥
L∞(In)

≤ C
∥∥Pe−nQn∥∥

L∞[−1,1]
. (7.9)

(j)
sup
n
‖Q′n‖L∞[−1,1] <∞. (7.10)

Proof. (a) See Theorem 2.1(a) in [13, p. 9].
(b) See Theorem 2.1(b) in [13, p. 9]. Note that there λn (µn, x) = 1/Kn (µn, x, x).
(c) See Theorem 2.2(c) in [13, p. 11].
(d) See Theorem 3.1(a) in [13, p. 15] and recall that there an,1 = 1 while a−n,1 = −1.
(e) See Theorem 3.1(b) in [13, p. 15].
(f) See Theorem 15.1 in [13, p. 155].
(g) See Theorem 8.1(b) in [13, p. 63].
(h) See Theorem 13.4 in [13, p. 124].
(i) Apply Theorem 4.2(a) in [13, p. 30] with T = 1.
(j) It is shown in Lemma 3.2(a) in [13, p. 16] that |Q′n (±1)| ∼ 1. Since Q′n is increasing,

we obtain (7.10).
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We proceed to verify the hypotheses (I)–(V) in Section 1.

Lemma 7.2. – Verification of (I)
Let 0 < ε < 1. Then for |x| ≤ 1− ε, and m = n, n+ 1,∣∣p′n,m (x)

∣∣ e−nQn(x) ≤ Cn. (7.11)

Proof. Note that (7.1) implies the bound (1.9) for j = 0. From the restricted range
inequality Lemma 7.1(i),

sup
x∈In

∣∣pn,m (x)
(
1− x2

)∣∣ e−nQn(x) ≤ C1 sup
x∈[−1,1]

∣∣pn,m (x)
(
1− x2

)∣∣ e−nQn(x) ≤ C2,

by (7.1). Then by the Bernstein inequality Lemma 7.1(g),

sup
x∈In

∣∣∣∣ ddx [pn,m (x)
(
1− x2

)]∣∣∣∣ e−nQn(x) ≤ Cn.

Then for |x| ≤ 1− ε,∣∣p′n,m (x)
(
1− x2

)∣∣ e−nQn(x) ≤ |pn,m (x) 2x| e−nQn(x) + Cn ≤ C1n

and then as 1− x2 ≥ ε, we obtain (7.11) and hence (1.9) for j = 1.

Next we turn to establishing the universality limit for complex u, v. We use Theorem
1.2 from [12] with h = 1 there. As we have already assigned a specific meaning to the
measures {µn}, we shall use {µ̂n} to denote the measures in [12] and also place a cap
on their associated quantities.

Lemma 7.3. For n ≥ 1, let µ̂n be a positive Borel measure on the real line, with at least
the first 2n+ 1 power moments finite. Let I be a compact interval in which each µ̂n is
absolutely continuous. Assume moreover that in I,

dµ̂n (x) = e−2nQ̂n(x)dx = Ŵ 2n
n (x) dx, (7.12)

is continuous on I. Let σQ̂n denote the equilibrium measure for the restriction of Ŵn to
I. Let J be a compact subinterval of Io. Assume that

(a)
{
σQ̂n

}∞
n=1

are positive and uniformly bounded in some open interval containing J ;

(b)
{
Q̂′n

}∞
n=1

are equicontinuous and uniformly bounded in some open interval con-

taining J ; or
(b′) more generally, for some open interval J2 containing J , and for each fixed a > 0,

sup
t∈J2,|h|≤a

∣∣∣∣Q̂′n (t)− Q̂′n
(
t+

h

n

)∣∣∣∣→ 0 as n→∞. (7.13)

(c) For some C1, C2 > 0, and for n ≥ 1 and x ∈ I,

C1 ≤ Kn (µ̂n, x, x) Ŵ 2n
n (x) /n ≤ C2. (7.14)

(d) Uniformly for x ∈ J and a in compact subsets of the real line,

lim
n→∞

Kn

(
µ̂n, x+ a

n , x+ a
n

)
Kn (µ̂n, x, x)

Ŵ 2n
n (x)

Ŵ 2n
n

(
x+ a

n

) = 1. (7.15)

Then uniformly for x ∈ J , and u, v in compact subsets of the complex plane, we have

lim
n→∞

Kn

(
µ̂n, x+ u

κ̂ , x+ v
κ̂

)
Kn (µ̂n, x, x)

e−τ̂(u+v) = S (v − u) .
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Proof. See Theorem 1.2 in [12, p. 748]. There the limit is stated for real u, v. The result
for complex u, v is stated as (1.13) in [12, p. 749]. The weaker condition (b′) is noted in
the remarks on page 749 in [12], see (1.12) there.

Lemma 7.4. – Verification of (IV)
Assume that {Qn} are as in Theorem 2.1. Let 0 < ε < 1. Then uniformly for |x| ≤ 1−ε

and u, v in compact subsets of C,

lim
n→∞

Kn+1

(
µn, x+ u

κ , x+ v
κ

)
Kn+1 (µn, x, x)

e−τ(u+v) = S (v − u) .

Proof. We use Lemma 7.3 with J = [−1 + ε, 1− ε] and µ̂n = µn. Firstly, from Lemma
7.1(d),we have the requirements of Lemma 7.3(a). Note that since the support of our
equilibrium densities for µn is [−1, 1], they are also the equilibrium densities for the
restriction of µn to [−1, 1] [18, p. 43, Theorem 3.1]. Next, from Lemma 7.1(j), and the
assumed smoothness (2.2) of {Q′n}, we have the requirements of Lemma 7.3(b). From
Lemma 7.1(b), we have the requirements of Lemma 7.3(c). From Lemma 7.1(c), (e), we
have the requirements of Lemma 7.3(d). Then we may apply the conclusion of Lemma
7.3 to {µn}. Finally, we may replace Kn with Kn+1 by changing the index in µn.

Lemma 7.5. – Verification of (II), (III), (V)
The estimates (1.10), (1.11), (1.13), (1.14) are valid.

Proof. Firstly, (1.10) follows directly from Lemma 7.1(h). Next, (1.11) follows from
Lemma 7.1(b). Next, (1.13) follows from Lemma 7.1(j). Finally, (1.14) follows easily from
the Lipschitz condition (2.2).

Proof of Theorem 2.1. We have verified all the hypotheses of Theorem 1.1 in Lemmas
7.2, 7.4, 7.5. Lemma 7.1(c) allows us to replace 1

nK̃n+1 (x, x) in (1.15) by σQn (x).

8 Proof of Theorem 2.3 and Corollary 2.4

Recall Definition 2.2 and the notation (2.6)–(2.13). We also need the function ϕn from
[11, p. 19]

ϕn (x) =
|x− a−2n| |x− a2n|

n
√

[|x− a−n|+ |a−n| η−n] [|x− a−n|+ |a−n| η−n]
, x ∈ [a−n, an] , (8.1)

while ϕn (x) = ϕn (an), x > an, and ϕn (x) = ϕn (a−n), x < a−n. Here

η±n =

nT (a±n)

√
|a±n|
δn

−2/3

.

We let pn
(
W 2, x

)
denote the nth orthonormal polynomial for W 2, so that∫

pn
(
W 2, x

)
pm
(
W 2, x

)
W 2 (x) dx = δmn.

Moreover, for non-negative integers r, s, we let

K(r,s)
n

(
W 2, x, t

)
=

n−1∑
j=0

p
(r)
j

(
W 2, x

)
p

(s)
j

(
W 2, t

)
and

K̃(r,s)
n

(
W 2, x, t

)
= W (x)W (t)K(r,s)

n

(
W 2, x, t

)
.
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Variance of real zeros

Lemma 8.1. Let 0 < ε < 1. Assume that W = exp (−Q) ∈ F
(
C2
)
.

(i)
sup
x∈R
|pn (x)| e−Q(x) [|x− an| |x− a−n|]1/4 ∼ 1 (8.2)

(ii) Uniformly for x ∈ Jn (ε),

Kn+1

(
W 2, x, x

)
W 2 (x) ∼ n

δn
. (8.3)

(iii) Uniformly for x ∈ Jn (ε),

Kn+1

(
W 2, x, x

)
W 2 (x) = σn (x) (1 + o (1)). (8.4)

(iv) Uniformly for n ≥ 1 and for x ∈ (−1 + ε, 1− ε) ,

σ∗n (x) ∼ 1, (8.5)

and uniformly for x ∈ Jn (ε) ,

σn (x) ∼ n

δn
. (8.6)

(v) Uniformly for n ≥ 1 and for x, y ∈ (−1 + ε, 1− ε) ,

|σ∗n (x)− σ∗n (y)| ≤ C |x− y|1/4 . (8.7)

(vi) For polynomials P of degree ≤ n,∥∥(PW )
′
ϕn
∥∥
L∞(R)

≤ C ‖PW‖L∞(R) . (8.8)

Moreover, given ε ∈ (0, 1), for x ∈ Jn (ε),

|P ′ (x) |W (x) ≤ C n

δn
‖PW‖L∞(R) . (8.9)

(vii)
γn
γn+1

=
δn
2

(1 + o (1)) . (8.10)

(viii) For polynomials P of degree ≤ n,

‖PW‖L∞(R) = ‖PW‖L∞[a−n,an] . (8.11)

Proof. (i) See Theorem 1.17 in [11, p. 22].
(ii) This follows from Corollary 1.14(c) in [11, p. 20], where estimates were provided

for λn
(
W 2, x

)
= 1/Kn

(
W 2, x, x

)
. Note that the class of weights above is contained in

the class F
(
lip 1

2

)
mentioned there (cf. [11, p. 12]). More precisely, it was shown that

for x ∈ [a−n, an],
Kn

(
W 2, x, x

)
W 2 (x) ∼ ϕn (x)

−1
,

where ϕn (x) is defined by (8.1). Here if x ∈ Jn (ε) = [a−n + εδn, an − εδn], we see that
|x− a±n| ≥ Cδn, so

ϕn (x) ∼ δn
n
. (8.12)

Finally, we can replace Kn with Kn+1 using the bounds on pn.
(iii) See Theorem 1.25 in [11, p. 26]. Note that if 0 < α < 1, then for large enough n,

we have Jn (ε) ⊂ [a−αn, aαn] .

(iv) See Theorems 1.10 and 1.11 in [11, pp. 17-18].
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(v) See Theorem 6.3 in [11, pp. 147-8] and the discussion on page 149- we can use
α = 1

2 there.
(vi) The first assertion is a special case of Theorem 10.1 in [11, p. 293]. For the

second we see that

|P ′W | (x)ϕn (x) ≤ |PW | (x)Q′ (x)ϕn (x) + ‖PW‖L∞(R) .

From Lemma 3.8(a) in [11, p. 77], for x ∈ Jn(ε),

Q′ (x) ≤ C n

δn
. (8.13)

Then the second estimate follows from this and (8.12).
(vii) See Theorem 1.23 in [11, p. 26] and note that there An = γn−1

γn
, while δn

δn+1
=

1 + o (1) .

(viii) See Theorem 4.1 in [11, p. 95].

To apply Theorem 1.1, we introduce a sequence of measures {µn} as follows: for
n ≥ 1, let

Qn (x) =
1

n
Q
(
L[−1]
n (x)

)
=

1

n
Q (βn + δnx) ;

Wn (x) = e−Qn(x);

dµn (x) = e−2nQn(x)dx.

Note that
W 2n
n = W 2 ◦ L[−1]

n ; (8.14)

and

Q′n =
δn
n
Q′ ◦ L[−1]

n . (8.15)

We denote the orthonormal polynomials for µn by {pn,j}∞j=0 as in Section 1. We also use
the notation for the reproducing kernels and other quantities there. A substitution shows
that

pn,j (x) = δ1/2
n pj

(
W 2, L[−1]

n (x)
)

(8.16)

and
Kn+1 (µn, x, y) = δnKn+1

(
W 2, L[−1]

n (x) , L[−1]
n (y)

)
. (8.17)

Lemma 8.2. – Verificiation of (I)
Let 0 < ε < 1.
(a) For x ∈ Jn (ε) and ` = 0, 1,∣∣∣p(`)

n (x)
∣∣∣W (x) ≤ C

δ
1/2
n

(
n

δn

)`
. (8.18)

(b) For |t| ≤ 1− ε, ` = 0, 1, and k = n, n+ 1,∣∣∣p(`)
n,k (t)

∣∣∣Wn
n (t) ≤ Cn`. (8.19)

Proof. (a) The case ` = 0 follows from (8.2). Now

(x− a−n) (an − x) = δ2
n

(
1− Ln (x)

2
)
,

so we can reformulate part of our bound (8.2) on pn as

δ1/2
n |pn (x)|W (x)

∣∣1− L2
n (x)

∣∣1/4 ≤ C, x ∈ R,
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and then also,

δ1/2
n |pn (x)|W (x)

∣∣1− L2
n (x)

∣∣ ≤ C, x ∈ [a−n−2, an+2] . (8.20)

Here pn (x)
(
1− L2

n (x)
)

is a polynomial of degree n + 2. Then our restricted range
inequality Lemma 8.1(viii) give that

sup
x∈R

δ1/2
n |pn (x)|W (x)

∣∣1− L2
n (x)

∣∣ ≤ C.
Next, we apply (8.9) to the polynomial pn (x)

(
1− L2

n (x)
)
, of degree n + 2: for x ∈

Jn+2 (ε) ⊇ Jn (ε), ∣∣∣∣ ddx {δ1/2
n pn (x)

(
1− L2

n (x)
)}
W (x)

∣∣∣∣ ≤ C n

δn
.

Then for x ∈ Jn (ε),

δ1/2
n

∣∣p′n (x)
(
1− L2

n (x)
)
W (x)

∣∣ ≤ δ−1/2
n |pn (x) 2Ln (x)|W (x) + C

n

δn
≤ C n

δn
,

by (8.2). Since 1− L2
n (x) ≥ C in Jn (ε), we obtain (8.18) for ` = 1.

(b) This follows from the identity (8.16).

Next, the universality limits:

Lemma 8.3. – Verification of (IV)
Let 0 < ε < 1.

(a) Let W = exp (−Q) ∈ F
(
C2
)
. Then uniformly for u, v in compact subsets of the

complex plane, and x ∈ Jn (ε), we have as n→∞,

lim
n→∞

K̃n+1

(
W 2, x+ u

K̃n+1(W 2,x,x)
, x+ v

K̃n+1(W 2,x,x)

)
K̃n+1 (W 2, x, x)

e
− Q′(x)
K̃n+1(W2,x,x)

(u+v)
= S (v − u) .

(b) For µn defined above, we have uniformly for u, v in compact subsets of the complex
plane, and |ξ| ≤ 1− ε, we have as n→∞,

lim
n→∞

K̃n+1

(
µn, ξ + u

K̃n+1(ξ,ξ)
, ξ + v

K̃n+1(ξ,ξ)

)
K̃n+1 (µn, ξ, ξ)

e
− n

K̃n+1(ξ,ξ)
Q′n(ξ)(u+v)

= S (v − u) .

Proof. (a), (b) This was established in Theorem 7.4 of [12, p. 771] for a bigger class of
weights. It was stated in Theorem 7.4 for real u, v but as noted in Lemma 7.3 above, it
was stated in (1.13) in [12] that we have uniformly for u, v in compact subsets of C, and
Kn = Kn (µn), and ξ ∈ [−1 + ε, 1− ε]

lim
n→∞

Kn+1

(
µn, ξ + u

K̃n+1(ξ,ξ)
, ξ + v

K̃n+1(ξ,ξ)

)
Kn+1 (µn, ξ, ξ)

e
− n

K̃n+1(ξ,ξ)
Q′n(ξ)(u+v)

= S (v − u) .

Thus we have the conclusion of (b). Here from (8.15), (8.17), if x = L
[−1]
n (ξ) ∈ Jn (ε) ,

n

K̃n+1 (µn, ξ, ξ)
Q′n (ξ) =

Q′ (x)

K̃n+1 (W 2, x, x)

so we also obtain the conclusion of (a), using

ξ +
u

K̃n+1 (µn, ξ, ξ)
= Ln

(
x+

u

K̃n+1 (W 2, x, x)

)
.
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Finally, we verify the remaining hypotheses (II), (III), (V).

Lemma 8.4. (a) The estimate (1.10) holds true for µn.
(b) The estimate (1.11) holds for |x| ≤ 1− ε.
(c) The estimates (1.13) and (1.14) hold for |x| ≤ 1− ε.

Proof. (a) From (8.16), we have

γn,j = δj+1/2
n γj

so from Lemma 8.1(vii),
γn,n
γn,n+1

=
1

2
+ o (1) .

(b) This follows from Lemma 8.1(ii) and (8.17). Note that Kn+1(x, x) = Kn(x, x)(1+o(1)).

(c) Firstly it is shown in Lemma 7.6(a) in [12, Lemma 7.6, p. 773] that {Q′n} are
uniformly bounded in compact subsets of (−1, 1). In Lemma 7.6(b) there, it is shown that
for fixed a > 0,

sup
|t|≤1−ε,|h|≤a,

∣∣∣∣Q′n (t)−Q′n
(
t+

h

n

)∣∣∣∣→ 0 as n→∞.

Proof of Theorem 2.3. We have verified the hypotheses (I)–(V) for the measures {µn}
in Lemmas 8.2, 8.3, 8.4. We can then apply the result of Theorem 1.1 to {µn}. The
transformation formula

G∗n (s) =

n∑
j=0

ajpn,j (s) =

n∑
j=0

ajpj ◦ L[−1]
n (s) = Gn

(
L[−1]
n (s)

)
then gives the result, recalling the asymptotic from Lemma 8.1(iii):

1

n
K̃n+1 (s, s) =

δn
n
Kn+1

(
W 2, L[−1]

n (s) , L[−1]
n (s)

)
W 2

(
L[−1]
n (s)

)
=
δn
n
σn ◦ L[−1]

n (s) (1 + o (1))

= σ∗n (s) (1 + o (1)) .

Proof of Corollary 2.4. It is shown in [15, Lemma 3.2, p. 55] that for x ∈ (−1, 1),

lim
n→∞

σ∗n (x) = σα (x) .

Moreover Lemma 8.1(iv) shows that {σ∗n} are uniformly bounded in [a, b].
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