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Condensation phenomena in preferential attachment
trees with neighbourhood influence*
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Abstract

We introduce a model of evolving preferential attachment trees where vertices are
assigned weights, and the evolution of a vertex depends not only on its own weight,
but also on the weights of its neighbours. We study empirical measures associated
with edges with endpoints having certain weights, and degrees of vertices having a
given weight. We show that the former exhibits a condensation phenomenon under
a certain critical condition, whereas the latter behaves like a mixture of a power
law distribution, depending on the weight distribution. Moreover, in the absence
of condensation, for any measurable set we prove almost-sure convergence of the
measure of that set under the related measure. This generalises existing results on
the Bianconi-Barabási tree as well as on an evolving tree model introduced by the
second author. Finally, as an application of our results, we provide criteria under
which the degree distribution of this model behaves like a power law, and prove a
limiting statement about the growth of the neighbourhood of a fixed vertex.
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1 Introduction

1.1 Background

Complex networks appearing in areas as diverse as the internet, social networks
and telecommunications are well known for their ubiquitous, non-trivial properties;
in particular, they often have a scale free, i.e., a power law, degree distribution, and
display a small or ultra-small world phenomenon, that is, having diameter of logarithmic
or double logarithmic order with respect to the size of the network. In their seminal
paper, Albert and Barabási in [4], observed that these properties emerged naturally
in a model where vertices arrive one at a time, and display a “preference” to popular
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Preferential attachment trees with neighbourhood influence

vertices – more precisely, connect to existing vertices with probability proportional to
their degree. This model was later studied rigorously in [9, 37]. In the case where the
newly arriving vertex connects to a single existing vertex, this gives rise to a well-known
model of random trees that has been studied under various names: first under the name
ordered recursive tree by Prodinger and Urbanek in [41], nonuniform recursive trees
by Szymański in [46], random plane oriented recursive trees in [33, 34], random heap
ordered recursive trees [12] and scale-free trees [9, 45, 8]. Various other modifications of
this model have also been studied, including the case that vertices are chosen according
to a super-linear function of their degree in [39], or indeed any positive function of the
degree [42], assuming a certain technical condition is satisfied. In [24], the latter model
is generalised to arbitrary non-negative functions of the degree and is referred to as
generalised preferential attachment.

Whilst the preferential attachment model is successful in reproducing the properties
of complex networks, it is generally the earlier arriving vertices that are more likely to
have higher degrees, since (informally) they have more time to acquire new neighbours,
which in turn reinforces the growth of their degree. Indeed, a result of [15] shows
that, from a certain time point onward, the vertex with maximal degree remains fixed
in this model. In contrast, in real world models it is often newly arriving nodes that
quickly acquire a large number of links, for example, in the world wide web. Motivated
by this, in [6], Bianconi and Barabási introduced their well-known model, sometimes
called preferential attachment with multiplicative fitness. There, vertices arrive one
at a time, and, upon arrival, each vertex is equipped with a random weight sampled
independently from a fixed distribution. At each time-step, the newly arriving vertex u
connects to an existing vertex v with probability proportional to the product of the weight
of v and its degree. Thus, the random weight may be interpreted as a measure of the
intrinsic “attractiveness” of a vertex. Bianconi and Barabási postulated the emergence
of an interesting dichotomy in this model which they called Bose-Einstein condensation,
motivated by similar phenomena in statistical physics. This condensation phenomenon
refers to the fact that under a certain critical condition on the weight distribution, a
positive proportion of all the edges in tree accumulate around vertices of maximum
weight. This dichotomy was first proved rigorously by Borgs et al. in [10] in the case
that the weight distribution is supported on an interval, and absolutely continuous
with respect to Lebesgue measure. However, they note that other classes of weight
distribution are possible. They also showed that in this model, the degree distribution
of vertices with a given weight follows a power law, with exponent depending on the
weight of the vertex. A similar condensation phenomenon was observed in a variant of
this model by Dereich in [13], and later, in a more general, robust setting (in the sense
that the results apply to wide variety of model specifications) in [16].

Two other similar models are the preferential attachment with additive fitness in-
troduced by Ergün and Rodgers in [17], where newly arriving vertices now connect to
existing vertices with probability proportional to the sum of their weight and degree,
and the weighted recursive tree introduced in [11]. In [43], Sénizergues showed that
the preferential attachment with additive fitness with deterministic weights, is equal
in distribution to a particular weighted random recursive tree with random weights.
In addition, Lodewijks and Ortgiese in [32, 31] uncovered an interesting dichotomy in
the maximal degrees of these models, in a robust, evolving graph setting. In [25], the
second author studied a model incorporating the weighted recursive tree as well as
preferential attachment trees with both additive and multiplicative fitness: here at each
time-step vertex with weight w and degree k is chosen with probability proportional
to g(w)(k − 1) + h(w), where g, h are non-negative, measurable functions. In this case,
the dynamics of the model depend on h in an non-trivial way: under a certain critical
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Preferential attachment trees with neighbourhood influence

condition on the weight distribution, g and h condensation occurs, but does not occur if
h takes large enough values on certain parts of its domain.

In the case of evolving trees, many of the above models describe the family tree of
associated continuous time branching processes – often Crump-Mode-Jagers or multitype
branching processes. This perspective has offered some interesting insights into the
evolution of these models. For example, the preferential attachment tree of Albert and
Barabási was actually first described in the context of evolution by Yule in [47] and in
the context of language by Simon in [44]. In addition, the condensation phenomenon
observed by Bianconi and Barabási was first studied in a similar, yet simpler manner, in
the context of evolution by Kingman in [30]. Later, the results of [39, 42, 24, 1] have all
exploited the connection to branching processes to derive results related to more general
preferential attachment models, and in [25, 5] in relation to inhomogeneous models with
a ‘fitness’ component. Often, the associated branching process with the discrete time
model is known as the continuous time embedding, or Arthreya-Karlin embedding, based
on pioneering work by Arthreya and Karlin in [3] who applied this approach in the context
of Pólya urns. As shown in [24, 5], when studying ‘local’ properties such as degrees of
vertices, one can observe that the continuous time embedding is a Crump-Mode-Jagers
branching process, and apply the results of [38], whilst when studying properties such
as the height (which is the same order of magnitude as the diameter), one can apply the
results of [29] and an argument of Pittel [40].

In [14], the authors studied condensation in models of reinforced branching processes
that generalise the continuous time embedding of the Bianconi-Barabási model, showing
that the condensation is non-extensive: whilst a positive proportion of edges in the family
tree of the process accumulate around vertices of maximal weight, the maximal degree
of the tree remains sub-linear. In addition, in [20], the authors studied another generali-
sation of the continuous time embedding of the Bianconi-Barabási model, incorporating
‘aging’ effects, and applying this to the study of citation networks; they demonstrated a
dichotomy between degree distributions having power law and exponential tails based
on the aging parameter.

There are a number of other interesting variations of inhomogeneous preferential
attachment models which also incorporate some degree of neighbourhood dependence.
In [27], Jordan studies models of preferential attachment where vertices belong to two
types and new vertices connect to existing vertices via a fitness mechanism, depending
on the type. Newly arriving vertices are then assigned types randomly, depending on the
types of their neighbours. Depending on the model specification, the fitness mechanism
here can be preferential attachment with either additive or multiplicative fitness. Geo-
metric models have also been considered in [28]: here, new vertices are equipped with a
location in a metric space, and connect to existing vertices with probability proportional
to the product of their degree, and a positive function of the distance between them. This
positive function is known as an attractiveness function. In [28], the authors demonstrate
a dichotomy, depending on the attractiveness function, between behaviour according to
the model of Albert and Barabási, and a well known geometric model known as the on
line nearest neighbour model.

Inhomogeneous models have also been studied in the context of models with choice
in [19, 21], with the appearance of more fascinating condensation phenomena. In this
model vertices are equipped with weights, at each time step r vertices are chosen with
probability proportional to their degree, and out of these r vertices, a random vertex is
chosen as the neighbour of the new-coming vertex. Here, the probability distribution
by which the random vertex is chose, may depend on the weights of the vertices. In
[19], the authors showed that, in the case that the maximal weight vertex is chosen,
extensive condensation may occur, that is, under a critical condition on the weight
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distribution, a positive proportion of edges accumulate around the vertex of maximal
degree. In addition, in [21], the authors showed that in certain cases, with random choice
rules, the distribution of edges with endpoint having certain weight converges weakly
to a random measure where multiple condensation can occur with positive probability,
that is, positive proportions of edges accumulate around vertices of multiple weights.
In addition, they showed that multiple condensation cannot occur when deterministic
choice rules are used, and there exist phase transitions for condensation occurring with
probability 0 or 1.

1.2 The definition of the neighbourhood influence model

As we discussed above, a number of preferential attachment mechanisms which in-
corporate inhomogeneity have been considered. However, models where the attachment
mechanism depends on the weights of the neighbours of a vertex have received far less
attention. In this direction, the authors in [18] recently incorporated higher-dimensional
interactions into this notion of preferential attachment, studying a model of evolving
simplicial complexes. They proved convergence in probability of the limiting degree
distribution to a limiting value, depending on a companion Markov process that tracks
the evolution of the neighbourhood of a given vertex. In this paper, we study a simplified
version of that model, which involves evolving trees; as a result, we are able to derive
stronger statements.

More precisely, we consider a model of weighted directed trees (Tn)n∈N0
; these are

labelled directed trees, where vertices have real valued weights associated to them. Let
T denote the set of all such weighted trees, and given a tree T ∈ T and a vertex j ∈ T ,
let N+(j, T ) be the weighted tree consisting of j and all of its out-neighbours. In order to
define the model, we require a probability measure µ which is supported on a bounded
subset of [0,∞), and a fitness function f : T→ [0,∞). Without loss of generality, we may
assume that µ is supported on a subset of [0, 1].

In the model we consider, we start with an initial tree T0 consisting of a single vertex
with random weight W0 sampled from µ. Then, given Ti, the model proceeds recursively
as follows:

(i) Sample a vertex j from Ti with probability f(N+(j,Ti))
Zi , where Zi :=

∑i
k=0 f(N+(k, Ti))

is the partition function associated with the process.

(ii) Form Ti+1 by adding the edge (j, i + 1), and assigning vertex i + 1 weight Wi+1

sampled independently from µ.

In this paper, we define f so that

f(N+(v, T )) = h(Wv) +
∑

(v,u)∈E(T )

g(Wv,Wu), (1.1)

where h : [0, 1] → [0,∞) and g : [0, 1] × [0, 1] → [0,∞) are bounded and measurable.
Without loss of generality, we assume that h takes values within the interval [0, 1]. In
addition, to ensure that the evolution of the model is well-defined, in all of our results
we condition on W0 satisfying h(W0) > 0, which we assume is an event that has positive
probability.

Remark 1.1. The form of the fitness function in (1.1) is sufficiently general to encompass
some existing models. In the case where g and h are a single constant, we obtain the
classic preferential attachment tree of Albert and Barabási. The case g(x, y) = h(x) = x

is the Bianconi-Barabási model, whilst the case g(x, y) ≡ 1, h(x) = x is the preferential
attachment tree with additive fitness. Finally, the case g(x, y) = ĝ(x), for some bounded
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Figure 1: Dynamics of the Model. A sample transition from T1 to
T2. In T1, 0 is chosen with probability proportional to f(N+(0, T1)) =

h(W0) + g(W0,W1), while 1 is chosen with probability proportional to
f(N+(1, T1)) = h(W1). In this evolution, 1 is chosen, so the newcomer
2 arrives as an out-neighbour of 1.

measurable function of a single variable is the generalised preferential attachment with
fitness model studied by the second author in [25]. More importantly, this model is
general enough to encompass functions g(x, y) with a non-trivial dependence on the
second variable y: some more general examples of fitness function to which our first
main theorem, Theorem 1.1, applies are provided in Remark 1.4, whilst Example 1.10
provides some examples of fitness functions to which Theorem 1.3 applies.

Remark 1.2. One may interpret (Tn)n∈N0 in the context of reinforced branching pro-
cesses as follows: we begin with an individual 0 belonging to its own family that
reproduces after an exponentially distributed amount of time, with parameter h(W0).
We say that the ancestral weight of the family is W0. Then, recursively, when a birth
event occurs in the ith family, with ancestral weight Wi, a new individual with random
weight W joins the ith family, reproducing after an Exp (g(Wi,W ))-distributed amount of
time; and simultaneously, an individual of weight W begins its own family, with ancestral
weight W . The out-neighbourhood of a vertex i in the tree Tn, including the vertex i
itself, then represents individuals in the ith family in the branching process, at the time
of the nth birth event.

Remark 1.3. One can extend the model from the previous remark further by supplant-
ing it with constants 0 ≤ β, γ ≤ 1, so that when a birth event occurs, independently
with probability β, an individual with random weight W joins the ith family, and with
probability γ, an individual with random weight W ′ (also sampled from µ) initiates its
own family with ancestral weight W ′. While not immediately clear from the way we have
defined the model, our methods also extend to this case – this link becomes clearer when
viewing individuals as “loops” and “edges” in a Pólya urn similar to Urn E (see Figure 2
below). In this extended model, the case g(x, y) = h(x) = x, and this terminology, was
introduced in [14], as a stochastic analogue of the model of Kingman [30].

Let B denote the Borel σ-algebra on [0, 1], and B ⊗ B the product σ-algebra on
[0, 1]× [0, 1]. In this paper, we study the following quantities:

1. Given A ∈ B⊗B, the quantity Ξ(2)(n,A) denotes the number of edges (v, v′) in the
tree Tn such that (Wv,Wv′) ∈ A, that is,

Ξ(2)(n,A) :=
∑

(v,v′)∈Tn

1A(Wv,Wv′); (1.2)
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0 1

(W0,W1)

W0 W1 0 1

(W0,W1)

W0 W1

0

1
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(W0,W1)

W0

W1

(W1,W2)

W2

Figure 2: The Dynamics of Urn E. The evolution of the tree from T1 to
T2 from Figure 1 viewed as a transition in Urn E. The event vertex 1 is
selected may be interpreted as the event that the ‘loop’ W1 is selected
in the Pólya urn - and thus the arrival of the vertex 2 corresponds to
the arrival of the ‘loop’ W2 and the ‘edge’ (W1,W2) in the Pólya urn.

2. Given B ∈ B, the quantity N≥k(n,B) denotes the number of vertices v in the tree
Tn with out-degree at least k and weight Wv ∈ B, that is,

N≥k(n,B) :=
∑

v∈Tn:deg+(v,Tn)≥k

1B(Wv). (1.3)

3. For B ∈ B, we also define Ξ(n,B), so that

Ξ(n,B) :=
∑

(v,v′)∈Tn

1B(Wv) = Ξ(2)(n,B × [0, 1]), (1.4)

where the latter equality is in the almost sure sense.

1.2.1 Notation

We denote by N0 := N ∪ {0} – i.e. the natural numbers including 0. Also, in general in
this paper, W refers to a generic µ distributed random variable on a probability space
(Ω,F,P) taking values in the measure space ([0, 1],B) and E[·] denotes expectations
with respect to this random variable. In addition, we require a probability space with
an infinite sequence W0,W1,W2, . . . of random variables, which are independent and
identically distributed; we view these, abusing notation slightly, as belonging to the
product space (Ω,F,P) := (

∏
i∈N0

(Ωi,Fi,Pi). For brevity, E[·] also denotes expectations
with respect to random variables on this product space.

In addition, for s ∈ N, we denote by [s] the set {1, . . . , s}. In addition, for ` ∈ N, we
denote by [s]` the `-fold Cartesian product [s]× · · · × [s]. Given a set S ⊂ S, we denote
by Sc the complement of this set, and (if S has a topology made clear from context),
we denote by S the topological closure of S. We also denote the indicator function
associated with S by 1S . Finally, we introduce some extra notation specific to the section
in Section 2.1.2.

1.3 Statements of the main results

The results in this paper depend on two sets of conditions; intuitively one set of
conditions describes the ‘non-condensation’ regime, whilst the other describes the
‘condensation’ regime.
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W0,W1 W1 W0,W1 W1

W0,W1

W1,W2

W2

Figure 3: The Dynamics of Urn D. The evolution of the tree from T1

to T2 from Figure 1 viewed as a transition in Urn D. The event vertex 1

is selected may be interpreted as the event that the ball W1 is selected
in the Pólya urn - and thus the arrival of the vertex 2 corresponds to
the addition of the balls W2 and (W1,W2). The latter ball represents
the addition of vertex 2 into the neighbourhood of vertex 1.

1.3.1 The non-condensation regime of the model

The first main conditions are the following: recalling g and h as defined in (1.1), assume

C1 There exists some λ∗ > g̃∗ such that

E

[
h(W )

λ∗ − g̃(W )

]
= 1, (1.5)

where g̃(x) := E [g(x,W )] and g̃∗ := E
[
supx∈[0,1] g(x,W )

]
. We call λ∗ the Malthu-

sian parameter of the process.

C2 For N ∈ N, there exist measurable functions φ(i)
j : [0, 1] → [0, 1], j = 1, 2, i ∈ [N ],

and a bounded continuous function κ : [0, 1]2N → [0,∞) such that

g(x, y) = κ
(
φ

(1)
1 (x), . . . , φ

(N)
1 (x), φ

(1)
2 (y), . . . , φ

(N)
2 (y)

)
. (1.6)

We denote by gmax := supx,y∈[0,1] {g(x, y)}.

Remark 1.4. We expect similar results under the weaker hypothesis that g and h are
measurable and bounded rather than Condition C2. However, this condition still allows
many “reasonable” choices of bounded measurable functions g. This includes the models
mentioned in Remark 1.1, the case where g is continuous, as well as functions of the form
g(x, y) = φ1(x) +φ2(y) or g(x, y) = φ1(x)φ2(y), where φ1, φ2 are bounded and measurable.

In order to prove our first theorem, we will require some definitions. Define ψ(x) =

h(x)/(λ∗− g̃(x)), denote by ψ∗µ the pushforward measure of µ under ψ – i.e. the measure
such that for A ∈ B

(ψ∗µ)(A) = E

[
h(W )

λ∗ − g̃(W )
1A(W )

]
. (1.7)

In addition, we define a companion process (Si(w))i≥0 that describes the evolution of
the fitness of a vertex with weight w as its neighbourhood changes. First, let W1,W2, . . .

be independent µ-distributed random variables and let w ∈ [0, 1]. We then define the
random process (Si(w))i≥0 inductively so that

S0(w) := h(w); Si+1(w) := Si(w) + g(w,Wi+1), i ≥ 0. (1.8)
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Also recall from Section 1.2.1, that E[·] also denotes expectation with respect to the path
of Si(W0), i.e., expectations with respect to the product measure involving the terms
W0,W1,W2 . . .. We then have the following theorem:

Theorem 1.1. Assume Conditions C1 and C2. Then:

1. We have limn→∞
Zn
n → λ∗ almost surely.

2. With Ξ(2)(n, ·) as defined in (1.2), the sequence of random measures

Ξ(2)(n, ·)
n

→ (ψ∗µ× µ)(·), (1.9)

almost surely, with respect to the weak topology.

3. For any A ∈ B, we have

lim
n→∞

N≥k(n,A)

n
= E

[
k−1∏
i=0

(
Si(W0)

Si(W0) + λ∗

)
1A(W0)

]
, (1.10)

almost surely.

4. For any set B ∈ B we have

Ξ(n,B)

n
→ (ψ∗µ)(B),

almost surely.

Remark 1.5. One may interpret the right hand side of (1.10) as the probability of a
sequence of at least k consecutive heads before a first tail when, sampling W0 at random,
and flipping the ith coin heads with probability proportional to Si−1(W0).

Remark 1.6. By applying the Portmanteau theorem, and the well known fact that any
open set in [0, 1] may be expressed as a countable disjoint union of half open dyadic
intervals, the convergences in Assertions 3 and 4 of Theorem 1.1 are stronger than
almost sure convergence of the sequences of random measures in the weak topology,
which is the usual form in which these results appear in the literature, (e.g. [10, 14]).
However, it is not immediately clear whether one can swap the “for all” quantifier and
the “almost sure” statement, so that the respective convergence occurs almost surely
for all sets B ∈ B. This latter convergence would be almost sure setwise convergence of
the sequences of random measures, and it may be the case that this convergence occurs
as well.

In order to prove Theorem 1.1, we require the following interesting identity, which
may be of independent interest.

Lemma 1.2. Let (Si(w))i≥0 denote the process defined in (1.8) in terms of bounded,
measurable functions g, h, suppose g̃(x) := E [g(x,W )] and g̃+ = supx∈[0,1] g̃(x). Then for
any w ∈ [0, 1] and λ ≥ g̃+ we have

∞∑
k=1

E

[
k−1∏
i=0

(
Si(w)

Si(w) + λ

)]
=

h(w)

λ− g̃(w)
, (1.11)

where the right hand side is infinite if λ = g̃+ = g̃(w). In particular,

∞∑
k=1

E

[
k−1∏
i=0

(
Si(W0)

Si(W0) + λ

)
1B(W0)

]
= E

[
h(W0)

λ− g̃(W0)
1B(W0)

]
.
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As the proof of this lemma detracts from the main techniques used in this paper, we
include its proof in the appendix, Section 4.1.

Remark 1.7. One may interpret (1.11) as a generalisation of the classic geometric
series formula: if we set g(x, y) ≡ 0, and q := h(w)/(h(w) +λ), the left hand side of (1.11)
is
∑∞
i=1 q

i = h(w)
λ = q

1−q . Indeed, as Remark 1.5 shows, one may interpret the left hand
side as the expected value of a generalised geometrically distributed random variable.

1.3.2 The condensation regime of the model

In this paper, we are able to describe a “condensation” result; we first make precise
what “condensation” means.

Definition. Suppose we are given a µ-null set S ∈ B and let Ξ(n, ·) be as in (1.2). We
say that condensation occurs around the set S, if for some decreasing collection of sets
(Sε)ε≥0, with Sε ↓ S as ε→ 0 we have

lim
ε→0

lim
n→∞

Ξ(n, Sε)

n
> 0,

with positive probability.

Remark 1.8. Informally, condensation means that, in the limit of the random measure
Ξ(n, ·)/n, the set S acquires more mass than one ‘would expect’. Indeed, if we swap
limits,

lim
n→∞

lim
ε→0

Ξ(n, Sε)

n
= lim
n→∞

Ξ(n, S)

n
= 0,

almost surely, since µ(S) = 0.

Our main assumptions in the condensation regime are:

D1 We have

E

[
h(W )

g̃∗ − g̃(W )

]
< 1. (1.12)

D2 The function g satisfies Condition C2.

D3 There exists a (maximal) set of pointsM⊆ [0, 1], such that, for any z ∈ M for all
w ∈ [0, 1],

ess sup(g(·, w)) = g(z, w).

D4 For some ε0 ∈ (0, 1), there exists a family of measurable functions {uε : [0, 1] →
[0,∞)}ε∈(0,ε0) such that limε→0 uε = 0 pointwise and for all z ∈M, we have

Mε := {x : P (g(z,W )− g(x,W ) < uε(W )) = 1}
= {x : P (g(z,W )− g(x,W ) < uε(W )) > 0} . (1.13)

In other words, the setMε of x such that g(z,W )− g(x,W ) < uε(W ) with positive
probability, satisfy g(z,W )− g(x,W ) < uε(W ) almost surely. We also assume that
µ(Mε) > 0.

Remark 1.9. Note that, by the measurability of g(·, q) for any q ∈ [0, 1], for all z ∈ M
the function

p 7→ ess supq∈[0,1] {g(z, q)− g(p, q)− uε(q)}

is also measurable as the lattice supremum of an uncountable family of measurable
functions – see, e.g. [7, Theorem 4.7.1.]. This ensures that the setMε ∈ B.
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Example 1.10. The conditions D2-D4 are restrictive enough that it may not be the case
that they are satisfied by any continuous function g(x, y). However, they still encompass
the other examples stated in Remark 1.4: functions of the form g(x, y) = φ1(x) + φ2(y)

or g(x, y) = φ1(x)φ2(y), where φ1, φ2 are bounded and measurable. Indeed, in either
case,M = φ−1

1 ({ess sup (φ1)}), andMε = φ−1
1 ((ess sup (φ1) − ε, ess sup (φ1)]). Indeed, in

the case that g(x, y) = φ1(x) + φ2(y) we may simply choose uε ≡ ε, so that

Mε = {x : P (φ1(z) + φ2(W )− φ1(x)− φ2(W ) < ε) = 1}
= {x : φ1(z)− φ1(x) < ε} = φ−1

1 ((ess sup (φ1)− ε, ess sup (φ1)]).

while in the case that g(x, y) = φ1(x)φ2(y) for bounded, measurable φ1, φ2, for ε > 0 and
z ∈M we may take uε = ε · φ2 and

Mε = {x : P (φ1(z)φ2(W )− φ1(x)φ2(W ) < εφ2(W )) = 1}
= {x : φ1(z)− φ1(x) < ε} = φ−1

1 ((ess sup (φ1)− ε, ess sup (φ1)]).

By the definition of the essential supremum,Mε has positive measure.

Remark 1.11. Conditions D1 and D2 may be interpreted as analogues of Conditions C1
and C2 in the condensation regime. One may regardM from D3 as a “dominating set”,
in the sense that P-a.s., upon arrival of a new vertex into its neighbourhood, the change
of the fitness of any vertex is at most the change of the fitness of a vertex with weight
with weight inM. Condition D4 ensures that this “dominating property” is captured
by setsMε of positive measure. Indeed the right hand side of (1.13) implies that the
change of the fitness of any vertex with weight inMc

ε is at most the change of the fitness
of a vertex having weight in Mε. Note that Mε ↓ M as ε → 0. This accounts for the
formation of the condensate in Theorem 1.3, since g̃ is maximised onM, by D1 it must
be the case that µ(M) = 0.

Theorem 1.3. Assume Conditions D1-D4. Then:

1. We have limn→∞
Zn
n → g̃∗ almost surely.

2. For any A ∈ B such that, for ε > 0 sufficiently small A ∩Mε = ∅, we have

Ξ(n,A)

n
→ (ψ∗µ)(A), almost surely. (1.14)

In addition,

lim
ε→0

lim
n→∞

Ξ(n,Mε)

n
= 1− (ψ∗µ)([0, 1]) > 0, (1.15)

so that condensation occurs aroundM.

3. For any set B ∈ B, almost surely, we have

lim
n→∞

N≥k(n,B)

n
= E

[
k−1∏
i=0

(
Si(W )

Si(W ) + g̃∗

)
1B(W )

]
.

Remark 1.12. The condensation phenomenon has an interesting evolutionary interpre-
tation in the context of reinforced branching processes (see Remarks 1.2 and 1.3). Here,
‘fitness’ refers to the rate at which a family produces offspring (a natural parameter for
reproductive success), and condensation occurs around families of maximally reinforced
fitness. Thus, viewing this model as a stochastic analogue of the model of Kingman in
[30], one may informally view this as an extreme “survival of the fittest” phenomenon:
despite any single individual having zero probability of weight belonging toM, individu-
als in the population are skewed so much towards weights conferring higher reinforced
fitness that a positive proportion of individuals in the population tend towards weights
belonging to the setM.
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We have the following corollary:

Corollary 1.4. Assume Conditions D1-D4, and the setsMε in D4 are such thatMε ↓ M
as ε → 0 (recalling Mε denotes the topological closure of Mε). Also, suppose that
M = {z}, and define the measure Π(·) such that, for B ∈ B

Π(B) = (ψ∗µ)(B) + (1− (ψ∗µ)([0, 1])) δz(B).

Then,
Ξ(n, ·)
n

→ Π(·) almost surely,

in the weak topology.

Remark 1.13. Recalling the examples from Example 1.10, i.e., g(x, y) = φ1(x)φ2(y) or
g(x, y) = φ1(x)+φ2(y) for bounded measurable functions φ1, φ2, an additional assumption
that meets the requirement thatMε ↓ M is that φ1 is continuous on someMε′ . Indeed,
in this case, for 0 < ε < ε′,

Mε ⊆ {x : φ1(z)− φ1(x) ≤ ε} ,

so thatMε ↓ {z} as ε→ 0. Another assumption that would meet this requirement would
be to have φ1 monotone.

1.4 Discussion of some implications of the main results

In this subsection, we provide a discussion of some of the implications of our main
results.

1.4.1 Power law degree distributions

We will show the following theorem, which essentially states that the number of vertices
of degree k scales like a power law with a certain exponent, for k that is large. First, we
define c∗ such that

c∗ := inf
λ>0

{
λ : 0 < E

[
h(W )

λ− g̃(W )

]
≤ 1

}
Note that this implies that c∗ = λ∗ for the non-condensation regime (Conditions C1 and
C2) and c∗ = g̃∗ for the condensation regime (Conditions D1-D4).

Theorem 1.5. Assume that, for some ε0 sufficiently small, h is positive on the set

{w : ess sup {g̃}(1− ε0) ≤ g̃(w) ≤ ess sup {g̃}} ,

and that infw∈[0,1] g̃(w) > 0. Then, assuming Conditions C1 and C2 or Conditions D1-D4
are satisfied,

lim
k→∞

logk(pk) = −
(

1 +
c∗

ess sup {g̃}

)
. (1.16)

In this subsection, we provide a proof of this theorem.

Remark 1.14. In much of the scientific literature surrounding the study of complex
networks (see, for example, [23]), scientists observe that the degree distribution behaves
like a power law, with exponent τ between 2 and 3. A weak definition of this power law
behaviour is to define τ := limk→∞− logk(pk). In this case, since h(w) ≤ 1, whenever
ess sup {g̃} = 1 (so that c∗ ≤ 2) this behaviour always emerges in this model. In the
condensation regime however, we have ess sup{g̃} = g̃∗, so that the exponent of the
power law is always 2.
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First note that by Theorem 1.1, if Nk(n,B) denotes the number of vertices with
degree k and weight belonging to B at time n, then almost surely

lim
n→∞

Nk(n,B)

n
= lim
n→∞

(
N≥k(n,B)

n
− N≥k+1(n,B)

n

)
= E

[
c∗

Sk(W ) + c∗

k−1∏
i=0

(
Si(W )

Si(W ) + c∗

)
1B(W )

]
. (1.17)

In what follows, we define the measures pk(·) such that, for any set B ∈ B we have

pk(B) := E

[
c∗

Sk(W ) + c∗

k−1∏
i=0

(
Si(W )

Si(W ) + c∗

)
1B(W )

]
.

The following inequality is well-known.

Lemma 1.6 (Hoeffding’s inequality [22], Theorem 2.5 in [36]). Suppose X1, . . . , Xn are
random variables such that a ≤ Xi ≤ b for i ∈ {1, . . . , n}; set X :=

∑n
i=1Xi and

X̃ := E [X]. Then, for any δ > 0 we have

1. P
(
X ≥ (1 + δ)X̃

)
≤ e−

2δ2X̃2

n(b−a)2

2. P
(
X ≤ (1− δ)X̃

)
≤ e−

2δ2X̃2

n(b−a)2 .

Lemma 1.7. For any B ∈ B such that µ(B) > 0, and infw∈B g̃(w) > 0 we have

lim sup
k→∞

logk pk(B) ≤ −
(

1 +
c∗

supw∈B g̃(w)

)
. (1.18)

and, moreover, if h(w) > 0 on A ⊆ B with µ(A) > 0,

lim inf
k→∞

logk pk(B) ≥ −
(

1 +
c∗

infw∈B g̃(w)

)
. (1.19)

Proof. As a shorthand, we define the following quantities for a given B ∈ B:

g̃−(B) := inf
w∈B

g̃(w), g̃+(B) := sup
w∈B

g̃(w). (1.20)

Also, for any w ∈ B, δ > 0, define the event Gw,δ,k0 such that

Gw,δ,k0 = {∀j ≥ k0 |Sj(w)− (h(w) + jg̃(w))| ≤ δ(h(w) + jg̃(w))} .

By Lemma 1.6, for any δ > 0, k0 ∈ N, with J being an upper bound on max {g, 1} we have

P
(
Gcw,δ,k0

)
≤
∞∑
j=k0

e
−2δ2g̃(w)2j

J2 ≤
(

1 +
J2

2δ2g̃(w)2

)
e
−2δ2g̃(w)2k0

J2

≤
(

1 +
J2

2δ2g̃−(B)2

)
e
−2δ2g̃−(B)2k0

J2 =: ce−dk0 , (1.21)

where we have used the integral test to bound the infinite series, and define the constants
c and d, which are independent of k0, to simplify notation. We begin with the proof
of (1.19). First, we fix k0 sufficiently large that the right hand side of (1.21) is smaller
than one; this implies the events {Gw,δ,k0}w∈B have probability uniformly bounded from
below, so that

inf
w∈B

P (Gw,δ,k0) > 0. (1.22)
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Then,

pk(B) ≥ c∗

(k + 1)J + λ∗
E

[
EW

[
k−1∏
i=0

(
Si(W )

Si(W ) + c∗

)
1GW,δ,k0

]
1B(W )

]

≥ c∗

(k + 1)J + λ∗

× E

[
EW

[(
k0−1∏
i=0

Si(W )

Si(W ) + c∗

)
k−1∏
i=k0

(
(h(W ) + ig̃(W ))(1− δ)

(h(W ) + ig̃(W ))(1− δ) + c∗

)
1GW,δ,k0

]
1B(W )

]

≥ c∗

(k + 1)J + λ∗

× E

[
EW

[(
h(W )

h(W ) + c∗

)k0 k−1∏
i=k0

(
ig̃−(B)(1− δ)

ig̃−(B)(1− δ) + c∗

)
1GW,δ,k0

]
1B(W )

]
,

where in these inequalities we have used the fact that x 7→ x
x+c∗ is increasing. Now,

re-writing the product in the last expectation with gamma functions, we have

E

[
EW

[(
h(W )

h(W ) + c∗

)k0 k−1∏
i=k0

(
ig̃−(B)(1− δ)

ig̃−(B)(1− δ) + c∗

)
1GW,δ,k0

]
1B(W )

]

= E

[(
h(W )

h(W ) + c∗

)k0 Γ (k) Γ (k0 + c∗/((1− δ)g̃−(B)))

Γ (k + c∗/((1− δ)g̃−(B))) Γ (k0)
EW

[
1GW,δ,k0

]
1B(W )

]

≥ E

[(
h(W )

h(W ) + c∗

)k0
1B(W )

]
Γ (k) Γ (k0 + c∗/((1− δ)g̃−(B)))

Γ (k + c∗/((1− δ)g̃−(B))) Γ (k0)
inf
w∈B

P (Gw,δ,k0)

= c1
Γ (k)

Γ (k + c∗/((1− δ)g̃−(B)))
= c1

(
1− c2

k

)
k−c

∗/((1−δ)g̃−(B));

where c1 is a constant depending only on B and k0, and c2 is a constant independent of k
coming from applying Stirling’s approximation to the ratio of gamma functions. Thus,

lim inf
k→∞

logk pk(B) ≥ lim inf
k→∞

logk

(
c1c
∗

J

(
1− c2

k

)
k−(1+c∗/((1−δ)g̃−(B))

)
= −

(
1 +

c∗

(1− δ)g̃−(B)

)
,

and, as δ can be made arbitrarily small, (1.19) follows.
Now, for (1.18), we again use (1.21), but we instead define k0 = k0(k) as a function

of k; in particular, for a given ε > 0, we set k0 := bkεc. Then,

pk(B) ≤ E

[
EW

[
c∗

Sk(W )

k−1∏
i=0

(
Si(W )

Si(W ) + c∗

)
1GW,δ,k0

]
1B(W )

]
+ sup
w∈B

P
(
Gcw,δ,k0

)
≤ E

[
EW

[
c∗

kg̃(W )(1− δ)

k−1∏
i=k0

(
h(W ) + ig̃(W )(1 + δ)

h(W ) + ig̃(W )(1 + δ) + c∗

)
1GW,δ,k0

]
1B(W )

]
+ sup
w∈B

P
(
Gcw,δ,k0

)
≤ c∗

kg̃+(B)(1− δ)
Γ (k + 1) Γ (k0 + 1 + c∗/((1 + δ)g̃+(B)))

Γ (k + 1 + c∗/((1 + δ)g̃+(B))) Γ (k0 + 1)
+ ce−dk0 ,

where, in the last inequality, we have bounded h(W ) above by 1, and g̃(W ) by g̃+(B).
Now, bounding k0 above by kε, and applying Stirling’s approximation, there exists a
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constant c3, independent of k, such that

pk(B) ≤ c3k−(1+(c∗/((1+δ)g̃+(B)))(1−ε)) + ce−dk
ε

.

Therefore,

lim sup
k→∞

logk pk(B) ≤ − (1 + (c∗/((1 + δ)g̃+(B))) (1− ε)) ,

and making ε and δ arbitrarily small proves (1.18).

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. First, we set g̃′ := ess sup {g̃}, and, for each n ∈ N, define the
following partition {Pi}i∈{0}∪[n−1] of [0, 1]:

P0 := g̃−1 ([0, g̃′/n]) , Pi := g̃−1 ((g̃′i/n, g̃′(i+ 1)/n]) , for i ∈ [n− 1].

Now the lower bound for (1.16) follows immediately from (1.19) in Lemma (1.7): for
n ≥ 1

ε0
the function h is positive on Pn−1, thus, by (1.19)

lim inf
k→∞

logk pk ≥ lim inf
k→∞

logk (pk(Pn−1)) ≥ −
(

1 +
c∗

g̃′(1− 1
n )

)
,

and sending n to ∞, we deduce the claim. For the upper bound, we first fix n and, by
applying (1.18), choose k sufficiently large that for all i ∈ {0} ∪ [n− 2]

pk(Pi) < k
1
2n−

(
1+ c∗n

g̃′(i+1)

)
and pk(Pn−1) > k

− 1
2n−

(
1+ c∗n

g̃′(n−1)

)
. (1.23)

Then we have

lim sup
k→∞

logk pk = lim sup
k→∞

logk

(
n−1∑
i=0

pk(Pi)

)

≤ lim sup
k→∞

logk (pk(Pn−1)) + lim sup
k→∞

logk

(
n−1∑
i=0

pk(Pi)/pk(Pn−1)

)

Now, by (1.23), we have

logk

(
n−1∑
i=0

pk(Pi)/pk(Pn−1)

)
≤ logk

(
nk1/n

)
,

so that

lim sup
k→∞

logk pk ≤ lim sup
k→∞

logk (pk(Pn−1)) +
1

n
≤ −

(
1 +

c∗

g̃′

)
+

1

n
.

Sending n→∞, we deduce (1.16).

1.4.2 The growth of the neighbourhood of a fixed vertex

In the following proposition, we let fn(v) = f(N+(v, Tn)) denote the fitness, as defined
in (1.1), of a vertex labelled v ∈ N0, with weight wv in the tree at time n. In addition,
let (Ri)i≥v denote the natural filtration generated by the tree process (Ti)i≥v after the
arrival of v. Next, set

Mn(v) :=
fn(v)∏n−1

s=v

(
Zs+g̃(wv)
Zs

) .
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Proposition 1.8. For any vertex v ∈ N0, (Mn(v))n≥v is a non-negative martingale with
respect to (Ri)i≥v.

Proof. Using the definition of the process, for n ≥ v we compute

E [fn+1(v)|Rn] =
fn(v)

Zn
(fn(v) + g̃(wv)) +

(
1− fn(v)

Zn

)
fn(v)

= fn(v)

(
Zn + g̃(wv)

Zn

)
.

The result follows from the definition of (Mn(v))n≥v.

Now, let deg+
n (v) denote the out-degree of vertex v at time n in the tree process. We

then have the following corollary:

Corollary 1.9. For every v ∈ N0, we have

deg+
n (v)∏n−1

s=v

(
Zs+g̃(wv)
Zs

) → M∞(v)

g̃(wv)
(1.24)

almost surely, where M∞(v) is an almost surely finite, non-negative random variable,
with E [M∞(v)] ≤ h(wv).

Proof. First note that by the martingale convergence theorem, we have

Mn(v)→M∞(v), (1.25)

almost surely, where M∞(v) is as described in the statement of the corollary. Noting that
for each n we have E [Mn(v)] = h(wv), by Fatou’s lemma we have E [M∞(v)] ≤ h(wv)

Now, we associate with each fixed vertex v in the process a sequence of stopping
times (τj(v))j∈N, describing the time-step in the tree process where v is selected for
the jth time. Formally, if deg+

n (v) denotes the out-degree of vertex v at time n, we set
τj(v) := inf

{
n ≥ 0 : deg+

n (v) = j
}

, following the convention that the infimum of the empty
set is +∞. Now, note that for each n ∈ N, we have the deterministic bound Zn ≤ 2Jn.
Therefore, for each n > v, on the event that h(wv) > 0, and conditionally on wv, the event
of selecting v at the nth time-step is stochastically bounded below by an independent
Bernoulli trial with parameter h(wv)/2Jn, and thus by the converse of the Borel-Cantelli
lemma, almost surely, on {h(wv) > 0}, v is selected infinitely often. Therefore, on the
event {h(wv) > 0}, almost surely, for all j ∈ N, τj(v) < ∞. On the other hand, by the
construction of the process, the entire sequence(

fτj(v)(v)

deg+
τj(v)(v)

)
j∈N

=

(
h(wv) +

∑j
i=1 g(wv,Wi)

j

)
j∈N

, (1.26)

in distribution, where the Wi are i.i.d random variables sampled from µ. It follows from
the strong law of large numbers, and the fact that the processes (fn(v))n≥v, (deg+

n (v))n≥v
are piecewise constant, that (conditionally on the event {h(wv) > 0})

lim
n→∞

fn(v)

deg+
n (v)

= g̃(wv) (1.27)

almost surely. The result follows from (1.25) and (1.27), where we note that we may
drop the conditioning {h(wv) > 0} from the statement of the corollary since both sides
are 0 on {h(wv) = 0}.
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For our next corollary, recall that we define c∗ such that

c∗ := inf
λ>0

{
λ : 0 < E

[
h(W )

λ− g̃(W )

]
≤ 1

}
.

Note that Proposition 1.8 is not enough to guarantee that M∞ > 0 with positive proba-
bility, although we do conjecture that this is the case in the Non-Condensation regime.
Nevertheless, we do have the following result:

Corollary 1.10. Assume that either Conditions C1 and C2 or Conditions D1-D4 are
satisfied, and the event {M∞(v) > 0} occurs with positive probability. Then, almost
surely, on {M∞(v) > 0}, we have

lim
n→∞

log deg+
n (v)

log n
=
g̃(wv)

c∗
.

Proof. Note that since the event {M∞(v) > 0} occurs with positive probability, when we
condition on this event, almost sure events still occur almost surely. Thus, by the first
part of Theorems 1.1 and 1.3, respectively, we have 1

iZi → c∗, almost surely under either
set of conditions, and by Corollary 1.9, we have

deg+
n (v)∏n−1

s=v

(
Zs+g̃(wv)
Zs

) → M∞(v)

g̃(wv)
almost surely. (1.28)

Since we condition on the event {M∞(v) > 0}, we may take logarithms on both sides
of (1.28), and since M∞ <∞ almost surely, deduce that

lim
n→∞

log deg+
n (v)

log n
−

log
(∏n−1

s=v

(
Zs+g̃(wv)
Zs

))
log n

= 0.

By Egorov’s theorem, for any ` ∈ N, there exists an event B` such that P (B`) < 1
` , and

on the complement Bc` ,
Zi
i → c∗ uniformly. In particular, on the event Bc` , for any ε > 0

there exists i0 = i0(ε, `) > 0 such that for any i > i0 we have |Zi − ic∗| < iε. Then, a
computation involving Stirling’s approximation, similar to the one displayed in the proof
of Lemma 1.7, implies that on Bc` we have

g̃(wv)

c∗ + ε
< lim inf

n→∞

log deg+
n (v)

log n
≤ lim sup

n→∞

log deg+
n (v)

log n
<
g̃(wv)

c∗ − ε
.

Sending ε→ 0, we deduce that on each Bc` we have limn→∞
log deg+

n (v)
logn = g̃(wv)

c∗ . Thus, the

event that this convergence does not occur is contained in the event
⋂∞
`=1 B`, and

P

( ∞⋂
`=1

B`

)
< 1/`,

for each ` ∈ N. The result follows.

1.5 Overview and techniques

1.5.1 Overview

In Section 2 we prove results about the model related to the non-condensation regime.
We first review some background theory about Pólya urns in Section 2.1, and then, the
results of Section 2.2 are used in order to prove Assertions 1 and 2 of Theorem 1.1 in Sec-
tion 2.2.4. Next, the results of Section 2.3 are used to complete the proof of Theorem 1.1
in Section 2.3.4. In Section 3 we extend the previous results to the condensation regime,
proving Theorem 1.3 and Corollary 1.4 in Section 3.1 and Section 3.2 respectively. We
prove Lemma 1.2 in the Appendix, in Section 4.1.
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1.5.2 Techniques applied in this paper

This paper generalises the techniques used in [10] for the study of the Bianconi-Barabási
model – using a Pólya urn approximation. However, the generalisation of this model to
bounded measurable functions h, functions g satisfying Condition C2, and the possibility
of arbitrary weight distributions lead to technical challenges, somewhat analogous to
those arising from using a measure-theoretic approach to integration as opposed to the
Riemann integral. Applying this approach to studying the degree distribution in the case
of uncountably supported weight distributions also appears to be novel. In extending
the results to the condensation regime we apply a similar coupling to that used in [25].

One might imagine that many of the results here may follow easily from an applica-
tion of the theory of Crump-Mode-Jagers branching processes, for example as in [14].
However, the dependence between the point processes associated with a parent and its
offspring means that the classic theory is not immediately applicable. This in turn raises
the question of whether one can develop a theory of C-M-J branching processes with
dependencies between the point-processes associated with individuals.

2 The non-condensation regime

2.1 A brief review of theory related to generalised Pólya urns

Generalised Pólya urns are a well studied family of stochastic processes representing
the composition of an urn containing balls with certain types. If T denotes the set of
possible types, associated to a ball of type t ∈ T is a non-negative activity a(t), which
depends on the type. The process then evolves in discrete time so that, at each time-step,
a ball of type t is sampled at random from the urn with probability proportional to
its activity a(t), and replaced with balls of a number of different types according to a
possibly random replacement rule.

In the case that T is finite, the configuration of the urn after n replacements may
be represented as a composition vector (Xn)n∈N0 with entries labelled by type, and the
activities encoded in an activity vector a. In this vector, the ith entry corresponds to the
number of balls of type i ∈ T . Let (ξij)i,j∈T be the matrix whose ijth component denotes
the random number of balls of type j added, if a ball of type i is drawn, and (following the
notation of Janson in [26]) define the matrix A such that Aij := ajE [ξji]. The (expected)
evolution of the urn in the (n + 1)st step may therefore be obtained by applying the
matrix A to the composition vector Xn. A type i ∈ T is said to be dominating if, for any
j ∈ T , it is possible to obtain a ball of type j starting with a ball of type i. If we write
i ∼ j for the equivalence relation where i ∼ j if it is possible to obtain j starting from a
ball of type i, and vice versa. This partitions the types into equivalence classes. A class
C ⊆ T is dominating if, for every i ∈ C , i is dominating. Moreover, the eigenvalues of
A may be obtained by the restriction of A to its classes; we say an eigenvalue belongs
to a dominating class if it is an eigenvalue of the restriction of A to this class. Finally,
we say that the urn, or the matrix A, is irreducible if there is only one dominating class.
Note the difference when compared to irreducible matrices in the context of Markov
chains: here it is possible for diagonal entries to be negative. Now, assume the following
conditions are satisfied:

(A1) For all i, j ∈ T , ξij ≥ 0 if i 6= j and ξii ≥ −1.

(A2) For all i, j ∈ T , E
[
ξ2
ij

]
<∞.

(A3) The largest real eigenvalue λ1 of A is positive.

(A4) The largest real eigenvalue λ1 is simple.

(A5) We start with at least one ball of a dominating type.

(A6) λ1 belongs to the dominating class.

EJP 27 (2022), paper 76.
Page 17/49

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP787
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Preferential attachment trees with neighbourhood influence

The following is a well known result of Janson from 2004 building on previous work
by by Athreya and Karlin (for example, [3, Proposition 2] and [2, Theorem 5]):

Theorem 2.1 ([26, Theorem 3.16]). Assume Conditions (A1)-(A6), and suppose that
v1 denotes the right eigenvector, corresponding to the leading eigenvalue λ1 of A,
normalised so that aT v1 = 1. Then, we have

Xn

n

n→∞−−−−→ λ1v1,

almost surely, conditional on essential non-extinction (i.e. non-extinction of balls of
dominating type).

In addition, the following lemma by Janson provides convenient criteria for satisfying
(A1)-(A6):

Lemma 2.2 ([26, Lemma 2.1]). If A is irreducible, (A1) and (A2) hold,
∑
j∈T E [ξij ] ≥ 0

for all i ∈ T , with the inequality being strict for some i ∈ T , then (A1)–(A6) are satisfied
and essential extinction does not occur.

2.1.1 Analysing the tree using Pólya urns

The idea behind analysing the distribution of edges with a given weight, and the degree
distribution in this model, is to consider two different types of Pólya urns, which we
call Urn E and Urn D respectively. We illustrate the evolution of both these urns below.
Recall, Figure 1 illustrates a possible evolution of a step of the process (Ti)i∈N0

; Figures 2
and 3 illustrate the corresponding steps in Urn E and Urn D.

In Urn E, we consider a generalised Pólya urn with balls of two types: singletons x,
and ordered pairs (x, y), corresponding to ‘loops’ and ‘edges’, respectively. A ball of type
(x, y) has activity g(x, y) and a ball of type x has activity h(x). At each step, if a ball of
activity x or (x, y) is selected, we introduce two new balls, of which one has random type
W , and the other has type (x,W ). In relation to the evolving tree, this corresponds to
the event that a vertex of weight x has been sampled in the subsequent step. In Urn
D, we consider a generalised Pólya urn with balls of types corresponding to tuples of
varying lengths. A ball of type (x0, . . . , xk) has activity h(x0) +

∑k
i=1 g(x0, xi), and at each

step, if a ball this type is selected, we remove it and introduce two new balls: one of
random type W , and one of type (x0, . . . , xk,W ). In relation to the evolving tree, this
corresponds to the event that a vertex v of weight x0 has been sampled when proceeding
to the subsequent step, with neighbours of v listed in order of arrival having weights
x1, . . . , xk.

Note that, in the manner we have described Urns E and D, the set of possible types
may be infinite: the measure µ may have infinite support so that W may take on infinite
values, and the neighbourhoods of vertices (in Urn D) may be infinite. Whilst there is
some theory related to infinite type Pólya urns within the framework of measure-valued
Pólya processes (see, for example, [35]), these results are often non-trivial to apply in
practice – see, for example, [18, pages 14-21]. As a result, following ideas first used
in [10], we instead approximate these infinite urns with urns of finitely many types –
enough to approximate the sigma algebras generated by W, g(W,W ′) and h(W ), where
W,W ′ are i.i.d random variables sampled according to µ. In Section 2.2 we apply this
analysis to Urn E, and in Section 2.3 we apply it to Urn D. We first introduce some extra
notation specific to this section.

2.1.2 Some more notation and terminology used in Section 2

In order to apply the finite Pólya urn theory, given a set of types T , we denote by VT

the free vector space over the field R generated by T , i.e., the vector space of formal
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linear combinations of elements of T with coefficients in R. We generally view an urn
with types T as a stochastic process taking values in VT . In addition we generally
identify vectors v ∈ VT interchangeably with functions v : T → R. Thus, for x ∈ T ,
v(x) denotes the coordinate of the vector corresponding to x, and for v1,v2 ∈ VT , we
set (v1v2)(x) = v1(x)v2(x). For x ∈ T , we define ex ∈ VT such that ex(y) = 1 if y = x

and 0 otherwise.
For a Borel measurable set S ⊆ R, we say a finite collection of measurable sets A

is a partition of S if the sets in A are pairwise disjoint and their union is S. Note that,
given two partitions A1,A2 of S, the set

{A1 ∩A2 : A1 ∈ A1, A2 ∈ A2} (2.1)

also forms a partition of S. In addition, if A is a partition of S, we say that A ′ forms a
refined partition of A , if, A ′ is a partition of S, and for any A′ ∈ A ′ there exists A ∈ A
such that A′ ⊆ A. The following lemma, which is well-known, justifies the use of the
word ‘refined’.

Lemma 2.3. Suppose A is a partition of a set S, and A ′ is a refined partition of A .
Then, for any set A ∈ A , there exist sets X1, . . . , Xs ∈ A ′ such that A =

⋃s
i=1Xi. In

particular, {Xi}i∈[s] forms a partition of A.

2.2 Analysing the tree by using urn E

In this subsection we work under the assumption that Conditions C1 and C2 hold.
We analyse the process under these conditions by coupling the tree process (Tn)n∈N0

with Pólya urn processes, parametrised by m ∈ N. These may be interpreted as finite
approximations of Urn E. Now, for each m ∈ N we consider a particular partition of the
interval [0, 1] into 2m intervals, which is the dyadic partition: set

Dm1 := [0, 2−m], and Dmi := ((i− 1) · 2−m, i · 2−m], i ∈ [2m] \ {1}.

For i ∈ [2m], we also denote the closure of Dmi (x) by Dmi (x), so that

Dmi = [(i− 1) · 2−m, i · 2−m].

Recalling that the function h takes values in [0, 1], and the definitions of the functions

φ
(j)
1 , φ

(j)
2 , j ∈ [N ] from Condition C2, for each i ∈ [2m], j ∈ [N ] and k ∈ [2], we set

Hmi := h−1 (Dmi ) and Φmk (i, j) :=
(
φ

(j)
k

)−1

(Dmi ) .

By the measurability assumptions on the functions φ(j)
k and h, for each i ∈ [2m] we have

Hmi ,Φmi (j, k) ∈ B, and thus, the collections of sets {Hmi }i∈[2m] and {Φmk (i, j)}i∈[2m] form
partitions of [0, 1]. We now split the latter family of sets to form a refined partition: for
i = (i1, . . . , iN ), j = (j1, . . . , jN ) ∈ [2m]N , if we set

Φm1 (i) = Φm1 (i1, 1) ∩ Φm1 (i2, 2) ∩ · · · ∩ Φm1 (iN , N) and,

Φm2 (j) = Φm2 (j1, 1) ∩ Φm2 (j2, 2) ∩ · · · ∩ Φm2 (jN , N), (2.2)

by iteratively applying (2.1), the families of sets {Φm1 (i)}i∈[2m]N and {Φm2 (j)}j∈[2m]N also

form partitions of [0, 1]. Now, given v = (v1, . . . , vN ) ∈ [2m]N , set

Dmv := Dmv1 ×D
m

v2 × · · · × D
m

vN ,

and observe that, given i, j ∈ [2m]N , the construction of the sets in (2.2) are such that
(x, y) ∈ Φm1 (i)× Φm2 (j) implies that(

φ
(1)
1 (x), . . . , φ

(N)
1 (x), φ

(1)
2 (y), . . . , φ

(N)
2 (y)

)
∈ Dmi ×D

m

j
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Now, recalling the function κ : [0, 1]2N → [0, gmax] from Condition C2, for each i, j ∈ [2m]N ,
by continuity on the compact set Dmi ×D

m

j , for (x, y) ∈ Φm1 (i)× Φm2 (j) we have

κ
(
φ

(1)
1 (x), . . . , φ

(N)
1 (x), φ

(1)
2 (y), . . . , φ

(N)
2 (y)

)
≥ inf

u,v∈Dmi ×D
m
j

{κ(u,v)}

= min
u,v∈Dmi ×D

m
j

{κ(u,v)} =: κ−(i, j), (2.3)

and likewise,

κ
(
φ

(1)
1 (x), . . . , φ

(N)
1 (x), φ

(1)
2 (y), . . . , φ

(N)
2 (y)

)
≤ sup

u,v∈Dmi ×D
m
j

{κ(u,v)}

= max
u,v∈Dmi ×D

m
j

{κ(u,v)} =: κ+(i, j). (2.4)

Now, set

g−(x, y) :=
∑

i,j∈[2m]N

κ−(i, j)1Φm1 (i)×Φm2 (j)(x, y),

g+(x, y) :=
∑

i,j∈[2m]N

κ+(i, j)1Φm1 (i)×Φm2 (j)(x, y),

and

h−(x) :=

2m∑
i=1

(i− 1) · 2−m1Hi(x), h+(x) :=

2m∑
i=1

i · 2−m1Hi(x).

One should interpret these functions as lower and upper approximations to g and h,
indeed, by construction, we now have the following lemma:

Lemma 2.4. We have g− ↑ g, h− ↑ h, g+ ↓ g and h+ ↓ h uniformly, as m→∞.

Proof. We prove the statements regarding h− and g−; the others follow analogously (in
the case of g+ using (2.4) instead of (2.3)). Since the sets (Hmi )i∈[2m] form a partition of
[0, 1], for each m ∈ N, given x ∈ [0, 1], we have x ∈ Hmj for some j ∈ [2m], and thus

h−(x) = (j − 1) · 2−m ≤ h(x) ≤ h−(x) + 2−m.

The convergence result for h− follows. Now, note that by uniform continuity of κ on the
compact set [0, 1]2N , for ε > 0, let M be sufficiently large so that for all u,v ∈ [0, 1]2N

‖u− v‖ <
√

2N · 2−M1 =⇒ |κ(u)− κ(v)| < ε. (2.5)

Now, for any m > M , given (x, y) ∈ [0, 1]× [0, 1], there exists a unique set Φm1 (i)× Φm2 (j)

containing (x, y), which implies that(
φ

(1)
1 (x), . . . , φ

(N)
1 (x), φ

(1)
2 (y), . . . , φ

(N)
2 (y)

)
∈ Dmi ×D

m

j .

Thus, for each j ∈ [N ], combining this equation with the definition of κ−(i, j) from (2.3),
we have

κ−(i, j) ≤ κ
(
φ

(1)
1 (x), . . . , φ

(N)
1 (x), φ

(1)
2 (y), . . . , φ

(N)
2 (y)

)
≤ κ−(i, j) + ε,

and thus
g−(x, y) ≤ g(x, y) ≤ g−(x, y) + ε.

The result now follows.
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Now, using the partitions {Hmi }i∈[2m], {Φm1 (i)}i∈[2m]N , {Φm2 (j)}j∈[2m]N and {Dmi }i∈[2m],
we form an even more refined partition, which we use as the “building blocks” of the
evolution of the Pólya urn approximations. For each m, define the partition Im such
that

Im :=

{
I ∈ B : I = Hmp ∩ Dmq ∩ Φm1 (i) ∩ Φm2 (j), p, q ∈ [2m], i, j ∈ [2m]N

}
. (2.6)

Intuitively, this family of sets is such that the finite σ-algebra σ(Im), is “fine enough” to
approximate B, and also capture the behaviour of g and h. Observe that, for m1 < m2,
Im2 is a refined partition of Im1 .

Suppose |Im| = Dm; then we label the sets in Im arbitrarily as (Imi )i∈[Dm]. Now,
for each (x, y) ∈ Imi × Imj , g−(x, y) and g+(x, y) are constant, depending only on (i, j),
and likewise, for each x ∈ Im` , h−(x) and h+(x) are constant, depending on `. Motivated
by this, for each (i, j) ∈ [Dm]× [Dm], we define the following quantities:

gmin (i, j) := g−(x, y), gmax (i, j) := g+(x, y), (x, y) ∈ Imi × Imj , (2.7)

and likewise, for each ` ∈ [Dm], we define

hmin (`) := h−(x), hmax (`) := h+(x), x ∈ Im` , (2.8)

We also set

r(x) :=

Dm∑
i=1

i1Imi (x), (2.9)

so that r(x) = i if x ∈ Imi . In addition, set

pmi := µ (Imi ) , i ∈ [Dm], g∗(j) := max
i∈[Dm]

{gmax (i, j)} ,

g̃−(i) :=

Dm∑
j=1

pmj gmin (i, j), g̃+(i) :=

Dm∑
j=1

pmj gmax (i, j), and g̃∗+ :=

Dm∑
j=1

pmj g
∗(j). (2.10)

Recall that g̃(x) = E [g(x,W )], and note that g̃−(r(x)) = E [g−(x,W )], g̃+(r(x)) =

E [g+(x,W )] and g̃∗+ = E
[
maxx∈[0,1] g+(x,W )

]
. Then, observe that by Lemma 2.4 and

dominated convergence, g̃−(r(x)) ↑ g̃(x), g̃+(r(x)) ↓ g̃(x) and

g̃∗+ ↓ E

[
sup
x∈[0,1]

g(x,W )

]
= g̃∗, as m→∞.

2.2.1 Definitions of the urn schemes associated with urn E

We are now ready to define the urn process (Un)n∈N0 . For i ∈ N, set

[Dm]i := [Dm]× [Dm] · · · × [Dm] = {(u0, . . . ui−1) : u0, . . . , ui−1 ∈ [Dm]} ,

and

B := [Dm] ∪ [Dm]2 ∪ ({Dm + 1} × [Dm]) ;

this is the set of types in Urn E. We now define parameters γ such that, for x ∈
[Dm] ∪ [Dm]× [Dm],

γ(x) =


gmin(i,j)
gmax(i,j)

, x = (i, j) ∈ [Dm]2, gmax(i, j) > 0;
hmin(i)
hmax(i)

, x = i ∈ [Dm], hmax(i) > 0;

0, otherwise.

(2.11)
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Then, we define the urn process (Umn )n∈N0
as the urn process with activities a such

that

a(x) =


gmax(i, j) if x = (i, j), i, j ∈ [Dm]

g∗(j) if x = (i, j), i = Dm + 1, j ∈ [Dm]

hmax(i) if x = i ∈ [Dm];

(2.12)

and a replacement matrix M such that, for x, x′ ∈ VB,

Mx′,x =


(γa)(x)pm` , if x′ = (i, `), x ∈ ({i} × [Dm]) ∪ {i}, i, ` ∈ [Dm];

(a− γa)(x)pm` , if x′ = (Dm + 1, `) , x ∈ B;

a(x)pm` , if x′ = `, x ∈ B;

0 otherwise.

Note that it is not necessarily the case that M is irreducible: it may be the case that
a(x) = 0 for certain x ∈ B (this is possible if hmax(i) = 0 or gmax(i, j) = 0), or it may be the
case that pm` = 0 for certain choices of `. We therefore define the following subsets of B:

U1 := {x ∈ B : Mx′x = 0 ∀x′ ∈ B} = {x ∈ B : a(x) = 0} ,

and

U2 := {x′ ∈ B : Mx′x = 0 ∀x ∈ B} .

Also assume that U1 ∩ U2 = ∅; if not, we replace U1 by U1 \ U2. We then set R =

B \ (U1 ∪ U2), and let MR be the restriction of M to R. It is easy to check that MR is
irreducible, and thus, by Lemma 2.2, has a unique largest positive eigenvalue λm with
corresponding eigenvector uR. But then, writing M in block form (with columns and
rows labelled by R,U1,U2) for suitable matrices A,B,C, we have

M =

R U1 U2 MR 0 B R

A 0 C U1

0 0 0 U2

.

Thus, M has the same largest positive eigenvalue as MR, with corresponding right
eigenvector given (in block form) by

um =

 uR(
λ−1
R

)
AuR

0

 .
Here, we assume um is normalised so that a · um = 1. In addition, assuming we begin
with a single ball x ∈ R, one readily verifies that the restriction of M to R and U1 satisfies
conditions (A1)-(A6) of Section 2.1. Note also, that at each time-step the probability
of adding a ball of type x ∈ U2 is 0 and thus, for each n ∈ N0, Un(x) = 0 almost surely.
Therefore, combining this fact with Theorem 2.1, we have the following corollary.

Corollary 2.5. With um, λm and R as defined above, assuming we begin with a ball
x ∈ R, we have

Umn
n

n→∞−−−−→ λmum (2.13)

almost surely. In particular, almost surely

a · Umn
n

n→∞−−−−→ λm. (2.14)
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In the coupling below, the assumption of a ball x ∈ R is met by the tree process
being initiated by a vertex 0 with weight W0 sampled at random from µ and satisfying
h(W0) > 0.

2.2.2 Coupling the tree process with the urns associated with urn E

For A ∈ B ⊗ B, recall the definition of Ξ(2)(A,n) from (1.2): this is the number of
directed edges (v, v′) of Tn where (Wv,Wv′) ∈ A.

Proposition 2.6. There exists a coupling ((Ûmn )m∈N, T̂n)n∈N0
of the Pólya urn processes

{(Umn )n∈N0
,m ∈ N} and the tree process (Tn)n∈N0

such that, for each m ∈ N, almost
surely (on the coupling space), Ûm0 = e` for an initial ball ` ∈ R and, in addition, for
(i, j) ∈ [Dm]

2, we have

Ûmn ((i, j)) ≤ Ξ(2)(n, Imi × Imj ), (2.15)∑
(i,j)∈[Dm]2

(
Ξ(2)(n, Imi × Imj )− Ûmn ((i, j))

)
=

Dm∑
j=1

Ûmn ((Dm + 1, j)), (2.16)

and

(γa) · Ûmn ≤ Zn ≤ a · Ûmn . (2.17)

for all n ∈ N0.

Proof. First sample the entire tree process (T̂n)n∈N0
; we use this to define the evolution

of the urn processes. Moreover, for i ∈ [Dm] let

ηn(i) :=
∑

v∈Tn:r(v)=i

f(N+(v, Tn));

i.e., the sum of fitnesses of vertices with weight belonging to Imi . Also, for i ∈ [Dm]

define

θn(i) := (γ a Ûmn )(i) +

Dm∑
j=1

(γ a Ûmn )((i, j)).

Finally, recall that Zn denotes the partition function associated with the tree at time n.
Assume that at time 0 the tree consists of a single vertex 0 such that r(W0) = ` ∈ [Dm].
Then, set Ûm0 = e`. Using the definition of r, since W0 ∈ Im`

0 < Z0 = h(W0) ≤ hmax(`) = a · Ûm0 ,

and by the choice of γ, we have

η0(`) = h(W0) ≥ hmin(`) = (γ a Ûm0 )(`) = θ0(`).

In this case, (2.15) and (2.16) are trivially satisfied since both sides of both equations
are 0. Now, assume inductively that after n steps in the urn process, (2.15) and (2.16)
are satisfied, we have

ηn(k) ≥ θn(k) for each k ∈ [Dm] , (2.18)

and moreover, Zn ≤ a · Ûmn . Note that (2.18) implies the left hand side of (2.17), since

(γa) · Ûmn =

Dm∑
k=1

θn(k) ≤
Dm∑
k=1

ηn(k) = Zn.

Let s be the vertex sampled from Tn in the (n+ 1)st step, and assume that r(Ws) = `′,
r(Wn+1) = k. Then, for the (n + 1)th step in the urn: sample an independent random
variable Un+1 uniformly distributed on [0, 1]. Then:
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• If Un+1 ≤ θn(`′)Zn
ηn(`′)a·Ûmn

, add balls of type (`′, k) and k to the urn (i.e. set Ûmn+1 =

Ûmn + e(`′,k) + ek).

• Otherwise, add two balls of type (Dm + 1, k) and k, respectively.

Note that, in the first case, we have

Ξ(2)(n+ 1, Im`′ × Imk ) = Ξ(2)(n, Im`′ × Imk ) + 1 ≥ Ûmn ((`′, k)) + 1 = Ûmn+1((`′, k))

and for i 6= `′ or j 6= k

Ξ(2)(n+ 1, Imi × Imj ) = Ξ(2)(n, Imi × Imj ) ≥ Ûmn ((i, j)) = Ûmn+1((i, j)).

Also, in this case

ηn+1(`′) = ηn(`′) + g(Ws,Wn+1) ≥ θn(`′) + gmin(`′, k) = θn+1(`′),

and similarly,

ηn+1(k) = ηn(k) + h(Wn+1) ≥ θn(k) + hmin(k) = θn+1(k),

so that (2.18) is satisfied. Finally, in this case,

Zn+1 = Zn + g(Ws,Wn+1) + h(Wn+1) ≤ a · Ûmn + gmax(`′, k) + hmax(k) = a · Ûmn+1.

Meanwhile, in the second case Ξ(2)(n, Im`′ ×Imk ) and ηn(`′) increase, while
∑Dm
j=1 Ûmn ((`′, j))

and θn(`′) remain the same, and thus (2.15) is satisfied and ηn+1(`′) ≥ θn+1(`′). As this
is the only case when Ξ(2)(n, Im`′ × Imk )− Ûmn ((`′, k)) increases, and we add a ball of type
(Dm + 1, k), (2.16) also follows. Both ηn(k) and θn(k) increase as in the first case. Next,

Zn+1 = Zn + g(Ws,Wn+1) + h(Wn+1) ≤ a · Ûmn + g∗(k) + hmax(k) = a · Ûmn+1.

As all other quantities remain the same, (2.18) is satisfied, and moreover, Zn+1 ≤ a · Ûmn+1.
To complete the proof, it remains to prove the following claim.

Claim 2.6.1. For each m ∈ N, almost surely (on the coupling space), the urn process
Ûm = (Ûmn )n∈N0 is distributed like the Pólya urn process (Umn )n∈N0 with Um0 consisting of
an initial ball ` ∈ R.

Proof. First note that, since W0 is sampled from µ, conditionally on the positive proba-
bility event {h(W0) > 0}, we have

P (W0 ∈ Im` , h(W0) > 0) ≤ P (W0 ∈ Im` ) = pm` ,

and thus, P-a.s., we have W0 ∈ Im` with pm` > 0. This, combined with the fact that
0 < h(W0) ≤ hmax(`), implies that P-a.s., the initial ball ` ∈ R.

Now, note that in every step in (Ûmn )n∈N0
, we add a ball of type k for k ∈ [Dm] with

probability pmk , which is the same as in (Umn )n∈N0
. Moreover, given Ûmn , the probability

of adding balls of type (k, `) is

pm`

(
ηn(k)

Zn
× θn(k)Zn
ηn(k)a · Ûmn

)
= pm`

θn(k)

a · Ûmn
,

which also agrees with the Pólya urn scheme. Finally, the probability of adding a ball of
type (Dm + 1, `) is

pm`

Dm∑
j=1

[(
1− θn(j)Zn

ηn(j)a · Ûmn

)
ηn(j)

Zn

]
= pm`

1−
Dm∑
j=1

θn(j)

a · Ûmn

 ,

as required.

EJP 27 (2022), paper 76.
Page 24/49

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP787
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Preferential attachment trees with neighbourhood influence

Note also that since the functions h+, g+ are non-increasing pointwise in m, on the
coupling we have that for any fixed n, a · Umn is non-increasing in m. Combining this
result with Corollary 2.5, we have the following corollary.

Corollary 2.7. The sequence (λm)m∈N is non-increasing in m. In particular, there exists
a limit λ∞ ≥ 0 such that

λm ↓ λ∞
as m→∞.

2.2.3 The limiting compositions of the urn schemes associated with urn E

We now calculate the limiting vector um and the limiting eigenvalue λm. First note
that by the definition of the urn process, for each n ∈ N0, ` ∈ [Dm] we have that
Umn+1(`)− Umn (`) is Bernoulli distributed with parameter pm` . Thus, by the strong law of
large numbers and Corollary 2.5, we have, for each ` ∈ [Dm],

um(`) =
pm`
λm

. (2.19)

Next, for any i, j ∈ [Dm] using the definitions of γ and a ((2.11) and (2.12)) we have

λmum((i, j)) = pmj

Dm∑
`=1

(γ aum)((i, `)) + pmj (γ aum)(i)

= pmj

Dm∑
`=1

gmin(i, `)um((i, `)) + pmj hmin(i)um(i)

(2.19)
= pmj

Dm∑
`=1

gmin(i, `)um((i, `)) +
pmj p

m
i hmin(i)

λm
. (2.20)

We now define

Ai :=

Dm∑
`=1

gmin(i, `)um((i, `)).

Multiplying both sides of (2.20) by gmin(i, j) and taking the sum over j ∈ [Dm], recalling
the definition of g̃−(i) in (2.10), we get

λmAi =

(
Ai +

pmi hmin(i)

λm

) Dm∑
j=1

pmj gmin(i, j)

=

(
Ai +

pmi hmin(i)

λm

)
g̃−(i).

Thus, solving for Ai

Ai =
pmi hmin(i)g̃−(i)

λm(λm − g̃−(i))
. (2.21)

Substituting (2.21) into (2.20), we have

λmum((i, j)) = pmj

(
pmi hmin(i)g̃−(i)

λm(λm − g̃−(i))
+
pmi hmin(i)

λm

)
= pmj

pmi hmin(i)

λm − g̃−(i)
. (2.22)
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Meanwhile, for each j ∈ [Dm] we have

λmum((Dm+1, j))=pmj

(
Dm∑
`=1

(aum)((Dm + 1, `))+

Dm∑
i=1

Dm∑
`=1

(a−γ a)((i, `))+

Dm∑
i=1

(a−γ a)(i)

)

=pmj

(
Dm∑
`=1

g∗(`)um((Dm + 1, `)) +

Dm∑
i=1

Dm∑
`=1

(gmax(i, `)− gmin(i, `))um((i, `))

+

Dm∑
i=1

(hmax(i)− hmin(i))um(i)

)
=: pmj (Bm + Em) ; (2.23)

where, in the last equation we set

Bm :=

Dm∑
`=1

g∗(`)um((Dm + 1, `))

and

Em :=

Dm∑
i=1

Dm∑
`=1

(gmax(i, `)− gmin(i, `))um((i, `)) +

Dm∑
i=1

(hmax(i)− hmin(i))um(i).

Multiplying both sides of (2.23) by g∗(j) and taking the sum over j, we have

λmBm =

Dm∑
j=1

pmj g
∗(j)

 (Bm + Em) = g̃∗+(Bm + Em)

and thus

Bm =
g̃∗+

λm − g̃∗+
Em. (2.24)

We now use Condition C1 in the following lemma.

Lemma 2.8. Assume Conditions C1 and C2. Then λ∞ := limm→∞ λm > g̃∗.

Proof. Note that, since we add two balls to the urn at each time-step, we have

‖Umn+1‖1 − ‖Umn ‖1 = 2.

Thus, by (2.13), we have ‖λmum‖1 = 2. Now, by (2.19), we have λm
∑Dm
`=1 um(`) = 1, and

thus, by (2.22), we have

Dm∑
j=1

Dm∑
i=1

λmum((i, j)) = E

[
hmin(r (W ))

λm − g̃− (r (W ))

]
≤ 1. (2.25)

Note that for any x > 0 as m → ∞, hmin(r (x)) ↑ h(x) and g̃−(r (x)) ↑ g̃(x). Thus, by the
monotone convergence theorem,

E

[
h(W )

λ∞ − g̃(W )

]
= lim
m→∞

E

[
hmin(r (W ))

λm − g̃− (r (W ))

]
≤ 1.

Now, since the eigenvectors um are non-negative, by (2.24), λm ≥ g̃∗+, and thus,
λ∞ = limm→∞ λm ≥ limm→∞ g̃∗+ = g̃∗. But, if λ∞ = g̃∗, since the expression in (1.5) is
decreasing in λ∗, this implies a contradiction to Condition C1. The result follows.
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Lemma 2.9. Assume Conditions C1 and C2. Then, we have Bm ↓ 0 and Em ↓ 0 as
m→∞. In particular,

E

[
h(W )

λ∞ − g̃(W )

]
= 1, (2.26)

so that λ∞ = λ∗.

Proof. First, note that by Corollary 2.7 and Lemma 2.8, for each m ∈ N, λm ≥ λ∞ > g̃∗.
Combining this fact with the boundedness of g and h,

sup
x∈[0,1]

{
h(x)

λm (λm − g̃(x))
,

1

λm

}
< sup
x∈[0,1]

{
1

g̃∗ (λ∞ − g̃(x))
,

1

λ∞

}
=: C <∞,

where the bound on the right is independent of m. Now, given ε > 0, by applying
Lemma 2.4, let m be sufficiently large that

sup
(x,y)∈[0,1]×[0,1]

(g+(x, y)− g−(x, y)) <
ε

2C
and sup

x∈[0,1]

(h+(x)− h−(x)) <
ε

2C
.

Then

Em =

Dm∑
i=1

Dm∑
j=1

(gmax(i, j)− gmin(i, j)) um((i, j)) +

Dm∑
`=1

(hmax(`)− hmin(`)) um(`)

(2.19),(2.22)
=

Dm∑
i=1

Dm∑
j=1

(gmax(i, j)− gmin(i, j))
hmin(i)pmi p

m
j

λm(λm − g̃−(i))
+

Dm∑
`=1

(hmax(`)− hmin(`))
pm`
λm

<
ε

2C
· C

Dm∑
i=1

Dm∑
j=1

pmi p
m
j

+
ε

2C
· C

(
Dm∑
`=1

pm`

)
= ε.

The result for Bm then follows from the fact that g̃∗+ ↓ g̃∗, and Lemma 2.8.

We are now ready to prove the main results of this subsection.

2.2.4 Proof of assertions 1 and 2 of Theorem 1.1

Proof. For Assertion 1, note that, by (2.17) from Proposition 2.6, we have

0 ≤ a · Umn −Zn ≤ (a− γa) · Umn .

Dividing by n and taking limits as n→∞, by (2.14) we have

0 ≤ λm − lim sup
n→∞

Zn
n
≤ λm − lim inf

n→∞

Zn
n
≤ lim sup

n→∞

(
(a− γa) · U

m
n

n

)
= Bm + Em.

The result follows by applying Lemma 2.9.
In addition, recalling the definition of Im from (2.6), note that

σ(Im) =

{
S ⊆ [0, 1] : S =

⋃
i∈I
Imi , I ⊆ [Dm]

}
. (2.27)

In other words, the σ-algebra generated by Im is the set of finite unions of sets in Im.
Recalling that Im2 is a refined partition of Im1 for m1 < m2, by Lemma 2.3 we have

σ(Im1) ⊆ σ(Im2). (2.28)
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We now prove Assertion 2. We begin by proving the result for Cartesian products of the
form S × S′ with S, S′ ∈ σ(Im′), for m′ ∈ N. Note that, by the definition of Ξ(2)(n, ·), we
clearly have finite additivity, that is, for any S1, S2, S3 ∈ B if S1 ∩ S2 = ∅, we have

Ξ(2)(n, (S1 ∪ S2)× S3) = Ξ(2)(n, S1 × S3) + Ξ(2)(n, S2 × S3), and similarly,

Ξ(2)(n, S3 × (S1 ∪ S2)) = Ξ(2)(n, S3 × S1) + Ξ(2)(n, S3 × S2).

Combining these facts with Proposition 2.6, Corollary 2.5 and (2.22), for sets S × S′ with
S, S′ ∈ σ(Im′) we have, for each m > m′,

E

[
h−(W )

λm − g̃− (r (W ))
1S

]
µ(S′) ≤ lim inf

n→∞

Ξ(2)(n, S × S′)
n

≤ lim sup
n→∞

Ξ(2)(n, S × S′)
n

≤ E
[

h−(W )

λm − g̃− (r (W ))
1S

]
µ(S′) + Bm + Em.

Taking limits as m→∞ and applying Lemma 2.9, this proves the result for this family of
sets.

Now, by the Portmanteau Theorem, we need only prove that for all sets U ∈ O, where
O denotes the class of open subsets of [0, 1]× [0, 1], we have

lim inf
n→∞

Ξ(2)(n,U)

n
≥ (ψ∗µ× µ)(U). (2.29)

Now, let

Im(U) :=
⋃

i,j∈[Dm]:Imi ×Imj ⊆U

Imi × Imj . (2.30)

Note that, since U is open, and Im is fine enough that the set of dyadic intervals
{Dmi }i∈[2m] ⊆ σ(Im), we have

1Im(U) ↑ 1U pointwise as m→∞. (2.31)

In addition, since Im(U) ⊆ U , for each m ∈ N

(ψ∗µ× µ)(Im(U)) = lim inf
n→∞

Ξ(2)(n, Im(U))

n
≤ lim inf

n→∞

Ξ(2)(n,U)

n
.

Then, (2.29) follows by taking limits as m→∞.

2.3 Analysing the tree by using urn D

2.3.1 Definitions of the urn schemes associated with urn D

In order to analyse the degree distribution in this model under Conditions C1 and C2,
we introduce another collection of Pólya urns (VKn )n∈N0 , which not only depend on m,
but also depend on a parameter K ∈ N. Recall that in Urn E, the parameter m was
used to approximate the infinite number of types of weight a vertex may have, as the
support of the measure µ may be uncountable. With Urn D, we also need to account for
the fact that the neighbourhood of a vertex can have unbounded size. Here, for some
specific value of the parameter K, we keep track of the number of nodes in the tree
process which have out-degree at most K using K + 1 types, whereas all nodes with
larger out-degree (with the first K nodes in their neighbourhood having certain types of
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weight) are represented by a single type. For brevity of notation, wherever possible in
this subsection we omit the dependence of these parameters on m, and often also on K.
For i ∈ N, define [Dm]i so that

[Dm]i := {(u0, . . . ui−1) : u0, . . . , ui−1 ∈ [Dm]} .

Now, we set

B′ :=

(
K+1⋃
i=1

[Dm]i

)
∪ ({Dm + 1} × [Dm]).

The urn process (VKn )n≥0 is then a vector-valued stochastic process taking values in VB′ .
We now define the vectors a′, γ′ associated with the urn process such that

a′(x) =

{
hmax (u0) +

∑k
j=1 gmax (u0, uj) if x = (u0, . . . , uk) ∈ [Dm]k+1

g∗(`) if x = (Dm + 1, `);
(2.32)

and,

γ′(x) =


hmin (u0)+

∑k
j=1 gmin (u0,uj)

hmax (u0)+
∑k
j=1 gmax (u0,uj)

, if x = (u0, . . . , uk) ∈ [Dm]k+1, k < K,a′(x) > 0;

0, otherwise.

(2.33)

Now, given u = (u0, . . . , uk) ∈ [Dm]k+1, k < K, and ` ∈ [Dm], we define their concatena-
tion (u, `) ∈ [Dm]k+2 such that

(u, `) := (u0, . . . , uk, `).

Then, we define the replacement matrix M ′ of the urn (VKn )n∈N0
such that, given x, x′ ∈

B′,

M ′x′,x =



−(γ′a′)(x) if x′ = x, x ∈ [Dm]k, k ≤ K;

(γ′a′)(x)pm` , if x′ = (x, `), ` ∈ [Dm], x ∈ [Dm]k, k ≤ K;

(a′ − γ′a′)(x)pm` , if x′ = (Dm + 1, `), ` ∈ [Dm], x ∈ B′;
a′(x)pm` , if x′ = `, x ∈ B′;
0 otherwise.

Again, note that it may be the case that M ′ is not irreducible, if either a′(x) = 0 for
certain x ∈ B′ or pm` = 0 for certain choices of `. Nevertheless, we define the sets

U ′1 := {x ∈ B′ : M ′x′x = 0 ∀x′ ∈ B′} = {x ∈ B′ : a′(x) = 0} ,

and

U ′2 := {x′ ∈ B′ : M ′x′x = 0 ∀x ∈ B′ \ {x′}} .

Again, we assume that U ′1 ∩ U ′2 = ∅; if not, we replace U ′1 by U ′1 \ U ′2 . We then set
R′ = B′ \ (U ′1 ∪U ′2 ), and let M ′R′ be the restriction of M ′ to R′. As before, M ′R′ satisfies
the conditions of Lemma 2.2, and thus has a unique largest positive eigenvalue λ′R′
with corresponding eigenvector VR′ . But then, writing M ′ in block form in a manner
analogous to the previous subsection, M has the same largest positive eigenvalue, with
corresponding right eigenvector given, in block form, by

VK =

 VR′

(λ′R′)
−1
A′VR′

0

 .
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Here, we assume VK is normalised so that a′ ·VK = 1. Also in a manner similar to the
previous subsection, assuming we begin with a ball of type x ∈ R′, one readily verifies
that the restriction of M ′ to R′ and U ′1 satisfies conditions (A1)-(A6) of Section 2.1, and
also, that for each x ∈ U ′2 and n ∈ N0, Un(x) = 0 almost surely. Therefore, applying
Theorem 2.1 again, we have the following corollary:

Corollary 2.10. With VK , λ
′
K and R′ as defined above, assuming we begin with a ball

x ∈ R′, we have

VKn
n

n→∞−−−−→ λ′KVK (2.34)

almost surely. In particular, we have

a · VKn
n

n→∞−−−−→ λ′K . (2.35)

As in the previous subsection, in the coupling below, the assumption of a ball x ∈ R′ is
met by the tree process being initiated by a vertex 0 with weight W0 sampled at random
from µ and satisfying h(W0) > 0.

2.3.2 Coupling the tree process with the urns associated with urn D

Recall that we denote by N≥k(n,B) the number of vertices of out-degree at least k
having weight belonging to B ∈ B. We also define the analogue D≥k(n, j) for n ∈ N0

and j ∈ [Dm] such that

D≥k(n, j) :=

K+1∑
i=k

∑
ui∈[Dm]i

VKn (ui)1{j}(u0). (2.36)

This represents the number of balls in the urn VKn with type u = (u0, . . .) having dimension
at least k + 1, with u0 = j. We then have the following analogue of Proposition 2.6:

Proposition 2.11. There exists a coupling (V̂Kn , T̂n)n∈N0
of the Pólya urn process (VKn )n∈N0

and the tree process (Tn)n∈N0
such that, almost surely (on the coupling space), VK0 con-

sists of a single ball ` ∈ R′ and for all n ∈ N0, k ∈ {0} ∪ [K], we have

D≥k(n, j) ≤ N≥k
(
n, Imj

)
and (2.37)

Dm∑
j=1

(
N≥k

(
n, Imj

)
−D≥k(n, j)

)
≤

Dm∑
j=1

V̂Kn ((Dm + 1, j)). (2.38)

In addition, we have

(γ′a′) · V̂Kn ≤ Zn ≤ a′ · V̂Kn . (2.39)

Proof. We proceed in a somewhat similar manner to Proposition 2.6, however, in this
case, we first introduce a “labelled” Pólya urn

(
LKn
)
n≥0

where balls carry integer labels

from {−Dm, . . . , 0, . . . , n}. In addition, for j ∈ {0}∪[n], the label is independent of the type
of the ball: we denote by bn(j) the type of a ball with label j at time n. One may interpret
the ball with label j as representing the evolution of vertex j in the tree process – in this
sense, the label may be interpreted as a “time-stamp”. Balls of type (Dm+ 1, j), j ∈ [Dm],
however, are labelled −j – we denote by dn(j) the number of balls with this label, since
here, multiple balls may share the same label. We describe the labelled urn process LKn

EJP 27 (2022), paper 76.
Page 30/49

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP787
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Preferential attachment trees with neighbourhood influence

as an evolving vector in B′ × Z, so that LKn =
∑Dm
j=1 dn(j) · e(bn(j),j) +

∑n
i=0 e(bn(i),i). We

set

a′(LKn ) =

−1∑
j=−Dm

dn(j) · a′(bn(j)) +

n∑
i=0

a′(bn(i)), and (γ′a′)(LKn ) =

n∑
i=0

(γ′a′)(bn(i)).

Now, we use LKn+1 to define V̂Kn+1 by “forgetting” labels, so that,

if LKn+1 =

−1∑
j=−Dm

dn(j) · e(bn+1(j),j) +

n+1∑
i=0

e(bn+1(j),i),

we set V̂Kn+1 =

−1∑
j=−Dm

dn(j) · ebn+1(j) +

n+1∑
i=0

ebn+1(i).

Sample the entire tree process (T̂n)n∈N0
. If, at time 0, the tree consists of a single

vertex 0 with weight W0 ∈ Im` then, we set LK0 = e(`,0), and note that we have

(γ′a′)(LK0 ) = hmin (`) ≤ h(W0) = Z0 ≤ a′(LK0 ) = hmax (`),

and

f(N+(0, T̂0)) = h(W0) ≥ (γ′ a′) (b0(0)) = hmin (`).

Now, assume inductively that after n steps in the process, for each i ∈ {0} ∪ [n] we have

f(N+(i, T̂n)) ≥ (γ′ a′) (bn(i)), deg+(i, Tn) ≥ dim(bn(i))− 1, (2.40)

n∑
i=0

(
deg+(i, Tn)− dim(bn(i)) + 1

)
=

Dm∑
j=1

V̂Kn ((Dm + 1, j), (2.41)

and (2.39) is satisfied.

Let s be the vertex sampled in the tree in the (n + 1)st step, assume that r(s) = `′

and that r(n + 1) = k. Then, for the (n + 1)th step in the urn: sample an independent
random variable Un+1 uniformly distributed on [0, 1]. Then:

• If dim (bn(s)) ≤ K and Un+1 ≤ (γ′a′)(bn(s))Zn
f(N+(s,T̂n))a′(LKn )

, remove the ball (bn(s), s) from

the urn, and add balls ((bn(s), k), s) and (k, n + 1) to the urn (i.e. set LKn+1 =

LKn + e((bn(s),`),s) + e(k,n+1) − e(bn(s),s)). We call this step Case 1.

• Otherwise, add balls of type ((Dm + 1, k),−k) , (k, n+ 1) – we call this Case 2.

First note that

(γ′a′)(bn+1(s))− (γ′a′)(bn(s)) =

{
gmin (`′, k), in Case 1

0, in Case 2

≤ g(Ws,Wn+1) = f(N+(s, T̂n+1))− f(N+(s, T̂n)),

and likewise

(γ′a′)(bn+1(n+ 1)) = hmin (`) ≤ h(Wn+1) = f(N+(n+ 1, T̂n+1)).

Additionally, in Case 1 the dimension of bn(s) and the degree of s in T̂n both increase,
whilst in Case 2 only the degree of s increases whilst the dimension of bn(s) remains the
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same. This proves (2.40) at time n+ 1. In addition, Case 2 coincides with the addition of
a ball of type (Dm + 1, `), which yields (2.41). Finally,

(γ′a′) ·
(
V̂Kn+1 − V̂Kn

)
=

{
hmin (k) + gmin (`′, k), in Case 1

hmin (k), in Case 2

≤ h(Wn+1) + g(Ws,Wn+1) = Zn+1 −Zn

≤

{
hmax (k) + gmax (`′, k), in Case 1

hmax (k) + g∗max (k), in Case 2

≤ (a′) · (V̂Kn+1 − V̂Kn );

which shows that (2.39) is also satisfied at time n+ 1.

Claim 2.11.1. Almost surely (on the coupling space), the urn process V̂K = (V̂Kn )n∈N0 is
distributed like the Pólya urn (VKn )n∈N0 with VK0 consisting of an initial ball ` ∈ R′.

Proof. The fact that, P-a.s., the initial ball ` ∈ R′ follows immediately from the fact
that the initial weight W0 is sampled from µ conditionally on the event {h(W0) > 0}
(analogous to in Claim 2.6.1). Moreover, in every step in V̂K , we add a ball of type k for
k ∈ [Dm] with probability pmk , which is the same as in VK . Furthermore, given V̂Kn the
probability of removing a ball of type u with dim u ≤ K and adding a ball of type (u, `) is

pm`
∑

s∈LKn :bn(s)=u

(γ′a′)(bn(s))Zn
f(N+(s, T̂n))a′(LKn )

× f(N+(s, T̂n))

Zn
= pm`

∑
s∈LKn :bn(s)=u

(γ′a′)(bn(s))

a′(LKn )

= pm`
V̂Kn (u)

Zn
,

which also agrees with the transition law of the Pólya urn scheme V. Finally, the
probability of adding a ball of type (Dm + 1, `) is

pm`
∑

s∈LKn :dim bn(s)>K

f(N+(s, T̂n))

Zn

+ pm`
∑

s∈LKn :dim bn(s)≤K

(
1− (γ′a′)(bn(s))Zn

f(N+(s, T̂n))a′(LKn )

)
× f(N+(s, T̂n))

Zn

= pm`
∑
s∈LKn

(
f(N+(s, T̂n)

Zn

)
− pm`

∑
s∈LKn :dim bn(s)≤K

(γ′a′)(bn(s))

a′(LKn )

= pm`

1−
∑

u∈V̂Kn :dimu≤K

(γ′a′)(V̂K(u))

a′(V̂Kn )

 ,

which agrees with the transition rule of VK .

Finally, to complete the proof, we verify the following claim.

Claim 2.11.2. For all n ∈ N0, (2.37) and (2.38) are satisfied for all k ∈ {0} ∪ [K].

Proof. If we define bn(i)|0 such that bn(i)|0 = x0 if bn(i) = (x0, . . . , xk), then, by construc-
tion of the labelled urn process (LKn )n∈N0

, bn(i)|0 = x0 =⇒ r(Wi) = x0, so that Wi ∈ Imx0
.

Therefore, for each k ∈ {0} ∪ [K], j ∈ [Dm],

D≥k(n, j) =
∑

bn(i):dim(bn(i))≥k+1

1{j}(bn(i)|0)
(2.40)
≤

∑
i:deg+(i,T̂n)≥k

1Imj (Wi) = N≥k(n, Imj ).
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Moreover, by (2.41),

Dm∑
j=1

V̂Kn ((Dm + 1, j) =

n∑
i=0

(
deg+(i, T̂n)− dim(bn(i)) + 1

)

=

n∑
k=0

Dm∑
j=1

((
N≥k

(
n, Imj

)
−D≥k(n, j)

))
,

which implies (2.38).

2.3.3 The limiting compositions of the urn schemes associated with urn D

We now calculate the limiting vector VK and limiting eigenvalue λ′K of the Pólya
urn scheme (VKn )n≥0. We first introduce some more notation: for any vector u =

(u0, . . . , uk−1) ∈ [Dm]k, and i ∈ {0} ∪ [k − 1], denote by u|i := (u0, . . . , ui) ∈ [Dm]i+1. We
also define the following quantities:

RK :=

Dm∑
`=1

a′((Dm + 1, `))VK((Dm + 1, `)), (2.42)

EK :=
∑

u:dimu≤K

(a′ − γ′a′)(u)VK(u), and (2.43)

FK :=
∑

v:dimv=K+1

a′(v)VK(v). (2.44)

Proposition 2.12. Let λ′K and VK denote the limiting leading eigenvalue and corre-
sponding right eigenvector of M ′, respectively. Then, denoting the components of a
vector u by u0, u1, . . ., the eigenvector VK satisfies

λ′KVK(x) =


pmuk

λ′K
(γ′a′)(u)+λ′K

∏k−1
i=0

[
pmui

(
(γ′a′)(u|i)

(γ′a′)(u|i)+λ′K

)]
, x = u ∈ [Dm]k+1, 0 ≤ k < K;

pmuK
∏K−1
i=0

[
pmui

(
(γ′a′)(u|i)

(γ′a′)(u|i)+λ′K

)]
, x = u ∈ [Dm]K+1,

(2.45)

where we set the empty product of terms, when k = 0 equal to 1. In addition, we have

RK =
EK + FK
λ′K − g∗+

. (2.46)

Proof. First note that, for each u0 ∈ [Dm], since we add a ball of type u0 with probability
pmu0

at each time-step, and remove such a ball with probability proportional to (γ′a′)(u0),
we have

λ′KVK(u0) = pmu0
− (γ′a′)(u0)VK(u0), (2.47)

this implies the case k = 0 in (2.45). Next, for k > 0, we have

λ′KVK(u) =

{
pmuk(γ′a′)(u|k−1)VK(u|k−1)− (γ′a′)(u)VK(u), u ∈ [Dm]k+1, k < K;

pmuK (γ′a′)(u|K−1)VK(u|K−1); u ∈ [Dm]K+1;

(2.48)

so that, if u ∈ [Dm]k+1, 1 ≤ k ≤ K − 1,

VK(u) =
pmuk(γ′a′)(u|k−1)VK(u|k−1)

(γ′a′)(u) + λ′K
. (2.49)
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Applying (2.48) and (2.49), recursing backwards, and using the fact that VK(u0) =

pmu0
/((γ′a′)(u0)+λ′K) from (2.47), completes the proof of (2.45). Finally, for each j ∈ [Dm],

we have

λ′KVK((Dm + 1, j)) =pmj

(
Dm∑
`=1

a′((Dm + 1, `))VK((Dm + 1, `))

+
∑

u:dimu≤K

(a′ − γ′a′)(u)VK(u) +
∑

v:dimv=K+1

a′(v)VK(v)


= pmj (RK + EK + FK) ; (2.50)

where, in the last equation we recall the definitions in (2.42) and (2.44). Now, multiplying
both sides of (2.50) by a′((Dm + 1, j)) = g∗(j) and taking the sum over j, we have

λ′KRK =

Dm∑
j=1

pmj g
∗(j)

 (RK + EK + FK) = g̃∗+ (RK + EK + FK) .

Rearranging this proves (2.46), thus completing the proof of the proposition.

Now, we recall the definition of the companion process (Si(w))i≥0 from Section 1.3
in (1.8): Recall that W1,W2, . . . were defined to be independent µ-distributed random
variables and let w ∈ [0, 1]. We then defined the random process (Si(w))i≥0 inductively
so that S0(w) = h(w) and for all i ≥ 0, we have Si+1(w) = Si(w) + g(w,Wi+1). Now, we
also define the lower companion process (S−i (w))i≥0 in a similar way, but instead with
the functions h−, g− respectively, so that

S−0 (w) := h−(w); S−i+1(w) := S−i (w) + g−(w,Wi+1), i ≥ 0. (2.51)

Lemma 2.13. Assume Conditions C1 and C2. Then we have

lim
K→∞

lim
m→∞

FK = 0.

Proof. Note that by (2.45), with J being an upper bound on max{1, gmax } (recalling gmax

from C2), we have

FK =
∑

u:dimu=K+1

a′(u)VK(u)

=
∑

u:dimu=K+1

a′(u) pmuK

K−1∏
i=0

[
pmui

(
(γ′a′)(u|i)

(γ′a′)(u|i) + λ′K

)]

≤ J(K + 1) ·
∑

u:dimu=K+1

pmuK

K−1∏
i=0

[
pmui

(
(γ′a′)(u|i)

(γ′a′)(u|i) + λ′K

)]

= J(K + 1) ·
∑

u:dimu=K

 ∑
uK∈[Dm]

pmuK

K−1∏
i=0

[
pmui

(
(γ′a′)(u|i)

(γ′a′)(u|i) + λ′K

)]

= J(K + 1) ·
∑

u:dimu=K

K−1∏
i=0

[
pmui

(
(γ′a′)(u|i)

(γ′a′)(u|i) + λ′K

)]

= J(K + 1) · E

[
K−1∏
i=0

(
S−i (W )

S−i (W ) + λ′K

)]
,
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where we recall the definition of (S−i (w))i≥0 from (2.51). Now, note that for all m ∈ N,
and for all w ∈ [0, 1], S−(w) is stochastically bounded above by S(w), and by (2.35) and
(2.39), λ′K is bounded below by λ∗ uniformly in m and K. Therefore, since the function
x 7→ x

x+λ is increasing in x and decreasing in λ, we may bound the previous display
above so that

J(K + 1) · E

[
K−1∏
i=0

(
S−i (W )

S−i (W ) + λ′K

)]
≤ J(K + 1) · E

[
K−1∏
i=0

(
Si(W )

Si(W ) + λ′K

)]

≤ J(K + 1) · E

[
K−1∏
i=0

(
Si(W )

Si(W ) + λ∗

)]
.

We complete the proof by proving the following claim.

Claim 2.13.1. We have

lim
k→∞

k · E

[
k−1∏
i=0

(
Si(W )

Si(W ) + λ∗

)]
= 0

Proof. First observe that

E

[ ∞∏
i=0

(
Si(W )

Si(W ) + λ∗

)]
≤
∞∏
i=1

(
Ji

Ji+ λ∗

)
=

∞∏
i=0

(
1− λ∗

Ji+ λ∗

)
≤ e−

∑∞
i=1

λ∗
Ji+λ∗ = 0.

Therefore, we have

k · E

[
k−1∏
i=0

(
Si(W )

Si(W ) + λ∗

)]
= k ·

∞∑
j=k

E

[(
1− Sj(W )

Sj(W ) + λ∗

) j−1∏
i=0

(
Si(W )

Si(W ) + λ∗

)]

= k ·
∞∑
j=k

E

[
λ∗

Sj(W ) + λ∗

j−1∏
i=0

(
Si(W )

Si(W ) + λ∗

)]

≤
∞∑
j=k

j · E

[
λ∗

Sj(W ) + λ∗

j−1∏
i=0

(
Si(W )

Si(W ) + λ∗

)]
.

The series on the right of the previous display consists of non-negative terms, and for
each N ∈ N, we have

N∑
j=1

j · E

[
λ∗

Sj(W ) + λ∗

j−1∏
i=0

(
Si(W )

Si(W ) + λ∗

)]
(2.52)

=

N∑
j=1

(
j · E

[
j−1∏
i=0

(
Si(W )

Si(W ) + λ∗

)]
− j · E

[
j∏
i=0

(
Si(W )

Si(W ) + λ∗

)])

=

N∑
j=1

E

[
j−1∏
i=0

(
Si(W )

Si(W ) + λ∗

)]
−N · E

[
N∏
i=0

(
Si(W )

Si(W ) + λ∗

)]

≤
N∑
j=1

E

[
j−1∏
i=0

(
Si(W )

Si(W ) + λ∗

)]
.

Now, note that by Lemma 1.2, we have

∞∑
j=1

E

[
j−1∏
i=0

(
Si(W )

Si(W ) + λ∗

)]
<∞,
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and thus by (2.52) and the monotone convergence theorem, we also have

∞∑
j=1

j · E

[
λ∗

Sj(W ) + λ∗

j−1∏
i=0

(
Si(W )

Si(W ) + λ∗

)]
<∞.

Therefore,

lim
k→∞

k · E

[
k−1∏
i=0

(
Si(W )

Si(W ) + λ∗

)]
≤ lim
k→∞

∞∑
j=k

j · E

[
λ∗

Sj(W ) + λ∗

j−1∏
i=0

(
Si(W )

Si(W ) + λ∗

)]
= 0.

Lemma 2.14. Assume Conditions C1 and C2. Then we have

lim
K→∞

lim
m→∞

EK = 0, and lim
K→∞

lim
m→∞

RK = 0. (2.53)

In addition,
lim
K→∞

lim
m→∞

λ′K = λ∗. (2.54)

Proof. The proof is similar to that of Lemma 2.9. First, let ε > 0 be given, and, by
Lemma 2.4, let m be sufficiently large that for all x, y ∈ [0, 1]

(g+(x, y)− g−(x, y)) <
ελ′K
K

and (h+(x)− h−(x)) <
ελ′K
K

. (2.55)

The inequalities in (2.55) now imply that for any u = (u0, . . . , uK−1) ∈ [Dm]K , and each
i ∈ {0} ∪ [K − 1] we have (taking the empty sum to be zero when i = 0)

(a′ − γ′a′)(u|i) = hmax(u0)− hmin(u0) +

i−1∑
j=1

(gmax(u0, uj)− gmin(u0, uj))

<
ελ′K
K
·K = ελ′K . (2.56)

Now, using the u|i notation as a shorthand, we can write

EK =
∑

u∈[Dm]K

K−1∑
i=0

((a′ − γ′a′)(u|i)) VK(u|i)

(2.45)
=

∑
u∈[Dm]K

K−1∑
i=0

((a′ − γ′a′)(u|i)) pmui
(γ′a′)(u|i) + λ′K

i−1∏
j=0

[
pmuj

(
(γ′a′)(u|j)

(γ′a′)(u|j) + λ′K

)]
(2.56)
≤ ε ·

∑
u∈[Dm]K

K−1∑
i=0

λ′Kp
m
ui

(γ′a′)(u|i) + λ′K

i−1∏
j=0

[
pmuj

(
(γ′a′)(u|j)

(γ′a′)(u|j) + λ′K

)]

= ε · E

K−1∑
i=0

λ′K
S−i (W ) + λ′K

i−1∏
j=0

S−j (W )

S−j (W ) + λ′K

 < ε,

where we recall the definition of (S−j (w))j≥0 from (2.51), and observe that the sum in
the final line of the display telescopes. The first equation in (2.53) follows. Next, (2.46),
Lemma 2.13, and the facts that λ′K ≥ λ∗ and limm→∞ g̃∗+ = g̃∗ < λ∗ together imply the
second limit in (2.53). Finally, by (2.39) in Proposition 2.11 we have

λ′K − λ∗ = lim
n→∞

(
a′ · V̂Kn −Zn − (γ′a′) · V̂Kn

n

)
≤ lim
n→∞

(a′ − γ′a′) · V̂Kn
n

= EK + FK +RK ,

so that (2.54) follows by taking limits as m→∞ and K →∞.
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2.3.4 Proof of Assertions 3 and 4 of Theorem 1.1

Proof. We begin with the proof of Assertion 3. First, recalling the definition of D≥k(n, ·)
from (2.36), by Proposition 2.12 for any ` ∈ [Dm] we have

lim
n→∞

D≥k(n, `)

n
=

K∑
j=k

∑
u∈[Dm]K+1

VK(u|j)1{`}(u0)

=
∑

u∈[Dm]K+1

(
pmuK

K−1∏
i=0

[
pmui

(
(γ′a′)(u|i)

(γ′a′)(u|i) + λ′K

)]

+

K−1∑
j=k

pmujλ
′
K

(γ′a′)(u|j) + λ′K

j−1∏
i=0

[
pmui

(
(γ′a′)(u|i)

(γ′a′)(u|i) + λ′K

)]1{`}(u0).

Now, as with the proofs of Lemma 2.13 and Lemma 2.14, recalling the definition of
(S−i (w))i≥0 from (2.51), we may write the last equation as

= E

[
K−1∏
i=0

(
S−i (W )

S−i (W ) + λ′K

)
1Im` (W )

]

+

K−1∑
j=k

E

[
λ′K

S−j (W ) + λ′K

j−1∏
i=0

(
S−i (W )

S−i (W ) + λ′K

)
1Im` (W )

]

= E

[
k−1∏
i=0

(
S−i (W )

S−i (W ) + λ′K

)
1Im` (W )

]
. (2.57)

For m′ ∈ N, (2.57) allows us to prove the result for sets S ∈ σ(Im′), where we recall
the definition of Im′ in (2.6), and (2.27) and (2.28). Since N(n, ·) is finitely additive, if
S ∈ σ(Im), by (2.37) and (2.57) we have

E

[
k−1∏
i=0

(
S−i (W )

S−i (W ) + λ′K

)
1S(W )

]
≤ lim inf

n→∞

N≥k(n, S)

n
≤ lim sup

n→∞

N≥k(n, S)

n

≤ E

[
k−1∏
i=0

(
S−i (W )

S−i (W ) + λ′K

)
1S(W )

]
+RK + EK + FK .

Taking limits as m→∞ and then as K →∞, and applying Lemma 2.13 and Lemma 2.14
now proves the result for sets in σ(Im′). Now, note that for each k ∈ N0, and measurable
sets S′ ⊆ [0, 1], we have

lim sup
n→∞

N≥k(n, S′)

n
≤ lim sup

n→∞

N≥0(n, S′)

n
= µ(S′) almost surely, (2.58)

where the last equality applies the strong law of large numbers.
We now prove the result for sets U ∈ O where O denotes the class of all open subsets

of [0, 1]. For a fixed open set U ∈ O, and m ∈ N, recall that Im(U) :=
⋃
j∈[Dm]:Imj ⊆U

Imj .

Also recall (2.31), which states that 1Im(U) ↑ 1U pointwise as m→∞. Now, since each
Im(U) ∈ σ(Im), by applying (2.58) for each k ≤ K we have

E

[
k−1∏
i=0

(
Si(W )

Si(W ) + λ′K

)
1Im(U)(W )

]
≤ lim inf

n→∞

N≥k(n,U)

n
≤ lim sup

n→∞

N≥k(n,U)

n

≤ E

[
k−1∏
i=0

(
Si(W )

Si(W ) + λ′K

)
1Im(U)(W )

]
+µ(U \ Im(U)).
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Taking limits as m→∞ and then K →∞ now proves the result for sets belonging to O.
Finally, note that since µ is a regular measure, for any measurable set A ⊆ [0, 1] we

have
µ(A) = inf

U∈O:A⊆U
{µ(U)} .

Thus, for a given measurable set A, and any ε > 0, there exists an open set Uε such that

µ(Uε \A) ≤ ε.

Therefore by finite additivity and (2.58)

lim
n→∞

N≥k(n,Uε)

n
− ε ≤ lim inf

n→∞

N≥k(n,A)

n
≤ lim sup

n→∞

N≥k(n,A)

n
≤ lim
n→∞

N≥k(n,Uε)

n
.

Assertion 3 now follows by applying the result for the class O, and sending ε→ 0.
Finally, Assertion 3 allows us to prove Assertion 4 of Theorem 1.1. Note that, if

Nk(n,A) denotes the number of vertices of out-degree k in the tree at time n having
weight in A, by counting the edges in the tree in two ways we have

Ξ(n,A) =

n∑
k=1

kNk(n,A) =

n∑
k=1

N≥k(n,A).

But now, Lemma 1.2 and using Fatou’s Lemma in the last inequality, we have,

(ψ∗µ)(A) = E

[
h(W )

λ∗ − g̃(W )
1A

]
=

∞∑
k=1

E

[
k−1∏
i=0

(
Si(W )

Si(W ) + λ∗

)
1A

]

≤
∞∑
k=1

lim inf
n→∞

N≥k(n,A)

n
≤ lim inf

n→∞

Ξ(n,A)

n
;

and likewise, lim infn→∞
Ξ(n,Ac)

n ≥ (ψ∗µ)(Ac). Now, since we add one edge at each
time-step, it follows that Ξ(n, [0, 1]) = n. Thus, by finite additivity,

1 = lim inf
n→∞

(
Ξ(n,A)

n
+

Ξ(n,Ac)

n

)
≤ lim sup

n→∞

Ξ(n,A)

n
+ lim inf

n→∞

Ξ(n,Ac)

n

≤ lim sup
n→∞

(
Ξ(n,A)

n
+

Ξ(n,Ac)

n

)
= 1.

But, since (1.5) implies that (ψ∗µ)(·) is a probability measure, this is only possible if

lim sup
n→∞

Ξ(n,A)

n
= (ψ∗µ)(A) and lim inf

n→∞

Ξ(n,Ac)

n
= (ψ∗µ)(Ac) almost surely. (2.59)

The result follows.

3 The condensation regime

Here, we extend the results of the previous section to the condensation regime. The
techniques used in this section are closely related to those of [25].

The results of this section depend on sequences of auxiliary trees T (ε), T (−ε), ε > 0.
Given ε > 0, and Mε as defined in (1.13), define the functions gε, g−ε such that, for
z ∈M,

gε(p, q) := 1Mc
ε
(p)g(p, q) + 1Mε

(p)g(z, q)

and
g−ε(p, q) := 1Mc

ε
(p)g(p, q) + 1Mε

(p)(g(z, q)− uε(q));
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and let T (ε), T (−ε) be the evolving trees with measure µ, and associated functions
gε, h and g−ε, h respectively. We also denote by (Z(ε)

n )n≥0 and (Z(−ε)
n )n≥0 the partition

functions associated with T (ε), T (−ε), respectively.

Lemma 3.1. Assume Conditions D1-D4. Then, for each ε > 0 sufficiently small, T (ε)

and T (−ε) satisfy Conditions C1 and C2. In addition, if λε, λ−ε denote the Malthusian
parameters associated with T (ε), T (−ε), then λε ↓ g̃∗ and λ−ε ↑ g̃∗ as ε ↓ 0.

Proof. First, since by D2 g satisfies Condition C2, we have

g(x, y) = κ
(
φ

(1)
1 (x), . . . , φ

(N)
1 (x), φ

(1)
2 (y), . . . , φ

(N)
2 (y)

)
,

for measurable functions φ(i)
j : [0, 1]→ [0, 1], j = 1, 2, i ∈ [N ] and a bounded continuous

function κ : [0, 1]2N → [0,∞). Now, if we set φ(N+1)
1 (x) := 1Mε

(x), φ
(N+2)
1 (x) := 1Mc

ε
(x),

φ
(N+1)
2 (y) := g(x∗, y)− uε(y) and define κ′ such that

κ′(c1, . . . , cN+2, d1, . . . dN+1) := cN+2κ(c1, . . . , cN , d1, . . . , dN ) + cN+1dN+1,

we clearly have that φ(N+1)
1 , φ

(N+2)
1 , φ

(N+1)
2 are bounded, non-negative measurable func-

tions, and κ′ is bounded and continuous, taking values in [0,∞). Noting that

g−ε(x, y) = κ′
(
φ

(1)
1 (x), . . . , φ

(N+2)
1 (x), φ

(1)
2 (y), . . . , φ

(N+1)
2 (y)

)
,

it follows that g−ε satisfies Condition C2. The proof of C2 for gε is similar.
For C1, since h is bounded, for sufficiently large λ > g̃∗, we have

E

[
h(W )

λ− g̃ε(W )

]
< 1.

Meanwhile, since, by Condition D4, µ(Mε) > 0 and g̃ε(x) = g̃∗ for any x ∈ Mε, by
monotone convergence

lim
λ↓g̃∗

E

[
h(W )

λ− g̃ε(W )

]
= E

[
h(W )

g̃∗ − g̃ε(W )

]
=∞.

Thus, by continuity in λ, Condition C1 is satisfied for T (ε). A similar argument also works
for T (−ε): if g̃∗−ε denotes the maximum value of g̃−ε(x), then this value is also attained on
Mε which has positive measure. If λε, λ−ε denote the associated Malthusian parameters
associated with the trees, then, for each ε > 0, λε > g̃∗ and λ−ε > g̃∗−ε. Moreover, since
gε is non-increasing pointwise as ε decreases, λε is non-increasing in ε; likewise, λ−ε is
non-decreasing in ε. Now, suppose limε↓0 λε = λ+ > g̃∗. Then we may apply dominated
convergence, and

1 = lim
ε↓0
E

[
h(W )

λε − g̃ε(W )

]
= E

[
lim
ε↓0

h(W )

λε − g̃ε(W )

]
= E

[
h(W )

λ+ − g̃(W )

]
,

contradicting (1.12). The case for λ−ε follows identically.

Lemma 3.2. There exists a coupling (T̂ (−ε), T̂ , T̂ (ε)) of these processes such that, almost
surely (on the coupling space), for all n ∈ N0,

Z(−ε)
n ≤ Zn ≤ Z(ε)

n , (3.1)

and, for each vertex v with Wv ∈Mc
ε, we have

f(N+(v, T̂ (ε)
n )) ≤ f(N+(v, T̂n)) ≤ f(N+(v, T̂ (−ε)

n )) (3.2)

and

deg (v, T̂ (ε)
n ) ≤ deg (v, T̂n) ≤ deg (v, T̂ (−ε)

n ). (3.3)
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Proof. We initialise the trees with a single vertex 0 having weight W0 sampled inde-
pendently from µ, conditioned on {h(W0) > 0} and construct copies of these three tree
processes on the same vertex set, which is identified with N0. Now, assume that at the
nth time-step,

(T̂ (−ε)
j )0≤j≤n ∼ (T (−ε)

j )0≤j≤n, (T̂j)0≤j≤n ∼ (Tj)0≤j≤n and (T̂ (ε)
j )0≤j≤n ∼ (T (ε)

j )0≤j≤n.

In addition, assume that (3.1) and (3.2) are satisfied up to time n.
Now, for the (n+ 1)st step:

• Introduce vertex n+1 with weight Wn+1 sampled independently from µ in T̂ (−ε)
n , T̂n

and T̂ (ε)
n .

• Form T̂ (−ε)
n+1 by sampling the parent v of n+ 1 independently according to the law of

T (−ε) (i.e. with probability proportional to f(N+(v, T̂ (−ε)
n ))). Then, in order to form

T̂n+1 sample an independent uniformly distributed random variables U1 on [0, 1].

– If U1 ≤ Z(−ε)
n f(N+(v,T̂n))

Znf(N+(v,T̂ (−ε)
n ))

and Wv ∈ Mc
ε, select v as the parent of n+ 1 in T̂n+1

as well.
– Otherwise, form T̂n+1 by selecting the parent v′ of n + 1 with probability

proportional to f(N+(v′, T̂n)) out of all all the vertices with weight Wv′ ∈Mε.

• Then form T̂ (ε)
n+1 in a similar manner. Sample an independent uniform random

variable U2 on [0, 1].

– If vertex v (with weight Wv ∈Mc
ε) was chosen as the parent of n+ 1 in T̂n+1

and U2 ≤ Znf(N+(v,T̂ (ε)
n ))

Z(ε)
n f(N+(v,T̂n))

, also select v as the parent of n+ 1 in T̂ εn+1.

– Otherwise, form T̂ (ε)
n+1 by selecting the parent v′′ of n + 1 with probability

proportional to f(N+(v′′, T (ε)
n )) out of all the vertices with weight Wv′′ ∈Mε.

Clearly T̂ (−ε)
n+1 ∼ T

(−ε)
n+1 . On the other hand, in T̂n+1 the probability of choosing a certain

parent v of n+ 1 with weight Wv ∈Mc
ε is

Z(−ε)
n f(N+(v, T̂n))

Znf(N+(v, T̂ (−ε)
n ))

× f(N+(v, T̂ (−ε)
n ))

Z(−ε)
n

=
f(N+(v, T̂n))

Zn
,

whilst the probability of choosing a parent v′ with weight Wv′ ∈Mε is

f(N+(v′, T̂n))∑
v′:Wv′∈Mε

f(N+(v′, T̂n))

 ∑
v:Wv∈Mc

ε

(
1− Z

(−ε)
n f(N+(v, T̂n))

Znf(N+(v, T̂ (−ε)
n ))

)
f(N+(v, T̂ (−ε)

n ))

Z(−ε)
n


+

f(N+(v′, T̂n))∑
v′:Wv′∈Mε

f(N+(v′, T̂n))

( ∑
v:Wv∈Mε

f(N+(v, T̂ (−ε)
n ))

Z(−ε)
n

)

=
f(N+(v′, T̂n))∑

v′:Wv′∈Mε
f(N+(v′, T̂n))

∑
v

f(N+(v, T̂ (−ε)
n )))

Z(−ε)
n

−
∑

v:Wv∈Mc
ε

f(N+(v, T̂n))

Zn


=

f(N+(v′, T̂n))∑
v′:Wv′∈Mε

f(N+(v′, T̂n))

(
1−

∑
v:Wv∈Mc

ε
f(N+(v, T̂n))

Zn

)
=
f(N+(v′, T̂n))

Zn
,

where we use the fact that
∑
v f(N+(v, T̂n)) = Zn. Thus, we have T̂n+1 ∼ Tn+1. Now,

note that if the parent v of n + 1 in T̂ (−ε)
n+1 is such that Wv ∈ Mc

ε, the same parent is
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chosen in T̂n+1. Since Wv ∈Mc
ε, we have

f(N+(v, T̂ (−ε)
n+1 ))− f(N+(v, T̂ (−ε)

n )) = g−ε(Wv,Wn+1) = g(Wv,Wn+1)

= f(N+(v, T̂n+1))− f(N+(v, T̂n)).

Otherwise, the parent of n + 1 in T̂n+1 has weight which belongs to Mε, and thus

f(N+(v, T̂ (−ε)
n )) increases whilst f(N+(v, T̂n)) stays the same. An increase in f(N+(v,

T̂ (−ε)
n )) coincides with the increase of deg (v, T̂ (−ε)

n ), and thus the right hand sides of (3.2)
and (3.3) are satisfied for time n+ 1.

Now, note that

Z(−ε)
n+1 −Z(−ε)

n = h(Wn+1) + g−ε(Wv,Wn+1), and Zn+1 −Zn = h(Wn+1) + g(Wv′ ,Wn+1)

where v, v′ denote the parent of n+ 1 in T̂n and T̂ (ε)
n respectively. Then we either have:

• v = v′, so that g−ε(Wv,Wn+1) = g(Wv′ ,Wn+1).

• v ∈Mc
ε and v′ ∈Mε, in which case, P-a.s, using D4

g−ε(Wv,Wn+1) = g(Wv,Wn+1) ≤ g(x∗,Wn+1)− uε(Wn+1) < g(Wv′ ,Wn+1).

• Both v, v′ ∈Mε, in which case, P-a.s.,

g−ε(Wv,Wn+1) = g(x∗,Wn+1)− uε(Wn+1) < g(Wv′ ,Wn+1).

In every case we have Z(−ε)
n+1 −Z

(−ε)
n ≤ Zn+1 −Zn, and thus (3.1) is also satisfied at time

n+ 1.
Each of the statements concerning T̂ (ε) follow in an analogous manner, applying

Condition D3.

3.1 Proof of Theorem 1.3

The proof of Theorem 1.3 uses the auxiliary trees T (ε) and T (−ε), and Lemma 3.2.

Proof of Theorem 1.3. For the first statement, note that by (3.1) in Lemma 3.2 and
Theorem 1.1, for each ε > 0 we have, P-a.s.,

λ−ε = lim
n→∞

Z(−ε)
n

n
≤ lim inf

n→∞

Zn
n
≤ lim sup

n→∞

Zn
n

= lim
n→∞

Z(ε)
n

n
= λε.

The statement follows by sending ε→ 0, using Lemma 3.1.
Next, by assumption, for each ε > 0 sufficiently small, we have A ⊆ Mc

ε. Next,
applying (3.3), if Ξ(ε) and Ξ(−ε) denote the edge distributions in the coupled trees
T̂ (ε), T̂ (−ε), respectively, then for each n ∈ N0

Ξ(ε)(n,A) ≤ Ξ(n,A) ≤ Ξ(−ε)(n,A),

and thus, by Theorem 1.1, we have

E

[
h(W )

λε − g̃ε(W )
1A(W )

]
≤ lim inf

n→∞

Ξ(n,A)

n

≤ lim sup
n→∞

Ξ(n,A)

n
≤ E

[
h(W )

λ−ε − g̃−ε(W )
1A(W )

]
. (3.4)
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Now, noting that g̃−ε = g̃ = g̃ε on A, and λ−ε > g̃∗−ε ≥ supx∈A g̃(x) and is non-decreasing
in ε, by applying Lemma 3.1 and dominated convergence we have

lim
ε→0

E

[
h(W )

λε − g̃ε(W )
1A(W )

]
= lim
ε→0

E

[
h(W )

λ−ε − g̃−ε(W )
1A(W )

]
= E

[
h(W )

g̃∗ − g̃(W )
1A(W )

]
. (3.5)

Then, (1.14) follows by combining (3.4) and (3.5). Moreover, for each ε′ > 0, by setting
A =Mc

ε′ ,

lim
n→∞

Ξ(n,Mε′)

n
= lim
n→∞

(
1− Ξ(n,Mc

ε′)

n

)
= 1− E

[
h(W )

g̃∗ − g̃(W )
1Mc

ε′
(W )

]
. (3.6)

But then, again by dominated convergence,

lim
ε′→0

E

[
h(W )

g̃∗ − g̃(W )
1Mc

ε′
(W )

]
= E

[
h(W )

g̃∗ − g̃(W )

]
,

and (1.15) follows.

Finally, for the last statement, recall the definition of the companion process (Si)i≥0 in
(1.8), and that, for any measurable B ⊆ [0, 1], N≥k(n,B) denotes the number of vertices
of out-degree at least k with weight belonging to B at time n. Then, for ε > 0, note that

N≥k(n,B ∩Mc
ε)

n
≤ N≥k(n,B)

n
≤ N≥k(n,B ∩Mc

ε)

n
+
N≥0(n,Mε)

n
.

Now, by the strong law of large numbers, in the limit as n→∞, as in (2.58), the second
summand in the right-hand side tends to µ(Mε), and thus,

lim inf
n→∞

N≥k(n,B ∩Mc
ε)

n
≤ lim sup

n→∞

N≥k(n,B)

n
(3.7)

≤ lim sup
n→∞

N≥k(n,B ∩Mc
ε)

n
+ µ(Mε). (3.8)

Now, let N (−ε)
≥k (n, ·), N (ε)

≥k(n, ·) denote the associated quantities in the trees T (−ε), T (ε),

and denote by (S
(−ε)
i )i≥0 and (S

(ε)
i )i≥0 the companion processes defined in terms of the

functions h, g−ε and h, g+ε respectively. Then, by (3.3), on the coupling in Lemma 3.2,
we have

N
(ε)
≥k(n,B ∩Mc

ε) ≤ N≥k(n,B ∩Mc
ε) ≤ N

(−ε)
≥k (n,B ∩Mc

ε).

Therefore, by Theorem 1.1, recalling the definitions of λε, λ−ε in Lemma 3.1,

E

[
k−1∏
i=0

(
S

(ε)
i (W )

S
(ε)
i (W ) + λε

)
1B∩Mc

ε
(W )

]
≤ lim inf

n→∞

N≥k(n,B ∩Mc
ε)

n

≤ lim sup
n→∞

N≥k(n,B ∩Mc
ε)

n

≤ E

[
k−1∏
i=0

(
S

(−ε)
i (W )

S
(−ε)
i (W ) + λ−ε

)
1B∩Mc

ε
(W )

]
,
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and thus, by (3.7), we have

E

[
k−1∏
i=0

(
S

(ε)
i (W )

S
(ε)
i (W ) + λε

)
1B∩Mc

ε
(W )

]
≤ lim inf

n→∞

N≥k(n,B)

n
(3.9)

≤ lim sup
n→∞

N≥k(n,B)

n

≤ E

[
k−1∏
i=0

(
S

(−ε)
i (W )

S
(−ε)
i (W ) + λ−ε

)
1B∩Mc

ε
(W )

]
+ µ(Mε).

Now, by dominated convergence, as ε→ 0

E

[
k−1∏
i=0

(
S

(ε)
i (W )

S
(ε)
i (W ) + λε

)
1B∩Mε(W )

]
→ E

[
k−1∏
i=0

(
Si(W )

Si(W ) + g̃∗

)
1B(W )

]
, and

E

[
k−1∏
i=0

(
S

(−ε)
i (W )

S
(−ε)
i (W ) + λ−ε

)
1B∩Mε

(W )

]
→ E

[
k−1∏
i=0

(
Si(W )

Si(W ) + g̃∗

)
1B(W )

]
,

and, since, by (1.12), M is a µ-null set, µ(Mε) → 0. Combining these statements
with (3.9) completes the proof.

3.2 Proof of Corollary 1.4

Proof. By the Portmanteau theorem, it suffices to show that, P-a.s. lim infn→∞
Ξ(n,O)
n ≥

Π(O), for any open set O ⊆ [0, 1]. Note that, in view of Theorem 1.3 and (3.6), we have
that, P-a.s.,

lim
n→∞

Ξ(n, S)

n
= Π(S) ∀S ∈ S ,

where S is the countable family of sets defined as

S :=
{
Dmj ∩Mc

1/n,M1/n : j ∈ [2m],m ∈ N, n ∈ N
}
.

It is well known that any open subset of [0, 1] is a disjoint countable union of half open
dyadic cubes (belonging to the family D :=

{
Dmj : j ∈ [2m],m ∈ N

}
). Suppose z /∈ O. If

we fix such a countable collection of dyadic cubes D1, D2, . . ., we have, for each k, j ∈ N

lim inf
n→∞

Ξ(n,O)

n
≥

k∑
i=1

lim
n→∞

Ξ
(
n,Di ∩Mc

1/j

)
n

=

k∑
i=1

Π(Di ∩Mc
1/j).

Taking limits in j and k, by the monotone convergence theorem, the right hand side

converges to E
[

h(W )
g̃∗−g̃(W )1O(W )

]
= Π(O), as required. Now, suppose z ∈ O. A similar

argument to the previous case suffices if we can prove thatM1/n ⊆ O for n sufficiently
large. But then, if not, (Oc ∩M1/n)n∈N is a nested sequence of non-empty closed sets,
thus, by Cantor’s intersection theorem,

∅ 6=
⋂
n∈N

(
Oc ∩M1/n

)
= Oc ∩

⋂
n∈N
M1/n = Oc ∩ {z} ,

a contradiction.

4 Appendix

4.1 Proof of Lemma 1.2

In order to prove Lemma 1.2 we first introduce an auxiliary, piecewise constant
continuous time Markov process (Yw(t), rw(t))t≥0 taking values in N× [0,∞). The idea
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is to compute the expected value of Yw(t) at an independent, exponentially distributed
stopping time in two different ways. Let (Wi)i≥0 be independent µ-distributed random
variables, and define (Si(w))i≥0 according to (1.8), that is,

S0(w) := h(w); Si+1(w) := Si(w) + g(w,Wi+1), i ≥ 0.

In addition, set τ0 = 0, and define (τi)i≥1 recursively so that, given Si(w),

τi+1 − τi ∼ Exp(Si(w)); (4.1)

where Exp(rw(τi−1)) denotes an exponentially distributed random variable with parame-
ter rw(τi−1). Then, we set

Yw(t) :=

∞∑
n=1

1[τn,∞)(t), and rw(t) :=

∞∑
n=0

Sn(w)1[τn,τn+1)(t).

Claim 4.0.1. For all t ∈ [0,∞), we have E [Yw(t)] <∞ almost surely.

Proof. Let α be an independent exponentially distributed random variable with parame-
ter a > 0, and set Yw(α) := inft≥α(Yw(t)). Then,

E
[
1{Yw(α)≥k}|Sk−1(w),1{Yw(α)≥k−1}

]
= E

[
1{α≥τk}|Sk−1(w)

]
1{Yw(α)≥k−1} (4.2)

=
Sk−1(w)

a+ Sk−1(w)
1{Yw(α)≥k−1}, (4.3)

where in the last equality we have used (4.1) and the memory-less property of the
exponential distribution. Note also, that for any j ≤ k − 1, the random variables
(Sj(w), . . . , Sk−1(w)) and 1{Yw(α)≥j} are conditionally independent given the random
variables Sj−1(w),1{Yw(α)≥j−1}. Indeed, for each ` ∈ {j, . . . , k − 1},

S`(w) = Sj−1(w) +
∑̀
i=j

g(w,Wi),

where Wj , . . . ,Wk−1 are independent random variables sampled from µ, while (again
using the memory-less property)

1{Yw(α)≥j} = 1{Yw(α)≥j−1} × 1{α≥τj−τj−1}

where we recall τj − τj−1 is an exponentially distributed random variable with parameter
Sj−1(w) and thus conditionally independent of (Sj(w), . . . , Sk−1(w)). As a result, we have

E

k−1∏
i=j

Si(w)

Si(w) + a

1{Yw(α)≥j}

∣∣∣∣Sj−1(w),1{Yw(α)≥j−1}


= E

k−1∏
i=j

Si(w)

Si(w) + a

∣∣∣∣Sj−1(w),1{Yw(α)≥j−1}

E [1{Yw(α)≥j}

∣∣∣∣Sj−1(w),1{Yw(α)≥j−1}

]
.

(4.4)
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Therefore,

P (Yw(α) ≥ k) = E
[
1{Yw(α)≥k}

]
= E

[
E
[
1{Yw(α)≥k}|Sk−1(w),1{Yw(α)≥k−1}

]]
(4.2)
= E

[
Sk−1(w)

a+ Sk−1(w)
1{Yw(α)≥k−1}

]
= E

[
E

[
Sk−1(w)

a+ Sk−1(w)
1{Yw(α)≥k−1}

∣∣∣∣Sk−2(w),1{Yw(α)≥k−2}

]]
(4.4)
= E

[
E

[
Sk−1(w)

a+ Sk−1(w)

∣∣∣∣Sk−2(w),1{Yw(α)≥k−2}

]
E
[
1{Yw(α)≥k−1}|Sk−2(w),1{Yw(α)≥k−2}

]]
(4.2)
= E

[
E

[
Sk−1(w)

a+ Sk−1(w)
× Sk−2(w)

a+ Sk−2(w)
1{Yw(α)≥k−2}

∣∣∣∣Sk−2(w),1{Yw(α)≥k−2}

]]
= E

[
Sk−1(w)

a+ Sk−1(w)
× Sk−2(w)

a+ Sk−2(w)
1{Yw(α)≥k−2}

]
.

Iterating in this manner and noting that Yw(α) ≥ 0 almost surely, we deduce that the

previous expression is E
[∏k−1

i=0
Si(w)
a+Si(w)

]
. This now implies that

E [Yw(α)] =

∞∑
k=1

E

[
k−1∏
i=0

Si(w)

a+ Si(w)

]
. (4.5)

Now, the display on the right is increasing in Si(w), and using the fact that g and h are
bounded by J = max {1, g}, we may bound this above by

∞∑
k=1

k∏
i=1

Ji

Ji+ a
<∞ for all a > J , by applying, for example, Stirling’s approximation.

Thus, for a suitable choice of a, E [Yw(α)] is finite, so that, in particular, for each t ∈ [0,∞),
since the random variable Yw(t) is independent of the event {α ≥ t} which occurs with
positive probability,

E [Yw(t)] ≤
E
[
Yw(α)1{α≥t}

]
P (α ≥ t)

<∞.

In addition,

Claim 4.0.2. For each t ∈ [0,∞),

E [Yw(t)] =

∫ t

0

E [rw(s)] ds. (4.6)

Proof. Note that by Fubini-Tonelli,∫ t

0

E [rw(s)] ds = E

[∫ t

0

rw(s)ds

]
.

Note also that by Claim 4.0.1, we have τn ↑ ∞ almost surely as n ↑ ∞. Thus, by re-
arranging and applying the monotone convergence theorem (taking limits as n→∞), it
suffices to show that for each n ∈ N and any t ∈ [0,∞)

E

[
Yw(t ∧ τn)−

∫ t∧τn

0

rw(s)ds

]
= 0.
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We re-write the left hand side as

E

[
Yw(t ∧ τn)−

∫ t∧τn

0

rw(s)ds

]
=

E

[
n−1∑
k=0

(
Yw(t ∧ τk+1)− Yw(τk)−

∫ t∧τk+1

τk

rw(s)ds

)
1{t≥τk}

]

= E

[
n−1∑
k=0

(
1{t≥τk+1} −

∫ t∧τk+1

τk

rw(s)ds

)
1{t≥τk}

]

=

n−1∑
k=0

E

[(
1{t≥τk+1} −

∫ t∧τk+1

τk

rw(s)ds

)
1{t≥τk}

]
.

But for each k, with Fτk denoting the stopped σ-algebra, recall that τk+1−τk is distributed
like Exp (Sk(w)), and note that obviously the event {t ≥ τk+1} = {t − τk ≥ τk+1 − τk}.
Therefore, we have

E

[
1{t≥τk+1} −

∫ t∧τk+1

τk

rw(s)ds|Fτk
]

1{t≥τk}

= E
[
1{t≥τk+1} − (τk+1 − τk)Sk(w)1{t≥τk+1} − (t− τk)Sk(w)1{t<τk+1}|Sk(w), τk

]
1{t≥τk}

=
(

1− e−Sk(w)(t−τk) −
(

1− e−Sk(w)(t−τk) ((t− τk)Sw(k) + 1)
)

−(t− τk)Sw(k)
(
e−Sk(w)(t−τk)

))
1{t≥τk}

= 0.

The result follows by applying the tower property.

Claim 4.0.3. We have

E [rw(t)] = h(w) + E [g(w,W )]E [Yw(t)] = h(w) + g̃(w)E [Yw(t)] . (4.7)

Proof. First note that, since rw(t) jumps by g(w,W ) whenever Yw(t) jumps, we have

E [rw(t)]− h(w) = E

Yw(t)∑
i=1

g(w,Wi)

 .
In addition, for each n ∈ N,

E
[
g(w,Wn)1{Yw(t)≥n}

]
= E [g(w,Wn)]− E

[
g(w,Wn)1{Yw(t)<n}

]
= E [g(w,Wn)] (1− P (Yw(t) < n)) = E [g(w,Wn)]P (Yw(t) ≥ n) ,

where the second to last equality follows from the fact that the event {Yw(t) < n}
depends only on (Si(w))i=0,...,n−1, and is thus independent of Wn. Finally, by Claim 4.0.1,
E [Yw(t)] <∞, and thus the result follows by applying Wald’s Lemma.

Proof of Lemma 1.2. First note that by (4.6) and (4.7), and continuity of t 7→ E [Yw(t)],
we have

d

dt
E [Yw(t)] = g̃(w)E [Yw(t)] + h(w),

and solving this differential equation, with initial condition E [Yw(0)] = 0, we have

E [Yw(t)] =
h(w)

g̃(w)
(eg̃(w)t − 1). (4.8)
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Now, let Λ be an exponentially distributed random variable with parameter λ. Then, on
the one hand, by (4.5)

E [Yw(Λ)] =

∞∑
k=1

E

[
k−1∏
i=0

Si(w)

Si(w) + λ

]
.

On the other hand,

E [Yw(Λ)] =

∫ ∞
0

λe−λuE [Yw(Λ)|Λ = u] du =

∫ ∞
0

λe−λuE [Yw(u)] du
(4.8)
=

h(w)

λ− g̃(w)

where, in order to evaluate the integral to get the last equality, we have used the fact
that λ > g̃+. The result follows.
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[46] Jerzy Szymański, On a nonuniform random recursive tree, Random graphs ‘85 (Poznań,
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