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Abstract

In this paper we study the asymptotic behavior, as t | 0, of the spectral heat content
Qg)(t) for isotropic a-stable processes, « € [1,2), in bounded C''! open sets D C R¢,
d > 2. Together with the results from [2] for d = 1 and [7] for a € (0, 1), the main
theorem of this paper establishes the asymptotic behavior of the spectral heat content
up to the second term for all « € (0,2) and d > 1, and resolves the conjecture raised
in [2].
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1 Introduction

The spectral heat content represents the total heat in a domain D with Dirichlet
boundary condition when the initial temperature is 1. The spectral heat content for
Brownian motions has been studied extensively. The spectral heat content for isotropic
stable processes was first studied in [2]. Since then, considerable progress has been
made toward understanding the asymptotic behavior of the spectral heat content for
other Lévy processes (see [1, 7, 10, 12]).

The following conjecture about the spectral heat content for isotropic a-stable pro-
cesses, a € (0,2), over bounded C!! open sets (see Section 2 for the definition of C'*'!
open sets) was made in [2]: Ast ] 0,

|D| - cl|aD‘t1/a + O(t)7 ac (17 2)a
QY (t) ={|D| - c2|dD|tIn(1/t) + O(t), a=1, (1.1)
|D| — csPery (D)t + o(t), «€(0,1),
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where ¢;,7 = 1, 2,3, are constants and

Adea . al' (%)
Per, (D / / T ——————dydr, with A;, = ST=and/T (1 %), (1.2)

is the a-fractional perimeter of D. This conjecture was resolved in dimension 1 in [1]
(actually, a slightly weaker version, with the error term being o(tl/ @) in the case « € (1,2)
and o(t1n(1/t)) in the case a = 1, of the conjecture was proved there). We note that in [2]
the author conjectured, and also provided strong evidence, that the spectral heat content
for isotropic a-stable processes with a € (0,2) must have an asymptotic expansion of
the form as (1.1) for all dimensions d > 2, but exact expressions for the coefficients c;
were not provided. Then a two-term asymptotic expansion of the spectral heat content
for Lévy processes of bounded variation in R was established in [7]. Since a-stable
processes are of bounded variation if and only if « € (0, 1), the result in [7] proves (1.1)
for a € (0,1). The purpose of this paper is to resolve the conjecture above for a € [1, 2)
and d > 2. In fact, our result is slightly weaker than (1.1) since the error term is o(tl/ *)
for o € (1,2) and o(tIn(1/t)) for « = 1. We also find explicit expressions for the constants
¢1 and cp. The main results of this paper are Theorem 3.5 for a € (1,2) and Theorem
4.9 for o = 1. Combining Theorems 3.5 and 4.9 with [7, Corollary 3.5], the asymptotic
behavior of the spectral heat content for isotropic a-stable processes in bounded C'!
open sets D can be stated as follows:

Theorem 1.1. Let D be a bounded C':! open set in R, d > 2 and let

/e ifa € (1,2),
fa(t) =< tin(1/t) ifa=1,
t ifa €(0,1).

Then, we have
E[Y\™)j0D| ifae (1,2),

D|— Q%
t—0 fa( ) ™
Per, (D), ifa € (0,1),

where YEQ) = Sup,<; v{*) stands for the running supremum of a 1 dimensional symmetric
a-stable process Yt(a) and Per, (D) as defined in (1.2).

We note that (1.3) is exactly the same form as [1, Theorem 1.1] if one interprets
|0D| = 2 when D is a bounded open interval in R, but the proof for d > 2 is very different
from the one dimensional case and much more challenging.

The two-term asymptotic expansion of the spectral heat content for Brownian motion
was proved in [4]. The crucial ingredient in [4] is the fact that individual components of
Brownian motion are independent. For isotropic a-stable processes, a € (0, 2), individual
components are not independent and the technique in [4] no longer works. When
a € (1,2), we establish the lower bound for the heat loss |D| — Sja)(t) by considering the
most efficient way of exiting D (see Lemma 3.1). In order to establish the upper bound,
we approximate the heat loss |D| — 5:(;) (t) by the heat loss of the half-space |D| — gi) (t)
for x near 0D (see Proposition 3.3) and show that the approximation error is of order
o(t'/®) in Lemma 3.4, which is similar to tools exposed in the trace estimate results in
[3, 11]. However, these tools do not work when a = 1 due to the non-integrability of
]P(?gl) > u) over (1,00), where 7?) stands for the supremum of the Cauchy process up
to time ¢, and the proof for a = 1 requires new ideas and is considerably more difficult.

In case of @ = 1, we prove that the coefficient of the second term of the asymptotic
expansion of Qg) (t)is — ‘6D| , which is the same as for the regular heat content a4 )( t)
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which represents the total heat in D without the Dirichlet exterior condition (see (2.3)
below for the definition of regular heat content and [2, Theorem 1.2] for the two-term
asymptotic expansion for the regular heat content Hg)(t)). If there is no Dirichlet
exterior condition on D¢, or equivalently if the heat moves freely in and out of D, the
heat loss of the regular heat content must be smaller than that of the spectral heat
content and we obtain the lower bound for free in (4.1). The proof for the upper
bound is much more demanding. The crucial ingredient for the upper bound is the
spectral heat content for subordinate killed Brownian motions in [12]. An isotropic
a-stable process Xt(a) can be realized as a subordinate Brownian motion stm /2), where

St(a/ ? is an independent («/2)-stable subordinator. Hence, the spectral heat content

Q%Y) (t) is the spectral heat content for the killed subordinate Brownian motion via the
independent («/2)-stable subordinator St(a/ 2). When one reverses the order of killing and
subordination, one obtains the subordinate killed Brownian motion. This is the process
obtained by subordinating the killed Brownian motion in D via the independent («/2)-
stable subordinator S,fa/ ) Let @g’)(t) be the spectral heat content of the subordinate
killed Brownian motion in D (see (2.4) for the precise definition). By construction
QV(S) (t) is always smaller than Q%j‘)( t), or equivalently the heat loss |D| — )( t) of the
subordinate killed Brownian motion provides a natural upper bound for that of the killed
subordinate Brownian motion |D| — (Da) (t). We use two independent «/2 and /2 stable
subordinators with a8 = 2 and consider the a-stable process X (@) _ Ws“’ s2) and killed
it upon exiting D. Then we time-change the killed a-stable process by the (8/2)-stable
subordinator. By using the heat loss of the resulting process, we obtain in Lemma 4.3
that, for o € (1, 2),

oW y@
peup 2= @60 _ 19D] | [T PEYY > w ) < w)du

D
ol tn(l/t) = 7 F(l—i) ‘10Dl,

where Yt(a) is a 1 dimensional symmetric a-stable process and VEQ) = SUp,<y v we

would like to show that the second summand on the right hand side of the previous
inequality converges to 0 as o | 1. We know that ﬁ = O(a—1) as a | 1. The

integrand in the numerator can be written as

IP(?EQ) > u, Y < w)du = ]P(?ﬁa) >u) — P(Y{™ > )
and it can be shown that IP(Yg RS u) ~ P(Y; ) > u) ~ cu‘o‘ as u — oo, hence
I ]P(Y(a) > u)du and [~ P V) > u)du should be of order — as a | 1. We show that
P N u)du and [;° P(Y; (O‘) > u)du have the exact]y same Ieadmg coefficients and

this glves a cancellation of the main terms of order ﬁ' We still need to show that the
sub-leading terms are of order o(a— 1) as « | 1 and we show this by establishing uniform
heat kernel upper and lower bounds in Lemma 4.5 for the heat kernel of the supremum

process ?E‘” and Lemma 4.6 for the heat kernel of Y,(*).

This paper deals with asymptotic behavior of the spectral heat content for isotropic
a-stable processes. It is natural and interesting to try to find the asymptotic behavior of
the spectral heat content for more general Lévy processes. We intend to deal with this
topic in a future project. In the recent paper [10], a three-term asymptotic expansion of
the spectral heat content of 1 dimensional symmetric a-stable processes, « € [1,2), was
established. We believe that a similar result should hold true for d > 2.

The organization of this paper is as follows. In Section 2, we introduce the setup. In
Section 3, we deal with the case « € (1,2) and the main result of that section is Theorem
3.5. The case a = 1 is dealt with in Section 4 and the main result there is Theorem
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4.9. In this paper, we use c¢; to denote constants whose values are unimportant and
may change from one appearance to another. The notation P, stands for the law of the
underlying processes started at x € R, and IE,. stands for expectation with respect to P,.
For simplicity, we use P = Py and [E = .

2 Preliminaries

In this paper, unless explicitly stated otherwise, we assume d > 2. Let Xt(o‘), a € (0,2,

be an isotropic a-stable process with

E[eX™] = etEI" ¢ e RY o € (0,2].
€x 2 le%
Xt(Q) is a Brownian motion W; with transition density given by (47t)~%/ 2= Let St( /),
a € (0,2), be an («/2)-stable subordinator with

_xgla/ _ina/2
Ele=% =" X >0.

Assume that St(a/ ? is independent of the Brownian motion W;. Then, the subordinate

Brownian motion WSWQ) is a realization of the process Xt(a). We will reserve Yt(o‘) for
t

the 1 dimensional symmetric a-stable process. We define the running supremum process

v of v, by

?Ea) = Sup{Yu(“) (0 <u <t} (2.1)

Recall that an open set D in R? is said to be a C1'! open set if there exist a localization
radius Ry > 0 and a constant Ay > 0 such that, for every z € 9D, there exist a C1!
function ¢ = ¢. : R¥! — R satisfying ¢(0) = 0, Vé(0) = (0,---,0), [[Vo|e < Ao,

[Vo(z) — V(y)| < Ap|z — y| and an orthonormal coordinate system CS, : y = (¥, yq) with
origin at z such that

B(ZaRO) npD = B(Z7R0> N {y = @JJd) in CSZ ‘Ya > d)(@}

The pair (R, Ap) is called the C*! characteristics of the C! open set D. It is well known
that any C''! open set D in R? satisfies the uniform interior and exterior R-ball condition:
for any 2z € D, there exist balls B; and B, of radii R with B; ¢ D, B, ¢ R%\ D and
831 n 832 = {Z}

We recall from [4] a useful fact about open sets D satisfying the uniform interior and
exterior R-ball condition. Let D, = {z € D : dist(x, D) > ¢}. We will use 9D, denote the
portion of the boundary of D, contained in D, that is, 0D, = {z € D : dist(z,9D) = ¢}.
It follows from [4, Lemma 6.7] that

d—1 d—1
10D (RRq) < |0D,| < 0D <RR_q) . 0<g<R (2.2)

In the remainder of this paper, D stands for a bounded C':! open set in R?, d > 2.

Let 7% = inf{t > 0: X\*) ¢ D} be the first exit time of X* from D. The spectral heat

content of D for X\ is defined to be
(@) (7) — /D P, (r > t)da.
The (regular) heat content Hgl) (t) of D for Xt(a) is defined to be

HS (1) = /D P, (X" € D)da. (2.3)
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The spectral heat content @g’)(t) of D for the subordinate killed Brownian motion is
defined as

QL) () = / P, (r2 > 5/)dz. (2.4)
D
Note that we always have
(rP > Y c (7 > 1y c (X € D). (2.5)

We sometimes use the terminology heat loss and this will mean either

D= Q50 = [ Putrf) < vy
D
or
D] — Q' (1) = /D P, (r2 < 51/ dz,

depending on which process we are dealing with. Intuitively, these quantities represent
the total heat loss caused by heat particles jumping out of D up to time ¢. From (2.5), we
have

D] - Hp (1) < D] - Q5 (1) < 1D - Q5 (1), t>o.

3 The case a € (1,2)

Throughout this section, we assume « € (1,2). For any = € D, we use dp(z) to
denote the distance between x and dD. We start with a lower bound. Recall that
D, ={z € D : dist(z,0D) > ¢}.

Lemma 3.1. Let D be a bounded C''! open set in R¢. Then, we have

D| — Q'Y
lim inf 12/ =90 ()
t—0 tl/«a

> [0D[E[VLY),

where ?,Ea) is defined in (2.1).

Proof. Let D satisfy the uniform interior and exterior R-ball condition. Fix a < R/2. For
x € D\ D,, let z, € 0D be such that |z — z;| = p(x) and let n,, be the outward unit
normal vector to the boundary 0D at the point z,.

For X starting from z, we define Y, := (X!® — 2) - n._, where - stands for usual
scalar product in R¢. Obviously, Yo(a) = 0. Note that the characteristic exponent of Yt(o‘)
is given by

E[einYt(“)] =, [ein(Xf“Lfb)nzm} =™ peR,

and this shows that Yt(a) is a one dimensional stable process starting from 0. Let r < a
and z € 0D,, and let H, be the half-space containing the interior R-ball at the point z,
and tangent to 0D at z,. When the process X starts from x, we have

V> ={r) <t c 7 < )

and this implies

PV > 1) <P (r&) <),

Hence, by the coarea formula and (2.2), we have

D] — Q' (t) = /Pm(n@ gt)dxz/ P, (7 < t)dx
D\D,

/ / )<t)der>/ / P > r)dSdr
oD, oD,

d—1
oD, PV > rdr > 0D <RR “) / P > r)dr,
0

0
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where dS represents the surface measure on 0D,.. Now it follows from the scaling
property of Y(® and the change of variables t~!/®r = s that

t=1/aqg

/ IP(?EQ) > r)dr = / P(tl/a?ﬁo‘) > r)dr = tl/a/ ]P(?ﬁ“) > s)ds.
0 0 0
Hence, we have

=1/ g

D] - Q1) (R— )d / ()
P15 W) 5 5p P > 5)ds
t1/e | R 0 !

and by taking lim inf we obtain

DI - QF(1) R—a\""
hgrilglftli/(f)2|8D| 7 E[Y; ]

Since a > 0 is arbitrary and E[Yﬁ"‘)] < oo when « € (1,2), the conclusion of the theorem

is true. O

Now we proceed to prove the opposite inequality of Lemma 3.1. For a bounded C*+!
open set D satisfying the uniform interior and exterior R-ball condition and x € D with
op(z) < R/2, we let z, € D be the point on 9D such that |z — z,| = dp(x) and H, be
the half-space containing the interior R-ball at the point z, and tangent to 9D at z,. For
x € D with dp(z) < R/2, we have

() <ty = {r5) <tandry) <tU{rS) <tandry) >t}

(ri) <tyu{ry) <t <7} (3.1)

N

Hence, we have
D= Q) = [ Patrly) < o
D

- / P, (7% < t)dz + / P, (r%) < t)dzx
Dry2 D\Dg/2

§/ ]Px(T(Da) < t)dx —|—/ IPx(T;I? < t)dx
Dryo D\Dg/2 '

+ / P, (ry) <t <ri))da. (3.2)
D\Dpg/2

We deal with the first expression on the right-hand side of (3.2) first. Recall the
following facts from [2, (2.2)] and [4, Corollary 6.4]:

42
exp _W <cak™ @ (3.3)
1

2
P (rion <t) <202 (3.4)

E

and

Lemma 3.2. Let D C R% d > 2, be a bounded C' open set satisfying the uniform
interior and exterior R-ball condition. Then, we have

/ P, (T(Da) < t) dx < ct.
Dgrj2

EJP 27 (2022), paper 22. https://www.imstat.org/ejp
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Proof. For ép(x) > g, it follows from (3.3) and (3.4) that

P, (Tgo < t) <P, (T;;;; 50y < t) <P, (Téz(}MD(z)) < Sga/m)

<21+%E[exp(— Op()* )] < IS exp(— Op()* < cla, d)t < 2ac(a,d)t.
- SSt(a/Q) - 8t2/°‘5§a/2) - 5D(£U)O‘ - R
Hence we have 20 (. d)| Dt
() “c(a,
P, (7 <tldr< — e O
/Dm ( b ) R

The second expression on the right-hand side of (3.2) is handled in the following
proposition.
Proposition 3.3. Let D C RY, d > 2, be a bounded C*! open set satisfying the uniform
interior and exterior R-ball condition. Then, we have

oy, Pl < t)de
lim
t—0 tl/a

_ |8D\/ P o () < 1)dr = [0D[ETV),
0

(@)

where Y, ' is defined in (2.1) and H = {x = (21, -+ ,74) : z4 > 0}.

Proof. For dp(z) < R/2, we have by the scaling property and the change of variables
v=t"1 “u,

/D\DR/Q P, (rfy) <t)dr = /O v D[P,y (7§ <) du

R/2 (@ R/2t/ (@)
@ « [0
:/0 ODUIP Gy 1y (7 gy < 1) du =1/ /0 0D, 1/ P (i) < 1) do.

Recall that Yt(a) = (Xt(a) —x)-n,, is a one dimensional a-stable process starting from
0. Hence, for any starting point (0, ) we have {Tl(f) <1} = {7§a) > r}, and this implies

Pg. (T}f) <1)= ]P(?ia) > r). Hence, we have

oo

/o %,U)(r(“)sndv:/o P(VY™ > v)do = B[Y|")].

By [1, Corollary 2.1 (ii)], ]E[?i""] < oo if @ € (1,2). Hence, it follows from the Lebesgue

dominated convergence theorem that

fD\D IPI(T;;) <t)dx o

. R/2 @ o _ () _ ()

lim - _ |oD| /0 P, () < )dr = PDET). O
Finally, we estimate the last expression on the right-hand side of (3.2).

Lemma 3.4. Let D C R%, d > 2, be a bounded C! open set. Then, we have

() (a)
. fD\DR/z P, (TD <t <7y ) dx

t—0 tl/«a =0.

Proof. By rotational invariance, we have

/ P, (r) <t <)) do < / P, (ri) <t <)) de
D\D/s D\Dy)s

R/2
(@ ()
< /0 ODuIP G0y (7505 oy S 1< i) du (3.5)
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where H = {z = (21, -+ ,zq) : x4 > 0}. It follows from [4, Lemma 6.7] that for u < R/2,
|0D,| < 2¢710D|. (3.6)

Note that it follows from the scaling property that the law of aTg’) under P, is equal

to the law of T(l /)a p under P,1/.,. Hence, it follows from the scaling property, together

with (3.6), that (3.5) is bounded above by

R/2
297110D)| / P 6,0) (T(O&ﬁ R).R) S <t< (a)> du
R/2
= 24 1|8D\/ P G (t—l T S 1<t (0‘)) du
= 2¢719D| /R/zlP(atl/a ) (r5 s <1<ri))du
0 ) u ((0,t=1/«R),t=1/>R) —

2~ 14~ 1/epR
_ od—1 1/ ~ (@) i
= 297°|0D}|t /0 IE)(07v) ( TB((@,t-1/R) t—1/aR) = sl<my ) dv

_ od1 1o [ () ()
— 24|t/ /0 L(0.0-14-1/0 1) (VPG 09 ( S| <Ta)d :

where we used the change of variables v = ¢t~ 1/%y.
Now we will show that there exists a non-negative function f on (0, c0) such that

1(0,R/2t1/”)(U)IP(6,v) ( ](968075 1/aR),t-1/R) <1< (a)> < f(v) and / f(v)dv < co.

Assume 1 < v. Similarly as in the proof of Lemma 3.2, by using (3.3) and (3.4) we
find that

_ (@) (@) (@) _
PG ( TB(@-1aR) t-1/er) = 1 < TH ) < Pg. ( TB(@0)0) = 1) < c(a, v

Hence, we have

(@) (a)
1(0,2*116*1/0‘}%)(1})]?(6,@) (TB((a’t—l/aR)7t—l/aR) L<7 )
< 1o,y (v) +e(d, )1 (1,00 (V) - 07" = f(v).
Starting from (0,v) with v € (0,271t~/*R), as t — 0, B((0,t~Y/*R),t~'/*R) increases to

H, and this implies 7' (zOt \aR) -1/aR) TT;I) Hence, we have

(a) () _
}K%P(Ov)( B(@,-1/aR) t-1/aR) = 1 < TH )‘0'

Hence, it follows from the Lebesgue dominated convergence theorem that
(e) ()
. fD\DR/z P, (TD <t <7y ) dx
lim
t—0 tl/«a

. > (@) () _
<lim [0D)| /0 Lo 11170 1) (V)P u.0) (TB((.GE/QR)JA/QR) <1<l )dv =0. O

Theorem 3.5. Let D Cc RY, d > 2, be a bounded C*' open set. Then, we have

(a)
DI -Qp’(t) _ ()
lim T =[0D|E[Y, ], (3.7)
where YEQ) is defined in (2.1).
EJP 27 (2022), paper 22. https://www.imstat.org/ejp
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Proof. The lower bounded is proved in Lemma 3.1. Now we establish the upper bound.
Assume D satisfies the uniform interior and exterior R-ball condition. For dp(z) < R/2,
it follows from (3.1) that

(r5) <ty c{ri) <tyu{rl? <t <7V},

and

/ P, () <t) < / P (7)) < t)dx + / P, (75 <t <7i))da,
D\Dgy2 D\Dpg/» ) D\Dpg /2 )

Combining inequality in (3.2), Lemmas 3.2, 3.4 and Proposition 3.3, we arrive at

D| - Q¢
lim sup DI () < \8D|E[Y(a)]
£—0 ti/e
which together with Lemma 3.1 leads to the desired limit. O

4 The case of Cauchy processes

In this section, we establish the two-term asymptotic expansion for the spectral heat
—HY (1) < |D| - QY (1), by [2, Theorem 1.2

(ii)] we have
D)
limint [P = @0 () > 0D
t—0 tin(1/t) T

Lemma 4.1. Suppose « € (1,2). It holds that

(4.1)

VAl Fl_l o «
B[\ = (7ra)+/0 PV > u, V(¥ < w)du,

where YEQ) is defined in (2.1).

Proof. Consider the spectral heat content Qgg)b) (t) of (a,b) C R for Yt(o‘). It holds that

(b—a) = Q1) _ [y Palriy < t)da

tl/a tl/a
PP (V™ ¢ (a,b)) f P (o)) <6, € (a,b))dz
tl/«a tl/a (4.2)

We will show that

P, <Y € (a,b)d
}5% tl/a

% @)
—2/ PV > u, VY <wdu.  (4.3)
0

Together with lim; ¢~ Uaf P.(Y\" ¢ (a,b))dz = 27r~'T(1 — 1) from [2, Theorem
1.1. ()] and lim, ot~/ [P, a) < )da = 2E[Y\"] from [1, Theorem 1.1], this will

( ,b)
establish the conclusion by taking limits at both sides of (4.2).

Note that we have

b
/ P (7)) <Y € (a,b))dx

b b
- / P,(V\" > b,Y, ¢ (a,b))dx—i—/ P,V < a, Y € (a,b))dx

a

b
- / P (Vi > b, Y™ < 0,V € (a,b))dx,
a
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where Y{* = inf{V;® : 0 < u < t} is the running infimum process of Y;*. It follows
from [10, Lemma 3.2] that

b
/ P,(Y'™ > b, Y < 0, € (a,))dz = O(t'* %) as t | 0.

1/a

By the change of variables u = (b — z)t~'/® and the scaling property we have

b
/ P,(Y > b, € (a,b))dx
a

(b—ayt=t/e
= e [T R - < Y <,
0

Note that we have

IP(?&Q) (@)

>u,—(b—a)t ™V fu < Yl(a) <u) <PY" >u)

and -
/ P(?ga) > u)du = E[?ga)] < oo.
0
Hence, it follows from the Lebesgue dominated convergence theorem that the limit is

f; IPm(T(a) < t,Yt(a) € (a,b))dz
m

. (a,b) =
th—>0 ti/e
e —(a o
i i/ fo(b )t IP(Yg N u, —(b—a)t= " +u < Yl( ) < u)du
T 50 tl/a

:/ ]P(?ﬁ“) > u, Yl(a) < u)du.
0

The second term can be handled in a similar way using the symmetry of Yt(a), and this
proves (4.3). O

We need a simple lemma which is similar to [12, Lemma 3.2]. The proof is essentially
the same with obvious modifications. We provide the details for the reader’s convenience.
Lemma 4.2. For any § > 0 and o € (0,2), we have

a/2
E[(Sﬁ“/”) L0 <S4/ < 5p-2/a) )

=0 In(1/t) ra-9)

Proof. Note that the stable subordinator S,f“/ %) has a continuous transition density
g/ (t,u) and it follows from [12, (2.5)] that
o

im (@/2) +s %
uhﬁngog (Liw)u T2 TSR (4.4)

|R

Also it follows from [2, Proposition 2.1] that
a/2
1im1E[(s§“/2>) L0 < S/ < 5120 = .
t—0

Hence, it follows from L’Hoépital’s rule and (4.4) that

a/2
/2 a/2 —2/c -2/

_ E[(Si / )) L0 < 842 < 52/ s 7 we 2902 (1, 4)du

lim = lim

t—0 In(1/t) t—0 In(1/t)

§t=2/)a/2g(a/2) (1 §t=2/) (— 25t 2 "

— lim ( )*/%g (1, (=2 ) — lim 79(&/2)(1’6t—2/a)(5t—2/a)1+5

t—0 -1/t t—0 o

ra-3)
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Lemma 4.3. Let D be a bounded C*! open set in R¢, d > 2. For any « € (1,2), we have
—(a)

_ D) Y > Y()
ey 21— Q0 _10D] | [T REY > 0y <y

-|0D
10 tln(l/t) - o7 r-21) 19D,

where Y 1s defined in (2.1).

Proof. The main tool for this proof is the spectral heat content for subordinate killed
stable processes. Let o € (1,2) and o3 = 2. Let S; and T; be independent § and g stable

subordinators which are independent of the Brownian motion W;. Let Xt(a) = I/VS(a /2y,
X, (@):D he the process X, (@) killed upon exiting D, and Z; = X (C:,l’/; be the subordinate
Tt

killed a-stable process. Let Q D ouf )( t) be the spectral heat content for Z, that is,
Q%O (t) = / P, () > T dz.
D
Since {T(Dl) <t} cC {T(Da) < Tt(ﬁ/z)}, we have |D| — Q(Dl)(t) < |D| - N%"ﬂ) (t). We will
show that

o) vl (o)
lim sup 1Dl _Q(D )( < 10D fo (Y1 >u Y <u)du

t—0 tin(1/t) - T(1— é) -10D|. (4.5)

Note that
D - Q%) (1) = /<|D| ©) () P(TP? € du). (4.6)
0

It follows from Lemma 4.1 and (3.7) that, for any ¢ > 0, there exists § = §(¢) such that
forall u <4,

D= Q5 (w) _ (ru %)

ul/e T

+ /OOO P(?ga) > u,Yl(a) < u)du) |0D| +e.:=C1 +e.
Hence, (4.6) can be written as
| 1p1- @ wyp” e au
-/ (D] - QS ()BT € du) + / (D] - Q) () P(T € du)

5 (o) o0
| PEE @ e auy+ [ (D1 - @ wypE € v

ul/e

IN

4 oo
1+&)u € du) + — U € du). 7
| @+ eump@® can+ [ (01— @ wp@? eaw. @)
0
It follows from [12, (2.8)] that the second term in (4.7) can be estimated by
o0 o0
| 101- QB )R e au) < | [ R T € du)

= |D| P(1{*/? € dv) < c|D|(017/7)~5 = c|D|6~ 2,

5t—2/8
and (o) (B/2) g
oo «
D| — u))P(T, € du D)o~ =2t
lim sup fa (D] D (w)P(T; ) < limsupc“iz =0. (4.8)
10 tIn(1/t) 1m0+ tin(1/t)
EJP 27 (2022), paper 22. https://www.imstat.org/ejp
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Recall that a8 = 2. Hence, by the change of variables u = ¢2/v, the first expression
in (4.7) can be written as

é é
/ W1 € du) :/ WP T € du)
0

- 0

It follows from Lemma 4.2 that

5t=2/8 51—2/8

(tQ/ﬂv)l/aIP(Tl(B/z) € dv) = t/ UB/QIP(Tl(’B/z) € dv).
0

§t=2/7 (8/2)
t BI2p (S ed
lim sup Ldo_ VP v__t (4.9)
t—0 tin(1/t) (-2

[

Combining (4.8) and (4.9) we conclude that
b o D1 @)
imsup —————~= _—

o tin(1/t) r(-4)

_ oDl 2P > u, v < u)du - 0D N
oo ra-4) T(I-1)

§(01+€)X

Since € > 0 is arbitrary, this establishes (4.5). O

We now recall the definition for the double gamma function from [9, (4.4)]. For z € C
and 7 € C with |arg(7)| < 7, we define

2 az_ bz? z z 22
Glz:7) = Ze5Ft5 / 1 —
(z7) r° nzollnzo ( Tt n) P ( mrtn 2(mT + n)2) ’

where the prime in the second product means that the term corresponding to m =n =0
is omitted.

Lemma 4.4. Let K be a compact set in C. Then there exists a constant ¢ = ¢(K) > 0
such that

|G(z;7)| <cforallz€ K and T € [1,2].

Proof. On the compact set K x [1,2], fe%+% is continuous and hence bounded. We
only need to prove that the double infinite product in G(z,7) is bounded. Recall the
canonical factor Fs(z) (see [13, p. 145]):

Fo(z) = (1 —2)e*T 2.
The double infinite product in G(z;7) can be written as

. " < [osollhsoBa(———)
ex — = _ .
mT+n P m7+n  2(m7t+n)? m>01ln>0=2 0 T

It follows from [13, Lemma 4.2] for |w| < 1/2,
Since | — = | < n!ﬂn, all but finitely many terms of the form | — %/ in the double
infinite product are less than % and since each of these finitely many terms are bounded
on K x [1,2], we may assume | — = | < 3 on K x [1,2] for all n, m.

Now it follows from [13, Lemma 4.2] for all (z,7) € K x [1,2] that

HmZOH;LZO (1 +

1 — Ey(w)| < ¢1|w|? for some constant c;.

3
C2

5 for all n,m.

z
<
_Cl‘mr—&—n ~ (m+n)

EJP 27 (2022), paper 22. https://www.imstat.org/ejp
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It is easy to see that

1
Z m<oo.

m>0,n>0,(m,n)#(0,0)

Note that for any |w| < 3 we have In |1 — w| < 2|w|. There exist positive integers N; and
M such that |1 — Ep(——2—)| < % on K x [1,2] for all n > N; and m > M;. Hence, for

mT+n

any M, N € N large we have

z z
H]\hSmSMHNlSnSNE?(_mT n n) = Il <men Iy, <nen ’1 - - E2(_m7' + n))
z
= [l <menrl v, <cnn P (ln (1-(1- E2(_m7_ I ”)))D
z

= exp Z In|(1—(1— Es(— )))‘

M <m<M,N,<n<N mT+n

z 1
<exp |2 Z ‘1 — Ey(— )| <exp | 2¢ Z e
M;<m<M,N:<n<N mT +n Mi<m<M,N:<n<N (m + n)

<ex 2c Z #
= exp 2 (m T n)3

Mi<m,N1<n
By letting M, N — oo we see that the double infinite product is bounded on K x [1,2]. O

It follows from [5, Proposition VIII.1-4] that there exists a constant C' > 0 such that
]P(?i“) > u) ~ PV > u) ~ Cu™ as u — oo. (4.10)

Let p := P(Y{* > 0). We say Y@ € ¢y, if

)E{ae(0,1),p€(0,1)}U{a:1,p:1/2}u{a€(1,2)7p€[1—&,&]}and

(a,p
1
5+ for some k,1 € IN. (4.11)

lc—i or equivalently oo = 2
T o q y T 142k

Note that this condition already appeared in [9, Definition 1].

) hasa density '™ (z)

(@) ¢ Cr.k+1,

Lemma 4.5. Suppose that Y (@) ¢ Ch,k+1 for some k € IN. Then 7§a
and there exists a constant A > 0, independent of all « € (1, 2) satisfying Y,
such that

P(x) < Caz™ 7% 4 Az™3

for all x > 0, where C' is the constant in (4.10).

Proof. The proof is similar to that of [9, Theorem 9] with a focus on establishing a

uniform constant A. It follows from the proof of [9, Theorem 9] that 75‘1) has a density

p®) () given by the inverse Mellin transform

1
() = — M —5d
DY (x) 271 o (s,a)x™%ds,

where M (s, a) is the Mellin transform given by

M(s,a) = E[YV)*1], secC.
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We remark here that we write the Mellin transform as M(s,«) instead of M(s) to
emphasize its dependence on «. It follows from [9, Lemma 2] that M (s,«) can be
extended to a meromorphic function on € whose simples poles are at s, ,, := m + an,
where m <1—(k+1)andn € {0,1,--- ,k},orm >1andn € {1,2,--- ,k} with residues

Res(M(s,a), $m.n) = c,h

m—1,n>

where ¢ is the constant defined in [9, (7.5)].

m—1,n
Since V() € Cj g1, it follows from (4.11) that o = 242% € (1,2). If m > 1 and
n € {1,---,k} then s,, , = m + an has a nonempty intersection with [1, 3] if and only if

m =mn = 1. In particular, 11 =1+ a. fm<1-(k+1)=—-kandn € {0,---,k}, we

have
24 2k k 1

Tr2k T Tv ok 2
Hence, the only simple pole of M (s, «) with Re(s) € [1,3]is 51,1 =1+ a.

We note here that although it is written as y — oo in [9, Lemma 3], it is actually
true for all |y| — oo by checking the proof there as [9, (7.15)] is true for all z — oo with
larg(z)| < =. Hence, by taking a rectangle with vertices at 1 + Pi and 3 + Pi with the
help of the residue theorem, then letting P — oo and using [9, Lemma 3], we get

1
(o) -
P (CU) 2mi 14+iR

Smn =m+an < —k+

M (s, )z %ds

1
= Res(M(s,a),s{ )z """ + —

M —°d
271 oo (s,)x™ds

1
—1—
— C(T,lw O¢+7

. M (s, a)x™%ds,
210 J3 iR

where Res(M (s, ), s{,) is the residue of M(s, ) at s{ .

We claim that the constant cSﬁl must be Ca, where C' is from (4.10) as we will show
that the reminder is O(x~3), which will in turn imply that there exist constants ¢, c2 € R
such that

e T Tt < P(z) < g T e ?

for all sufficiently large z. By integrating on (u, co) we obtain

C(T,l —a
—U

C2 _9
2"
for all sufficiently large u > 0. Comparing the equation above with (4.10) we conclude
that o~ 'c{; = C. This shows that the leading term of p{® () is Cax~!~.
Hence, the proof will be complete once we show that
1
— M(s,a)x™%ds| < Ax=3, 4.12)
2mi J31ir

Cl _o —(a) Cgl
+ 51( <PY; >u) < —u "+
a

where the constant A is independent of all o € (1,2) satisfying Y(®) ¢ Ch k1.
From [9, Lemma 3] we know that
7|y|

In|M3+iy, o) = 5 T o(y) as |y| — . (4.13)

The proof of (4.13) in [9, Lemma 3] depends on [6, (4.5)], which is a uniform estimate of
the double gamma functions. Hence, the error term in (4.13) is uniform for all « € (1, 2)
and there exists N > 0, independent of « € (1,2), such that

, Ty

In|M(3+iy,a)| < = for all |y| > N and « € (1, 2).
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Hence, we have

IM(3 +iy,a)| < e "% forall |y| > N and a € (1,2). (4.14)
It follows from [9, Theorem 8] that the Mellin transform M (s, «) can be written as
Gla/2;a) G(a/2+2—-s;a)Gla—1+s;a)
(a/2+ 1;a) Gla/2 =1+ s;a) Gla+1—s;a)’
where G(z;7) is the double gamma function. G(z;7) has simple zeroes on the lattice
mt+n, m,n < 0. By a simple calculation one can check that the double gamma functions

in the denominators above have no zero with s = 3 + iy for |y| < N. It follows from
Lemma 4.4 that there exists a constant ¢ > 0 such that

M — 51
(s.0) = a* !

IM(3+ iy, a)| < ce~ " forall |y| < N and a € (1,2),
and combining with (4.14) we have
|M(3+ iy, a)] < ce~ %" forally € Rand a € (1,2).

Hence, (4.12) can be estimated as

1 -3 oo -3 o0 7|t
L <P | M@rita)ld <t [ e dar= A3 O

— 00 — 00

M(s,)x™%ds

Let p(® () be the transition density of Yl(“). The following lemma is a variation of [8,
Propositions 7.1.1 and 7.1.2] with an explicit error estimate.

Lemma 4.6. Let a € (1,2) and n € IN. Then, we have

o 1o~ (DFID( + ka)sin(*57)
p( )(.13):;2 K 2 € ! k—|—E(Z‘,O¢)7
k=1 ’
where oT'(2 )
|E(z, )| < Mx_g_” forallxz > 1and a € (1,2).

n!
In particular, for any x > 1 and « € (1,2) we have
(1 + «)sin Z2 I'(1+ a)sin & 12 4

12
2 gmlmo - D3 <p@(2) < gl 4 =g
7r 7r m m

and in fact (1 )
+ ) sin &
—( ) 2 =Ca,

s
where C is the constant in (4.10).

Proof. To prove this lemma, we consider a 1-dimensional a-stable processes Yt(am with

imy

E[eith(aM] = exp(—t|y|“e2

(@)

sgn(y))’

where ~ represents the skewness of Y;"*”"” and sgn(y) := 1{,>0} —1{y<o}. We use () (2, 7)

to denote the density of Y. When v = 0, ¥, reduces to ¥,*). By the Fourier
inversion we have

1 [~ _. in
P! (z,7) = */ e exp(—|y|®e T 3MW)) gy

21 J_ o
00 ) 0 )
1 —izy o, T 1 —izy a,— 22
= oo [ e exp(lylfe T )dy + o e "exp(—|y|%e” 2 )dy
0 —
- | oy |
1 —izy o, =Y 1 izy o, — 2
= o | e ew(=lylfe T )dy + o~ [ eexp(fy[%e” = )dy
0 0
1 R iy
= fRe/ e "exp(—y“e 2 )dy,
T 0
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where Re(-) represents the real part of the argument. By the Taylor expansion with
remainder we can write e~ ‘%Y as

where |R| < 1. Since,

e o st B+1

/ y® exp(—Ay®)dy = o~ A I( ),

0 a
we have
P(z,7) = Re /OO i S exp(—ye T )dy

’ i 0 =0 k' TL!

_ lReni:l (—ix)kl(eﬂ%)_ﬁr(kJr 1) +Re " F(n+ 1)(eMTW)‘ﬂR
T P k' « « man! o

man! «

1 n (fz'x)kfl _iynk K " n+1. _ivrmnt1)
- R e 2 (=) 4R r R
o> I Lot h) e (p(

- ((_x)k. exp (—z’(kM + ”)) r(g) +Re ( " pnt 1)6”"52””3)

amr k—1)! 20 2 man! o
1 — —z)*  kr(y—a) k
= g k' Sln( 20 )F(l + E) + R(Jﬁ, Oz), (4.15)
k=1
where L )
" n+
|R(z,a)l < ——T(——). (4.16)

It follows from Zolotarev’s identity (see [8, (7.10)]) for a € (1,1) U (1,2),

)

« —1l—« « - J’» 1
P (@,7) = 2= @, s 1),
Hence, from (4.15) we have
@ —l—« « —Q + 1
P (@,7) = a1 @, o -1

" (=) (v — «
= g7l <m1_a Z( o ) sin(” (72 ))P(1+ka)+R(x_a7(i)>.
. !

=1
Now let v = 0 and define E(z,a) := 27 "*R(z~*,1). From (4.16) we have

axf(nJrl)afl

E(x, < r 1)).
[B(z,0)| £ “———T(a(n+1))
Hence, for all a € (1,2) and « > 1 we have
2x—n—2
E < r 1)).
[B(z,0)| € =——T(2(n+1))
The fact "9 % _ 4 can be proved using a similar argument as in the proof of

Lemma 4.5. O
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Lemma 4.7. Let o € (1,2) and suppose that Y(®) ¢ C,k+1 for some k € IN. There exists
a function ¢, independent of « € (1,2), such that

P(?ga) > u,Yl(a) < u) < ¢(u) with / o(u)du < co.
0

Proof. Note that

) (@)

IP(?&Q > u,Yl(a) <u)=PY; >u)-— (Yl(a) > u).

It follows from Lemmas 4.5 and 4.6 that

12 _.
T?(a)(x) < Caz™ '+ Az~? and p(® (z) > Cax™ 7% — =73,
™

where A is independent of « € (1, 2).
Hence, we have

@)

P(?g > u, Yl(a) < U) _ P(?ga) > u) o ]P(Yl(a) > U)

oo

. 12 A
< (C’axla + Az 3 — Caz '™ + 1’3> dr = §u72 + §u*2.
T T

=~

Finally, we set

A 6, _
B(u) == ljocu<1y + 1{u>1}(§ + ;)U % O
Proposition 4.8. Let D be a bounded C''' open set in R¢, d > 2. Then, we have
(1)
D| — t D
e 11— Q@) _ 10D]
o T (/) -
Proof. From Lemma 4.3 for any « € (1,2) we have
D] - QY1) _ |oD] P ">, Y < w)du
lim sup D22 < 0 -|0D]. (4.17)
ot tn(1/t) - r(1 Y
Note that
e’} 1 1 1
I'(x) :/ ey tdu 2/ ey tdy > e_l/ urdu = —,
0 0 0 er
and this implies
1 1 -1
=D forana 1 (4.18)

<l ) =
Ta—1/a) =15
Note that from (4.11) for Y(®) € Cy, k+1 we have a € (1,2) and as k — oo, a | 1. Hence,

it follows from Lemma 4.7 and the Lebesgue dominated convergence theorem that

lim / IP(Y(a) > u, Y(a) < u)du */ ]P(?gl) > u, Yl(l) < u)du.
0 0

th)ECk,k_H,kﬁoo

Note that the density p(!)(z) of Yl(l) is given by

1 B 1
p( )(33) = m
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and [ PYM > u)du = S sy de = (5 — arctan(u)) = L arctan(y;). By the Taylor

expansion of arctan r = fo:l(—l)"“% for |z| < 1 we have L arctan(1/u) > L — 15

for all sufficiently large u. Hence, it follows from [10, (3.5)] that
(1) (1) R Yeval! (1)
PY; >u,Y) ' <u)=P ;" >u)—-PY} >u)
arctan(1/u) —(1) 1 1 4 Inu 1

<PY; >uy)y—-—+-—< —4+—=
T =P, ) mu  2mud T w2 ol 2mus

)
= PYV > -
for all sufficiently large v > 0, and this implies
/OOO P > u, YV < u)du < oo (4.19)
Hence, if follows from (4.18) and (4.19) that

I IP(Y&O() > u, Y < u)du

lim =0.
Y(O‘)Eckyk+1,k—>00 F(l — é)
Hence, from (4.17) we reach the conclusion of the theorem. O

Theorem 4.9. Let D be a bounded C*! open set in R?, d > 2. Then, we have

1D - @B () _ [oD)
t—0  tIn(1/t) ™

Proof. It follows immediately from (4.1) and Proposition 4.8. O
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