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Abstract

We study dynamic allocation problems for discrete time multi-armed bandits under
uncertainty, based on the the theory of nonlinear expectations. We show that, under
independence assumption on the bandits and with some relaxation in the definition
of optimality, a Gittins allocation index gives optimal choices. This involves studying
the interaction of our uncertainty with controls which determine the filtration. We
also run a simple numerical example which illustrates the interaction between the
willingness to explore and uncertainty aversion of the agent when making decisions.
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1 Introduction

When making decisions, people generally have a strict preference for options which
they understand well. Since the classical work of Knight [52] and Keynes [50], there has
been a stream of thinking within economics and statistics that focuses on the difference
between the randomness of an outcome and lack of knowledge of its probability distribu-
tion (sometimes called ‘Knightian uncertainty’). This lack of knowledge is often related
to estimation, as the probabilities used are often based on past observations.

This raises a natural question: how should we make decisions, given they will affect
both our short-term outcomes, and the information available in the future? Shall we make
a decision to explore and obtain new information, or shall we exploit the information
available to optimize our profit? A simple setting in which this arises is a multi-armed
bandit problem.
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Gittins’ theorem under uncertainty

Modeling learning of the distribution of outcomes leads us to a paradox due to
inconsistency in our decisions. As Keynes is said to have remarked!, “When the facts
change, I change my mind. What do you do, sir?” The question a rational decision maker
faces is, “if I suspect that I will change my opinions or preferences tomorrow, how do I
account for this today?”

In this paper, we use the theory of nonlinear expectations (or equivalently risk
measures) which are known to model Knightian uncertainty (see Follmer and Schied
[36]). This has been used to address statistical uncertainty, for example in [23, 25]. To
achieve consistency in decision making, we usually have to consider a time-consistent
nonlinear expectation. This is widely studied through backward stochastic differential
equations (BSDEs) (see, for example, the work of Peng and others [62, 61, 63, 59]).

However, these approaches presume that the flow of information is not controlled.
(Formally, the filtration of our agent is fixed and independent of their controls.) When
we can control the observations which we will receive, this is not the case. In order to
address this issue, while accounting for uncertainty, we discuss an alternative approach
to deriving a time-consistent control problem, based on ideas from indifference pricing
and the martingale optimality principle. Using this approach, we show that when
comparing different independent options, we can calculate an index separately for
each alternative such that the ‘optimal’ strategy is always to choose the option with
the smallest index. This idea was initially proposed by Gittins and Jones [41] (see also
[42, 40]) in a context where the probability measure is fixed but estimation (in a Bayesian
perspective) is modeled by the evolution of a Markov process.

Given this result, we demonstrate a numerical solution in a simple setting. We
shall see that our algorithm gives behaviour which is both optimistic and pessimistic in
different regimes, and compares well with existing methods for multi-armed bandits.

1.1 Multi-armed bandits

Multi-armed bandits are a classical toy example with which to study decision making
with randomness. They are commonly known to have applications in medical trials
(Armitage [4] or Anscombe [3]) and experimental design (Berry and Fristedt [13] or the
classic paper of Robbins [69]), along with other areas. A few recent works in finance
for portfolio selection can also be found in Huo and Fu [45] or Shen et al. [72]. The
basic idea is that one has M ‘bandits?’, or equivalently, a bandit with M arms, and one
must choose which bandit should be played at each time. A key paper studying these
systems, Gittins and Jones [41], argued that for a collection of independent bandits, each
governed by a countable state Markov process, one could compute the “Gittins index”
for each bandit separately, and the optimal strategy is to play the machine with the
lowest index (or the highest, depending on the sign of gains/losses). The proof of this
result has been obtained using a number of different perspectives, for example Weber’s
prevailing charge formulation [75] (which we consider in more detail below), Whittle’s
retirement option formulation [76] and its extension without a Markov assumption by El
Karoui and Karatzas [32] (and [33] in continuous time). A review of the proofs in discrete
time is given by Frostig and Weiss [39]. However, in all these cases, the objective to be
optimized is the discounted expected gain/loss — in particular, we are assumed to have
no risk-aversion or uncertainty-aversion.

Gittins’ index theory is commonly known as the first solution to an adaptive and

11t appears this quote may be misattributed. One suggestion (discussed by John Kay [48]) is that the correct
attribution is to Paul Samuelson, and should read “When my information changes, I alter my conclusions”,
which fits even more easily with the thrust of this paper.

2‘One-armed bandits’ are an early variety of automated gambling system, the descendants of which are also
known as slot machines, fruit machines, or poker machines, depending on nationality.
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sequential experimental design problem (from a Bayesian perspective) where the payoff
of each bandit is assumed to be generated from a fixed unknown distribution® which
must be inferred ‘on-the-fly’, but where experimentation may be costly. As an alternative
to Gittins’ index, Agrawal [1] proposed the ‘Upper Confidence Bound (UCB) algorithm’
which achieves a regret (deviation of average reward from the optimal reward) with
the minimal asymptotic order of log(N), as proved by Lai and Robbins [54]. In the
UCB algorithm, we compute a confidence interval for the expected reward at each step,
and then play the bandit with the largest upper bound (where positive outcomes are
preferred). Intuitively, using an upper bound encourages us to try bandits where we
are less certain of the average reward, which encourages exploration. This is a form of
‘optimism’ in decisions, which is counter-intuitive from the classical ‘pessimistic’ utility
theory (a la von Neumann and Morgenstern [74]), where our preferences are for more
certain outcomes.

Typically, under appropriate assumptions, it is also the case that Gittins’ index is a
form of upper confidence bound for the estimated reward, an idea originally based on
observations in Bather [12] and Kelly [49] and explored in more detail by Chang and Lai
[21], followed up by Brezzi and Lai [18] (see Yao [78] for an error correction). Lattimore
[55] also proves that Gittins’ index achieves a minimal order bound on regret.

The apparent contradiction between the optimism of the UCB algorithm and Gittins’
index and the pessimism of classical utility theory is what led to this paper. We extend
the notion of Gittins’ index to a robust (nonlinear) operator, allowing for uncertainty
aversion. We work in a generic discrete-time setting, allowing for the possibility of online
learning, non-stationary and continuous outcomes, embedding all these effects in an
abstract ‘nonlinear expectation’. (A concrete application to a simple setting with learning
and uncertainty is given in Section 6.) In particular, we reformulate the proof of Gittins
index theorem proposed by Weber [75], as this proof relies the least on the linearity of
the expectation, and gives a natural form of time-consistency. We also remove a Markov
assumption in Weber’s proof by adapting El Karoui and Karatzas’ formulation [32]. Our
solution involves an optimal stopping problem under a nonlinear expectation, which
can be converted to a low dimensional reflected BSDE (see for example El Karoui et al.
[31] and Cheng and Riedel [22] in continuous time or An, Cohen and Ji [2] in discrete
time). This allows us to see a balance between the desire to explore and to exploit in our
decision making.

The robust version of Gittins index has some correlation to the adversarial bandit
problem (see, for example, Auer et al. [7, 8]) where we are playing the bandit against
an adversary. Our theory proposes an ‘optimal’ deterministic strategy (no additional
randomness is introduced at the decision time) against an adversary who tries to max-
imize our cost, which is slightly different from the known random algorithms for the
adversarial bandit problem. The key difference is that, in the classical adversarial
problem, an adversary is trying to maximize our ‘regret’ whereas in our setting, we
view the adversary as trying to maximize our cost. In our setting, the adversary is also
permitted to respond to our current controls at every time, and we do not assume a
minimax theorem holds.

The study of an adversary for the payoff in the bandit problem (via Gittins index)
has been considered by Caro and Gupta [20] and Kim and Lim [51] (with additional
penalty in the reward) using Whittle’s retirement option argument [76]. In their works,
they rely heavily on a Markov assumption, which allows them to postulate a robust
dynamic programming principle (see also Iyengar [46], Nilim and El Ghaoui [58]). Their
formulation considers the robust Gittins’ strategy as a promising solution due to its

3There are a few variations on these assumption e.g. adversarial bandits, contextual bandits or non-
stationary bandits. Reviews of these can be found in Burtini et al. [19] and Zhou [80].
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optimality for a single bandit, but they do not show optimality for multiple bandits.
Furthermore, their Markov assumption restricts them to have a fixed uncertainty at
all times and, therefore, it is not clear how to incorporate learning in their model. In
contrast, our framework pays more attention to defining a good notion of dynamic
optimality for our nonlinear expectation without any Markov assumption.

By encoding learning through nonlinear expectations, a wide range of modeling
options are included in our approach. For example, statistical concerns are treated in
this framework in [23, 24] or Bielecki, Cialenco and Chen [14]. We could also allow
adversarial choices with a range of a fixed set (as in the classical adversarial bandit
problem [7] or as in [20, 51]) or a random set which can be used to model learning
as in the classical Gittins’ theory. We also allow dynamic adversaries, which are not
considered in the usual adversarial setting.

The paper proceeds as follows: In Section 2, we present some relevant existing
approaches to multi-armed bandits, which we will adapt and combine to obtain our
result. In Section 3, we give the required definitions for the nonlinear expectations that
we use to evaluate our decisions. We also discuss the different notions of optimality
which are available, and how they interact with the dynamic programming principle.

In Section 4, we give a summary of how we apply these expectations to a multi-armed
bandit problem, state the key result, and give a sketch outline of the proof. The full
details of this (rather technical) proof are given in two appendices: Appendix A works
through the first half of the proof, giving careful analysis of an optimal stopping problem
under nonlinear expectation, and the corresponding ‘fair value’ process, for a single
bandit; Appendix B gives the second half of the proof, and demonstrates that the single
bandit analysis yields an optimal strategy when deciding between multiple bandits.
Further technical lemmas, which are used but do not contributed significantly to the
main proof, are given in Appendix C.

Section 5 considers a simple example of a multiple bandit problem numerically,
suggesting some connections with behavioural finance; the algorithm used to compute
this example is given in Appendix D.

2 Problem formulation and related approaches

2.1 General problem formulation

Broadly speaking, Gittins and Jones [41] argue that, in order to dynamically allocate
a single resource amongst several alternative projects, the optimal policy is to play at
each point a bandit of lowest “Gittins’ index”. This index can be computed separately for
each bandit, by solving an optimal stopping problem.

The subtlety in the proof of Gittins’ theorem is to give a tractable representation of
the class of control policies available to the decision maker. In the original formulation
(see, for example, [41, 75, 76, 39]), the class considered is feedback controls, as in a
standard Markovian stochastic control problem; i.e. the system of bandits is modelled
as a single Markov process, and the controls alter its transition probabilities. This
formulation is restrictive, as it is not clear how it can be applied to a non-Markovian
framework. Furthermore, as the control determines the filtration observed, it is also not
clear how to introduce a general form of uncertainty aversion in this framework.

El Karoui and Karatzas [32] extend the argument of Gittins’ theorem to the general
case, without a Markovian assumption, by using Mandelbaum’s [57] “allocation strategy”
formulation of the class of control policies. In particular, they view the cost of the bandits
as a fixed process. The effect of allocation is to delay the realization of these fixed costs,
which results in a benefit to the decision maker due to the time-value of money.

In this paper, we will use a slight modification of Mandelbaum'’s allocation strategy
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to describe optimal strategies using a robust Gittins’ theorem (without a Markovian
assumption) via the classical argument given by Weber [75], but using El Karoui and
Karatzas’ [32] formulation.
Remark 2.1. In most of the literature on Gittins’ theorem, maximization of rewards is
usually considered. For convenience, as is common in the theory of nonlinear expecta-
tions, we will consider the minimization of costs instead. Our presentation of others’
results is with the corresponding changes in sign.
Assumption 2.2. Suppose that we have M bandits. The mth bandit is associated with
a filtered probability space (Q(m), P, (]—'t(m))tzo). Playing this bandit for the tth time
realizes a non-negative bounded cost h\" (), where the process (h("(t));>1 is adapted
to (F{™),0. We assume that F\™ = {¢, Q(m)}.

The goal of the decision maker is to minimize the discounted total cost, for a given
discount factor 8 € (0,1), when they can choose the order in which bandits are played.

Before considering a robust approach, we first outline the solution to this problem in
a standard setting of classical expectation.

Definition 2.3. The Gittins index at time s > 0 of the mth bandit is given by

POV (ST gty (m) (m)
7™ (s) = essinf EV (0 AR (s + )| F™)
TeT (M) (s) E]P(m) ( Zz—:l ﬁt’fs(m))

where 7™ (s) is the space of positive (]-'S(Tt))tzo-stoppjng times* and the essential
infimum is taken in L (F{™).
Definition 2.4. We define the orthant probability space (€, P, (F(s)),c5) by

M

M M
Q=[] o™, P=@P™, F(s):=QF ) s=(sM,.sM)es
m=1

m=1 m=1

where S := IN). We write F(o0) := ®°° F,

m=1
We call (F(s)),cs. the orthant filtration.

To describe a useful set of stopping times in this (multi-indexed) filtration, let
T = {(}'t(m))tzo—stopping tjmes}

and
TS) = {5 = (50,...s00) . s eTm].

For S € %(S), we write F(S) := (X)ﬁf:l ]—'ém) for S € T(S).

2.1.1 Classical Gittins theorem

Our policies will be described by a (random) path in the space &, which indicates how
many times each bandit has been played.

Definition 2.5 (Mandelbaum [57]). The Mandelbaum allocation strategy is an S-
valued random sequence (7j(n)) ., such that

@) 7(0) =0

(i) 7(n+ 1) = A(n) + e™ for some m € M =: {1,..., M}.

4Equivalently, for 7 € 7(™)(s), s + 7 is an (]-'t(m))tzo-stopping time.
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(iii) {fi(n +1) = 7(n) + ™), f(n) = r} € F(r) for allm € M := {1,..., M} and for all
red.

Here, e™) denotes the mth unit vector in S. We denote by A the family of all Mandelbaum
allocation strategies.

Theorem 2.6 (Gittins’ theorem, as proved by El Karoui and Karatzas [32]). Let (ﬁ*(n))n>0
be a Mandelbaum allocation strategy (7)*(n)), ., such that

A (™ (n)) = ]grellj\f/l[ A®)([*) (n))  on each event {ij(n+1)=7j(n)+e™}
for all m € M and n > 0. Then (7*(n)), ., is an optimal solution to the optimization
problem -

inf EfP( nh(m) ~(m) ~(m) _ ~(m) -1 ) 2.1
inf, >3 B R G (n) [ (n) — 70 (n - 1)] (2.1)
n=1memM
In particular, Theorem 2.6 says that the strategy which always plays the bandit with
the minimum index minimizes the expectation of the total discounted cost.

Remark 2.7. A Mandelbaum allocation strategy (ﬁ(n)) can also be represented by

n>0
its increments, in particular, by a sequence of decision variables (p,,), >0 taking values in
M. In other words, we can define (p,,),>0 such that {p,, = m} = {fj(n+1) = j(n) +e(™}.

We may then replace the objective equation (2.1) by

o n—1
. fEIP nh(pn—l) tP h tPh = I = Pn—1)- 2.2
it (;5 (1)) where 1 kZ:O (P = pn1) (2.2)

Remark 2.8. Our paper considers the orthant filtration as the product of filtrations
defined on different spaces. This is slightly different from Mandelbaum [57] (and thus
El Karoui and Karatzas [32]) where the orthant filtration is considered as the join of
filtrations defined on the same space. This technical difference will allow us to more
easily define a ‘Nonlinear expectation’ which still carries some form of independence
and ‘time-consistency’. (See discussion in Section 3.2.)

Remark 2.9. In El Karoui and Karatzas [32], it is assumed that the cost process is
predictable, instead of adapted, with respect to the filtration of the bandit. When using a
classical expectation, there is no modelling difference between predictable and adapted
cost processes (as one can just take the conditional expectation to reduce adapted costs
to predictable costs). However, under a ‘nonlinear expectation’, this is not the case, so
we give the more general result with adapted costs.

2.1.2 Robust Gittins index

Under a Markovian assumption, Caro and Gupta [20] consider a ‘robust’ Gittins index
based on the Robust Bellman equation studied in Iyergar [46] and Nilim and El Ghaoui
[58]. (Similar work is considered by Kim and Lim [51] with an additional penalty in the
formulation.)

The following assumptions are used in Caro and Gupta [20] (translated into our
notation):

(i) The cost process is driven by an underlying finite-state process (Xt(m))tzo taking
values in X(™), i.e. h(™)(t) = L™ (X™) for some deterministic function A(™.
(ii) Ambiguity is described by families of transition matrices, (("™),,cr¢ for the dy-

namics of X (™), which may vary in time.
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The construction is then based on Whittle indexibility [77]. In particular, they reduce
the problem to considering two bandits, where one bandit always generates a constant
cost v and the other bandit is identical to the mth bandit. The worst-case expected cost
obtained when starting in state i in the mth bandit, V(™) (i), allowing any combination of
transition rates, will then satisfy the robust dynamic programming principle, that is,

V™) (i) = min <i}<m>(z’)+5 sup Yy PyVOm(j), 7), iex™. (2.3)
peutm S 1-p

Let D(™)(~) C X(™ be the set of states for which it is optimal to rest the mth bandit
when the reward of the constant bandit is y. Caro and Gupta show that the robust bandit
is Whittle indexible in the sense that D(™)(v) increases monotonically from ¢ to X(™) as
v increases from —oo to +o0. The index of the mth bandit at state ¢ is the unique value
~ such that the player is indifferent between playing the mth bandit and the constant
bandit.

This index can be characterized by

t (m) (m) (m)

sup ) (2.4)
TETM 721 geg(m) EQ(Zt:l ﬂt|X07 = Z)

where Q(™) is the family of probabilities corresponding to the family of transitions 2/(").
Unfortunately, as discussed in Caro and Gupta [20], the robust Gittins index (2.4)
does not yield a strategy optimizing the robust Bellman equation

V(7’177ZK): min il(k)(lk)+ﬂ sup Z Piij(ih---,'L'k_l,j,'l:k-i,-l,---,?:]()
ke[K] Peu(k)jemk)

where (i1, ...,ix) € [[M_, X(™).

In short, this non- optlmahty arises due to the fact that the robust Bellman equation
introduces dependence between bandits. In particular, at equilibrium, the adversary
(who determines the transition probabilities for each bandit) may choose differently
depending on the state of all bandits, rather than just the bandit of interest.

The index (2.4) also can be interpreted as a Lagrangian relaxation of the optimal
control problem (see also Gocgun and Ghate [43]). The natural question that arises is,
‘Does this relaxation satisfy some adjusted notion of optimality?’

In this paper, we propose a new form of optimality in terms of compensators of the
value function. This can be seen as a relaxation of the dynamic programming principle
through the martingale optimality principle, in order to address a control problem
under an inconsistent nonlinear operator. We will show that the strategy given by
the robust Gittins index satisfies this optimality criteria. We also allow the cost to be
continuous valued and non-Markovian as in El Karoui and Karatzas [32]. This allows the
study of various numerical methods to estimate our probabilistic state in the learning
problem, whereas the numerical method in Caro and Gupta [20] is limited to finite state
Markov process. A simple numerical example then allows us to observe some qualitative
peculiarities given the interaction between uncertainty aversion and learning.

Remark 2.10. In a non-Markovian framework, Whittle indexibility is not well-defined.
Hence, a reinterpretation of optimality is required to understand a solution to the
multi-armed bandit problem under uncertainty aversion.

Remark 2.11. Li [56] considers a Bayesian formulation for the index but allowing
for multiple priors. The focus is on describing how the set of uncertainty affects the
index, but without proving any form of Whittle indexibility. Our models also verify and
generalize these results.
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3 Uncertainty, nonlinear expectation and optimality

In this section, we will outline how ‘nonlinear expectation’ operators can be used to
model Knightian uncertainty. We will also discuss how we can use these tools to study a
control problem, under uncertainty, while retaining some form of time consistency. We
will build on the modelling framework of El Karoui and Karatzas [32] as proposed in
Assumption 2.2.

We will first outline our setup and the additional assumptions we use in our study of
the robust bandit problem. We will use a ‘nonlinear expectation’ £(™ (Assumption 3.10)
to model uncertainty on the space (Q(™) P(™), (}-t(m))tzo) of a single bandit, and then
extend our uncertainty to the orthant joint space (Definition 2.4) via the combined
nonlinear expectation & (Definition 3.11). We will omit the superscript (m) when it is
clear from context.

In order to avoid technical difficulties, we will make the following assumption on the
cost processes.

Assumption 3.1. For each m € M, there exists C"™) < oo such that
0 <hMm™(t) <ctm and h™(t) - C"™ as t - oo P-a.s.

Assumption 3.1 is purely technical. We may replace boundedness of k(") by an
integrability assumption on the total discounted cost (as in [32]); we then need to
generalize the domain of the nonlinear expectation. We can also remove the assumption
on the convergence of 2("™ to its bound, but we then need to take more care to ensure
that the stopping times we considered in (2.4) and elsewhere can be assumed to be
a.s. finite. Given the discount factor, this assumption does not have a large impact on
our modelling.

3.1 Nonlinear expectations and time consistency

Let us focus on the filtered probability space (Q, P, (]:t)tzo ) modelling the returns
from playing a single bandit. As in Peng [61], we define a nonlinear expectation as
follows:

Definition 3.2. A system of operators
E(|F): L¥(P, Foo) = L=, F) ; te€{0,1,2,..}

is said to be an (F;),.,-consistent coherent nonlinear expectation if it satisfies the
following properties: for X,,,X,Y € L>®(Fy) and ¢ € L>*(F;), with all (in)equalities
holding P-a.s, we have

(i) Strict Monotonicity: If X > Y then £(X|F;) > E(Y|F:). If, in addition, E(X|F;) =
E(Y|F:), then X =Y.

(i) (Fi)¢>o-Translation Equivariance: £(X + ¢|F;) = E(X|F) + c.
(iii) Subadditivity: £(X + Y| F,) < E(X|F) + E(Y|F).
(iv) (Ft);>-Positive Homogeneity: If ¢ > 0, then E(cX|F;) = ¢ E(X|F).

(v) Lebesgue property: If {X,}nen is uniformly P-a.s. bounded and X,, — X P-a.s.,
then £(X,|F;) — E(X|F:) P-a.s.

(vi) (Fi)ysq-consistency: For0 <s <t, E(X|F,) = E(E(X|F)|Fs).

We write £(-) for £( - | Fo).
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Remark 3.3. For simplicity, we assume the Lebesgue property throughout this paper.
In the static case, upper semi-continuity can be shown to be equivalent to the Lebesgue
property over L>° (see [36, Corollary 4.38]). Moreover, if the operator £ is induced by
a BSDE (as in [27, 28, 61, 34] and many other papers), then the Lebesgue property
typically follows from the L?-continuous dependence of the BSDE on its terminal value.

Remark 3.4. It is also known (see e.g. Detlefsen and Scandolo [30]) that any coherent
nonlinear expectation satisfies the (F;)-regularity property. That is, for any X,V €
L>(Fx)and A € F,

E(XT4 + Yxe

Fe) =148 (X|Fp) +1acE (Y| F).

In particular, €(XI4|7F;) = L4&(X|F).
In order to study decision making, we often require a conditional expectation defined
at a stopping time. As we are working in discrete time, this is an easy construction.

Definition 3.5. Given a consistent coherent nonlinear expectation £ and a stopping time
T < T, we define the conditional expectation at T by

E(|Fr) : L®(Fuo) — L™(Fy), XHiH(TZt)E(X]}})-
t=0

With this definition, the following easy observations can be made.

Proposition 3.6. The operatoré’( . }]—'T) satisfies the conditions of Definition 3.2 with s
and t replaced by stopping times.

Nonlinear expectations are well suited to the study of Knightian uncertainty, that is,
uncertainty over the probability measure. This is most easily seen through the robust
representation theorem (over a finite horizon) given by Artzner et al. [5], see also Follmer
and Schied [36] and Frittelli and Rosazza-Gianin [37]. Extensions to a dynamic setting
are also considered by Detlefsen and Scandolo [30], Follmer and Schied [36] and Riedel
[67]. We state a version of this result which is dynamic over stopping times.

Theorem 3.7. Let £ be a consistent coherent nonlinear expectation. If there exists
T < oo such that F,, = Fr, then £ admits the representation

E(-|F) = esssupER( - |F,
() 55D (- [F)

where 7 is a stopping time, Q C {Q probability measures : Q ~ P}, and the essential
supremum is taken in L>°(F;,P).

Proof. See Follmer and Schied [36, Theorem 11.22] (with further discussion in Follmer
and Penner [35]). The sensitivity assumption assumed in these references (i.e. for every
nonnegative nonconstant X € L (Fr), there exists A > 0 such that £ ()\X ) > () follows
from strict monotonicity in our definition. O

Remark 3.8. Theorem 3.7 can be obtained by construction via considering the stability
of the pasting in the family Q. (See e.g. Bion-Nadal [15] and Artzner et al. [6]).

3.2 Uncertainty on multiple bandits

In the classical Gittins theorem, independence is crucial to separate the behaviour
of different bandits. In the robust representation (Theorem 3.7) we have seen that a
nonlinear expectation can be viewed as the supremum of classical expectations over a
family of probability measures. Therefore, the notion of independence between bandits
becomes ambiguous, as statistical independence is based on the probability measure.
Thanks to our explicit construction of the space (Definition 2.4), we can explicitly
construct a nonlinear expectation space where each bandit remains independent.
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Remark 3.9. In [63], Peng proposed a definition of independence for a nonlinear ex-
pectation. In his approach, independence is not a symmetric relation, but typically
describes independence based on the order of events: often ‘Y is independent of X"’
when Y occurs after X. In the setting of multiple bandits, the order of events cannot be
pre-identified, as it depends on the control chosen. Hence, it is not clear how to exploit
the independence notion of [63] in this setting.

Let us make the last universal assumption in our paper, which describes model uncer-
tainty for each individual bandit in our problem, inspired by the robust representation
(Theorem 3.7).

Assumption 3.10. For each m € M, we have a (}'t(m))tzo-consistent coherent nonlinear
expectation, (£(™)( - |F,)),c7m defined on the space L= (™), P(™)) which admits the
representation

E(m)( . ‘fé@n) = esssupEQ( . ‘féﬁ%)

QeQm

whenever S(™) is an (}'t(m))-stopping time.
Definition 3.11. We define the partially consistent orthant nonlinear expectation
(€s)sex(s). to be the family of operators

€5 : L% (0, P, F(x)) — L (Q,P,F(5))
X — esssupIEQ(X’]:(S))
QeQ
where Q := {®7]\f:1 Q™ for Q™ € Q™}, with Q™ as in Assumption 3.10.
We also write &(-) for &y(-).

Remark 3.12. As P = ®f:1 P is a dominating measure for Q, we easily observe
that if X =Y P-a.s., then €5(X) = ¢5(Y) P-a.s. forall S € T(S).

Proposition 3.13. The system of operators (€g) satisfies the following properties.

(i) The properties (i)-(v) in Definition 3.2 (with appropriate replacements on the oper-
ator and c-algebra) hold for the operator s : .S € T(S) (i.e. strict monotonicity,
translation equivariance, subadditivity, positive homogeneity and the Lebesgue
property hold for €).

(ii) Sub-consistency: For S,S’ € T(S) with S < S’, we have
()< €Es(€s (-)) P-as.

In particular, for any measurable X, if €5/ (X) <0 P-a.s., then for any A € Fg we
have €g(I4X) <0 P-a.s.

(iii) Independence: LetY be a random variable on ({2, F(c0)) given by
Y (w®, . w®)) = XD (W) s .o XD (M) Poas,,

where, for each m € M, we have a non-negative random variable X (™) defined on
Q0™ 7). Then

es(v) =W (x| 7R

s<1>> x - x EM) (X(M)’]-"g(vﬁ)) P-a.s.

(iv) Marginal projection:~For a given m e M, let X be a random variable defined on
Q™) 7). Define X : Q@ — R by X(w®, ...,w™)) = X (w(™). We then have

€s(X) = €M (X|FLL)) P-as.
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Proof. See Proposition C.4 in the appendix. O

Remark 3.14. We deliberately choose our nonlinear expectation € to be defined on a
product space to simplify our discussion on the existence of the operator. In fact, one can
simply weaken our assumption by having a nonlinear expectation € on a joint filtration
(as in El Karoui and Karatzas [32]) such that the Proposition 3.13 holds. All proofs are
identical, except the proof of Theorem B.6 (in the Appendix), where we need an extra
step to show that the product of the marginal probability measure is also a probability
measure considered under the robust representation of €.

In the proposition above, we have seen that ¢ is sub-consistent on the orthant
filtration. However, ¢ is not consistent in the sense of Definition 3.2, i.e. if S < S’ (com-
ponentwise), it is not necessarily the case that €¢( - ) = €5 (Eg/( - )). A counterexample
can be easily constructed based on the following:

Example 3.15. Let X and X be random variables taking values in {0,1} and defined on
different spaces 2 and Q. Let Q and Q be families of probability measures defined on
these spaces. Suppose that for all p € [0, 1] there exists Q € Q such that Q(X =0) =p
and that for all Q € Q, Q(X = 0) = 1/2. Let f : R? — R be a given function. Then it is
easy to show that

) _ max(f(w) +/(0,1) f(1,0) +f(1,1))

supIEQ®Q(f(X7X)) :supEQ(squQ(f(x,f()) D) ) 2

Q.Q Q Q

=X

but

sup]EQ<sup E® (f(X, i))
o Q

) - max{f(0,0). f(1,0)} | max{/(0.1). /(1 1)}

i=X 2 2 '

By considering ]-"1(1) = o(X) and ]—"1(2) = q(f( ), and defining a nonlinear expectation using
the supremum over the families Q and Q, the above result shows that the joint operator
¢ is not consistent. In particular, we can find a function f such that

@((’3(0,1) (f(Xa X))) # €<€(1,0) (f(X, X)))

3.3 Optimality

We have discussed in the previous section that the robust Gittins index (2.4) in the
sense of Caro and Gupta [20] is not optimal, as it does not lead to a solution of the robust
Bellman equation (discussed in [46, 58]). In order to understand what sense of optimality
the robust index strategy does satisfy, we will first consider a type of optimality criteria
used by El Karoui and Karatzas [32].

Let us consider an abstract stochastic control problem on a space (Q, F, I_P) in which
a choice of control p results in an instantaneous cost process (gp(n))n>1. We may view
g”(n) as a cost occured at time n. For example, we have g”(n) := *h(P»=1)(t£) in (2.2).
We can also define the filtration of information obtained up to time n when following p by

G = {Ae]-'(T) . AN {i(n) =7} € Fr) vres}, 3.1)

where 7 is the corresponding Mandelbaum allocation sequence (Definition 2.5, Re-
mark 2.7). We will discuss this filtration in detail in Remarks 4.13 and 4.14.

Remark 3.16. It is clear from the definition that the strategy process (p,)n>0 is (G£)n>0-
adapted. We will show later that the cost process g°(n) := ﬁ"h(”"—l)(tg) (as in (2.2)) is
also adapted with respect to G7.
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Suppose that we are given a nonlinear expectation operator &, as in Definition 3.11,
and consider a minimization problem over the space of Mandelbaum allocation strategies,
as represented by their equivalent form p (Remark 2.7). The process p not only describes
our strategy and the corresponding cost, but also determines the observed filtration.
Therefore, at any point in time, it does not make sense to compare strategies unless
those strategies yield the same information at the considered time.

Definition 3.17. We say strategies p and p’ are historically equivalent at time N, denoted
byp~nyp, ifp,=p, foralln < N.
Remark 3.18. For every strategy p, we have p ~ p*.

We can now give a standard form of optimality which is often considered when we
have a consistent nonlinear expectation operator.

Definition 3.19. We say a strategy p* is a strong optimum if, for every N > 0, for every
strategy p such that p ~y p*, we have

G(]IA( i gﬂ*(n)»ge(h( i g”(n))) forall A € G4 (= G% ).

n=N+1 n=N+1

Remark 3.20. When € is replaced by an (F,,)-consistent nonlinear expectation and (G§,)
is replaced by (Fx), strong optimality simplifies to
Fv).

oo (o9}
5( g” (n) ]-"N> :essinf5< g9°(n)
n:zN:+1 prne ng\f;rl

A standard approach to tackle decision making under a time-inconsistent (nonlinear
expectation) operator is to define ‘the optimal strategy’ through the solution of the
robust Bellman equation [46, 58], as considered in Caro and Gupta [20]. Using the
tower property, we can show that the strong optimum under (F,, )-consistent nonlinear
expectation is equivalent to the solution to the robust Bellman equation.

3.4 C-Optimality

In the bandit setting, our nonlinear expectation is not necessarily (time-)consistent.
In order to understand the Gittins index strategy under an inconsistent operator, we
propose an alternative notion of optimality, which is inspired by martingale optimality.
For motivation, consider an (F,)-consistent nonlinear expectation £. Suppose that
we wish to solve the minimization problem
J-"N).

For a given strategy p, we define a process X% := ij:l g°(n) + V. Under mild condi-
tions, we know from the martingale optimality principle that (X%;) is an £-submartingale
for every strategy p and it is a martingale for an optimal strategy p*.

By using the Doob-Meyer decomposition for nonlinear expectation (see e.g. [26,
Theorem 8]), we can write

oo

Vn =essinf & P
v = essin ( Z g°(n)

n=N+1

N
Xf o= ME+>C(n)
n=1
where (M},) is an E-martingale and (C”(n)) is a non-negative predictable process with
C*(n) = 0 for the optimal strategy p*.
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By rearranging the equation above, for every p,

5( > (om) cﬂ(n))‘ﬁv) = V.
n=N+1
Moreover, for an optimal strategy p*, Zi: N+l C?" (n) = 0 and for any strategy p,

Zi:N-‘-l C?(n) > 0. This implies that

L L
> C”(n)< Y C’(n) forallNandL >N +1.
n=N+1 n=N+1

Inspired by the analysis above, we propose an alternative notion of optimality in an
inconsistent setting.

Definition 3.21. We say a strategy p* is C-optimal if there exists a (gg* )-adapted process
(Vy.) (called a value process) and a collection of random variables (C%;(1n)) N.n>N-+1,pmy p*
(called a (sub-)compensator) such that

(i) n+— CR(n) is a (G?)-predictable process,
(ii) N — C%,(n) is non-increasing,
(iii) For every strategy p ~n p*,
e(m f: (g”(n) - Cfv(n))> > e(uAvN) forall A€Gl  (3.2)
n=N+1
with equality for p = p*,

(iv) For every strategy p ~n p*,

L L
S km< > Ck(n)  forall L>N+1. (3.3)
n=N+1 n=N+1

We can see (C’ﬁ,(n)) acts as ‘(sub-)compensator’ to the cost, and Vi acts as the value
function. This approach is loosely related to the capital requirement approach discussed
by Frittelli and Scandolo [38]. We can interpret Definition 3.21 as requiring that the
(sub-)compensators (C%;(n))

(i) are known one-step in advance before observing the cost (i).

(ii) consistently (sub-)compensate the cost. In particular, as time elapses, we obtain
more information and thus require the same amount, or possibly less, to (sub-)
compensate (ii).

(iii) complement the extra cost occurred for a sub-optimal strategy (iii).

(iv) are bounded below by the compensator of a particular strategy p*, which we call
‘optimal’ (iv).

Remark 3.22. We have mentioned the robust Bellman equation [46, 58] as an approach
to force time-consistency in our decision making. The fundamental idea of this approach
is to freeze our value function and propagate its value backward in time. In particular,
suppose we have V', ; as our expected remaining cost at time n. We then define an
optimal strategy at time n to be a strategy p, such that g”(n) + V,,; is optimized.
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Another approach to ensure time-consistency was proposed by Strotz [73] and Pollak
[64] and developed further in Peleg and Yaari [60] and Koopmans [53]. Recent extensions
include Bjork and Murgoci [17], Bjork, Khapko and Murgoci [16], Yong [79] and Hu,
Jin and Zhou [44]. The essential idea of this approach is to use backward induction
at the level of controls. That is, suppose that we consider the problem with horizon
L and the optimal control is determined after time n, that is, (p},, 1, ..., p}) is known;
we then find a control p;, at time n to optimize over the space of possible strategies
{p + (pnt1,-pL) = (Piy1s--,p})}. This idea is then extended by searching for (sub-
game perfect) Nash equilibria, to allow for non-uniqueness of the optimal controls.

We have discussed in Section 2.1.2 that the robust Bellman approach may introduce
some dependence between bandits in our system. Hence, the Gittins index strategy is not
optimal under that approach. On the other hand, when considering a system of bandits,
the future state is determined by our current action. Therefore, the o-algebra that is
used to define the future control (pj)r>n+1 would restrict our choice of our current
control. This means that we cannot directly consider the Strotz-Pollak approach for
the bandit setting, as we cannot freeze our future control without freezing our current
control.

The notion of C-optimality could be loosely interpreted as the mixture of the robust
Bellman approach and the Strotz-Pollak approach. In particular, we can interpret the
compensated process as propagating the value function backward in time, as in the
robust Bellman approach, but only the one-step value is propagated backward in time,
which is related to the Strotz-Pollak approach.

3.5 Endowment effect

One natural question to ask is whether we can give an interpretation of C-optimality
(Definition 3.21) in terms of classical strong optimality (Definition 3.19). To see this, we
will consider how an endowment affects strong optimality.

Example 3.23. Let H and G be random variables representing the cost of two strategies
and Q be a family of probability measures such that H and G are independent under
each Q € Q. Suppose {E®(H)}qco = [h, h] and similarly for G. Suppose further that
h < gbuth—g>g—h. Then for (- ) :=supgeco E?( - ), we have

¢(H) < €(G) but ¢(H - H;LG) >e¢(G - H;G) (3.4)

From these inequalities, we see that, without any endowment, we strictly prefer H
to G, whereas our preference reverses with an endowment (H + G)/2. In the classical
linear expectation theory (where the classical Gittins theorem holds), we know that an
endowment does not affect our preferences over the strategy.

In this section, we will show that C-optimality is nearly equivalent to strong optimality
‘up to an endowment’ when our nonlinear expectation is time-consistent.

The following proposition follows from the definition of C-optimality and monotonicity
of nonlinear expectation (in particular, Definition 3.19(iii)-(iv)).

Proposition 3.24. Let p* be a C-optimal strategy with a predictable compensator
(C% (n)). Then for every p ~n p* and A € G},

@(JIA fj (gp*<n>—C§<n>>)<@(ﬂA f) (gp<n>—cz*<n>))~ (3.5)

n=N+1 n=N+1

Let consider the case when G§, = Fy for every strategy p and pretend that € is an
(F,)-consistent nonlinear expectation operator. Then (3.5) says that C-optimality implies
strong optimality, when our agent is given the predictable endowment — "> . ., C% (n)
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at time N. We will now show that a converse result also holds, when our operator is
consistent.

Definition 3.25. Let £ be an (F,,)-consistent nonlinear expectation. We say a strategy
p* is optimal up to a predictable endowment if there exists a family of random variables
(Dn(n)) such that

(i) n— Dn(n) is an (F,)-predictable process,
(i) N — Dy(n) is non-increasing,

(iii) For every strategy p ~n p*, for all A € G},

E(]IA f: (97" () - DN(n))> < 5(]1A n:i (97" (m) - DN(n))) (3.6)

n=N+1

or equivalently,

5( i (gp*(n)—DN(n))‘}'N)<€< i (gp*(n)—DN(n))‘}"N).

n=N+1 n=N+1

Proposition 3.26. Suppose that p* is an optimal strategy up to a predictable endowment,
then p* is C-optimal.

Proof. Take C%(n) = Dy(n) and Viy = £( 302 y11 (97" (n) — Dn(n))|Fw). O

In the coming section, we will show that Gittins theorem holds in the sense of
guaranteeing C-optimality under an operator €. This means that we prove that Gittins
theorem yields a (strong) optimum up to some predictable endowment.

Remark 3.27. It is an open question under which conditions the C-optimum is unique.
In the most trivial case when our operator ¢ is simply a classical expectation, the
endowment never affects our evaluation; thus it is reduced to the uniqueness of the
value function in the classical setting.

4 Overview of bandits under uncertainty

Let us recall that the objective of our problem is to dynamically allocate a single
resource amongst M bandits to minimize the total discounted cost. We have made
a few assumptions to model uncertainty in the cost process, which can be found in
Assumptions 2.2, 3.1 and 3.10.

We have also introduced Mandelbaum allocation strategies (Definition 2.5) and the
equivalent notation p (Remark 2.7) representing the choice of our control. We are now
ready to establish a robust Gittins theorem with optimality in the sense of Definition 3.21.
Our robust Gittins theorem generalizes the result of El Karoui and Karatzas [32] to the
uncertain case. One may also see this result as providing a sense of optimality for the
index strategy considered by Caro and Gupta [20] and Li [56].

4.1 Robust Gittins theorem

We will first give an alternative definition of the robust Gittins index inspired by
Weber [75], which is more convenient to use in our analysis.

Definition 4.1. For each s > 0, we define the robust Gittins index of the mth bandit by

’y(m)(s) := essinf {7 : essinf 5 (Zﬁt (s+1) ‘ ]-'(m)> < 0} 4.1)

TeT (M) (s
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where T (™) (s) is the space of positive (]-'gi'g)tzo—stoppjng times® and the outer essential
infimum is taken in L= (F{™).

By using the results proved in the later sections, we can write the robust Gittins index
explicitly. We present this result here for clarity, but make no use of it in subsequent

arguments.

Theorem 4.2. Let v(s) be the robust Gittins index (Definition 4.1) (with superscript (m)
omitted). Then

v(s) = essinf esssup EQ(X i Bh(s + )| )
T€T(s) QeQ IEQ(ZZZI Bt|]:€)

where Q is the family of probability measures defined in Theorem 3.7.
Proof. See Theorem C.3 in the appendix. O

Recall that ¢ is the partially consistent orthant nonlinear expectation induced by

the family (5 (m))m e @S given in Definition 3.11. We can obtain an optimal allocation
strategy by considering the following theorem.
Theorem 4.3 (Robust Gittins theorem). Suppose that for each m € M, (]:t(m))tzo is
generated by some underlying process ( §’”))t21. Let wﬁlm) be the total number of trials
of the mth bandit before the nth play of the system. i.e. p™ = Z;é I(p; = m) (given
an allocation strategy p* up to timen — 1).

Then the allocation strategy p* given (recursively) by

pr, = min {m EM : mc argminfy(k)(z/;;k))}
k

is C-optimal (Definition 3.21) under € for the cost

n—1

g’ (n) = B"hPr=)(th) where th=> T(pr=pn_1).
k=0

Remark 4.4. We choose p* to be the minimum value in the (random) set of minimum
Gittins index machines {arg min,, v(k)(wﬁﬁ))} as a simple method of symmetry breaking,
in order to avoid complexities due to measurable selection. In fact, any choice of
p: € {argmin, v® (»{F)} also yields C-optimality.

Remark 4.5. The robust Gittins theorem states that an optimal choice is given by
always playing a bandit with the lowest robust Gittins index. At each time, the indices
of unplayed bandits do not change. This leads to a form of consistency in the values
associated with different bandits, even though ¢ is not consistent.

4.2 Sketch of the Proof

We will separate the proof into two parts: In Part A, we analyze a one-armed bandit
in a robust setting. In Part B, we combine M bandits together. The main body of the
rigorous proof can be found in Appendices A and B (respectively) as self-explained
sections. We summarize the structure and approach of the proof here.

4.2.1 One-armed bandit optimality

We begin by considering play of the mth machine (with the superscript (m) omitted).

SEquivalently, for 7 € 7(s), s + 7 is an (F;);>¢-stopping time.
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Step A.1 Observe that the robust Gittins index is the minimum compensation for which
we are willing to continue to play the bandit (with compensation).

By minimality, the net expected cost under optimal play must be zero (Theorem A.3),
ie.

esssups(iﬁt (s +0) =2(6) | £.) =0

TET (s) =1

In particular, for any subsequent stopping time 7 € 7 (s), we have
5<Zf3t (h(s+1t) —7(s)) ‘f> > 0. (4.2)
t=1

Step A.2 We view the process 7 as the ‘average’ cost of playing the bandit. Once the
process (y(t)):>s exceeds ~(s), the reward ~(s) will no longer be sufficient to encourage
continued play; so it will be optimal to stop. In particular, the stopping time

o(s,v(s)) :=inf{0 > 1:v(s+0) > ~(s)} (4.3)

yields equality in (4.2) (Theorem A.10).

Step A.3 Imagine that, whenever the bandit (with compensating reward) is no longer
attractive to play, we were to increase the compensation sufficiently to make ourselves
indifferent to continuing. The expected value of future loss, with this increased com-
pensation, must again be zero (Proposition A.14). The offered compensation can be
written as a running maximum of the robust Gittins index process and we can express
the expected return

8(i6t (h(t) — I‘(t))) =0 where I'(t):= max ~(f). (4.4)

0<6<t—1

With the compensation reward (I'(¢)), we are always willing to continue to play. In par-
ticular, at any point in time, we have a non-positive expected future cost (Theorem A.16),
i.e.

5( i Bt(h(t)—l“(t))’}'N> <0 forall N=0,1,.. (4.5)

t=N+1

Step A.4 Now suppose we were to take a break from playing for some period, and
then resume our earlier strategy. In this case, we may lose some expected profit
(Equation (4.5)) due to the discount effect of the delay.

By (4.4), the total reward of this game is zero. Therefore, the delay of getting
the reward must result in a possibly worse outcome. In Theorem A.18, we use this
observation, together with the robust representation (Assumption 3.10) to show that
for any fixed € > 0 there is a probability measure Q € Q such that, for every decreasing
predictable process («(t)) taking values in [0, 1],

EQ<Za(t)ﬁt(h(t) - F(t))) > —e. (4.6)
t=1
Remark 4.6. Step A.4 is the key point in which positive homogeneity of £ is used. A
predictable process (a(t)) represents the delay due to taking a break to play another
bandit. In step A.3, we choose the compensator such that the total expected return is
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zero but the bandit is always attractive to be played. (i.e. we always have a reward for
the future.) We therefore cannot expect a better outcome than zero if we delay our play.
Mathematically, one can replace positive homogeneity and subadditivity by convexity
and the property that: if £(X|F;) < 0, then for all 7;-measurable random variables o
taking values in [0, 1], we have E(aX|F;) > E(X|Fy).

4.2.2 Information structures for multi-armed bandits

We now consider combining play over multiple machines.

To retain consistency for a single bandit, the nonlinear expectation needs to be
defined together with the filtration. It follows that we need to define an ‘independent’
nonlinear expectation on the joint space of the bandits, which we do via an orthogonal
product space. This restriction does not allow us to directly implement Mandelbaum’s
[57] original approach for a dynamic allocation strategy (Definition 2.5). This is because
the multi-parameter process (7(n)) is only defined to be measurable with respect to
the orthant filtration. In particular, it is not clear how one could directly extract the
component of (7(n)) to the marginal space Q™ where our single-bandit nonlinear
expectation is defined.

The importance of decomposing a strategy on the multi-armed bandit to strategies
for one-armed bandits can be seen in the proof of El Karoui and Karatzas [32, Equation
5.1] (via Whittle’s approach [76]), and is described more explicitly in their continuous
time paper [33, Equation 6.9].

In order to overcome this difficulty, we introduce a class of allocation strategies
where there is a component associated to the stopping times of the marginal filtrations.
This component allows us to connect and separate the space of multiple bandits to the
marginal space of each single bandit.

Our class of allocation strategies consists of two components (7, p). The collection of
random times 7 = (Tém)) k>0,mef1,...,m} Will identify the duration for which will play the
mth bandit, the kth time we start to play. This sequence is chosen based on historical

observations of the mth bandit only, that is, the random times Y5, Tkm) are (F\"™)i>0-

stopping times for all K > 0. Once we play a bandit for T,Em) trials, we will then

reconsider which bandit to play. Our choice of new bandit (which may be the same
as before) will be described by the sequence (p,,) taking values in {1, ..., M}, and may
depend on information from all bandits. The allocation strategy can be defined formally
as follows:

Definition 4.7. We say 7 := (T,Em) is a family of time allocation sequences if

)kzo,mEM
(i) For each m, (T’gm))kzo is a sequence of non-negative random times defined on the
(m) (m)
space (Q™), F557).

(i) S8 7™ is an (F™)4>0-stopping time for all k > 0.

i=0 "1

Intuitively, the random sequence (p,,) is allowed to depend on all prior observations
from all bandits. For the sake of precise bookkeeping we need to record, at each
moment, how many times we have already played each bandit. This leads to the
following definition.

Definition 4.8. Given a family of time allocation sequences 7, we say a sequence of
random variables (1, )n>o taking values in S = IN}! is a recording sequence associated
to T, with corresponding choice sequence (p,)nen, taking values in M, if

(d) no = (0,...,0), and
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(i1) N1 = 7 + P,
The choice process p,, satisfies

(iii) forallk € M andr € S,

M
(o =K} 0 (=} € F(W,) = @ FU0),

m=1

where U{™) = Z;:)LI 7™ In particular, {n, = r} € F(¥,).

K2

For a given time allocation sequence 7, the recording sequence 7, determines the
decision filtration, given by

G = {A€F(T) : AN{n =7} € F(¥,) Vres) 4.7)

(m) _

where w{™ = 271 20

Remark 4.9. We can see in Definition 4.8(iii) that (p,) is adapted to the filtration
(g}f” ))nzo, i.e. we have made our decision what to do next based on our previous
observations.

Definition 4.10. An (admissible) allocation strategy (7, p) consists of a family of time
allocation sequences T and a (g,(f’p))nzo-adapted choice sequence p (defined under 7).

Example 4.11. Suppose there are two bandits. The first bandit gives only 2 outcomes:
{w,1}. Consider the strategy of playing the first bandit until we see the first /. Then we
swap to the second bandit for two trials and swap back to the first bandit and repeat the
same procedure.

In this case, we define (X;);>1 to be the outcome of the first bandit and define
Op1 :=inf{t > 1 : Xt+z§$:0 9, = |}. We then have the representation of this strategy

W = (6y,61,..), 7@ =(2,2,2,..), and p=(1,2,1,2,...).
The corresponding recording sequence is

n=((0,0),(1,0),(1,1),(2,1),(2,2),(3,2),...).

The same strategy can be represented in multiple ways. Here, for example, we can
also write

M = (0,64,....), @ =(1,1,1,..), and p=(1,2,2,1,2,2,1,...).
The corresponding recording sequence becomes

n= ((O, 0),(1,0),(1,1),(1,2),(2,2),(2,3),(2,4),(3,4),(3,5),(3,6), (4,7), )

As discussed in Remark 2.7, we can express a Mandelbaum allocation strategy
(Definition 2.5) in terms of a sequence p of decisions made at each time. For the strategy
described above, this gives the unique sequence

p=(1,1,.,1,2,2, 1,1,.,1,2,2,1,1, .., 1,...).
0 0 0.
0 1 2

Extending this example, we can generally write our strategy (7, p) in terms of p and
vice versa. This unique representation provides a simple (if inefficient) description of
our strategy, which we now make precise.
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Definition 4.12. Define the random variable p,, to be the bandit which will be observed
in the nth play under an admissible allocation strategy (7, p). We call the process (p,)n>0.
a simple form allocation sequence. The construction of the sequence (p,) is given
explicitly in Lemma C.8 in the appendix.

For admissible allocation strategies (7,p) and (7,p), we write (1,p) ~ (7,p) if they
lead to the same simple form. (Clearly, ~ defines equivalence classes.)

Remark 4.13. Observe that if p is the simple form of (7,p) and we denote the time
allocation sequence 1 = (1, 1,1, ) then (1, p) is an allocation strategy which yields the
same decisions as (7, p). [n particular, we have (1, p) ~ (7,p).

Furthermore, one can check that the recording sequence corresponding to (1, p)
is exactly the Mandelbaum allocation strategy (Definition 2.5). In particular, we can
explicitly construct a one-to-one correspondence between our equivalence class of
admissible strategies (Definition 4.10) and Mandelbaum allocation strategies, and we
have G = G# in (3.1).

Remark 4.14. Assume that, for m € M, the filtration (]—"t(m)) is generated by an under-
lying real process (; (m ))t21 defined on the space (Q<m>,f§;”)), i.e.

F&™ =1{6,0} and F™ = o™ ™, 6M).

If we parameterize our actions by a simple form strategy (1,p) with associated
recording sequence 7, then p,_; is the decision made at time n — 1 to generate the
outcome observed at time n. The observation at the nth play is given by

S 5?:;11)) = Zth( )]I (pn—1 =m, n{™ =1).

m=1 t=1

We define the observed filtration by Hf = {¢,Q} and H?, := o (£7,...,£F). We prove, in
the appendix, that the observed filtration agrees with that used in Definition 4.8 when
considering measurability of p. That is

He =GP = (A e F(T) : AN{n, =r}eF(r)} (4.8)

where 7 is the recording sequence corresponding to (1, p).

4.2.3 Multi-armed bandit optimality

We can now give the second half of the proof for the robust Gittins index theorem where
we will consider 0 as our reference value function.

In order to prove the optimality of the robust Gittins’ strategy, we define the target
function for an allocation strategy by

o'} n—1
V(T,p) — @(Zﬁn (h(ﬂn—l)(tg) — ]_"(Pnfl)(tfl)> > : tﬁ = Z]I(pk = pnfl) 4.9)

n=1 k=0

where p is the simple form derived from (r,p) and (I'™)(t)) is the running max of the
robust Gittins index of the mth bandit, as considered in (4.4).

Step B.1 Suppose that we have M bandits, with associated indifference rewards
(F(m))me M as in step A.3. If we mix the play of these bandits, this is equivalent to taking
a break in a single bandit to play the others. This delay will result in a possibly worse
outcome (Equation (4.6) in step A.4).
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In Theorem B.6, we use the definition of ¢ and apply Fubini’s theorem to show that,
for all allocatlon strategies (7, p), this implies that, for any € > 0, there exists a probability
measure ® Q(m) € Q such that

V(r,p) > E®n=r Q" (Z B (hre0(e) =T (1) )

S Q™ OZ_i( ) (m) (m)
->® (Za @8 (0 -1 0) ) = e

where a(")(t) is the delay effect on the mth bandit due to playing other bandits.
As ¢ is arbitrary, it follows that, for all allocation strategies (7, p),

V(r,p) > 0. (4.10)

Step B.2 In step A.2, we noticed that the total expected loss of a single bandit between
S and S’ is zero, for S and S’ the consecutive stopping times when the robust Gittins
index hits a new maximum (Equation (4.3)). We use this fact to construct a family of
time allocation sequences as a candldate optimal strategy.

Define (inductively) S; (m) . z 0 (m) and

o 1nf{9>1 A (8™ 4 g) > <m>(s,§m))}. (4.11)

Using our construction of the class of allocation strategies, we can project the joint
nonlinear valuation to its marginal space, which is equipped with a consistent nonlinear
expectation. We can then use the result from step A.2, that a,(cm) yields equality in (4.2),
to show that, for any p, with the choice of time allocation sequences o = (o, (m )) the
allocation strategy (o, p) has value V (o, p) < 0. This result is shown in Theorem B.7.

Step B.3 By combining Step B.1 and Step B.2, for any p, with the choice of time
allocation sequences o = (a,im)) considered above, we have

V(o,p) = 0. (4.12)

We consider C*(n) = f"T'(Pn-1)(t£) as a (sub-)compensator in Definition 3.21. The
strategy p* given in Theorem 4.3 is the strategy of always playing the bandit with the
minimal index. Therefore, it lies in the same equivalence class as a strategy with the
time allocation sequences (U(m)) (and with p indicating the minimum index amongst all
bandits at each time). Hence, by (4.12),

(Zﬂ"( plPr) *)—F@il)(tz*)))—o.

n=1

Furthermore, by (4.10),

(Zﬂ"( )—W"l)(tm)) > 0.

By monotonicity of the process I', we prefer lower values earlier, due to the discount
effect. Thus, we prove the optimality condition when N = 0. We can now restart our
analysis at the considered (orthant) time to obtain the optimal condition for N > 0. We
now thus show that p* satisfies the condition for C-optimal. The formal proof of this
result can be found in Theorem B.8.
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5 Numerical results

In this section, we study the behaviour of the robust Gittins index using a numerical
example. Again we omit the superscript (m) for notational simplicity.

We suppose the bandit under consideration generates independent identically dis-
tributed costs (h(t))1<i<7 of either $1 or $0, given (unknown) probability P(h(t) = 1) =0
and h(t) = 2 for all t > T. The filtration (F;),., is generated by the observed cost
process (&)i<i<r = (h(t))1<i<r (With Fy trivial). The horizon T can be thought of as the
maximum number of times that each bandit can be played.

Remark 5.1. An imaginary horizon 7T is introduced in order to allow us to easily con-
struct a data-driven recursive nonlinear expectation (5.1) by backward induction

The future cost h(t) = 2 is introduced to simplify our numerical method. By consider-
ing (4.1), we can see that the robust Gittins index (y(¢));>1 takes values between 0 and 1
when ¢ < T and ~(¢) = 2 for t > T. Moreover, the optimal stopping time o (¢,v(t)) < T —t.
Hence, one can calculate the robust index 7(¢) by considering a finite horizon optimal
stopping problem.

We model uncertainty in this setting by constructing a one-step coherent nonlinear
expectation £y (-) : L=(F41) — L(F;). Once we have a one-step coherent nonlinear
expectation, we can construct an (F;)-consistent coherent nonlinear expectation by

e( (ft) = &0 (Ewrn (- Ean(-)--)).

Remark 5.2. We will consider one-step coherent nonlinear expectation which is inspired
by the DR-Expectation [23], see also Bielecki, Chen and Cialenco [14]):

g(t) (f(gh "'7£t7€t+1)) ‘= Ssup (ef(é-h "‘75157 1) + (1 - e)f(gla "'7€tu 0)) (51)

[USCh

where O, = [p* (pe,ms), pT (pt,nt)] corresponds to a credible interval for 6 given our
observations at time ¢, using a (possibly improper) Beta prior distribution. The processes
ns and p; correspond to the number of observations and the (posterior mean) estimate of
0 at time t.

In particular, we choose a credible level & € [0, 1] and obtain p* (p;, n;) by
£( 0.5+ k/2)

pt,nt) =1I"

p (;)t,nm(l—Pt)m)(

where ¢ — I, ?b)(q) is the quantile function of the Beta(a, b) distribution.

One could also use the central limit theorem to obtain an asymptotic confidence
interval. However, due to the fact that ©; C [0, 1], we restrict ourselves to the credible
set above to avoid end-effects, and allow for asymmetry in the plausible values around
the ‘best’ estimate.

As our credible set is constructed from p; and n;, and the pair (p;, n;) can be computed
recursively, it follows that for every f : {0,1}7~! — R, there exists a function Gk, T—t

R? — R such that (f (&1, -, 67)|Fr) = grr—t (pt, \/%) where we write the nonlinear

1/2 . . .
/2 instead of n; to approximate our function on a compact

expectation as a function of n,
domain. The choice of n, /2 comes from the natural scaling of the credible set.

By recalling the definition of ~y(s) (Definition 4.1), one can show (using a general
robust dynamic programming argument, as in Ruszczynski [71], or the nonlinear Snell’s

envelope, as in Riedel [68]) that we can write

1
Y(t) = Vi, g7t (pt, —) where ng = ng + t.

N
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for some function v, g 7—:.
We then use a simple finite-difference algorithm (see Appendix D) to estimate the
function

(p, %) — 7k,ﬁ,T—(n—ng)<pa %) -p

where, in our simulations, we fix ng = 1.

Plots of this estimate, for various values of k£, 8 and 7', can be found in Figure 1.

For h(t) = &, with uncertainty modeled by (5.1), at each time step we wish to play
the bandit with the lowest #. Classically, this is estimated by p, so a naive (greedy)
strategy would suggest playing the bandit with the lowest estimated average loss p.
By using C-optimality, at each point, we choose a bandit with the lowest . Therefore,
we may think of v as an implied probability p, distorted to account for exploration and
exploitation of the system of bandits.

In Figure 1, we see the following broad phenomena:

* When 1/4/n is small, the difference between ~ and p is close to zero. In particular,
this says that when we have high certainty in our estimates, v is equivalent to the
estimated probability.

* When we increase 3, the difference v — p typically decreases. This corresponds to
the fact that 3 is a discount factor which determines how much we value future
costs. Therefore, increasing [ increases the degree that we wish to explore the
system, i.e. we become more optimistic in our evaluation. We also observe that
decreasing f also yields a similar result to shortening the horizon.

* When k is increased, the difference v — p increases. This is due to the fact that k
corresponds to the ‘width’ of the ‘credible interval’. Hence, large k£ means that we
become more conservative and favour exploiting over exploring.

5.1 Prospect theory

One result suggested in Figure 1 when § = 0.9999 and k£ = 0.01 is that, when we do
not worry about uncertainty, we are more optimistic when p is large (close to 1), that
is, v is clearly less than p. On the other hand, when uncertainty dominates, e.g. when
B =0.9999 and k£ = 0.95, or 5 = 0.95 and k£ = 0.8, we become more pessimistic.

Curiously, when 8 = 0.9999 and £ = 0.8, or = 0.95 and k£ = 0.5, both optimism and
pessimism can be seen. For large p, (when the game seems bad), pessimism dominates,
while for small p (when the game seems good) we become optimistic in our optimal
strategy. This gives a bias in the probabilities, related to that used in the probability
weighting functions as considered in prospect theory by Kahneman and Tversky [47] or
in rank-dependent expected utility by Quiggin [65, 66]. In this literature, they propose
models to explain irrationality in human decisions under risk. They argue that people
generally reweigh the probabilities of different outcomes using a nonlinear increasing
map p — 7(p), with various assumptions on its curvature.

Our result (for appropriate values of 8 and k) reflects this behaviour without imposing
a probability weighting function as in classical prospect theory. Instead, the combination
of the effect of learning and uncertainty leads to distortions of the estimated probability.

5.2 Monte-Carlo simulation

In order to illustrate the performance of the robust Gittins index calculated above
in real decision making, we consider the Bernoulli bandit as described above over 50
exchangeable bandits and for a horizon 7' = 10*. We run 10? Monte-Carlo simulations and
compare performance of various strategies for decision making. To provide a wide range
of scenarios in which our strategies must perform, in each simulation we first generate
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Figure 1: Estimated value of v — p for different values of k, 5 and T'. The case T'= 10 is
truncated as n cannot exceed 7' (by definition).
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a,b independently from a I'(1,1/100) distribution, then generate the ‘true’ probabilities
for each bandit independently from Beta(a,b). We generate 10 trials on each bandit to
provide initial information.

N.B. Formally, we assume that each bandit can be played for at least 7" = 10* trials
in constructing our Gittins index. We illustrate the performance of the first 10 plays to
compare with other algorithms.

5.2.1 Measures of regret

There are a number of possible objectives to measure the loss of our decisions. We will
consider the following examples (from Bertini et al. [19] and Lai and Robbins [54]).

* Expected-expected regret. This is the difference in the true expectations under
our strategy and an optimal strategy with perfect information. In our setting, this
can be given by R(L) = >_%_ (§»») — 6*) where §(™ is the true probability of the
mth bandit and #* = min,,, (™).

e Sub-optimal plays. This measures the number of times where we play a sub-
optimal bandit which is given by Ny (L) = Zﬁ:o I(0Pn) £ 6%).

5.2.2 Policy for multi-armed-bandits

In our simulation, we will label our algorithm the DR (Data-Robust) algorithm. We
also consider the following classical policies which are commonly used to solve the
Bernoulli bandit problem. These policies choose an arm by considering the minimal
index I evaluated on each bandit separately. Literature about these policies and further
developments can be found in the reviews by Bertini et al. [19] or Russo et al. [70]. For
notational simplicity, we will denote by p and n the estimated probability and the number
of observations of the considered bandit at the time before making a decision.

* Greedy strategy. In this policy, we choose the bandit with the minimal estimated
probability given by 1¢7¢¢% = p,

« Thompson strategy. This is a Bayesian adaptive decision strategy for the bandit
problem. It proceeds by first randomly generating a sample from the posterior
distribution of the mean cost of each bandit, then chooses to play the bandit which
gave the minimal sample. In our setting, these samples are given by I7hompson
Beta(ap + pn,bo + (1 — p)n) where ag,by > 0 are the parameters of a Beta prior
distribution for the mean. To avoid biasing our estimation, we consider initial values
ap = bg € {0.0001, 1,50}, where larger values correspond to a more informative
prior.

* UCB strategy. This is an optimistic strategy to choose the bandit based on its

Alog N
n

lower bound. IV¢8 = p — where A\ > 0 is a chosen parameter, which is

commonly chosen to be 2 and N := Zf\,’le n(™) is the total number of observations

across all bandits.

Remark 5.3. To avoid bias in the algorithms, we choose a bandit uniformly at random if
there is more than one bandit with minimal index.

In Figure 2, considering first the cases where 5 = 0.9999, we can see that an increase
in the value of k has a nonlinear effect on the distribution of regret. Initially, increasing k
appears to lead to a reduction in the typical regret, but a possible increase in the average
and variability of the number of suboptimal plays. However, setting k too large clearly
leads to worse outcomes. This is because k corresponds to the level of robustness; the
more robust we are, the less willing we are to explore and the more willing we are to
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Figure 2: Regret under different policies.

exploit. It follows that a large value of k encourages us to exploit early, and we may not
find the optimal bandit to play.

On the other hand, the discount rate 5 determines how much we value our future
costs. If we have a high level of robustness (large k) but do not value the future cost
enough (small 5), we may end up settling for a sub-optimal decision. This can be seen
most clearly when 5 = 0.9999 and k£ = 0.8. In this case the average expected-expected
regret is relatively small when compared to other strategies, but its average number of
suboptimal plays is relatively high. Reducing S to 0.95 emphasizes these effects even
further.

As discussed in the introduction, the UCB algorithm asymptotically achieves a minimal
regret bound (see [54]). It does so by ensuring that, over short horizons, the algorithm
explores a sufficient amount, in order to guarantee good asymptotic performance. We
can see that in our simulation (with 10* plays over 50 bandits), the UCB algorithm is
still in its high exploration regime which results in a high regret and very few optimal
plays. In contrast, a Greedy algorithm always chooses an arm to play without taking
into account its uncertainty (and so without considering the possibility for exploration)
and therefore there is no learning in its procedure. This results in the greedy algorithm
yielding a low average regret but a high average number of suboptimal plays.

5.2.3 Robustness of the DR algorithms

In Figure 3, we illustrate the interquartile range and the standard deviation of the
total expected-expected regret when 3 = 0.9999 with different values of k over 1000
simulations. We can see that by introducing an appropriate value of k£, we can obtain a
substantial reduction in the interquartile range and the standard deviation. In particular,
the DR algorithm not only gives a low average regret, but does so consistently over
different simulations.
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Figure 3: Deviation of the expected-expected regret when 5 = 0.9999.

A Part A: analysis of a single bandit

We will now flesh out the sketch given in Section 4.2. In this section, we focus our
discussion on a single bandit.

A.1 Step A.1: indifference reward and optimal stopping problem

We first recall the definition of the robust Gittins index (process).

s+T
~(s) := essinf {fy € L°(F;) s ess mfé’( Z Bt (h(t) — ) ‘ .7:S> < 0}

TET (s) Moyl

where 7 (s) denotes the family of (F+),-,-positive stopping times.
Remark A.1. If 7 = 1, it follows from boundedness of h (Assumption 3.1) that v(¢) < C.

To study the process «, we introduce an auxiliary optimal stopping problem. At each
time step, the player decides whether to continue or to stop play of the machine. If the
player decides to continue to play, he will be offered a fixed reward A (known at the
initial time s) in addition to the cost h(t).

Definition A.2. The target function V, : T(s) x L>(Fs) — L*>(F;) for a stopping time
T € T (s) with a reward X is defined by

_5< i Bt (h(t) — \) ‘]—')

t=s+1

We know that v(s) is defined to be the minimum reward X such that, with a choice
of 7 minimizing V;(7, \), the expected loss is at most zero. By minimality of v(s) and
monotonicity of £, the reward ~(s) will yield zero loss under optimal stopping and,
therefore, cannot yield a positive expected reward under suboptimal stopping. In
particular, the following holds.

Theorem A.3. The function V; defined above satisfies essinf c7(s) Vs(7,7(s)) = 0.
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Proof. This can be done by showing that V; satisfies the regularity assumptions of
Lemma C.6.

By considering A = C'+1, where C is an upper bound on h, we see that V;(r,C+1) < 0.
As h(t) > 0, it also follows that V;(7,0) > 0. Hence, condition (i) is satisfied.

For condition (ii), suppose that \’ > A. Then

( i ﬁt(h(t)—A)) =( i ﬁt(h(t)—X)> + i BN — )

t=s+1 t=s+1 t=s+1
s+T s+1
< (X s -x) + (F5) 00 - .
t=s+1

By monotonicity and translation equivariance, we have

OS‘/s(T,/\)—VS(T,/\/)Zg< f BE(h(t) — X) ’]—") —5( f B (h(t) — ) ‘]—")

t=s+1 t=s+1

< (fflﬁ)(x—m.

So, V; is Lipschitz in .
Condition (iii) follows from (F;);>o-regularity of £ (Remark 3.4). The result follows
from Lemma C.6. O

Corollary A.4. For every 7 € T(s), we have £( 3,77 B (h(t) — 7(s))|Fs) > 0.

Remark A.5. Theorem A.3 shows that, under optimal stopping, with the reward ~(s),
the expected total loss is zero. In particular, we may view ~(s) as an ‘average cost under
optimal play’ of the bandit.

A.2 Step A.2: optimal stopping time

By considering a Snell envelope argument, as in Riedel [68] with slight modification,
we can establish that a stopping time 7* achieving the minimum value V (7%, )\) =
essinf ey Vs(T, A) exists (Theorem C.7). In this subsection, we will show that 7* can be
expressed as a hitting time of the Gittins index process (y(s)).

Definition A.6. Let A\ be a non-negative F;-measurable random variable. Define a
stopping time o (s, A) by o(s,A) :==inf{6 > 1 : v(s+6) > \}.

As mentioned in Remark A.5, we may view ~ as a time-average cost under optimal
stopping. The stopping time o (s, A) can be interpreted as the first time when this average
cost exceeds a fixed A. Once vy exceeds ), the offered compensation A is insufficient to
make the bandit attractive so, to minimize the total ‘expected’ cost, we will stop.

In what follows, we formalize this intuition. We will show that o(s, \) is an optimal
stopping time when the reward ) is offered. In particular, we will show that o (s, v(s))
attains the optimal value with the reward A = 7(s). Moreover, the value for this optimal
stopping problem is zero (by Theorem A.3).

The optimality of o(s, A) can be proved by showing that for any stopping time 7 € 7 (s),
if 7 > o(s,\), our value can be improved by stopping at o(s, ) (Lemma A.7). On the
other hand, if 7 < o(s, A), the value can be improved by continuing to play (Lemma A.8).

Lemma A.7. For every A € L>(F;) taking values in [0,C) and 7 € T (s),
Vi(r,A) > Vs(r Aa(s, M), A).
Proof. We will prove this result by applying Corollary A.4 together with time-consistency

and monotonicity of our nonlinear expectation.
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Define v = 7 A o(s, \). By Corollary A.4 and regularity (Remark 3.4),

s+T

os@( > B = (s +v)) ’fﬁV)
t=s+v+1
s+T
=1I(r > 0(5,)\))5< >
t=s+v+1
s+T
<I(r > (s, N)) ( Z Bt (h
t=s+v+1

By translation equivariance,

s+v s+v
> BH(h(t) -
t=s+1 t=s+1
S+T
( > e
t=s+1

By monotonicity and time-consistency,

(5

t=s+1

S+T

) <e(e( X 7o

h(t) — A

In particular, Vi(7 A a(s, ), A) = Vi(v,

s+T

>, Bk

s+v+1

t=s+v+1

s+u>
.s+1/)

A) S Vi(1, ).

s

r)=¢

t=s+1

B (h(t) — (s + (s, ) ]fm) FI(r < o(s, 0)(0)

) o
t=

s+T
< 3 8 +e( S Bt~ N)

[
];+u>

s+T

> B(h(t) —

7).

O

Lemma A.8. Let 7 € T (s) and let A € L>(F;) taking values in [0,C). Then there exists

a stopping time 7 € T (s) with 7 > 7 such that Vi (1,\) > Vs(my

A:={y(s+ 7)< A}, we have 11 > 7.

Proof. For A = {vy(s+7) < A}, define 7
and monotonicity of our nonlinear expectation,

s+T+T
0= essinf &
e e( > e

(s+71) ‘]'—9-4-7')
t=s+4+74+1

> essinf &
FET (s+T1)

S+T+T
( S B () — A7)

t=s+7+1

Thus, by Theorem C.7, there exists 7* € 7 (s + 7) such that,

s+T+T

oze( X om0
t=s+71+1

- ’YT) ’}—S+T> .

Define a stopping time 71 := 7+ 7" I4. As 7714 = A4, then

A) and on the event

=7(s+7)[4ac + A4 > v(s+ 7). By Theorem A.3

)

s+T71 s+7 sHTHT*
PR HUGOEPYESICUIGEPES VIS A (IOEPY
t=s+1 t=s+1 t=s+1+1
s+7 s+T+T*
= > B =N+Ta D B —7).
t=s+1 t=s+7+1

By translation equivariance and regularity (Remark 3.4), it follows that

s5+T71 s+T1
5(221 Bt (h(t) — \) ‘sz) = ;;1 Bt (h(t)
> i B ((t)
t=s+1
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Finally, by applying monotonicity and time-consistency as in the previous lemma, the
result follows. O

Corollary A.9. Let 7 € T (s). Then there exists an increasing sequence (7, )n>1 in 7 (s)
with 7,41 > 7, > 7 for alln > 1 such that

‘/S(Tv )\) 2 ‘/S(Tlv)\) 2 2 ‘/S(T’nv)\)
and on the event ﬂz;ll {v(s + 1) < A} we have 7, > 7,1 > ... > 71 > 7. In particular, on

this event, 7,, > n.

By combining these observations with the Lebesgue property of £, we have the
following theorem.

Theorem A.10. For every \ € L*>(F;) taking values in [0,C') and 7 € T (s), we have
Vs(r,A) > Vi(o(s,A), A) = essinf Vi (7, A).
TET(s)

Therefore,
Vs(o(s,7(s)),7(s)) = essTi{lng(T,v(S)) = 0.
TE s

In particular, o(s,v(s)) yields equality in Corollary A.4.
Proof. By Lemma A.7 and Corollary A.9,
Vs(T,A) 2 Vi(Tn, A) = Vi(Tn Ao (s, A), A).

Observe that by Corollary A.9,

n—1

{rn <o(s N} ={v(s+0) <A VI<7,} C () {v(s+7) <A} C{mn =n}.
k=1

Hence, it follows that 7, A o(s,A) = o(s, \) as n — oo and thus

s+TpAo(s,\) s+o(s,\)
S Bt -N— > B'(h(t)—)) as n— oo forallwe Q.
t=s+1 t=s+1

As h is bounded, it follows from the Lebesgue property of our nonlinear expectation that

s+1pAo(s,\) st+o(s,\)

5( t§1 BH(h(t) — A) ‘]-') — g( 28;1 BH(h(t) — N) ‘]-')
In particular, Vi(7,A) > V(o (s, M), A). O

Remark A.11l. Bank and El Karoui [9] consider a similar result to this theorem, but
under a classical expectation with the summation >;77 | 8¢ (h(t) — 7(s)) replaced by a
more general function in continuous time. (See also [10] and [11] for further discussion).

A.3 Step A.3: fair game and prevailing process

Previously, we considered an optimal stopping problem when the Gittins index is
offered as compensation for continued play. In this subsection, we consider a ‘fair game’
when we offer a compensation which is (just) sufficient to encourage us to continue
playing the bandit. In particular, the compensation increases at each optimal stopping
time in order to encourage the agent to continue.

We will first define a sequence of optimal stopping times that we have to consider in
order to analyze our (minimal) compensation process.
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Definition A.12. We define S, to be the stopping time where the Gittins index process
(7(s)) 4> exceeds its running maximum for the nth time. We write o,, for the duration

between S'n and §n+1, that is, o,, is a random time identifying how long after time Sn the
process (Y(s)),~ hits a new maximum.

More precisely, we define S‘n and o, inductively:
() Let Sy := 0.

(i) Given S, define o, := inf{6 > 1 : (S, +0) > v(Sn)} and Sp41 := S, + 0y,

Equivalently, we can define o, := o(Sp,v(Sy,)) as in Definition A.6.

Definition A.13. We define the prevailing reward process I' by the running maximum
of 7y, that is, I'(t) := maxg<g<¢—17(0).

We can then show that the process I" serves as an indifference reward (process) for
our agent, when evaluated from the perspective of one of the stopping times S,,.

Proposition A.14. Foralln € N, (Y2 ¢ ,, 8" (h(t) = T(t)) | Fg ) = 0. In particular,
£ (Zﬂf (h(t) - F(ﬂ)) =o.
t=1

Proof. By Theorem A.10, forall k € IN, 0 = &( Zf:’”glﬂ Bt(h(t) = (Sn))|Fg,)- Now, fix

n, N € IN with N > n. By time-consistency and translation equivariance,

5( % 6t(h(t)—F(t))‘]:gn)

t=S,+1

Sn_1 Sn

5( Z B (h(t) = T(t)) +5< Z B (h(t) F(t))’]-"SN_1> f§n>
t=S5,+1 t=Sn_1+1
Sxa S A

:5( Z ﬂt(h(t)—l“(t))+8< Z ,@t(h(t)—’y(SN—l))‘}—gNl> f§n>
t=5,+1 t=Sn_1+1
Sn_1 Sn-2

— 5( > B () —F(t))‘}"gn> = 5( > B —F(t))‘]-'gn) — .. =0
t=58,+1 t=S,+1

By our definition of S'n, we have SN > N. Hence, S'N — o0 as N — oo. Therefore, by
applying the Lebesgue property, the result follows. O

Intuitively, as I'(¢) > (¢t — 1), the process I' should be sufficient to compensate for
continuing to play. This means that the total ‘expected’ loss, evaluated from any point
in time, must be non-positive if a reward I'(¢) is offered. This is stated formally in the
following lemma and theorem.

Lemma A.15. Let 7 € T(s) with1 < 7 < ¢ := 0(s,\). Then

e( AR Fur) <0

t=s+7+1

Proof. Write H, := & (Z:;r;TJrTH B (h(t) - /\)

]-'S+T) and A := {H,. > 0}.
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Define 6 := 714 + 0 [ 4c.

s+o s+7 s+o
IO SERUCER AT SR ACURIER () SR ACURSY

t=s+1 t=s+1 t=s+7+1

]:s+7—)

}'S+T>]IAC = 5< Si B (h(t) = N)

t=s+1

s+ st+o
>3 5f(h<t>—x>+s( S8 ()~ N)

t=s+1 t=s+7+1

)

Moreover, the above inequality is strict on A. Hence, if A is not a P-null set, it then
follows from strict monotonicity that

e( S* 8 (hit) - ¥ )= S° 5 - 7).

t=s+1 t=s+1

This contradicts the minimality of o (s, \) established in Theorem A.10. O
Theorem A.16. Forall N € N,
5( > BH(n(t) - F(t))’]—'N> <0.
t=N+1

Proof. Define 7, := (Sn+1 AN)V S’n. Since S‘n is a stopping time for all n € N, so is 7,.
Hence, by Proposition A.14 and Lemma A.15,

1> () - T(0) |, )

t=71,+1
Snt1 00
- g( S pH(h(t) —T(t)) + 5( > B8Rt -T®) fsnﬂ) fm)
t=1n+1 t=S,11+1

e Sz Bt(h(t)—l“(t))’fm) —¢( SZ ﬁt(h<t>—v<én>>\fr,b) <o.

t=71,+1 t=71,+1

Therefore, as {S’n < N < Sn+1} is Fy-measurable, by the Lebesgue property and
regularity (Remark 3.4),

e( > pnn - )7y
t=N+1
L e’}
- 5<Lh_,m (Z ]I{§H<N<S'n+1}> ( Z B (n(t) — F(t))) ‘IN)
> n=0 t=7p+1
L o
= Jlim > ]I{Sngzv<sn+1}5( > B(h(t) ~T(t)) ‘fzv)
n=0 t=7p+1
L o0
= Jim > H{SHSN<SM}H{TH>N}5< > BH(h(t) - T(t) ’Ev)
n=0 t=7,+1
L s}
= Jim ZH{$n<N<§"+1}H{rn>N}5<5< > BH(h(t) = T(t)) ‘fm) ‘H) <0. O
n=0 t=Tp+1

Remark A.17. The above theorem says that, with compensation I'(¢), at any point in
time we expect to obtain a net reward from continuing to play, i.e. we have a non-positive
expected total loss.
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A.4 Step A.4: reward delay and robust representation theorem

In Step A.3, we have shown that our reward I is defined to be (just) sufficient to
encourage the player to continue playing (Theorem A.16) until the horizon (i.e. the total
expected loss is zero, as in Proposition A.14). We now show that taking a break from play
cannot improve a player’s expected discounted costs. We now formulate this observation
by establishing the existence of a probability measure in our representing set @ such
that the expected discounted costs, accounting for the break in play, have a lower bound
close to zero. This result will be useful when considering multiple bandits.

Theorem A.18. By Assumption 3.10, recall that £ admits a robust representation of the
form &( - ) = supgeo E(-).

For every fixed € > 0, there exists a probability measure Q € Q such that for every

predictable decreasing process (a(t)):>o taking values in [0, 1], we have

EQ<Za(t)ﬁf (h(t) - r@))) > —e.

t=1
Proof. By Proposition A.14 and the robust representation theorem, for a fixed € > 0, we
can find a probability measure Q € Q such that E®( Y2, g (h(t) — T'(t))) > —e.

For each predictable decreasing process (a(t)):>o taking values in [0, 1], we define

() im {a(t) fort < N,
a(N) fort> N.
We claim that -
EQ<Z aN (1) Bt (h(t) — F(t))) > —e. (A.1)

Indeed, it is clear that the result holds when N = 0.
For the sake of induction, assume that the result holds for a given N. We then have

T

N
—e<E® ( > a(t)pt(n(t) - F(t))) + EQ( > a(N)B(h(t) - r(t))>. (A.2)
t=1 t=N+1
By Theorem 3.7, £( - |Fn) = esssupgeo E®( - |Fn). Combining this with Theo-
rem A.16, we can see that

EQ< i B (h(t) — F(t))‘]—"N) <0.

t=N+1

Since « is decreasing,

(oo}

(a(N) — a(N + 1))IEQ< > BU(h(t) - F(t))‘]-"N) <0.

t=N+1

As « is predictable, by rearranging the above inequality, we obtain

o0

EQ< i a(N)ﬂt(h(t)—F(t))‘]:N) SEQ< > a(N+1)ﬂt(h(t)—F(t))‘]-"N).

t=N+1 t=N+1

Hence, by the tower property,

B3 a0 1)) <E( Y al¥ 08 (o) - 1) ).

t=N+1 t=N+1
By substituting this into (A.2), we prove (A.1) with NV replaced by N + 1 and done the

induction step. Finally, by the bounded convergence theorem, we can take N — oo
on (A.1) and obtain the required result. O
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B Part B: analysis of multiple bandits

We are now ready to consider the problem of choosing between multiple bandits.

In Definition 4.10, we introduce our class of admissible controls which can be consid-
ered in our dynamic allocation problem. This class of controls introduces a few natural
ways of parameterizing time. We therefore will use the following terminology to describe
the evolution of time in different ways. This terminology will be useful in our discussion
on the proof.

1. ‘Play’ refers to the total number of (real) times that we play the system of bandits.
(This corresponds to the time parameter of the simple form p which is briefly
discussed earlier on in Remark 2.7 and later in Definition 4.12.)

2. ‘Trial’ refers to the number of times that we play a specific bandit. (This corre-
K _(m)
sponds to the sum > ;" 7" ".)

3. ‘Decision’ refers to the number of times that we make a decision between bandits.
(This corresponds to the time parameter for the choice process (py),,~(-)

4. ‘Run’ refers to the number of times that we have made the decision to select a
specific bandit. (This corresponds to the time parameter of the allocation sequence
(7™ for each fixed m € M.)

Remark B.1. The terms ‘play’ and ‘trial’ can be referred to without directly identifying
the time allocation sequence. On the other hand, the terms ‘decision’ and ‘run’ need to
be interpreted under a given time allocation sequence 7 (Definition 4.7).

Remark B.2. The mth component of the recording sequence 7,, (Definition 4.8) repre-
sents the number of runs in the mth bandit before the nth decision. We can see that the
random variable 7,, takes values in {r eS: Y M pm < n}

In order to prove C-optimality, we consider the target function as stated in (4.9).
Definition B.3. For eachm € M, let (h™)(t)),. , be the uniformly bounded non-negative

cost process at the tth trial of the mth bandit with prevailing reward process (F(m) (t)) i>1
(Definition A.13). For an allocation strategy (7, p), (Definition 4.10), we define the Gittins

target function by

V(T,p) = @( Z ﬁn(h(’)“’l)(tﬁ) _ I‘(Pnl)(t;)l))>

n=1

where p is the simple form of (1,p) with corresponding counting processes t? :=
Z;é I(px = pn-1), and € is a partially consistent orthant nonlinear expectation, as
in Definition 3.11.

Remark B.4. We can also write V (7, p) in terms of 7 and p directly without identifying
the simple form p. This is done in the proof of Theorem B.7 in Step B.2. This definition,
however, makes it clear that V depends on (7, p) only through its simple form.

B.1 Step B.1: Fubini theorem and suboptimality

In this subsection, we will show that considering generic stopping times and choice
of bandits yields a non-negative expected loss. This can be shown using the robust
representation result.

First, we recall the following corollary of Fubini’s theorem.
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Corollary B.5. Let (G,G,P) and (H,H, Q) be probability spaces. Let G’ and H' be sub
c-algebras of G and H respectively, with H' := {(), H}. Then, for any integrable random
variable X on (G x H,G ® H,P ® Q), we have

EFeQ (X ] ¢ ® H’) = EF (/ X( -, h)dQ(h) ‘ g’) P ® Q-as.
H
Theorem B.6. For any allocation strategy (,p), we have V (r,p) > 0.

Proof. Let p be the simple form of (7,p). Write R{"™ for the total number of trials on
other bandits before making the t¢th trial on the mth bandit, i.e.

Nf”l)

)= Z Z I(p, = k) where N™ := 1nf{N >0: Z = t}

k#m n=0

since R"™ does not depend on future realizations of the mth bandit, R\"™ is F\") ®

(®k 1 km Foo (k )) -measurable (taking the product in an appropriate order). Moreover, as

Nt( ™ s increasing in ¢, it follows that Rﬁm) is increasing in ¢.

Now, fix € > 0. By Theorem A.18, for each m € M, we can find a probability measure
Q™ € Q™) such that, for every adapted decreasing process (o™ (t));>( taking values
in [0,1], we have

EQ(m) (Z alm (t)ﬁt (h(m) (t) —_rim (t))) > —e. (B.1)
t=1
Define &™) (¢ fl’[;@f qu BR” d(®pzm Q*)). By Fubini’s theorem, as R™ is

Fm e (®k=1’k¢m féo))-measurable and 3 € (0,1], the process (&™) (t)) is an (]—'t(m))-
predictable process taking values in [0, 1].
Moreover, Rt is 73 @ (®,]€w:1’k¢m ]-'éf))-measurable, so by Corollary B.5,

M
atm (1) = E®iL QY (5357’” ‘]}éom)) where F{ = F{" @ X) F
k#m
As t — RE’”) is increasing, it then follows that &™) (t) is decreasing in ¢t. Hence, by

Theorem A.18 we obtain (B.1) with o™ replaced with &(™).
By the definition of € and Fubini’s theorem, it follows that

(Zﬂ ( Pn—1) tP) F(Pn—l)(th)) ) > E®1]gw=1 Q(m) (iﬂn (h<p”’_1)(th) _ F(p”’_l)(tﬁ)) )
n=1
M oo
= E® ( S5 (K () - T () )

m=1 t=1

g

— N\ E®iL e ( i E®rL; @™ (ﬁagw 3t (h("” (t) — 1™ (t)) ’j—égl)))

1 t=1

®M Q(m) (g& (h(m)( ) — F(m)(t)) )

=3 Ee™ (Z a™ s (h™ (1)~ 1) ) > —Me.

m=1 t=1

m

Il
:ﬁM:

As ¢ is arbitrary, the result follows. O
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B.2 Step B.2: optimality

In this subsection, we will show that the strategy determined by a particular time
allocation sequence yields a zero expected cost in the Gittins’ target function.
Theorem B.7. For each m € M, let (U,(Cm))kgo be the sequence of running maximum
random times associated to the mth bandit, as defined in Definition A.12, i.e. we define

o™ and 8™ recursively by S{™ := ¥ 1 5™ and

U](Cm) -— inf {9 >1: ,y(m)(Sl(Cm) + 9) > ’Y(m)(S;E;m))} .

Then for any allocation strategy of the form (o, p), we have V (o, p) < 0.

Proof. Recall the recording sequence 7,, associated with (o, p). We define the following
notation, given an allocation sequence o.

e O, denotes the total number of plays of the system before making the nth decision.
i.e.

e 7, denotes the duration we decide to play following the nth decision time, i.e.

G, :=0™  onthe event {p, = m,n{™ = k}.
N.B. p, = m means that we decide to play the mth bandit at the nth decision. The
event m(fn) = k means that we have had k runs of the mth bandit before the nth
decision. Thus, we choose to make a,gm) more trials on this bandit before making
another decision.

° xifﬁ,”” denotes the total number of trials on the mth bandit before making the nth
decision, i.e.

k-1
gm) = Z o™ onthe event {n{™ = k}.
=0

Using this notation, we can define a variation on the Gittins’ target fuction, with the
restriction that we consider only the first IV plays of the system, that is,

N-1 Gn
n=0 =1

with the convention h(9)(t) = T'®)(¢) = 0 for all ¢.
By considering the simple form p of the strategy (o, p) and applying the Lebesgue
property of &, we can show that V agrees with Definition B.3 as N — oo, that is,
lim V(N,o,p) =V(o,p).
N—o00
Hence, it suffices to show that V(N,o,p) < 0 for all N € IN. This will be proved by
induction.

It is clear that V' (0,0,p) = 0. Fix N € IN and assume that V' (N, o, p) < 0. To show that
V(N +1,0,p) <0, by subadditivity, it suffices to show that

€<ﬁéN (ZN:BZ (h(pw)(\j,g\l;w) +1) — F(pN)(\j/%’N) + l)) )) <0.
I=1
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Define the following random variables, as in (4.7):

r(m_1

M
i =) o™ and O, := > wim (B.2)

=0 m=1
for

M
reSy = {TGS: Zr(m) <N, r(m) ST(M)}.

m=1
Note that w{™ — \I/(m) and ©, = O on the event {ny = r}. From the definition of the
recording sequence (Definition 4.8), it follows that O, and the event A% m) = {nn
r,pn = m} are both F(¥,)-measurable.

On an event A%’m), @5\7,”) = 0™ and ¥{™ is a stopping time with respect to the

filtration (ft(m))tzo- By considering the optimality obtained in Theorem A.10, we can
show that

€<B h (iﬁl (RN @ + 1) =T + 1)) >)
or(m)
Zzﬂwﬂ (X (e sy -t +0) )

M or(m
=¢( > N Lycrom ﬂ@r( gt (h<m>(\p$m> +10)— >)
m=1reS, =1
M or(m)
< (g (X 5 (KW 1) - ))
m=1resS =1
M or(m)
< @(Mg;mﬁ@re% ( B (h<m><\lf<’"> +1) - ) ))
m=1reS, =1
M or(m)
=2 2. ¢ (IA;,M/B@%(m ( B (R (W™ 41) = 5 (w () ) ‘f&j@%))
m=1resSy =1
M
=> &0) = 0
m=1reSy
We see that V(N + 1,0,p) <0, and the desired result follows by induction. O

B.3 Step B.3: C-optimality

In the previous subsections, we introduced an allocation problem when the prevailing
process is offered as compensation (Definition B.3). We also proved that the optimal
value can be achieved by choosing a proper family of allocation time sequences (i.e. ¢ as
in Theorem B.7).

The prevailing reward process I' for each bandit is non-decreasing, and the optimal
allocation sequences ¢ require us to make a new decision whenever the process I'
increases. By exploiting this fact, together with the discount effect, we will see that it
is preferable to play the bandit with the lowest value of I first. In particular, we can
establish the Robust Gittins index theorem, which we repeat for convenience of the
reader.
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Theorem B.8 (Theorem 4.3: Robust Gittins theorem). Suppose that for each m € M,
(F\"™);>0 is generated by some underlying process (£™)i>1. Let ™ be the total
number of trials of the mth bandit before the nth play of the system. i.e. w%m) =
Z;é I(p; = m) (given an allocation strategy p* up to time n — 1).
Then the allocation strategy p* given (recursively) by

Pl = min {m eM : me argminv(k)(z/},(lk))}
k

is C-optimal (Definition 3.21) under € for the cost

n—1

g/(n) = B"h-(18) where th = 3" T(pk = pu-1).
k=0

Proof. Recall the definition of Wﬁm) in (4.7). We can see that ¥,  determines the orthant
filtration when 7,, = r where (7,,) is a recording sequence constructed from the time
allocation sequence o, i.e. when the mth bandit was run for r(m) times under the (optimal)
allocation sequence o. In particular, \Ifﬁf"> corresponds to the number of trials on the
mth bandit.

To explicitly define our choice sequence, we set

P} := min {m EM : mE€arg minfy(k)(\ll,(f“))} on the event {7, =r}.
k

As U™ is an (F\™)-stopping time, (™) (U{"™) is well-defined and is F(¥\™)-measurable.
It also follows that

({7 =} N {ph = m}) = {in =731 ﬂ {rtm @™y </ ® @)} n ﬂ {1 (i) < wi)}
€ F(¥,).

Hence, p* is a choice sequence for the allocation sequence o (Definition 4.8). Therefore,
(o,p*) is an admissible allocation strategy. Moreover, observe that p* given in the
statement of this theorem is the simple form of the allocation strategy (o, p*).

By Theorem B.7 and Theorem B.6,

e(iﬂ” (Wi1>(t;)—r<Pil>(t;))> =0 for t}:= Z]I =p5_1)
n=1

Theorem B.6 also implies that for any allocation strategy (7, p) (and thus for any simple

form p),
e( X o () 00 )) ) 20
n=1

Next, we will show that n — S"T'(P»-1)(¢#) is predictable with respect to our observed
filtration. We recall that I(") (t) = max<p<;_1 7(f) and observe that t2 = >~ I(py =

pn—1) =1+ n(”“ 1) where (nn) is a recording sequence corresponding to a strategy (1, p).
We can write

F(Pn—1)(tfl) — Z I(p—1 = 7)I(pp_1 = m)F(m)(l + ’I“(m))
reSn—1
where Sy := {TES Z Lrm —N}.
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Since I'(™) (1+ r(m)) is ]-'%7"3) -measurable, by the Doob-Dynkin lemma, there exists a

measurable function f,gm) : IPJ‘(m) — R such that

DO (147 (my = plm) (™ ey, (B.3)
Note that, while the process (¢™) is defined on (2™, F™)), we can extend it to (£, F)
by considering an appropriate embedding.

By substituting into (B.3) in a similar way to (C.6), we can write F(P"*I)(tﬁ) as a
(measurable) function of ((nk)0<k<n71 (PR) o< ka1 0 (g,’;)0<k<n71). By Definition 4.8
and Remark 4.14, (1) and (py) are adapted to the observed filtration (#£),,-. It follows
that ['(Pn-1)(¢£) is H/_,-measurable.

Therefore, for each p, Cf(n) := I'(’»-1)(¢7) defines a subcompensator at time N = 0,
and for p = p*, the cost is fully compensated with Vj = 0.

To construct a compensator for a subsequent time N, we consider ‘restarting’ our
system at an orthant time » = (), ..., (M) € Sy C S (as in Theorem C.12). As F(r)
describes the information from all bandits, this needs to be done carefully. Each of our
single-bandit filtrations (J:t(m))tzo is generated by a discrete-time real-valued process,
and F(r) = Q,, ]-"7(21)) so the Doob-Dynkin lemma states that any F(r)-measurable
random variable can be written as a Borel function of the first » observations. For
concreteness, we denote these observations w,..

We proceed by freezing the value of w, and w, with u <r. Let (p}*“"),,>n denote the
minimum-Gittins-index strategy given by p* defined in the theorem when we restart our
analysis at r from a given w,.. We do not change the Gittins indices v when we fix w,., so
the corresponding I' processes satisfy

r'™mit)= max ~A™@) < max ~™ @) =T)(t) forall u<r
" r(m)<e<t—1 u(m) <e<t—1 “
and are measurable with respect to w,.. As discussed in Remark 4.5, the optimal strategy
(pi“")n>n coincides with the strategy p* (and is therefore also measurable with respect
to w,.).

W W

n—1

. . . (p (2
By repeating our earlier analysis, we see that, for each w,, Iy, <Ty/'". We can
now unfreeze w, and w, and, summing over all possible scenarios, show that

CR(n) = p" max ~(Pn) (6)

" <0<t -1

is decreasing in N. By applying the same argument as earlier, we also have n +— C%/(n)
is H’-predictable. Therefore, (C%;(n)) defines a subcompensator for strategy p and fully
compensates for p = p*. We set Vy = 0 and observe (3.2) is satisfied.

Finally, as t — I‘EJT) (t) is increasing for all m and all w,, and p* is a strategy where
the lowest I is chosen first, it follows that forall 1 < N < oo, if p ~xn p*, then

L L
S km< > Cf(n)  forall L>N+1. (B.4)
n=N+1 n=N+1
In particular, (3.3) is satisfied and therefore p* is C-optimal. O

C Proof of other relevant results

Definition C.1 (Follmer and Schied [36]). Let (2, G, P) be a probability space and let )
be a family of G-measurable random variable. We say Z is a G-essential infimum of Y
denoted by Z = G-essinf Y if
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(i) Z is G-measurable.
(ii) Z<Y P —a.s. forallY € ).
(iii) For Z' suchthat Z' <Y P —a.s. forallY € Y, we must have Z' < Z PP — a.s.

We also define a similar notion for G-essential supremum. We may omit G in front of
essinf if the measurability of the family is obvious.
Theorem C.2 (Existence of Essential infimum). The G-essential infimum exists.
Suppose in addition that ) is directed downwards, that is for Y, Y’ € ), there exists
Y € Y such thatY < min(Y,Y"). Then there exists a decreasing sequence (Y,), . €V
such that Y, \ essinfY P-a.s.
The corresponding results also hold for the G-essential supremum.

Proof. See Theorem 1.3.40. in [29] or Theorem A.37 in [36]. O

Theorem C.3 (Proof of Theorem 4.2). Let y(s) be the robust Gittins index (Definition 4.1)
(with superscript (m) omitted). Then

E9(XL, (s +)|F)
I ST RS L)

where Q is a family of probability measure induced in Theorem 3.7.

Proof. By Corollary A.4 and Theorem 3.7 (together with positive homogeneity), we have
that, for any 7 € T (s),

esssupEQ<ZBt (s+1t) —'y(s))‘}'s) > 0. (C.1)

QeQ
By Lemma 11.19 (together with the construction of Theorem 11.22) in Follmer and

Schied [36], the family {E?(Y_;_, 8'(h(s +t) — 7(s))|Fs) : Q € Q} must be directed
upwards. Hence, by Theorem C.2, we can find a family (Q,) C Q such that

EQ”<ZBt (s+1) (s))>—>esssupEQ<Zﬁt s+t)—v(s))’]—"s>. (C.2)

T Qe t=1
Let Q2 be an event with probability one such that the following holds.
1. (C.1) and (C.2) hold.
2. Foralln € NN,

B (Sa B0+ DIF) oo B0 BR(s + )| 75)
B (T A7) T eee  EO(ZLLANE)

EQ (X1 8] Fs) 2 8, and

(Zﬂ (s +1) = 7(s))

t]-'s).

(C.3)

) =E% (; Bh(s +1)

QV@E%(LI
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Fixw e Q and € > 0. By (C.1) and (C.2), there exists n € IN such that

IEQ”(Zﬁt (s+1) (8))’fs)(w)2—e.

By (C.3), we can rearrange the inequality above and obtain

e EQ (Y7_, Bh(s +t)|F) y €
v(s)(w) < EQx ( ZZ:I Bt|-7:s) (w) + EQ~ ( ZZ:l Bt|]:s) (w)
< esssup 83, 0h(s + 1) (@) + <.

QeQ EQ(>,_, B Fs) ]

As € is arbitrary, it follows that on Q,

 EBR(X Bh(s + 1)|F)
TR TR )

hence,

EQ(Y7, Bh(s+1t)|Fs)
< f t=1 LAy
7s) < csinl e 0P o (37, 5117

By Theorem A.10 and Theorem 3.7, we can find o := o(s,7v(s)) € T(s) such that,

esssupEQ(zat ) =)|7) =0

QeQ
EQ<Zﬂt (s+1) (s))‘ﬂ;)ﬁO.

hence, forall Q € 9,

Therefore,
EQ (37, B'h(s +1)|Fs)
EQ(Y7, BYFs)

v(s) =

and we conclude

EQ (X272, B°h(s +1)|F5) EQ(X7_, B'h(s +1)|Fs)
S) > esssu — > essinf esssu - .
1) 2 R TR (S, 17 TG (ool EQ(Xi, B'F)

This completes the proof. O
Proposition C.4. All properties described in Proposition 3.13 hold.

Proof. (i) is straightforward to prove using the definition directly, as in the case of £.
By Theorem 3.7 and the tower property,

esssupIEQ(X|}'(S)) = esssupIEQ(EQ(X|.7:(S/))‘f(S))
QeQ QeQ
< esssupIEQ(esssupIEQ(X|f ))’}"(S)),
QeQ QeQ

hence (i7) follows.
For Y (w®, ..., ™)) = X (w) x - x XM)(w,,), by Fubini’s theorem,

M M
esssup E®%1Q(m)( H X(m)‘}"(S)> = esssup H EQW)( m)|féﬁz))
m=1 QmeQ = ®7]Z:1 QmeQ m=1
Then (iii) and (iv) follow by considering different choices of X (™). O
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Lemma C.5. Let V; : T(s) — L°°(F;) be a function such that for every 7,0 € T (s) and
A e F,, we have
‘/S(T Ta+014)= ‘/S(T)HA + VS(U)I[AC.

Then there exists a sequence 7,, € T (s) such that V,(7,) \ essinf cr ) Vi(7) P-a.s..

Proof. For 7,0 € T(s), define A := {V,(7) > V,(0)} € Fs. Then 7 := 7 L4 + 0 I4. € T(s).
By assumption, V,(7) > V(1) A V,(0); the result follows from Theorem C.2. O

Lemma C.6. Let f : T(s) x L>®(F;) — L (F;) satisfy:
(i) ForallT € T(s), f(1,0) > 0 P-a.s. and f(7,X) < 0 for some X € L*>(Fj).

(ii) There exists L € [0,00) such that, for every X,Y € L>=(F;) with X > Y P-a.s and
T € T(s), we have

0< f(r,Y)— f(r,X) < L(X-Y) P-as.

(iii) Forall A € F;, all 7,0 € T(s) and all X,Y € L*°(Fs), we have

FOTa+ olge, XTIy + YT ae) = f(7, X)Ia + f(0,Y)4c.

Define X* := essinf {X € L>(F;) essinf e f(7,X) <0 IP-a.s.}. Then X* € L*(F;)
and essinf c7 () f(7,X*) =0 P-as.
Note: All essential infima in this lemma are taken among the F;-measurable functions.

Proof. Denote X :— {X € L(F,) : essinf,ers) f(r, X) <0 lP-a.s.}. By (i), X # . For
a fixed X € X, by Lemma C.5 there exists a sequence 7 € T (s), such that f(7, X) \,
essinf c7(s) f(7,X) P-a.s. Similarly, we can find a sequence (7;,) for X’ € X.

Define a sequence oy, := 7,14 + 7,14 where A = {X < X'}. Then

essTlglff(T ,min(X, X)) < f(on, min(X, X)) = f(rilla + 771 ac, XTa + X'T4c)
TET (s)

= f(7, X)Ta + (75, X )Lac Ny essinf f(7, X)[4 + essinf f(7, X )[4 < 0.
TET (s) TET (s)

Hence, X is downward directed. Therefore, by Theorem C.2, there exists a sequence
(Xn)”>O C X such that X,, \, X* P-a.s. This implies that X* is almost surely bounded
from above. By monotonicity, as f(7,0) > 0, it follows from strict monotonicity that
f(7,—1) > 0. Therefore, —1 is an essential lower bound of X, so X* is bounded below by
—1 and X* € L>®(Fy).

For the final assertion, we will first show that essinf ¢ f(7, X*) < 0 P-a.s. For
each n € IN, we can again find a sequence 7}’ such that

flg, X )\(eS%l(nff(TX)<0 as k—oo P-as.
TET (s)

By condition (ii), it follows that
L(Xn — X7) 2 f(r!, X7) = f(3, Xn) > eSle(ngf(T X*) = (i, X0)
TE s
f X*) — f X,) > inf X).
e gstl(r;)f(T ) ess inf [, Xn) gstl(r;)f(ﬂ )

where the above limit is considered as k£ — co. Now, by taking n — oo on the LHS, we
obtain essinf, . c7 () f(7, X*) <0
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To finish the proof, it suffices to show that for all o € T (s), we have f(o, X*) > 0.

Fix 0 € T(s). Define F := —f(0, X*) and the event B := {F > 0}. Let 7, € T(s) be
a sequence such that f(r,, X*) N\, essinf cr¢) f(7,X*) < 0. We define YV := X*Ig. +
(X* — £ )15 < X* and a sequence o, = 7l pc + olz. Then

essinf f(7,Y) < f(on, V) = f(fk,Xﬂwf(U X"*%)“B

F

= F(i, X*)Ipe + <(f(a X* - ﬁ) — f(a,X*)) —F>]IB

crse (s ( )2

= f(Tk,X*)]IBc — f]IB S f(Tk,X*)]IBc \, eSSﬁI}%lff(T X* )]IBC < 0.
TET(s)

2|

Hence, Y € X. By minimality of X*, it must follow that B is a IP-null set. O
Theorem C.7. There exists 7* € T (s) such that Vi (7", \) = essinf ¢y (s) Vs(T, A).

Proof. We write F} := F,4, and define the processes

s+n
Y, = % Z B (h(t) — and Z, := esTs>iTrLlf5(YT‘}'§)
t=s+1 -

where T is considered over the space of all stopping times and C' is an upper bound given
in Assumption 3.1.

Define 7* :=inf{n >0:Y, = Z,}.

By robust representation theorem (Theorem 3.7), we can represent £ as an essential
supremum over a familiy of probability measures which satisfy the law of iteration [68,
Equation 4]. It then follows Riedel [68, Theorem 3] that if 7* < oo P-a.s., then 7* is an
optimal solution.

Hence, to prove the required result, it suffices to prove that 7 € T(s), Zy =
essinf ey (s) Vs(7,A) and 7% < oo P-a.s.

It is clear that we never stop at time 0. This means that 7* € 7(s) and Z, =
essinf cr(s) Vs(7,A). It remains to prove that 7* is almost surely finite.

On an event w such that A(w) < C and h(t)(w) — C, we can find N(w) sufficiently
large such that y_;" ., 8* (h(s +t) — A) (w) > 0 for all n. In particular, we have 7*(w) <
N(w) < oo. Therefore, we have 7% < oo P-a.s. and thus it must be optimal. O

Lemma C.8. Let (p,,)o<n<r—1 be a simple form of (7, p). Then the sequence (p,)o<n<r-1
can be expressed recursively by the following relation. Set py = py and define

F(m) 1
n— f m ) m
pp =P S 17” 'z n where (™ .= Z (m), (C.4)
Py, if ZmZI n :n_17
and where
M f—1
wnZZFém) and F(™ ::mm{f>0 Z]I )<ZT,§m)}.
m=1 k=0

fr(m)

Proof. To see this, we view F;, ~ as the number of runs (under (7, p)) of the mth bandit

(m)

before making the nth play. We then consider 7;, ’ as the total number of trials in the

mth bandit required to complete the F,(L )th run.
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If the run is not yet completed before the nth play, we continue to play the same
machine (i.e. we define p,, = p,_1). If the run is completed in the (n — 1)th play, we make
a new decision in the nth play based on the choice sequence p. In that case, we have
already made ,, = fo:l ﬁr(bm) decisions before the nth play. By our convention to start
at po, the decision of the nth play is given by p,, . O

Definition C.9. Given a simple form choice sequence p, we define the decision filtration
induced by p by

Gh={AeFT) : An{n,=r} e F(r)} (C.5)
where 7 is the recording sequence corresponding to (1, p).
Lemma C.10. The sequence of o-algebras (Gf) given in Definition C.9 forms a filtration,
ie. GhCGr, .
Proof. Suppose that A € G, then forr € S and m € {0} UM,

An{n, =r—eM} e Fr—e™) C F(r).
Moreover, by definition, {p, = m} € G, it follows that

M
AN{npp1=r}= U (An{n, =r— e(m)}) N ({pn=m}{n, =r— e(m)}) € F(r).

m=0

Hence, A€ G/ ;. O

Lemma C.11. With (£?) as in Remark 4.14 and (G*) in Definition C.9, £ is GP-measur-
able. In particular, H?, := o (&,...,£°) C G~.

Proof. By Lemma C.10, p,,_; is G/-measurable. Hence, for a fixed B € B, we have

(€ eByn{n, =1y ={7) € By n{n. =1} N {pu_1 = m} € F(r).

€F(r) as {pn—1=m} € G},

Therefore, £ is Gf-measurable and the last assertion follows from Lemma C.10. O
Theorem C.12. With (H?),>o as in Remark 4.14 and (G%),>o in Definition C.9, Gf, = H?’.

Proof. We will prove this result by induction. It is clear that G/ = H/. We now assume
that G/ _, =H/_,.

By Lemma C.11, it suffices to show that G£ C H?. Recall from Definition 4.8 that for
n < L, the recording sequence 7,, takes values in §,, := {r esS Zf\,{zl r(m) = n}

For a fixed r € Sy, we define P, to be the space of sequences of length S __ (™)
with values in M with exactly 7("™) replications of m € M. (e.g. for M = {1,2},
Pi1 = {(1,1,1,2),(1,1,2,1),(1,2,1,1),(2,1,1, 1) }).

For A€ Gf and 7 € P,,

An{(pr)o<k<n—1 =7} = A0 {(pr)oskcn—1 =7} N {ny =1} € F(r).

By the Doob-Dynkin lemma, there exists a measurable function f : R® — R such that

]IAO{(m)ogkgnﬂ:w} - f((ft )IStSr(T’L)7mEM) N f(< t )1§t§r<””>-,m€M)H{(f’k)OSkS”*:”}
= fﬂ’((Elg)lgkgn)H{(Pk)ogkgn—lzﬂ} (€0

for some measurable function f, defined by reordering the input of f by =.
By the inductive hypothesis, I {(0)ocpen 1=} 18 G”_,-measurable and thus H/ -
k)Jo<k<n—1—
measurable. Hence, the RHS of (C.6) is H”-measurable. Therefore, we know I4 =
Y oreSy dneP, ]IAO{(pk)nggn—lzﬂ-} is Hf-measurable, i.e. A € Hf, which completes the

proof. O
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D Numerical algorithm to estimate robust Gittins index

To approximate the value of v g r (p,1/4/n) in the setting of Section 5, we proceed
following the rough recipe below. (The code used is available on request.)
Fix a grid of values for v € G C [0, 1].

1. Set Vg(p, ﬁ) —0.

2. Assume that we know V| ;. We evaluate the backward recursion

VtW (pa \/%—Ft) = min {0: 5(t) ((h(t) —7) + ﬂvtll (pt+17 ﬁ)) (pt,nt):(p,n+t)}.

This is done by considering the discrete values of p and using linear interpolation
over [0, 1].

3. Using these iterates, determine the initial value function

e

By Snell’s envelope argument,

(po,no)=(p,n)

1 . T
U 7:T) = Ez%ﬁf(;ﬂt (0= |

(pg,no):(p,n)
4. Repeat step 1-3 for all v € G.

5. Calculate vy g,7(p, 1//n) for a fixed (p,1/4/n) by

’Yk,ﬁ,T(pa %) = min {Ay eG: U(%p, %) < 0}.

6. Repeat the previous step to compute v g 7(p, 1/1/n) for other values of (p,1/y/n)
and obtain the surface by linear interpolation.
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