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Abstract

The halfspace depth is a prominent tool of nonparametric inference for multivariate
data. We consider it in the general context of finite Borel measures µ on Rd. The
halfspace depth of a point x ∈ Rd is defined as the infimum of the µ-masses of
halfspaces that contain x. We say that a measure µ has a simple (halfspace) depth if
the set of all attained halfspace depth values of µ on Rd is finite. We give a complete
description of measures with simple depths by showing that the halfspace depth of µ
is simple if and only if µ is atomic with finitely many atoms. This result completely
resolves the halfspace depth characterization problem for the particular situation of
simple halfspace depths and datasets. We also discuss the cardinality of the set of the
attained halfspace depth values.
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1 Introduction: simple halfspace depth

In multivariate spaces Rd with d > 1 no canonical notions of quantiles, ranks, or
orderings exist. To perform nonparametric analysis of such data, one therefore often
considers data-dependent orderings of points based on the so-called statistical depth
functions. Depths are supposed to quantify the centrality of any point x ∈ Rd with
respect to (w.r.t.) a dataset in Rd, or more generally, w.r.t. a given (probability) measure
µ on Rd. The higher the depth of x is, the more centrally positioned x is in the mass of µ.
Many statistical depth functions have been developed in the past decades [20]. We focus
on the classical halfspace depth (also called Tukey depth) [1, 19], which is already for 40
years a subject of active research in statistics and probability [3, 4, 8, 9, 10, 14, 16].

Denote byM
(
Rd
)

the collection of all finite Borel measures on Rd, and let Sd−1 ={
x ∈ Rd : ‖x‖ = 1

}
be the unit sphere in Rd. For x ∈ Rd, write

H(x) =
{{
y ∈ Rd : 〈y, v〉 ≥ 〈x, v〉

}
: v ∈ Sd−1

}
for the set of all closed halfspaces that contain x on their boundary. The halfspace depth
of x ∈ Rd w.r.t. µ ∈M

(
Rd
)

is defined by

D (x;µ) = inf {µ(H) : H ∈ H(x)} . (1.1)
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The motivation for this work comes from the halfspace depth characterization prob-
lem: Given a measure µ ∈ M

(
Rd
)
, is it possible that there exists ν 6= µ such that

D (x;µ) = D (x; ν) for all x ∈ Rd? Measures µ for which the answer is negative are
said to be characterized by their halfspace depth. The problem of determination of all
characterized measures is of importance in multivariate inference, as only for them the
halfspace depth provides a valid nonparametric representative. It is known that for d > 1

there are measures that are not characterized by halfspace depth [13]. Nevertheless,
large collections of measures are known to be characterized. In particular, finitely atomic
measures, that is purely atomic measures with finitely many atoms, are determined by
their halfspace depth uniquely [6, 18], and efficient algorithms for their reconstruction
from depth have been developed [7]. The general problem of identifying all measures
with unique halfspace depth is, however, still open [12].

We say that a measure µ ∈M
(
Rd
)

has a simple depth if the halfspace depth function
x 7→ D (x;µ) attains only finitely many different values. Finitely atomic measures have
simple depths. The main result of the present note is the converse to this claim — finitely
atomic measures are the only ones with simple depths. Combining the present finding
with the exact reconstruction procedure for µ from its simple halfspace depth function
[7] we therefore completely resolve the halfspace depth characterization problem for
simple depths, finitely atomic measures, and datasets.

In Section 2 we gather preliminaries necessary to prove our main result. We introduce
a flag halfspace — a useful symmetric intermediary between a closed and an open
halfspace in Rd that simplifies proofs. Indeed, a common problem with the theoretical
analysis of the halfspace depth is that the infimum in (1.1) does not have to be attained.
It is guaranteed to be attained if: (i) µ is smooth1 or (ii) for µ finitely atomic. For that
reason, it is common in the literature that theoretical results on the halfspace depth
are formulated only for these two special classes of measures (smooth or atomic). As
proved in [15], replacing closed halfspaces with their flag counterparts in (1.1), the
infimum becomes a minimum. This observation greatly facilitates the analysis for general
measures and shortens the proofs of our main results considerably. Section 3 is devoted
to the proof of our main result on simple depths. In addition, several observations
regarding the cardinality of the set of the attained depth values are given. It is shown
that a measure whose support has finitely many connected components cannot attain
countably infinite number of different depth values, and several illustrating examples
complete the picture.

Notations

In addition to the standard apparatus of probability theory, we use the terminology
and results from convex geometry. Our basic reference is [17].

The affine hull aff (S) of S ⊆ Rd is the smallest affine subspace (flat) of Rd containing
S. The dimension dim(S) of S is defined as the dimension of aff (S). We write int (S),
cl (S), and bd (S) for the interior, closure, and boundary of S ⊆ Rd. The relative interior
relint (S), relative closure relcl (S), and relative boundary relbd (S) of S is the interior,
closure, and boundary of S, respectively, when considered only in the affine space aff (S).
In case dim(S) = d, the interior is the same as the relative interior etc. The relatively
open line segment between two different points x, y ∈ Rd is denoted by L(x, y).

The collection of all closed halfspaces in Rd is denoted by H. For a generic halfspace
from H we usually write H; Hx,v denotes a halfspace

{
y ∈ Rd : 〈y, v〉 ≥ 〈x, v〉

}
whose

boundary passes through x ∈ Rd and has inner normal v ∈ Rd \ {0}. For an affine space
A ⊆ Rd and x ∈ A we write H(x,A) for the set of all relatively closed dim(A)-dimensional

1We say that µ ∈ M
(
Rd

)
is smooth if the µ-mass of every hyperplane in Rd is zero.
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halfspaces H in A whose relative boundary contains x. We say that a sequence of closed
halfspaces {Hxn,vn}∞n=1 ⊂ H converges to Hx,v ∈ H if xn → x and vn → v. Finally, for any
of the symbols H, H(x), or H(x,A), a superscript ◦ refers to the corresponding relatively
open halfspaces, e.g. H◦(x,A) = {relint (H) : H ∈ H(x,A)}.

We write supp (µ) for the support2 of a measure µ ∈ M
(
Rd
)
. The restriction of

µ ∈ M
(
Rd
)

to a Borel set S ⊆ Rd is denoted by µ|S ∈ M
(
Rd
)

and is defined by
µ|S (B) = µ (B ∩ S) for B ⊆ Rd Borel. The collection of all finitely atomic measures
µ ∈M

(
Rd
)

is denoted by A
(
Rd
)
; it is exactly the set of finite Borel measures in Rd with

finite support.

2 Preliminaries: flag halfspaces

We begin by recalling the definition of flag halfspaces together with the main the-
orem from [15]. The idea of flag halfspaces rests in the fact that even though the
infimum in (1.1) does not have to be attained, by a compactness argument there al-
ways exists a convergent sequence {Hn}∞n=1 of closed halfspaces from H(x) whose
µ-masses converge to D (x;µ). Denote by limn→∞Hn = H the limiting halfspace. Then
µ(H) ≥ limn→∞ µ(Hn) = D (x;µ) in general. In order to construct a flag halfspace F sat-
isfying µ(F ) = D (x;µ) one first takes the open halfspace int (H). Then one considers the
depth of x in the lower dimensional space bd (H) w.r.t. the restriction of µ to bd (H), and
proceeds to obtain another open halfspace in the (d−1)-dimensional space bd (H) whose
µ-mass approximates the depth of x inside that hyperplane. This procedure continues
iteratively until one reaches dimension 1, and gets an open halfline that originates in x.
The flag halfspace F is then defined as the union of all these relatively open halfspaces
of dimensions 1, . . . , d, respectively, and the (zero-dimensional) point x itself. For details
we refer to [15].

Definition 2.1. A flag halfspace at a point x ∈ Rd is any set of the form

F = {x} ∪

(
d⋃
k=1

Gk

)

where Gd ∈ H◦(x), and Gk ∈ H◦(x, relbd (Gk+1)) for every k = 1, . . . , d−1. We call Gk the
k-dimensional face of F . The inner normal vector vk ∈ Sd−1 of Gk (when Gk is considered
as a set inside aff (Gk)) is called the k-dimensional inner normal of F , k = 1, . . . , d. The
collection of all flag halfspaces at x is denoted by F(x). We write F(x,A) for the system
of all flag halfspaces at x ∈ A considered in an affine subspace A ⊆ Rd.

The reason for introducing flag halfspaces is the following theorem. Its proof uses
the ideas outlined above; in detail it can be found in [15].

Theorem 2.2. For any µ ∈M
(
Rd
)

and x ∈ Rd we have

D (x;µ) = min {µ (F ) : F ∈ F(x)} .

In particular, there always exists a flag halfspace F ∈ F(x) such that D (x;µ) = µ(F ).

We proceed by deriving several auxiliary results on flag halfspaces that will be useful
in what follows. Note that a flag halfspace is neither an open nor a closed set. In contrast
to a usual closed halfspace, a complement of a flag halfspace F ∈ F(x) is, except for its
central point x, again a flag halfspace from F(x), i.e. (Rd \ F ) ∪ {x} ∈ F(x). A simple
consequence is the following characterization.

Lemma 2.3. Let x ∈ F ⊆ Rd. Then F ∈ F(x) if and only if both these statements hold:

2The support of µ ∈ M
(
Rd

)
is defined as the smallest closed set in Rd of full µ-mass [2, page 227].
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(i) F is convex,

(ii) If x ∈ L(y, z) for y, z ∈ Rd, then y ∈ F if and only if z /∈ F .

Proof. Assume first that F ∈ F(x). To prove the convexity of F , take two arbitrary

points y, z ∈ F = {x} ∪
(⋃d

k=1Gk

)
, y 6= z. Denote G0 = {x}. Then y ∈ Gk and z ∈ Gl

for some k, l ∈ {0, . . . , d}, without loss of generality (w.l.o.g.) k ≥ l. Then z ∈ relcl (Gk)

giving L(y, z) ⊂ Gk ⊂ F , and the set F is convex. To prove (ii), we first denote by
G−k = relint (aff (Gk) \Gk) the relative interior of the complement of Gk in its affine hull.
Note that for all k ∈ {1, . . . , d} we have that x ∈ relbd (Gk), and x ∈ L(y, z) implies that

y ∈ Gk if and only if z ∈ G−k . Because F ∩
(⋃d

k=1G
−
k

)
= ∅ we conclude that y ∈ F if and

only if z /∈ F , verifying condition (ii).

For the opposite implication, assume that F is a convex set satisfying (ii). W.l.o.g. take
x to be the origin and denote by lv = {r v : r > 0} the halfline from the origin in direction
v ∈ Sd−1. Conditions (i) and (ii) imply that for any v ∈ Sd−1 one of the open halflines lv and
l−v belongs to F , while the other one has empty intersection with F . Therefore, F is a
convex cone and F 6= Rd, so it has to be contained in a closed halfspace Hd ∈ H(x) using
the same argument as in [17, Theorem 1.3.9]. Set Gd = int (Hd) and take any y ∈ Gd.
Surely −y /∈ Hd, so −y /∈ F and consequently y ∈ F . Therefore, Gd ⊆ F ⊆ Hd. Now take
Fd−1 = F ∩ bd (Gd), that is F = Gd ∪ Fd−1. Obviously, Fd−1 is a convex set satisfying (ii),
so we can proceed in the same manner as before, reducing our construction to the
(d − 1)-dimensional space bd (Gd). We conclude that there is Gd−1 ∈ H◦(x, bd (Gd))

such that Gd−1 ⊆ Fd−1 ⊆ relcl (Gd−1). Denoting Fd−2 = Fd−1 ∩ relbd (Gd−1), we are
able to write F = Gd ∪ Gd−1 ∪ Fd−2. Continuing this procedure, we eventually reach
G1 ∈ H◦(x, relbd (G2)) such that G1 ⊆ F1 ⊆ relcl (G1) = G1 ∪ {x}. Because x ∈ F1 and F1

is one-dimensional, it has to be F1 = G1 ∪ {x}. Finally, F = {x} ∪
(⋃d

k=1Gk

)
∈ F(x).

Further consequences of the characterization of flag halfspaces from Lemma 2.3 are
summarized in the following lemma.

Lemma 2.4. Let F ∈ F(x).

(i) For any y ∈ F the flag halfspace Fy = F + (y − x) = {z + (y − x) : z ∈ F} ∈ F(y) is
a subset of F . If, in addition y 6= x, then Fy ⊂ F \ {x}.

(ii) If A is an affine subspace of Rd and x ∈ A, then F ∩A ∈ F(x,A).

Proof. Part (i) follows directly from the fact that F − x is a convex cone in Rd, as implied
by the equivalent characterization from Lemma 2.3. A convex cone is closed under
Minkowski addition of its elements [17, Section 1.1] giving directly Fy ⊆ F . If y 6= x,
certainly L(x, y) ∪ {x} ⊆ F \ Fy.

For part (ii) note that F is convex and satisfies condition (ii) from Lemma 2.3. Then
A ∩ F is also a convex set that satisfies condition (ii) of Lemma 2.3, and therefore
F ∩A ∈ F(x,A) due to Lemma 2.3 again.

For a compact convex set C ⊆ Rd and v ∈ Sd−1 there always exists [17, Theorem 1.3.2]
a closed halfspace H ∈ H with inner normal v that supports C, i.e. C ⊂ H and
C ∩ bd (H) 6= ∅. We say that the opposite closed halfspace cl

(
Rd \H

)
touches the set C.

The dimension of the touching face bd (H) ∩ C may, however, take any value between 0

and d− 1. Our final preliminary observation concerns a refinement of this result using
flag halfspaces — one can always find a flag halfspace with given inner normal vectors
that intersects C at exactly one point.
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Lemma 2.5. For any compact convex set C ⊂ Rd, x ∈ C and F ∈ F(x) there exists
y ∈ relbd (C) and Fy ∈ F(y) such that (i) Fy ⊆ F , (ii) the k-dimensional inner normal of
Fy is the same as that of F for all k = 1, . . . , d, and (iii) Fy ∩ C = {y}.

Proof. Denote F = {x} ∪
(⋃d

k=1Gk

)
. There exists a closed halfspace H that touches

C at xd ∈ C ∩ F and has the same inner normal as Gd. Then the flag halfspace F̃d =

F +(xd−x) ∈ F(xd) satisfies F̃d ⊆ F by Lemma 2.4. Also, all the inner normals of F̃d and

F coincide, and the d-dimensional face of F̃d is G̃d = int (H). Denote Ad−1 = bd
(
G̃d

)
and

Cd−1 = C ∩Ad−1. Surely, Cd−1 is a compact convex set in the subspace Ad−1, and we can
repeat the previous procedure in Ad−1. We iterate the process, decreasing the dimension
by one in each step. Eventually, we reach C0 = {y} ⊂ C and Fy = F + (y − x) ∈ F(y)

having all the desired properties.

3 Simple halfspace depth

The apparatus of flag halfspaces developed in Section 2 allows us to state results
concerning a measure µ ∈M

(
Rd
)
, knowing only its halfspace depth function D (·;µ). In

the theory that follows, a crucial concept will be that of the (halfspace depth) central
regions of µ at level α ≥ 0 defined by

Dα(µ) =
{
x ∈ Rd : D (x;µ) ≥ α

}
, and Uα(µ) =

{
x ∈ Rd : D (x;µ) > α

}
. (3.1)

In multivariate statistics, the central regions Dα(µ) play the role of the inter-quantile
regions of µ. They are closed, convex and nested. For α > 0 the region Dα(µ) is compact.
Also the regions Uα(µ) are nested and convex, but not necessarily closed or open sets.
The closure of Uα(µ) is always contained in Dα(µ).

We begin with an auxiliary result that is interesting by itself — the halfspace depth of
µ cannot be constant on a (relatively) open set of positive µ-mass.

Lemma 3.1. Let µ ∈M
(
Rd
)

and let K ⊂ Rd be a relatively open set of points of equal
halfspace depth of µ that contains at least two points. Then µ(K) = 0.

Proof. The following simple observation will be useful.

Lemma 3.2. For µ ∈M
(
Rd
)

and an open set L ⊆ Rd with µ(L) > 0 there exists an open
ball B ⊆ L with µ(B) > 0.

Proof. Since the space Rd is separable, any open set L can be written as a countable
union of open balls [2, Proposition 2.1.4]. Thus, by countable additivity of µ, there has to
exist a ball with positive µ-mass.

We continue with the proof of Lemma 3.1. Denote by α ≥ 0 the common depth value
of all the points in K, i.e. K ⊆ Dα(µ) \ Uα(µ). Aiming to derive a contradiction assume
that µ(K) > 0. Applying Lemma 3.2 to the space aff (K) we see that for µ(K) > 0 to be
true, K must contain a relatively open ball of positive µ-mass. Since balls are convex,
we can also assume, w.l.o.g., that K is convex. Put

n = min{dim(M) : M ⊆ K,µ(M) > 0 and M is convex}. (3.2)

The system on the right hand side of (3.2) is non-empty since it contains K as its element.
If n = 0, then µ({x}) > 0 for some x ∈ K. Because α = D (x;µ), Theorem 2.2 allows

us to pick F ∈ F(x) such that µ(F ) = α. Since K is relatively open, convex, and contains
at least two points, there is a relatively closed line segment determined by points y, z ∈ K
such that x ∈ L(y, z). Lemma 2.3 implies that exactly one of the points y, z belongs to F .
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Suppose that y ∈ F and denote F ′ = F + (y − x) ∈ F(y). From part (i) of Lemma 2.4 it
follows that µ(F ′) ≤ µ(F )− µ({x}) < α, which contradicts y ∈ K ⊆ Dα(µ).

Therefore, it must be n > 0, and we can find M ⊆ K convex with µ(M) > 0 and
dim(M) = n > 0. Denote A = aff (M). We may assume that M is relatively open (in
A), otherwise, we consider the set K ∩ A ⊇ M instead of M . Take any x ∈ M . There
is Fx ∈ F(x) such that µ(Fx) = α by Theorem 2.2. We apply Lemma 2.5 to obtain
y ∈ relbd (M) and Fy ∈ F(y) such that Fy ⊆ Fx and Fy ∩ relcl (M) = {y} ⊂ relbd (M).
Because M is relatively open, it follows that

Fy ∩M = ∅. (3.3)

From part (ii) of Lemma 2.4 we know that F ′x defined as A ∩ Fx is an element of F(x,A).
Denote by Gx = relint (F ′x) ∈ H◦(x,A) the n-dimensional face of F ′x. Because of (3.3) we
know that the sets M ∩Gx and Fy are disjoint subsets of Fx, and we can write

µ (Fy) + µ (M ∩Gx) ≤ µ (Fx) = α. (3.4)

Because y ∈ relbd (M), and M is a subset of the closed set Dα(µ), it must be y ∈ Dα(µ).
By the definition of the halfspace depth and Theorem 2.2 we therefore have µ(Fy) ≥ α,
which together with (3.4) gives that

µ (M ∩Gx) = 0. (3.5)

Define the system of sets G by {Gx : x ∈ M}, and let S = M \ (
⋃
{G : G ∈ G}). Note

that because M is convex and each G ∈ G is an open halfspace in A, also the set S is
convex. With the intention of reaching a contradiction, suppose that dim(S) = dim(A).
Because the relative interior of any non-empty convex set in Rd is non-empty [17,
Theorem 1.1.13], there exists x ∈ relint (S). Because x ∈ M , from the way we defined
G it follows that there must exist Gx ∈ G such that x ∈ relbd (Gx). But then, dim(S) =

dim(A) = n, x ∈ relint (S), and Gx ∈ H◦(x,A) implies that necessarily S ∩ Gx 6= ∅, a
contradiction with the definition of S. We have shown that dim(S) < dim(A) = dim(M).

We showed in (3.5) that µ(M ∩G) = 0 for all G ∈ G. Therefore,
⋃
{G ∩M : G ∈ G} is

a union of a system of sets that are relatively open in A, each of µ-mass 0. Lemma 3.2
applied to the space A guarantees that also µ (

⋃
{G ∩M : G ∈ G}) = 0, leading to

µ(S) = µ(M) > 0. But this is in contradiction with our choice of n in (3.2) because
we found a convex set S ⊆ K of positive µ-mass such that dim(S) < dim(M) = n.

Our complete characterization of measures with simple halfspace depths is a conse-
quence of Lemma 3.1.

Theorem 3.3. A measure µ ∈M
(
Rd
)

has a simple depth if and only if µ ∈ A
(
Rd
)
.

Proof. The halfspace depth of a finitely atomic measure µ ∈ A
(
Rd
)

is known to be
simple, with all depth regions (3.1) being convex polytopes [7, Lemma 1]. To prove the
non-trivial implication of Theorem 3.3 we proceed in two steps. First, in Lemma 3.4 we
show that a simple depth cannot correspond to an atomic measure with infinitely many
atoms — we denote such measures by A∞

(
Rd
)
. Then, we exclude also measures that

are not purely atomic in Lemma 3.5.

Lemma 3.4. A measure µ ∈ A∞
(
Rd
)

does not have a simple depth.

Proof. Suppose, for a contradiction, that the depth of µ ∈ A∞
(
Rd
)

is simple. Then
there must exist infinitely many atoms of µ with the same depth. Denote by α ≥ 0 the
smallest value so that D (x;µ) = α for infinitely many atoms x of µ, and denote the set
of such atoms by A. For each x ∈ A we find a flag halfspace Fx ∈ F(x) of µ-mass α
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by Theorem 2.2. Note that for any y ∈ Fx, y 6= x, we have Fy = Fx + (y − x) ∈ F(y)

and D (y;µ) ≤ µ (Fy) ≤ α − µ ({x}) < α due to part (i) of Lemma 2.4. Therefore,
Fx ∩Dα(µ) = {x}.

Since A is countably infinite, we can enumerate its different elements, and write
A = {xn : n = 1, 2, . . . }. Define {yn}∞n=1 ⊂ R by yn = µ({xn})−µ({x1}). We first show that
there exists a subsequence {zn}∞n=1 of {yn}∞n=1 such that zn 6= zm for every n 6= m. Indeed,
otherwise the sequence {yn}∞n=1 would attain only finitely many different values, so there
would exist an infinite constant subsequence {ynk}∞k=1 of {yn}∞n=1. In that case, however,
for some c ∈ R we would have ynk = µ({xnk})− µ({x1}) = c and µ({xnk}) = µ({x1}) + c

for each k = 1, 2, . . . . That is, however, impossible because each µ({xnk}) would then
have to be the same positive constant, which cannot happen as the total mass of µ is
finite.

Since µ(Fxn) = α for each n = 1, 2, . . . , we have

µ(Fx1 \ {x1})−µ(Fxn \ {xn}) = (α−µ({x1}))− (α−µ({xn})) = µ({xn})−µ({x1}). (3.6)

We have established that Fxn ∩ Dα(µ) = {xn} for each xn. That means that the mass
in (3.6) is equal to

∑
x∈M µ({x})−

∑
x∈N µ({x}) where M and N are disjoint subsets of

the finite set of all atoms outside Dα(µ). From the considerations above, we concluded
that there are infinitely many different values (3.6), so there have to be infinitely many
atoms outside Dα(µ). Consequently, there would have to exist infinitely many atoms with
the same depth β for some β < α, a contradiction with our choice of α.

Lemma 3.5. A measure µ ∈M
(
Rd
)

with a non-trivial non-atomic part does not have a
simple depth.

Proof. Denote by ν ∈ M
(
Rd
)

the non-atomic part of µ ∈ M
(
Rd
)

and suppose for a
contradiction that the depth of µ is simple. Writing 0 = α1 < α2 < · · · < αm for all the
depth values attained by µ, we can decompose the sample space into disjoint sets

Rd =

m⋃
i=1

(Dαi(µ) \ Uαi(µ)) .

Because ν(Rd) > 0, there must exist i ∈ {1, . . . ,m} such that ν(Dαi(µ) \ Uαi(µ)) > 0.
Because Uαi(µ) = Dαi+1(µ) for i = 1, . . . ,m− 1 and Uαm(µ) = ∅ we know that each Uα(µ)

is closed. For every x ∈ Dαi(µ) \ Uαi(µ) therefore exists an open ball Bx centered at x
that has empty intersection with Uαi(µ) and consequently

Dαi(µ) \ Uαi(µ) ⊆
⋃
{Bx : x ∈ Dαi(µ)} .

On the right hand side of the previous display we have a union of open sets. Using
Lemma 3.2, it must be that ν(Bx ∩ Dαi(µ)) > 0 for some x ∈ Dαi(µ). Consider the
restriction λ = ν|Bx∩Dαi (µ) ∈ M

(
Rd
)
, denote by C the convex hull of supp (λ), and

write A = aff (C). Certainly, C is a non-empty compact convex set with relint (C) ⊆
Dαi(µ) \ Uαi(µ). Note that it must be dim(A) > 0 and relint (C) 6= ∅ since ν is non-atomic
and C is non-empty and convex [17, Theorem 1.1.13]. Pick z ∈ relint (C) and find
F ∈ F(z) from Theorem 2.2 such that µ(F ) = α. Then F ∩ A ∈ F(z,A) by part (ii) of
Lemma 2.4, and G defined by relint (F ∩A) is an element of H◦(z,A). Because, in the
subspace A, z lies in the interior of the convex hull of the support of λ, every open
halfspace in A with z on its boundary has to be of positive λ-mass. Therefore,

ν(G ∩ C) = λ(G ∩ C) > 0. (3.7)
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Take Fy ⊂ F to be the flag halfspace from Lemma 2.5 that touches C with the same
collection of inner normals as F . Then Fy ∩ C = {y} ⊂ relbd (C), meaning that Fy \ {y}
and G ∩ C are disjoint sets. Since Fy ⊂ F and G ∩ C ⊂ F , we obtain that

Fy ∪ (G ∩ C) = (Fy \ {y}) ∪ (G ∩ C) ⊂ F,

leading to

ν(Fy) + ν(G ∩ C) = ν (Fy)− ν ({y}) + ν (G ∩ C) = ν(Fy \ {y}) + ν(G ∩ C) ≤ ν(F ). (3.8)

Because ν is non-atomic we have used ν({y}) = 0. Now, denote by τ = µ− ν ∈M
(
Rd
)

the (possibly trivial) atomic part of measure µ. Because Fy ⊂ F we have τ(Fy) ≤ τ(F ),
and we can conclude from (3.8) that

µ(Fy) + ν(G ∩ C) = τ(Fy) + ν (Fy) + ν (G ∩ C) ≤ τ(F ) + ν(F ) = µ(F ) = α.

Applying (3.7) to the inequality in the last formula we obtain µ(Fy) < α, which is the
desired contradiction with Theorem 2.2 since we chose y ∈ C ⊂ Dα(µ).

Combining Lemmas 3.4 and 3.5 we cover both cases in Theorem 3.3.

As a direct consequence of Theorem 3.3 we obtain a complete description of the
halfspace depth of measures from A

(
Rd
)
. Indeed, by Theorem 3.3 we know that a

given function f : Rd → [0,∞) that attains only finitely many different values can be a
halfspace depth of a measure µ only if µ ∈ A

(
Rd
)
. For such measures, all the upper level

sets (3.1) are convex polytopes [7, Lemma 1]. Not every simple function f with convex
polytopal upper level sets is, however, a depth function of a measure. To determine
whether f is a depth function, one (i) runs the reconstruction scheme from [7] to obtain
a candidate measure µ̃ ∈ A

(
Rd
)
; (ii) computes the depth D (·; µ̃); and (iii) compares that

depth function with f . The two functions coincide if and only if f is a depth of a measure,
and that measure must be µ̃.

Depths that attain countably many values

Led by our characterization of measures with simple depths, one may suspect that the
depth of µ ∈M

(
Rd
)

attains at most countably many values if and only if µ is atomic. An
example is any distribution in R supported in the integers, whose depth attains countably
many different values. The situation is, however, not as easy for all µ ∈ A∞

(
Rd
)
, as

shown in the following example.

Example 3.6. From the definition of the halfspace depth (1.1) in R it is clear that for
µ ∈M (R) and x ∈ R smaller than the median of µ in R, the halfspace depth of x equals
the value of the cumulative distribution function of µ at x. Consider now µ ∈ A∞ (R)

such that µ ({xn}) > 0 for each n = 1, 2, . . . , for an enumeration {xn}∞n=1 of all rational
points in the interval [0, 1]. Denoting by m the median of µ and taking any two different
points 0 < x < y < m, there exists a rational number xn such that x < xn < y. Because
xn is an atom of µ, it must be D (x;µ) < D (y;µ). Therefore, any two different points in
the interval (0,m) have different depth values, and the set of all attained depth values of
µ must be uncountably infinite.

It turns out that for a measure µ ∈ M
(
Rd
)

to attain uncountably many different
depth values, it is enough that µ has contiguous support in a non-trivial convex set. The
notion of contiguous support of a measure is a standard requirement that ensures regular
behavior of the halfspace depth. It goes back to [5] where it was defined that the support
of µ is contiguous if the set supp (µ) cannot be separated by a slab, that is a non-empty
open set between two parallel hyperplanes in Rd, of null µ-mass. Convex, or connected
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support is certainly contiguous. In our treatment, we need only a substantially weaker
condition. We say that µ ∈M

(
Rd
)

has a contiguous support in a convex set C ⊆ Rd if
for all x, y ∈ relint (C) and closed halfspaces H ∈ H(x, aff (C)), H ′ ∈ H(y, aff (C)) such
that H ′ ⊂ H it follows that µ(H ′) < µ(H). Of course, if the restriction of µ to aff (C) has
contiguous support, then its support is also contiguous in C.

Lemma 3.7. If µ ∈M
(
Rd
)

has contiguous support in a convex set C ⊆ Rd that contains
at least two points, then the set of the attained depth values of µ in the set C is
uncountably infinite.

Proof. Denote A = aff (C), and write intA(S) for the interior of a set S ⊆ A when
considered in the affine space A. Every convex set contains a closed convex subset of
the same dimension, meaning that we can suppose w.l.o.g. that C is closed. First we
show

intA (C ∩ cl (Dα(µ) \ Uα(µ))) = ∅ for all α ≥ 0. (3.9)

Denote K = C ∩ cl (Dα(µ) \ Uα(µ)) and take, for a contradiction, x ∈ intA (K). There is
an open ball B ⊆ K in space A centered at x. Take F ∈ F(x) such that µ(F ) = α from
Theorem 2.2. Due to Lemma 2.4, part (ii), F ′ = A ∩ F ∈ F(x,A). Then G = relint (F ′) ∈
H◦(x,A), and since we assumed dim(A) > 0, we get that there exists y ∈ B ∩G. Note
that necessarily {x, y} ⊂ intA (K) ⊆ relint (C). Denote the normal of G in A by v ∈ Sd−1.
Then Hy,v ∈ H(y,A), H(x+y)/2,v ∈ H((x + y)/2, A) and Hy,v ⊂ H(x+y)/2,v ⊂ F ′, so by
the assumption of contiguous support, it must be µ (Hy,v) < µ

(
H(x+y)/2,v

)
≤ α, which

contradicts y ∈ B ⊂ cl (Dα(µ) \ Uα(µ)) ⊆ cl (Dα(µ)) = Dα(µ). We have shown (3.9).

Suppose now for a contradiction that there are only countably many different values
{αi}∞i=1 of the depth D(·;µ) on C. That means that

C =

∞⋃
i=1

(C ∩ cl (Dαi(µ) \ Uαi(µ))) . (3.10)

Due to (3.9) we know that in A, each of the countably many sets on the right hand side
of (3.10) is closed with empty interior. By the Baire category theorem [11, Theorem 48.2]
it means that C must have empty interior in A, which contradicts with the fact that C is
convex and dim(C) = dim(A) [17, Theorem 1.1.13].

One has to be careful when interpreting the result of Lemma 3.7. Its assumption
is a property of the measure µ ∈ M

(
Rd
)

rather than just a property of its support
supp (µ) ⊆ Rd. To see this, consider µ ∈ A∞

(
R2
)

that attaches positive mass to the
elements of the countably infinite sequence of atoms

A =
{

(j/n, 1/n) ∈ [0, 1]2 : n = 1, 2, . . . , and j = 0, 1, . . . , n
}
.

The support of µ, being a closed set, is the union of A with the relatively closed line
segment L between the origin and the point (1, 0) ∈ R2. Nevertheless, µ(L) = 0 and
µ does not satisfy the conditions of Lemma 3.7. On the other hand, the measure
ν ∈ M

(
R2
)

obtained as a sum of µ and the uniform probability distribution on L does
possess contiguous support in the non-trivial convex set L, and Lemma 3.7 applies. At
the same time, certainly, supp (µ) = supp (ν).

Depth and topological connectedness of the support

Contiguous support of µ from Lemma 3.7 is not necessary for the halfspace depth of
µ to attain uncountably many values. A beautiful example of a measure with a totally
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disconnected3 support in R whose cumulative distribution function (and therefore also
its halfspace depth) attains uncountably many values [2, Section 5.5, Problem 8] is the
Cantor measure in the interval [0, 1].

More generally, there appears to be only weak relation between the degree of
topological connectedness of supp (µ) and the cardinality of the set of depth values of µ.
Our observation to be made is the following.

Theorem 3.8. A measure µ ∈ M
(
Rd
)

whose support is a union of finitely many con-
nected sets has either simple depth, or its depth function D (·;µ) attains uncountably
many values.

Proof. Denote by S1, . . . , Sm ⊆ Rd the connected components of supp (µ), i.e. the disjoint
closed connected sets such that

⋃m
j=1 Sj = supp (µ). If each Sj is a single point set, then

µ ∈ A
(
Rd
)

and the depth of µ is simple by Theorem 3.3. Suppose therefore that the set
S1 contains two different points, and denote by C the convex hull of S1. We will show
that µ satisfies the assumptions of Lemma 3.7 with this choice of C.

We know that S1 can be disconnected from each Sj in the sense that there exist open
sets U2, . . . , Um in Rd such that S1 ⊂ Uj and Uj ∩ Sj = ∅, for each j = 2, . . . ,m. Define

U1 =
⋂m
j=2 Uj . This is an open set in Rd that satisfies S1 ⊂ U1 and U1 ∩

(⋃m
j=2 Sj

)
= ∅.

Take any two points x 6= y from relint (C), H ∈ H(x, aff (C)), and H ′ ∈ H(y, aff (C)) such
that H ′ ⊂ H. Since S1 is connected, there must exist z ∈ S1 located in the relatively
open slab in A = aff (C) between the boundaries of H and H ′. Because z ∈ S1 ⊆ supp (µ),
each open ball Bz in Rd centered at z is of positive µ-mass. We take such a ball Bz that
is contained in U1, which is possible because z ∈ S1 ⊂ U1 and U1 is open in Rd. The open
set Bz \A ⊆ U1 \S1 is constructed to be disjoint with supp (µ). Hence, µ (Bz \A) = 0 and
necessarily µ(Bz ∩A) = µ(Bz) > 0 for every ball Bz centered at z with a small enough
radius. Take Bz so small that the relatively open ball Bz ∩A is contained the slab H \H ′
in A. Then µ(H) = µ(H \H ′) + µ(H ′) ≥ µ(Bz ∩ A) + µ(H ′) > µ(H ′), and we can apply
Lemma 3.7, which concludes the proof.

For measures µ ∈M
(
Rd
)

whose support has infinitely many connected components,
the depth function D (·;µ) can attain both countably and uncountably many different val-
ues. We conclude with a simple example of an atomic measure with a totally disconnected
support that is contiguous in the sense of Lemma 3.7.

Example 3.9. Consider µ ∈ A∞
(
R2
)

whose support is S =
⋃∞
n=1 Sn with

Sn =

{(
n cos

(
2π j

n2

)
, n sin

(
2π j

n2

))
∈ R2 : j ∈

{
1, . . . , n2

}}
.

Each set Sn contains n2 equidistant points on the circumference of a circle of radius
n. The distance of two adjacent points in Sn approaches zero as n → ∞. The set S is
totally disconnected. For any H ∈ H we have that Sn ∩H 6= ∅ for all n large enough, and
for any H ′ ∈ H such that H ′ ⊂ H there exists an element of S ∩ int (H \H ′). Thus, the
condition of Lemma 3.7 is satisfied with C = R2, and the depth of µ attains uncountably
many different values.

Conclusions

It remains to summarize our findings. By Theorem 3.3, only a finitely atomic measure
can possess a halfspace depth with finitely many values. By Theorem 3.8 any measure

3A set is said to be (topologically) connected if it cannot be partitioned into two non-empty subsets that are
contained in disjoint open sets. A set is totally disconnected if all its connected subsets are one-point sets [11,
Chapter 3].
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with a non-trivial (that is, containing at least two points) connected component of its
support necessarily attains uncountably many values of the halfspace depth. Lemma 3.7,
however, asserts that also measures with “sufficiently irregular” totally disconnected
supports can attain uncountably many depth values. Altogether, it appears that in
general it is a relatively rare situation that a halfspace depth of a measure would attain
only countably infinite number of different depth values, and it is not straightforward to
characterize such measures. A conclusive answer to the halfspace depth characterization
problem for general atomic measures therefore appears elusive.
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