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Abstract

Occupancy processes are a broad class of discrete time Markov chains on {0, 1}n

encompassing models from ecology and epidemiology. This model is compared to a
collection of n independent Markov chains on {0, 1}, which we call the independent
site model. We establish conditions under which an occupancy process is smaller in
the lower orthant order than the independent site model. An analogous result for spin
systems follows by a limiting argument.
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1 Introduction

Occupancy processes [10] are a class of discrete time Markov chains on {0, 1}n.
This class encompasses models from diverse areas including Hanski’s incidence func-
tion model [9], which is one of the most important models in metapopulation ecology,
contact-based epidemic spreading processes [7] and dynamic random graph models
[8]. Furthermore, it was shown in [13] that occupancy processes are natural time dis-
cretisation for finite spin systems such as contact process, voter model and Ising model
[12].

We define the occupancy process (X, t ∈ N) as a discrete time Markov chain on
{0, 1}n where, conditional on Xt, the Xi,t+1, i = 1, . . . , n, are independent with transition
probabilities

P (Xi,t+1 = 1 | Xt) = Ci(Xt) (1−Xi,t) + Si(Xt)Xi,t, (1.1)

where the functions Ci : {0, 1}n → [0, 1] and Si : {0, 1}n → [0, 1] are called the colonisation
and survival functions of site i in reference to metapopulation modelling. We interpret
Xi,t = 1 as site i supporting a population at time t, and Xi,t = 0 as site i not supporting a
population at time t. If site i does not support a population at time t, then the site will be
colonised at time t+ 1 with probability Ci(Xt). Similarly, if site i supports a population
at time t, the population will survive to time t+ 1 with probability Si(Xt).

Although the occupancy process is a finite state Markov chain, the size of the state
space usually renders standard analysis intractable. Instead a variety of approximations
are employed to understand the process’s behaviour. Provided the colonisation and
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Dominating occupancy processes

survival functions can be extended from {0, 1}n to [0, 1]n, a natural approximation of (1.1)
is the deterministic process

pi,t+1 = Ci(pt) (1− pi,t) + Si(pt)pi,t, (1.2)

where pi,0 = Xi,0. It is known that for suitable sets H ⊂ Rn and assuming all the
colonisation and survival functions are influenced by a large number of sites,

sup
h∈H

∣∣∣∣∣n−1
n∑
i=1

hi(Xi,t − pi,t)

∣∣∣∣∣
is small in probability when n is large [3, 10].

Demonstrating the closeness of paths is not the only way to relate stochastic and
deterministic models. Allen [1] (see also [16]) showed that the expectation of the
stochastic logistic model is overestimated by its deterministic counterpart. A similar
result has been demonstrated for the SIR epidemic model [20] and a general non-
Markovian network based SIR model [21]. Our first aim is to establish conditions under
which the analogous result for model (1.1) holds, namely E0Xi,t ≤ pi,t, where E0 denotes
expectation conditioned on the initial state X0.

We then consider another type of approximation to (1.1) called the independent site
approximation. Define Wt = (W1,t, . . . ,Wn,t) where the Wi,· are independent Markov
chains on {0, 1} such that

P (Wi,t+1 = 1|Wi,t) = Ci(pt)(1−Wi,t) + Si(pt))Wi,t, (1.3)

Wi,0 = Xi,0 and pt satisfies (1.2). By construction pi,t = E0(Wi,t) for all i and all t. The
independent site approximation is motivated by propagation of chaos type results where
finite collections of particles in interacting particle systems evolve almost independently
of one another under certain conditions [17]. This phenomenon has been demonstrate
for a number of population models that exhibit a law of large numbers [2, 6]. If for a
fixed i and t the inequality E0Xi,t ≤ pi,t holds, then Xi,t ≤st Wi,t, where ≤st denotes the
usual stochastic ordering. Our second aim is to show that (1.1) is smaller than (1.3) in a
form of multivariate stochastic ordering called the lower orthant order. This result will
not require the process to display any law of large numbers behaviour for the process.

As occupancy processes are natural time discretisation for finite spin systems, we
obtain analogous results for spin systems. The bound on the expectations is obtained
using the positive correlations property of spin systems. The stochastic ordering result
for spin systems is obtained by applying a limiting argument to the occupancy process.

2 The deterministic system bounds the probability of occupation

In this section we show the deterministic process (1.2) provides a bound on the
expected state of the occupancy process (1.1). The main step in the proof is the
application of the Harris inequality.

Theorem 2.1. Assume that for each i the functions Ci and Si extended to [0, 1]n are
increasing and concave, and the Si − Ci are decreasing and non-negative. If pi,0 = Xi,0

for all i, then E0Xi,t ≤ pi,t for all i and all t ≥ 0.

Proof. We can express the Markov chain Xt as

Xi,t+1 = (1−Xi,t)I(Ui,t+1 ≤ Ci(Xt)) +Xi,tI(Ui,t+1 ≤ Si(Xt))

= I(Ui,t+1 ≤ Ci(Xt)) +Xi,tI(Ci(Xt) ≤ Ui,t+1 ≤ Si(Xt)) =: Xi(Ui,t+1, Xt),
(2.1)
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where the Ui,t form an array of independent standard uniform random variables. The
function Xi(u, x) is decreasing in u for fixed x ∈ {0, 1}n. Also, for any x, y ∈ {0, 1}n such
that x ≤ y in the partial ordering on {0, 1}n (that is, x ≤ y ⇐⇒ xi ≤ yi for all i), we
have Xi(u, x) ≤ Xi(u, y) for any u ∈ [0, 1] as Ci(x) and Si(x) are increasing in x. Hence
Xi,t is a decreasing function of the array {Ui,t}. As Si(x) − Ci(x) is decreasing in x,
we see Si(Xt)− Ci(Xt) is an increasing function of the array {Ui,t}. Taking conditional
expectations

E(Xi,t+1 | Xt) = Ci(Xt) + (Si(Xt)− Ci(Xt)) Xi,t.

Then taking expectations and applying the Harris inequality

E0Xi,t+1 ≤ E0Ci(Xt) + E0 (Si(Xt)− Ci(Xt)) E0Xi,t

= (1− E0Xi,t)E0Ci(Xt) + E0Xi,tE0 (Si(Xt)) .

As Ci and Si are concave, we can apply Jensen’s inequality to obtain

E0Xi,t+1 ≤ (1− E0Xi,t)Ci(E0Xt) + E0Xi,t Si(E0Xt). (2.2)

Write πi,t = E0Xi,t. Suppose πi,t ≤ pi,t for all i, where pt satisfies the recursion (1.2)
with pi,0 = Xi,0. Then

pi,t+1 = Ci(pt) + (Si(pt)− Ci(pt))pi,t
≥ Ci(pt) + (Si(pt)− Ci(pt))πi,t = (1− πi,t)Ci(pt) + Si(pt)πi,t,

as Si − Ci ≥ 0 and πi,t ≤ pi,t. Since Ci and Si are increasing,

pi,t+1 ≥ (1− πi,t)Ci(πt) + Si(πt)πi,t ≥ πi,t+1.

Hence, πi,t ≤ pi,t for all i and all t ≥ 0.

The deterministic process (1.2) requires the functions Ci and Si to be extended from
{0, 1}n to [0, 1]n. Without imposing additional restrictions, these functions do not have a
unique extension, but some extensions will be better than others in terms of how close
pi,t is to E0Xi,t. Let p̃t be the solution to (1.2) with the functions Ci and Si replaced by

C̃i and S̃i satisfying Ci(p) ≤ C̃i(p) and Si(p) ≤ S̃i(p) for all p ∈ [0, 1]n. If pt ≤ p̃t in the
partial order on [0, 1]n, then

pi,t+1 = (1− pi,t)Ci(pt) + pi,tSi(pt) ≤ (1− p̃i)C̃i(p̃t) + p̃i,tS̃i(p̃t) = p̃i,t+1.

In light of Theorem 2.1 we prefer smaller extensions of Ci and Si that are increasing and
concave. Methods for constructing the smallest concave extension are discussed in [18],
though the gains achieved with these methods are unlikely to repay the computational
effort required for their calculation. A relatively simple improvement can be obtained by
noting that the occupancy process is not affected by the value assigned to Ci(x) when
xi = 1. Suppose Ci is an increasing concave extension and define C̄i(p) = Ci(p̃), where
p̃j = pj for j 6= i and p̃i = 0. The function C̄i is an increasing concave function which
satisfies Ci(p) ≥ C̄i(p) for all p ∈ [0, 1]n. This means we should avoid extensions of Ci
which result in the deterministic process being ‘self-colonising’, that is the value of pi
affecting the value of Ci(p). Similar comments apply to the extension of Si since the
process is not affected by the value of Si(x) when xi = 0.

Since occupancy processes can be viewed as a time discretisation of finite spin
systems [13, Algorithms 1 & 2], it is natural consider a version of Theorem 2.1 for those
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processes. Any finite spin system (X, t ∈ R+) can be represented as a Markov jump
process in the usual transition notation:

Xi : 0→ 1 at rate λi(X)

1→ 0 at rate µi(X)
for i = 1, . . . , n, (2.3)

where λi, µi : {0, 1}n → R+. The expectation of Xi,t satisifies

E0Xi,t = Xi,0 +

∫ t

0

E0 ((1−Xi,s)λi(Xs)−Xi,sµi(Xs)) ds. (2.4)

Provided the functions λi and µi can be extended from {0, 1}n to [0, 1]n, this suggests the
deterministic approximation for the spin system is the solution to the system of ordinary
differential equations

p′i,t = (1− pi,t)λi(pt)− pi,tµi(pt). (2.5)

Theorem 2.2. Assume that for each i the functions λi extended to [0, 1]n are increasing
and concave, µi extended to [0, 1]n are decreasing and convex, and the λi + µi are
increasing. If pi,0 = Xi,0 for all i, then E0Xi,t ≤ pi,t for all i and all t ≥ 0.

Proof. With the λi increasing and the µi decreasing, the spin system (2.3) is said to be
attractive [12, III Defintion 2.1]. An attractive spin system X with fixed initial condition
X0 has positive correlations at all times t ≥ 0, that is

E(f(Xt)g(Xt)) ≥ Ef(Xt)Eg(Xt)

for all continuous functions f and g that are monotone in the sense f(η) ≤ f(ζ) whenever
η ≤ ζ [12, II Theorem 2.14, III Theorem 2.2]. Let πi,t = E0Xi,t. Differentiating (2.4) gives

π′i,t = E0 ((1−Xi,t)λi(Xt)−Xi,tµi(Xt)) . (2.6)

As λi(·) + µi(·) is increasing, we can apply the positive correlations property to (2.6) to
obtain

π′i,t ≤ E0λi(Xt)− E0Xi,tE0(λi(Xt) + µi(Xt))

≤ (1− E0Xi,t)E0λi(Xt)− E0Xi,tE0µi(Xt).

As λi is concave and µi is convex, Jensen’s inequality yields

π′i,t ≤ (1− E0Xi,s)λi(E0Xs)− E0Xi,sµi(E0Xs) = (1− πi,t)λi(πt)− πi,tµi(πt) (2.7)

Define the functions φi : [0, 1]n → R+ such that

φi(u1, . . . , un) := (1− ui)λi(u)− uiµi(u).

As the λi are increasing and the µi are decreasing, each function φi is non-decreasing in
each uj for j 6= i. The system of differential inequalities (2.7) satisfies the conditions of a
result by Ważewski [19] (see also [14, Theorem 1 of Section 13 in Chapter XI]), which
allows us to conclude that if pi,0 = Xi,0 for all i, then πi,t ≤ pi,t for all i and t ≥ 0.

3 Propagation of chaos and stochastic ordering

An interacting particle system is said to display propagation of chaos if the particles
evolve almost independently of one another when the system size is large. Demonstrat-
ing this behaviour usually involves showing a law of large numbers holds so that the
transition rates of the individual particles are well approximated by some deterministic
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process. A propagation of chaos result was established for the occupancy process in
[3, 10], where the independent site approximation was coupled to the occupancy process
and the two processes shown to be close over finite time intervals.

Instead of attempting to show the occupancy process is close to the independent site
approximation, in this section we show that the occupancy process is dominated by the
independent site approximation in a certain sense.

A weak notion of multivariate stochastic ordering is the lower orthant order [15,
Section 6.G.1]. We say that the random vector Y is smaller than the random vector Z in
the lower orthant order, denoted Y ≤lo Z, if

P(Y1 ≤ ζ1, . . . , Ym ≤ ζm) ≥ P(Z1 ≤ ζ1, . . . , Zm ≤ ζm)

for all (ζ1, . . . , ζm) ∈ Rm. For distributions on the hypercube {0, 1}m, this condition
reduces to

P(Yi = 0 for all i ∈ A) ≥ P(Zi = 0 for all i ∈ A),

for all subsets A ⊂ {1, 2, . . . ,m}. Write P0 to denote conditioning on the initial state X0.
The Harris inequality applied to the construction (2.1) shows

P0 (Xi,t = 0 for all i ∈ A) = E0

(∏
i∈A

(1−Xi,t)

)
≥
∏
i∈A

E0(1−Xi,t),

for a given t and all subsets A ⊂ {1, 2, . . . , n}. Then applying Theorem 2.1 we see∏
i∈A

E0(1−Xi,t) ≥
∏
i∈A

E0(1−Wi,t) = P0 (Wi,t = 0 for all i ∈ A) .

This establishes Xt ≤lo Wt for a given time t ≥ 0. We would like to establish the ordering
relation between X and W for all times in the sense that for any subset A ⊆ {1, . . . , n},
positive integers mi and times ti,1, . . . , ti,mi

P0

(
Xi,ti,j = 0 for all i ∈ A, j ∈ {1, . . . ,mi})

≥ P0

(
Wi,ti,j = 0 for all i ∈ A, j ∈ {1, . . . ,mi}

)
.

(3.1)

Note that for each i ∈ A, the set of times ti,1, . . . , ti,mi
may be different.

Theorem 3.1. Assume the conditions of Theorem 2.1 hold. Assume also that for all i,
Si − Ci is convex. The process (X, t ∈ N) given by (1.1) is smaller in the lower orthant
order than the process (W, t ∈ N) given by (1.3).

Proof. Let A be a subset of {1, . . . , n}, and for each i ∈ A take a positive integer mi and
times ti,1, . . . , ti,mi

. Then by the Harris inequality

P0

(
Xi,ti,j = 0 for all i ∈ A, j ∈ {1, . . . ,mi}

)
= E0

∏
i∈A

mi∏
j=1

(
1−Xi,ti,j

) ≥∏
i∈A

E0

mi∏
j=1

(
1−Xi,ti,j

)
≥
∏
i∈A

P0

(
Xi,ti,j = 0 for all j ∈ {1, . . . ,mi}

)
.

It remains to show that for each i

P0

(
Xi,ti,j = 0 for all j ∈ {1, . . . ,mi}

)
≥ P0

(
Wi,ti,j = 0 for all j ∈ {1, . . . ,mi}

)
.
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Now for ω = (ω1, . . . , ωm) ∈ {0, 1}m define

PXm (ω) := P0 (Xi,1 ≤ ω1, . . . , Xi,m ≤ ωm) = E0

[
m∏
t=1

(1−Xi,t)
1−ωt

]
.

and define PWm (ω) similarly. We prove by induction that PXm (ω) ≥ PWm (ω) for all ω ∈
{0, 1}m and all m ≥ 1.

Assume ω 6= 1 and let φ(ω) = max{j : ωj = 0}. If φ(ω) = 1, then from Theorem 2.1

PXm (ω1, . . . , ωm) = E0(1−Xi,1) ≥ E0(1−Wi,1) = PWm (ω1, . . . , ωm).

Suppose now that φ(ω) = m̃ ≥ 2. Then

PXm (ω)

= E0

[
m̃∏
t=1

(1−Xi,t)
1−ωt

]
= E0

[
E0 [(1−Xi,m̃)|Xm̃−1]

m̃−1∏
t=1

(1−Xi,t)
1−ωt

]

= E0

[
((1− Si(Xm̃−1)) + (1−Xi,m̃−1)(Si(Xm̃−1)− Ci(Xm̃−1)))

m̃−1∏
t=1

(1−Xi,t)
1−ωt

]
.

The function Si(x) − Ci(x) is decreasing in x by assumption and Xi,t is a decreasing
function of the array {Ui,t} by construction (2.1). As it is composition of two decreasing
functions, Si(Xt) − Ci(Xt) is an increasing function of the array {Ui,t}. Applying the
Harris inequality shows

E0

[
(1−Xi,m̃−1)(Si(Xm̃−1)− Ci(Xm̃−1))

m̃−1∏
t=1

(1−Xi,t)
1−ωt

]
≥ E0 [(Si(Xm̃−1)− Ci(Xm̃−1)]PXm (ω1, . . . , ωm̃−2, 0, 1, . . . , 1).

Since Si − Ci is also convex, Jensen’s inequality with Theorem 2.1 shows

E0

[
(1−Xi,m̃−1)(Si(Xm̃−1)− Ci(Xm̃−1))

m̃−1∏
t=1

(1−Xi,t)
1−ωt

]
≥ (Si(pm̃−1)− Ci(pm̃−1))PXm (ω1, . . . , ωm̃−2, 0, 1, . . . , 1).

The same argument shows

E0

[
(1− Si(Xm̃−1))

m̃−1∏
t=1

(1−Xi,t)
1−ωt

]
≥ (1− Si(pm̃−1))PXm (ω1, . . . , ωm̃−1, 1, . . . , 1).

Therefore,

PXm (ω) ≥ (1− Si(pm̃−1))PXm (ω1, . . . , ωm̃−1, 1, . . . , 1)

+ (Si(pm̃−1)− Ci(pm̃−1))PXm (ω1, . . . , ωm̃−2, 0, 1, . . . , 1). (3.2)

On the other hand, for the process W given in (1.3)

PWm (ω) = E0

[
m̃∏
t=1

(1−Wi,t)
1−ωt

]
= E0

[
E0 [(1−Wi,m̃)|Wm̃−1]

m̃−1∏
t=1

(1−Wi,t)
1−ωt

]

= E0

[
((1− Si(pm̃−1)) + (1−Wi,m̃−1)(Si(pm̃−1)− Ci(pm̃−1)))

m̃−1∏
t=1

(1−Wi,t)
1−ωt

]
.
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Therefore,

PWm (ω) = (1− Si(pm̃−1))PWm (ω1, . . . , ωm̃−1, 1, . . . , 1)

+ (Si(pm̃−1)− Ci(pm̃−1))PWm (ω1, . . . , ωm̃−2, 0, 1, . . . , 1). (3.3)

If PXm (ω) ≥ PWm (ω) for all ω ∈ {0, 1}m such that φ(ω) ≤ m̃− 1, then comparing (3.2) and
(3.3) shows PXm (ω) ≥ PWm (ω) for all ω ∈ {0, 1}m such that φ(ω) ≤ m̃.

For spin systems the independent site approximation is given by Wt = (W1,t, . . . ,Wn,t)

where the Wi,· are independent Markov chains on {0, 1} such that

Wi : 0→ 1 at rate λi(pt)

1→ 0 at rate µi(pt)
for i = 1, . . . , n, (3.4)

Wi,0 = Xi,0 and pt satisfies (2.5). Since the lower orthant order is closed under conver-
gence in distribution [15, Theorem 6.G.3(d)], a limiting argument can be used to prove
the following result.

Theorem 3.2. Assume the conditions of Theorem 2.2 hold. Assume also that for all
i, λi + µi is concave, and each of the λi and µi are Lipschitz continuous. The process
(X, t ∈ R+) given by (2.3) is smaller in the lower orthant order (3.1) than the process
(W, t ∈ R+) given by (3.4).

Proof. For δ > 0 sufficiently small, let (Xδ, t ∈ N) be the occupancy process with

Ci(x) = δλi(x), and Si(x) = 1− δµi(x).

The assumptions of Theorem 3.1 are satisfied by Xδ. Let (W δ, t ∈ N) be the corre-
sponding independent site approximation (1.3) so Xδ is smaller than W δ in the lower
orthant order. Let (N, t > 0) be a unit rate Poisson process independent of Xδ and W δ.
Define the continuous time process (X̃δ, t ∈ R+) by X̃δ

t := Xδ
N(δ−1t) and (W̃ δ, t ∈ R+) by

W̃ δ
t := W δ

N(δ−1t). Then X̃δ is smaller than W̃ δ in the lower orthant order as the lower
orthant order is closed under mixtures [15, Theorem 6.G.3 (e)]. It remains to show

X̃δ d→ X and W̃ δ d→W since the lower orthant order is preserved under convergence in
distribution [15, Theorem 6.G.3 (d)].

From the uniformization construction [11, Section 2.1], the processXδ is a continuous
time Markov chain on {0, 1}n with transition rates:

qδX(x, y) = δ−1
n∏
i=1

[
(δλi(x))

(1−xi)(yi−xi)+ (1− δλi(x))
(1−xi)(1−(yi−xi)+)

× (δµi(x))
xi(xi−yi)+ (1− δµi(x))

xi(1−(xi−yi)+)
]
,

for any x, y ∈ {0, 1}n. As δ → 0, qδX converges to the transition rates of (2.3) and since

the state space is finite, this is sufficient to show X̃δ d→ X.

The process
(
N(δ−1t), W̃ δ

t

)
is a continuous time Markov chain on N0 × {0, 1}n with

transitions (m,w)→ (m+ 1, w + u) for u ∈ {−1, 0, 1}n at rate

βu(m,w) = δ−1
n∏
i=1

[(
δλi(p

δ
m)
)(1−wi)(ui)+ (

1− δλi(pδm)
)(1−wi)(1−(ui)+)

×
(
δµi(p

δ
m)
)wi(−ui)+ (

1− δµi(pδm)
)wi(1−(−ui)+)

]
,
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where
pδi,m+1 = δλi(p

δ
m)(1− pδi,m) + (1− δµi(pδm))pδi,m.

We can represent
(
N(δ−1t), W̃ δ

t

)
as a random time change of Poisson processes [5,

Chapter 6, Section 4]

W̃ δ
t = X0 +

∑
u∈{−1,0,1}n

uNu

(∫ t

0

βu(N(δ−1s), W̃ δ
s ) ds

)

N(δ−1t) =
∑

u∈{−1,0,1}n
Nu

(∫ t

0

βu(N(δ−1s), W̃ δ
s ) ds

)
,

where the Nu are independent unit rate Poisson processes. The process (W, t ∈ R+)

can be constructed on the same probability space as
(
N(δ−1t), W̃ δ

t

)
by representing

(W, t ∈ R+) as

Wi,t = Xi,0 +N+
i

(∫ t

0

(1−Wi,s)λi(ps) ds

)
−N−i

(∫ t

0

Wi,s µi(ps) ds

)
,

where pt is the solution to (2.5) and identifying N+
i and N−i with the unit rate Poisson

processes Nu such that ui = ±1 and uj = 0 for all j 6= i. We now use Gronwall’s inequality

to show E|Wi,t − W̃ δ
i,t| → 0 as δ → 0 for all t and all i, hence W̃ δ d→ W . By the triangle

inequality,

E|Wi,t − W̃ δ
i,t| ≤ E

∣∣∣∣∫ t

0

(1−Wi,s)λi(ps) ds−
∫ t

0

(1− W̃ δ
i,s)λi(p

δ
N(δ−1s)) ds

∣∣∣∣
+ E

∣∣∣∣∫ t

0

Wi,sµi(ps) ds−
∫ t

0

W̃ δ
i,sµi(p

δ
N(δ−1s)) ds

∣∣∣∣
+

∑
u:‖u‖≥2

E

∫ t

0

βu(N(δ−1s), W̃ δ(s)) ds, (3.5)

where ‖u‖ =
∑n
i=1 |ui|. As the λi and µi are Lipschitz continuous, there exists constants

C1 and C2 such that

E

∣∣∣∣∫ t

0

(1−Wi,s)λi(ps) ds−
∫ t

0

(
1− W̃ δ

i,s

)
λi(p

δ
N(δ−1s)) ds

∣∣∣∣
+ E

∣∣∣∣∫ t

0

Wi,sµi(ps) ds−
∫ t

0

W̃ δ
i,sµi(p

δ
N(δ−1s)) ds

∣∣∣∣
≤ C1

∫ t

0

E|Wi,s − W̃ δ
i,s| ds+ C2

∫ t

0

E‖pδN(δ−1s) − ps‖ ds. (3.6)

The usual argument for proving convergence of Euler’s method [4, Theorem 212A] shows
that for any t ≥ 0, there exists a constant C3 such that

‖pδN(δ−1t) − pt‖ ≤
eC3t − 1

C3

∣∣δN(δ−1t)− t
∣∣

so

E‖pδN(δ−1t) − pt‖ ≤ δt
eC3t − 1

C3
. (3.7)

For any u such that
∑n
i=1 |ui| ≥ 2, there exists a constant C4 such that

βu(N(δ−1t), W̃ δ(t)) ≤ C4δ. (3.8)

Combining (3.5)− (3.8) and applying Gronwall’s inequality, we see that E|Wi,t−W̃ δ
i,t| → 0

as δ → 0 for all t and all i.
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