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Abstract

Consider a càdlàg local martingale M with square brackets [M ]. In this paper, we
provide upper and lower bounds for expectations of the type E [M ]q/2τ , for any
stopping time τ and q ≥ 2, in terms of predictable processes. This result can be
thought of as a Burkholder-Davis-Gundy type inequality in the sense that it can be
used to relate the expectation of the running maximum |M∗|q to the expectation of
the dual previsible projections of the relevant powers of the associated jumps of M .
The case for a class of moderate functions is also discussed.
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1 Introduction

In the context of stochastic calculus, the celebrated Burkholder-Davis-Gundy (BDG)
inequalities play an important role in the estimation of moments of local martingales and,
thus, more generally for semimartingales and associated stochastic integrals. The BDG
inequalities relate the maximum of a local martingale M∗t := sups≤t |Ms| to its quadratic
variation [M ]. More precisely, for any local martingale M with M0 = 0 and for any
1 ≤ q <∞, there exist universal positive constants (independent of the local martingale
M ) cq and Cq such that, for any stopping time τ ,

cq E
(

[M ]
q/2
τ

)
≤ E ( |M∗τ |

q
) ≤ Cq E

(
[M ]

q/2
τ

)
. (1.1)

If M is a continuous local martingale, the inequalities in (1.1) hold for any q > 0 (see,
e.g., [6, p. 83], [8, Theorem IV.74, p. 226]). The generalisation for convex moderate
functions F is given by

cF E
(
F
(

[M ]
1/2
τ

))
≤ E (F (M∗τ ) ) ≤ CF E

(
F
(

[M ]
1/2
τ

))
, (1.2)

for universal constants cF > 0 and CF > 0, see, e.g., [9, Theorem 42.1, p. 93], [5,
Theorem 2.1].
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A generalisation of the BDG inequalities

One drawback when applying the BDG inequality (1.1) is that, recalling that

[M ] = < M c > +
∑

0<s≤t

(∆Ms)
2 and ∆[M ]t = (∆Mt)

2,

one may be dealing with a process where the compensator for the squared jumps is well
understood but the jumps themselves are not. Moreover, the version of (1.1) where [M ]

is replaced by < M >, its dual previsible projection (or compensator) is, in general, false
for q > 2 when M is a discontinuous local martingale, since, in general,

there exists cq : E
(
[M ]

q
2
τ

)
≤ cqE

(
< M >

q
2
τ

)
only for q ≤ 2

(see [2, Item (4.b’), Table 4.1, p. 162]).
In this note we prove the existence of universal positive constants Cq and cq such

that, for q ≥ 2,

cq E
[

max
{
< M >

q
2
τ , A

( q2 )
τ

}]
≤ E

(
[M ]

q
2
τ

)
≤ Cq E

[
max

{
< M >

q
2
τ , A

( q2 )
τ

}]
,

where < M > is the angle brackets of M , and A(r) is the dual previsible projection of
the process

t 7→
∑

0<s≤t

|∆Ms|2r, r ≥ 1.

Hence, our main results compare the moments of the quadratic variation process of any
local martingale with associated predictable processes (see Theorem 2.1). A generalisa-
tion for a class of moderate functions is also given in Theorem 3.2.

Since the BDG inequalities in (1.1) relate the running maximum of a local martingale
to its quadratic variation, the further application of our results in Corollary 2.4 allows
us to derive estimates for the qth moments of the running maximum M∗ in terms of
corresponding predictable processes. For the case 0 < q < 2, it is known that when M is
a locally square integrable local martingale then (see, e.g., [6, Theorem 5, p. 69]):

E ( |M∗τ |
q

) ≤ 4− q
2− q

E
[
< M >

q
2
τ

]
,

whereas, if M is a continuous local martingale, then

2− q
4− q

E
[
< M >

q
2
τ

]
≤ E ( |M∗τ |

q
) ≤ 4− q

2− q
E
[
< M >

q
2
τ

]
. (1.3)

For any moderate function F , Lenglart et.al. [5, Section 2, p. 37] provide estimates for
discontinuous local martingales with jumps bounded by a locally bounded predictable
increasing process D, i.e. |∆M | ≤ D:

E (F (M∗τ ) ) ≤ C E
(
F
(
< M >

1
2
τ +Dτ

))
,

and
E
(
F
(
< M >

1
2
τ

))
≤ cE (F (M∗τ +Dτ ) ) .

A special class of local martingales that are encompassed by our results are those
obtained as stochastic integrals with respect to continuous local martingales such as
Brownian motion, or with respect to local martingales given by compensated Poisson ran-
dom measures. In these two cases the representation of the dual previsible projections

A( q2 ) can be written explicitly and one can thus derive (for the one-dimensional case) the
well-known estimates for the running maximum of associated local martingales (see, e.g.,
Kunita (2004) [4], Applebaum (2009) [1, Theorem 4.4.22 and Theorem 4.4.23], Marinelli
and Röckner (2014) [7]). Extensions and generalisations to the multidimensional case
and Hilbert-space-valued case, and applications of our results to the estimates of qth
moments of semimartingales will be provided in a forthcoming paper.
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A generalisation of the BDG inequalities

2 Main result

Consider a filtered complete probability space (Ω,F ,F,P), on which all our processes
are defined. A+

loc denotes the class of locally integrable, non-decreasing, càdlàg and
adapted processes. Let us also recall that if A ∈ A+

loc, then there is a predictable process
Ap ∈ A+

loc, called the dual previsible projection (or compensator) of A, which is unique up
to an evanescent set, and which is characterised by making A−Ap a local martingale (or
equivalently E(ApT∧Tn) = E(AT∧Tn) for all stopping times T and for a localising sequence
T1, T2, . . .), see, e.g., [3, Theorem I.3.17, p. 32].

The main result is the following

Theorem 2.1. For any càdlàg local martingale M and for r ≥ 1, define the adapted,
increasing process D(r) by

D
(r)
t

def
=

∑
0<s≤t

|∆Ms|2r,

and define A(r) to be the dual previsible projection of D(r) (whenever it exists). For any
q ≥ 2 define the process

t 7→ S
(q)
t (M)

def
= max

{
< M >

q
2
t , A

( q2 )
t

}
.

There exist universal constants cq > 0 and Cq > 0 such that for all stopping times τ
and local martingales M ,

cq E
(
S(q)
τ (M)

)
≤ E

(
[M ]

q
2
τ

)
≤ Cq E

(
S(q)
τ (M)

)
. (2.1)

Remark 2.2. Note that

< M > = < M c > +A(1),

so that, in particular,

S(2) = < M > .

Proof of Theorem 2.1. Let us first observe that, since M is a càdlàg local martingale, it
has a countable number of jumps and, thus, using the fact that the `q spaces satisfy
`2 ⊂ `2r for all r ≥ 1, we obtain: ∑

0<s≤t

|∆Ms|2r
 1

2r

≤

 ∑
0<s≤t

|∆Ms|2
 1

2

, for all r ≥ 1,

which in turn implies that

D
(r)
t ≤

(
D

(1)
t

)r
, for all r ≥ 1.

In particular, for r = q/2 with q ≥ 2, we have that

E

 ∑
0<s≤t

|∆Ms|q
 ≤ E


 ∑

0<s≤t

( ∆Ms )
2


q
2

 ≤ E
(

[M ]
q
2
t

)
. (2.2)

To prove the left-hand inequality in (2.1), assume that E
(

[M ]
q
2
τ

)
< ∞ (as otherwise

there is nothing to prove). Thus, the inequality (2.2) implies that t 7→ D
( q2 )
τ∧t ∈ A+

loc and so

its dual predictable projection A
( q2 )
τ∧· exists ([3, Theorem I.3.17, p. 32]). Now recall the
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standard result that if D is an increasing, adapted and locally integrable process started
at 0 and A is its dual previsible projection, then for any p ≥ 1

E[Apτ ] ≤ ppE[Dp
τ ],

(see, e.g., [5, Theorem 4.1]). Applying this inequality to the processes D(p) and A(p), and
using the fact that

[M ]p ≥ max
{
D(p), < M c >p

}
,

the left-hand inequality in (2.1) follows.
For the right-hand inequality, first observe that, since S(2) =< M >, the result

is trivial for q = 2; so suppose that q > 2. We assume that E
(
S
(q)
τ (M)

)
< ∞, as

otherwise there is nothing to prove. Now note that, using the fact that (for x, y ≥ 0)
x ∨ y ≤ x+ y ≤ 2(x ∨ y) and observing that [M ] = [Md]+ < M c >, it is enough to prove
the right-hand inequality for purely discontinuous martingales.

To simplify notation we denote q
2 by p. Define the process Z(q) by

Z(q) = [M ]p.

Notice that f : x 7→ |x|p is C1 so, using the fact that |x+ y|p ≤ kp(|x|p + |y|p) where
kp := max{2p−1, 1}, for any p > 0, the Mean Value Theorem implies that there exists
θ ∈ (0, 1) such that

∆Z
(q)
t = f([M ]t)− f([M ]t−)

= p

(
[M ]t− + θ(∆Mt)

2

)p−1
(∆Mt)

2

≤ p kp−1

(
[M ]p−1t− (∆Mt)

2 + (∆Mt)
2p
)
. (2.3)

Now Z(q) is increasing from 0 and increases only by jumps, so the estimate (2.3)
implies that

Z
(q)
t ≤

∫ t

0+

bp [M ]p−1s− d[M ]s + bpD
(p)
t ,

with bp := p kp−1.
We take dual previsible projections and evaluate at τ to obtain

E ( [M ]pτ ) ≤ bpE

(∫ τ

0

[M ]p−1s− d < M >s + A(p)
τ

)
≤ bpE

(
[M ]p−1τ < M >τ + A(p)

τ

)
≤ bp

(
||[M ]τ ||p−1p || < M >τ ||p + E(A(p)

τ )
)
. (2.4)

Dividing both sides of (2.4) by E[S
(q)
τ ] we see that, setting z =

(
E ( [M ]pτ )

E(S
(q)
τ )

) 1
p

,

zp ≤ bp(z
p−1 + 1)

def
= g(z).

Denoting by cq the largest root of g(x) = xp, we see that the right-hand inequality in (2.1)
holds, as required.

The following example is well-known to show the failure of < M > to control the
moments of [M ] when M is a discontinuous local martingale.
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Example 2.3. Take M to be a compound Poisson process of unit rate with jump times
T1, T2, . . ., and with jump-sizes X1, X2, . . ., where

E[X1] = 0, E[X2
1 ] = 1 and E[X4

1 ] =∞.

It follows that M is a square-integrable martingale with

[M ]t =
∑
n

1{Tn≤t}X
2
n,

and with
< M >t= t.

Clearly
E
(

[M ]2t
)

=∞, (2.5)

so there is no c such that

E
(

[M ]2T
)
≤ cE

(
< M >2

T

)
.

However, E[D
(2)
t ] =∞, for any t > 0, as implied by (2.1) and (2.5).

The standard BDG inequality and Theorem 2.1 imply the following

Corollary 2.4. For any càdlàg local martingale M and q ≥ 2, there are universal con-
stants cq > 0 and Cq > 0 such that for all stopping times τ

cq E
[

max
{
< M >

q
2
τ , A

( q2 )
τ

}]
≤ E ( |M∗τ |

q
) ≤ Cq E

[
max

{
< M >

q
2
τ , A

( q2 )
τ

}]
.

(2.6)

Remark 2.5. Note that when M is a continuous local martingale then A( q2 ) ≡ 0 and one
recovers the inequalities in (1.3) for any q ≥ 2.

3 The case of moderate functions

A function F : R+ → R+ is said to be moderate if it is continuous and increasing,
F (x) = 0 and if, for some (and then for every) α > 1, the following growth condition
holds1:

for some c > 0, F (αx) ≤ c F (x) for all x > 0.

If F is convex with right derivative f , then a necessary and sufficient condition for F to
be moderate is that

q := sup
x>0

xf(x)

F (x)
< ∞, (3.1)

see, e.g., [5, Section 1]. Here, q is known as the exponent of F .
If (3.1) holds, then for all α > 1,

sup
x>0

F (αx)

F (x)
≤ αq. (3.2)

In particular, the power function x 7→ xp for p ≥ 1 is a moderate convex function and, in
this case, c can be taken as αp and the exponent of F is equal to p.

One is naturally led to ask whether there is a generalisation of Theorem 2.1, to some
class of moderate functions, of the form

cFE
[
max

{
F
(
< M >

1
2
τ

)
, A(2,F )

τ

}]
≤ E

[
F
(

[M ]
1
2
τ

) ]
≤ CFE

[
max

{
F
(
< M >

1
2
τ

)
, A(2,F )

τ

}]
,

(3.3)

1Equivalently, if the condition supx>0
F (αx)
F (x)

< ∞ holds.
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whereA(2,F ) is the dual previsible projection of the corresponding processD(2,F ) (defined
in (3.4) below).

If one takes F : x 7→ xq, for any q ≥ 2, (these are, of course, convex moderate
functions), then Theorem 2.1 guarantees that the two-sided inequality (3.3) holds for
any continuous local martingale M . However, we can see that for discontinuous local
martingales (3.3) may not hold for q < 2. Indeed, a small change to Example 2.3 shows
that the left hand side of (3.3) cannot hold in general:

Example 3.1. Take Mn to be a compound Poisson process of unit rate with jump times
T1, T2, . . ., and with jump-sizes X1, X2, . . ., where

E[X1] = 0, E[|X1|] = 1 and E[X2
1 ] = n.

It follows that Mn is a square-integrable martingale with

[Mn]t =
∑
n

1{Tn≤t}X
2
n, E

(
[Mn]

1
2
t

)
≤ t

and with
< Mn >t = nt.

Clearly, taking F to be the identity, it follows that, for the left-hand inequality in (3.3) to
hold, we would need cF ≥ n for any n, contradicting the finiteness of cF .

Theorem 3.2. Suppose that F is a strictly increasing and convex moderate function.
Define A(2,F ) and A(F ) to be the dual previsible projections of

D(2,F ) def
=
∑
s

F (|∆Ms|) and D(F ) def
=
∑
s

F
(

(∆Ms)
2
)
, (3.4)

respectively. There are universal constants cF > 0 and CF > 0 such that

E
[
F
(

[M ]
1
2
τ

) ]
≤ CF E

[
max

{
F
(
< M >

1
2
τ

)
, A(2,F )

τ

}]
. (3.5)

and
cF E

[
max

{
F (< M >τ ), A(F )

τ

}]
≤ E [F ([M ]τ ) ] (3.6)

Proof. Let us first assume that F is C1. We use, without further comment, the facts that

F ′(·) is increasing, [M ]· and < M >· are increasing, ∆[M ]
1
2
t ≤ |∆Mt| and < M c > ≤ [M ].

Proceeding as in the proof of Theorem 2.1, we obtain first

Vt
def
=

∑
0<s≤t

∆F
(

[M ]
1
2
s

)
≤

∑
0<s≤t

F ′
(

[M ]
1
2
s

)
∆[M ]

1
2
s ≤

∑
0<s≤t

F ′
(

[M ]
1
2
s

)
|∆Ms|.

By (3.1), for all x, there exists q > 0 such that F ′(x) ≤ q F (x)
x , and so

Vt ≤
∑

0<s≤t

F ′
(

[M ]
1
2
s

)
( |∆Ms| ) ≤ q

∑
0<s≤t

F
(

[M ]
1
2
s

)
[M ]

1
2
s

|∆Ms|.

The convexity of F together with (3.1) then implies that

Vt ≤
q

2

∑
0<s≤t

F
(

2[M ]
1
2
s−

)
+ F (2|∆Ms|)

[M ]
1
2
s

|∆Ms|

≤ bF
∑

0<s≤t

F
(

[M ]
1
2
s−

)
+ F ( |∆Ms| )

[M ]
1
2
s

|∆Ms|

≤ bF
∑

0<s≤t

(
F ′([M ]

1
2
s−)|∆Ms|+ F ( |∆Ms| )

)
,

where bF := q 2q−1.
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Now, [8, Theorem II.31, p. 78] implies

F
(

[M ]
1
2
t

)
=

∫ t

0+

F ′
(

[M ]
1
2
s−

) d < M c >s

[M ]
1
2
s

+ Vt,

so, evaluating at τ , using the previous inequality and then taking dual previsible projec-
tions yield

E
[
F
(

[M ]
1
2
τ

)]
≤ bF E

[∫ τ

0+

F ′
(

[M ]
1
2
t−

) d < M c >t

[M ]
1
2
t

+ A(2,F )
τ

]

≤ bF E

[
F ′([M ]τ )

∫ τ

0

d < M c >t

< M c >
1
2
t

+A(2,F )
τ

]
≤ 2bF E

[
F ′
(

[M ]
1
2
τ

)
< M c >

1
2
t +A(2,F )

τ

]
. (3.7)

Denote the convex conjugate of F by F̃ , then the generalisation of Young’s inequality
implies

xy ≤ F̃

(
x

µ

)
+ F (µy)

for any x, y, µ > 0. We also have (see [2, Lemma 1.1.1])

F̃

(
F ′(x)

2

)
≤ F (x).

Thus, taking µ = max{2 bF , 1}, we see that

E
[
F ′
(

[M ]
1
2
τ

)
< M c >

1
2
τ

]
≤ E

 F̃
 F ′

(
[M ]

1
2
τ

)
2µ

 + F
(

2µ < M c >
1
2
τ

)
≤ 1

µ
E
[
F
(

[M ]
1
2
τ

)
+ (2µ)qF

(
< M c >

1
2
τ

)]
.

Substituting this into the inequality (3.7) we obtain inequality (3.5).
To obtain the inequality (3.6), observe that we need only show that, for some c > 0,

E[F (< M >τ )] ≤ cE[F ([M ]τ )],

since ∆F ([M ]t) ≥ F (∆[M ]t) by convexity of F . Now, for some θ· ∈ (0, 1),

F (< M >t) =

∫ t

0+

F ′(< M >s) d < M >cs +
∑

0<s≤t

F ′(< M >s− + θs∆ < M >s)∆ < M >s

≤
∫ t

0+

F ′(< M >s) d < M >cs +
∑

0<s≤t

F ′(< M >s)∆ < M >s

=

∫ t

0+

F ′(< M >s) d < M >s . (3.8)

Stopping at τ and then taking expectations we obtain that, for any µ > 0,

E[F (< M >τ )] ≤ E

[ ∫ τ

0+

F ′(< M >t) d[M ]t

]
≤ E[F ′(< M >τ )[M ]τ ]

≤ E

[
F̃

(
F ′(< M >τ )

2µ

)
+ F (2µ[M ]τ )

]
≤ E

[
1

µ
F (< M >τ ) + (2µ)qF ([M ]τ )

]
.

Taking µ = 2 we obtain the desired result.
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For the general case, we can now proceed by approximation. Take a sequence of
C2 convex functions {Fn}n≥0 such that Fn ↑ F , and with the corresponding derivatives
increasing to the left derivative F ′− of F . The sequence {Fn}n≥0 can be constructed in
the standard way as a convolution “on the left” of F with an appropriate sequence of
scaled versions of a (positive) mollifier φ (i.e. a C∞ function with compact support that
integrates to 1):

Fn(x) =

∫ ∞
0

F (x− t)φ(nt)ndt,

where we define F (y) = 0 for y < 0. Then the previous case implies that for each Fn, the
inequalities in (3.5) and (3.6) hold and so the result follows by letting n→∞ and using
the Monotone Convergence Theorem.

Remark 3.3. By taking F appropriately in Theorem 3.2, we recover the inequalities
in Theorem 2.1. Indeed, (2.1) follows from (3.6) and (3.5) by taking F : x 7→ xq/2 and
F : x 7→ xq, for q > 2, respectively. It is worth observing that Theorem 3.2 also extends
the RHS inequality of (2.1) in Theorem 2.1 to the case q ∈ (1, 2).

The BDG inequality in (1.2) and Theorem 3.2 imply the following

Corollary 3.4. Let F be a strictly increasing and convex moderate function. For any
càdlàg local martingale M , there exist universal constants cF , CF > 0 such that for all
stopping times τ

E (F (M∗τ ) )≤ CF E
[
max

{
F
(
< M >

1
2
τ

)
, A(2,F )

τ

}]
(3.9)

E
[

max
{
F (< M >τ ) , A(F )

τ

}]
≤ cF E

(
F
(

(M∗τ )2
) )
, (3.10)

so that (3.3) does hold if F : x 7→ G(x2), where G is a strictly increasing, convex,
moderate function.
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