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Abstract

A weak extension of the Dupire derivative is derived, which turns out to be the adjoint
operator of the integral with respect to the martingale measure associated with
the historical Brownian motion a benchmark example of a measure valued process.
This extension yields the explicit form of the martingale representation of historical
functionals, which we compare to a classical result on the representation of historical
functionals derived in [7].
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1 Introduction

Dupire’s landmark work [5] on the functional Itō-formula gave rise to a completely
new approach to numerous questions in the field of stochastic calculus. One of the
applications of the so-called functional or Dupire derivative developed by Cont and
Fournié is presented in [3] as well as [1], where they extend the derivative to a weak
one for square-integrable Brownian functionals and use it to derive their martingale
representation.

The classical versions of the functional Itō-formula are derived for Rd-valued pro-
cesses (see [5], [2], [3], [10]) and there are only a few extensions to infinite-dimensional
processes. For functionals of Dawson-Watanabe superprocesses, this was done in [11].
In the present work, we transfer the approach in [3] and [1] to an infinite-dimensional
setting and derive the martingale representation formula of the following form. If
H = (H(t))t∈[τ,T ] is a historical Brownian motion and Y a square-integrable martin-
gale with respect to the filtration generated by H then, by Theorem 3.8, Y allows the
representation

Y (t) = Y (0) +

∫ t

0

∇MY (s, y)MH(ds, dy), for all t ∈ [τ, T ]

where the operator∇M is an extension of the Dupire derivative and MH is the martingale
measure associated with H (in the sense of [17]).
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Weak martingale representation

A historical Brownian motion is an enriched version of the super-Brownian motion
that also contains information on genealogy. Generally speaking, if y ∈ C([0, T ],Rd) and
yt(s) = y(t ∧ s), Y t(y) = yt is a time-inhomogeneous Borel strong Markov process on
an appropriate space, sometimes called the path process, and the historical Brownian
motion is the Dawson-Watanabe superprocess associated with Y t ([15], [16]). Historical
Brownian motions have been studied extensively by Perkins and his co-authors (e.g.
[4], [12], [14], [7] and [15]), whose notation we follow in this work.

The predictable representation property for Dawson-Watanabe superprocesses and
other measure-valued processes was first studied in [6] and [13], which are based on the
fundamental insight of Jacod [9]. In the paper [7] Evans and Perkins derived the explicit
form of the integrand in the representation of historical functionals. Their approach is
based on the cluster representation of the historical Brownian motion.

In contrast, we base our approach on properties derived from the martingale problem
of the historical Brownian motion. To highlight the differences, we provide a brief intro-
duction to the approach in [7] as well as a comparison of the resulting representations
in Section 4.

Before that, we start by introducing the underlying concepts in Section 2 including
a brief introduction to historical Brownian motions as well as path processes. In Sec-
tion 3, the weak extension of the functional derivative is derived and the martingale
representation formula obtained.

Finally, it is worth mentioning that, if one works with a super-Brownian motion X

instead of a historical Brownian motion, a result similar to the one in Section 3 can be
obtained. For more details we refer to the remark after Theorem 3.8. In the special case
that the martingale of interest, Y , can be expressed as Y (t) = F (t,Xt) for a sufficiently
nice F , one can directly apply the functional Itō-formula introduced in [11] to obtain the
martingale representation.

2 The setting

Let T ∈ (0,∞) be fixed and set C = C([0, T ],Rd), the space of continuous functions
mapping [0, T ] to Rd, equipped with the compact-open topology. Denote by C its Borel-σ-
algebra and by Ct = σ(y(s), s ≤ t) its canonical filtration.

Next, for any y, w ∈ C and s ∈ [0, T ], define ys(t) = y(s ∧ t) and the function y/s/w

glued together at s

(y/s/w)(t) =

{
y(t), if t < s,

w(t− s), if t ≥ s.
.

A function Z : [0, T ]× C → R is (Ct)-predictable if and only if it is Borel measurable and
it holds Z(t, y) = Z(t, yt) for all t ∈ [0, T ] (see Section V.2 in [16]).

Denote by MF (C) the space of finite measures on C equipped with the topology of
weak convergence and define for t ∈ [0, T ]

MF (C)t = {m ∈MF (C) : y = yt for m-a.a. y}.

For m ∈MF (C) and φ : C → R, we set 〈m,φ〉 =
∫
C
φ(y)m(dy).

If Px denotes the Wiener measure on (C, C) starting at x, τ ∈ [0, T ] and m ∈MF (C)τ ,
define the measure Pτ,m ∈MF (C) by

Pτ,m(A) =

∫
C

Py(τ)({w : y/τ/w ∈ A})dm(y).

Define the space ΩH by

ΩH = {H ∈ C([τ, T ],MF (C)) : H(t) ∈MF (C)t ∀t ∈ [τ, T ]}.
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Weak martingale representation

To introduce the historical Brownian motion, let

S̃ = {(τ,m) : τ ∈ [0, T ], m ∈MF (C)τ}

and define for (τ,m) ∈ S̃

Fτ,m = {φ : [τ, T ]× C → R : φ is (Ct)-predictable, Pτ,m-a.s. right-continuous and

sup
s∈[τ,T ]

|φ(s, y)| ≤ K holds Pτ,m-a.s. for some K}

as well as

D(Aτ,m) = {φ ∈ Fτ,m : there exists a Aτ,mΦ ∈ Fτ,m such that

φ(t, y)− φ(τ, y)−
∫ t

τ

Aτ,mφ(s, y)ds

is a (Ct)t∈[τ,T ]-martingale under Pτ,m}.

Given these notations, we can define the historical Brownian motion via its martingale
problem. A predictable process (H(t), t ∈ [τ, T ]) on Ω̄ = (Ω,F , (Ft)t∈[τ,T ],P) with sample

paths a.s. in ΩH is a historical Brownian motion on Ω̄, starting at (τ,m) ∈ S̃ and with
branching rate γ > 0, if and only if its law Pτ,m solves the martingale problem (see [15])

Z(t)(φ) = 〈H(t), φ(t, ·)〉 − 〈m,φ(τ, ·)〉 −
∫ t

τ

〈H(s), Aτ,mφ(s, ·)〉ds, t ∈ [τ, T ],

is a continuous (Ft)-martingale under Pτ,m for all φ ∈ D(Aτ,m)

such that Z(τ)(φ) = 0 and with the quadratic variation given by

[Z(φ)]t =

∫ t

τ

〈H(s), γφ(s, ·)2〉ds for all t ∈ [τ, T ].

(MPHBM )

The process Z(t)(φ) in (MPHBM ) gives rise to a martingale measure in the sense of
[17], which we denote by MH (see [15]). This allows us to write

Z(t)(φ) =

∫
(τ,t)×C

φ(s, y)MH(ds, dy).

From [15], we know that the historical Brownian motion can also be defined by a more
explicit martingale problem. To introduce this alternative martingale problem, denote
by C∞0 (Rd) the space of infinitely continuously differentiable functions with compact
support mapping Rd to R and define

D0 = {φ : C → R : φ(y) = ψ(y(t1), . . . , y(tn)), 0 ≤ t1 ≤ . . . ≤ tn ≤ T, ψ ∈ C∞0 (Rnd)}

as well as
D̃0 = {φ : [0, T ]× C → R : φ(t, y) = ψ(yt) for some ψ ∈ D0}.

Further, set for φ ∈ D̃0

φi(t, y) =

n∑
j=1

1t≤tjψ(j−1)d+i(y(t1 ∧ t), . . . , y(tn ∧ t)),

φi,j(t, y) =

n∑
k=1

n∑
`=1

1t≤tk∧t`ψ(k−1)d+i,(`−1)+j(y(t1 ∧ t), . . . , y(tn ∧ t)),

∆̄φ(t, y) =

d∑
i=1

φi,i(t, y),
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Weak martingale representation

with ψi and ψij being the first and second order partial derivatives of ψ. Using these
functions, Itō’s lemma yields that for all φ ∈ D̃0 and (τ,m) ∈ S̃

Aτ,mφ(t, y) =
∆̄

2
φ(t, y)

holds, which is needed for the following result.

Theorem 2.1 ([15]). A (Ct)t-predictable process H(t), t ∈ [τ, T ] on Ω̄ is a historical
Brownian motion starting at (τ,m) ∈ S̃ and with branching rate γ > 0 if and only if
H(t) ∈ MF (C)t for all t ∈ [τ, T ] and the law Pτ,m of H is a solution to the following
martingale problem

Z(t)(φ) = 〈H(t), φ〉 − 〈m,φ〉 −
∫ t

τ

〈H(s), ∆̄
2 φ(s, ·)〉ds, t ∈ [τ, T ],

is a continuous (Ft)-martingale under Pτ,m for all φ ∈ D0

such that Z(τ)(φ) = 0 and with the quadratic variation given by

[Z(φ)]t =

∫ t

τ

〈H(s), γφ2〉ds for all t ∈ [τ, T ].

(MP0)

From now on we consider the historical Brownian motion on its canonical path
space (ΩH ,H[τ, T ], (Ht)t∈[τ,T ],Pτ,m) with the coordinate process H(t)(ω) = ω(t). The
σ-algebra H[τ, T ] and the filtration (Ht)t∈[τ,T ], are defined as the Pτ,m-completions of the
corresponding σ-algebra and filtration generated by the coordinate process H.

Now we can introduce the concepts necessary to develop the result in Section 3,
starting with a metric on the space of measure-valued càdlàg functions and differentiation
of (non-anticipating) functionals on that space.

Denote by D([τ, T ],MF (C)) the space of right continuous functions from [τ, T ] to
MF (C) with left limits and equip the space with the supremum metric d̃(ω, ω′) =

supu∈[τ,T ] dP (ω(u), ω′(u)) for all ω, ω′ ∈ D([τ, T ],MF (C)), where dP is the Prokhorov
metric on MF (C). This allows us to define an equivalence relation on the space
[τ, T ]×D([τ, T ],MF (C)) by

(t, ω) ∼ (t′, ω′) ⇔ t = t′ and ωt = ω′ t
′
,

which gives rise to the quotient space

ΛT = {(t, ωt) : (t, ω) ∈ [τ, T ]×D([τ, T ],MF (C))} = [τ, T ]×D([τ, T ],MF (C))/ ∼,

which we equip with the metric (for all (t, ω), (t′, ω′) ∈ ΛT )

d∞((t, ω), (t′, ω′)) = sup
u∈[τ,T ]

dP (ω(t ∧ u), ω′(t′ ∧ u)) + |t− t′|.

A functional F on [τ, T ]×D([τ, T ],MF (C)) mapping to R is called non-anticipating if
it is a measurable map on the space of stopped paths, i.e. F : ΛT → R. In other words,
F is non-anticipating if F (t, ω) = F (t, ωt) holds for all ω ∈ D([τ, T ],MF (C)).

A functional F : ΛT → R is continuous with respect to d∞ if for all (t, ω) ∈ ΛT there
exists for every ε > 0 an η > 0 such that for all (t′, ω′) ∈ ΛT with d∞((t, ω), (t′, ω′)) < η

we have |F (t, ω)− F (t′, ω′)| < ε (joint continuity in t and ω).
For a non-anticipating functional F : ΛT → R and y ∈ C, the functional derivative of

F in direction y is given for all (t, ω) ∈ ΛT by

DyF (t, ω) = lim
ε→0

F (t, ω + εδy1[t,T ])− F (t, ω)

ε
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Weak martingale representation

if the limit exists.
We conclude this introductory section by defining the space of simple functions,

which plays an important role in the development of the stochastic integral with respect
to a martingale measure (see [17]). The space of simple functions, S is defined as the
space of functions from ΩH × [τ, T ]× C to R that are linear combinations of functions of
form

ΦΓ,B,a(ω, t, y) = Γ(ω)1B(y)1(a,T ](t)

with Γ being bounded and Ha-measurable, B ∈ C and a ∈ [τ, T ]. The σ-algebra generated
by S is the product of the Borel σ-algebra on C and the predictable Borel σ-algebra on
[τ, T ]× Ω and called the predictable σ-algebra. Functions measurable with respect to
this σ-algebra are called predictable.

3 Result

Let L2(MH) be the space of predictable functions Φ : ΩH × [0, T ]× C → R satisfying

‖Φ‖2L2(MH) := Eτ,m

[
γ

∫
[τ,T ]×C

Φ(s, y)2H(s)(dy)ds

]
<∞.

For functions in this space, the integral with respect to the martingale measure MH

exists, i.e.

IMH
(Φ) :=

∫
[τ,·]×C

Φ(s, y)MH(ds, dy) <∞ (3.1)

for Φ ∈ L2(MH).
Denote by M2 the space of square-integrable (Ht)t-martingales with initial value

zero and with norm

‖Y ‖2M2 := Eτ,m
[
Y (T )2

]
.

Further, let U be the linear span of functions of form

ΦΓ,ψ,a(ω, t, y) = Γ(ω)ψ(y)1(a,T ](t),

where Γ is a Ha-measurable, bounded random variable, τ ≤ a ≤ T and ψ ∈ D0. As the
pointwise limit of of U and S are equal, all functions in U are predictable. Further, if the
L∞ bounds of Γ2 and ψ2 are given by KΓ2 and Kψ2 , respectively, we have

‖ΦΓ,ψ,a‖2L2(MH) = E

[∫
[τ,T ]×C

(Γψ(s, y)1(a,T ](s))
2H(s)(dy)ds

]

≤ KΓ2Kψ2E

[∫
[a,T ]×C

H(s)(dy)ds

]
<∞,

where we get the finiteness of the last term by the integrability of the total mass (cf. e.g.
Corollary 2.2 in [15]). Therefore, U ⊂ L2(MH) and, since Ψ ∈ D0 can be approximated
by step functions, this yields that U is dense in L2(MH).

In a first step, we analyze the predictable representation property and the form of
the integrand on martingales build from the functions in U , more precisely on the space

IMH
(U) =

{
Y : Y (t) =

∫
[τ,t]×C

Φ(s, y)MH(ds, dy),Φ ∈ U , t ∈ [τ, T ]

}
.

Proposition 3.1. Let Φ ∈ U , with Φ(ω) = ΦΓ,ψ,a(ω, s, y) = Γ(ω)ψ(y)1(a,T )(s). Then:
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Weak martingale representation

1. It holds

IMH
(Φ)(t) = Γ(ωa)

(
〈Ht, ψ〉 − 〈ω(a), ψ〉 −

∫ t

a

〈ω(s), ∆̄
2 ψ〉ds

)
1t>a = F (t,Ht(ω))

with F = FΦΓ,ψ,a
defined by

F : [τ, T ]×D([τ, T ],MF (C)) → R

(t, ω) 7→ Γ(ω)

(
〈ω(t), ψ〉 − 〈ω(a), ψ〉

−
∫ t

a

〈ω(s), ∆̄
2 ψ〉ds

)
1t>a.

2. For F defined as in the first part and (t, ω) ∈ ΛT , it holds

DyF (t, ω) = Γ(ω)ψ(y)1(a,T ](t) = ΦΓ,ψ,a(t, ω). (3.2)

3. Set Y (t) = F (t,Ht). As (t,Ht(ω)) ∈ ΛT , we can define the operator ∇M on IMH
(U)

by
∇M : IMH

(U) 3 Y 7→ ∇MY ∈ L2(MH), (3.3)

where
∇MY : (ω, t, y) 7→ ∇MY (ω, t, y) := DyF (t,Ht(ω)).

Then, the representation

Y (t) =

∫
[τ,t]×C

∇MY (s, y)MH(ds, dy) (3.4)

holds for all Y ∈ IMH
(U).

Proof. We only have to prove (3.2). To do so, we first acknowledge that, for any ω ∈
D([τ, T ],MF (C)),

lim
ε→0

1

ε

(
〈(ω + εδy1[t,T ])(t), ψ〉 − 〈(ω + εδy1[t,T ])(a), ψ〉 −

∫ t

a

〈(ω + εδy1[t,T ])(s),
∆̄
2 ψ〉ds

− 〈ω(t), ψ〉+ 〈ω(a), ψ〉+

∫ t

a

〈ω(s), ∆̄
2 ψ〉ds

)
= lim

ε→0

1

ε

(
εψ(y)− ε

∫ t

a

〈δy1[t,T ],
∆̄
2 ψ〉ds

)
= ψ(y)

holds. Further,

lim
ε→0

1

ε

(
Γ(ω + εδy1[t,T ])1t>a − Γ(ω)1t>a

)
= 0

holds since Γ is Ha measurable. In combination with the product rule of differentiation,
this completes the proof of (3.2).

Definition 3.2. A linear operator Π mapping from its domain D(Π) into a Hilbert space
H is called an extension of the linear operator Π̃ : D(Π̃) → H if D(Π̃) ⊂ D(Π) and
Π̃v = Πv for all v ∈ D(Π̃).

To derive the martingale representation for elements inM2, we extend the operator
∇, which is defined in (3.3) and based on the functional derivative D, to an operator ∇M
onM. A crucial step towards extending the operator is proving that IMH

(U) is a dense
subspace ofM2. For this, we need the following result.
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Weak martingale representation

Proposition 3.3. The mapping

IMH
: L2(MH) 3 Φ 7→

∫
[τ,·]×C

Φ(s, y)MH(ds, dy) ∈M2

is an isometry.

Proof. As MH is an orthogonal martingale measure with covariation ν(ds, dy) = γH(s)

(dy)ds, we obtain (Theorem 2.5 in [17]) for all Φ and Ψ in L2(MH)

E

[∫
[τ,t]×C

Φ(s, y)MH(ds, dy)

∫
[τ,t]×C

Ψ(s, y)MH(ds, dy)

]

= E

[
γ

∫
[τ,t]×C

Φ(s, y)Ψ(s, y)H(s)(dy)ds

] (3.5)

for all t ∈ [τ, T ]. Setting Ψ = Φ in (3.5) yields

‖IMH
(Φ)‖2M2 = E

(∫
[τ,T ]×C

Φ(s, y)MH(ds, dy)

)2


= E

[
γ

∫
[τ,T ]×C

Φ(s, y)2H(s)(dy)ds

]
= ‖Φ‖2L2(MH).

Next, to verify that IMH
(U) is indeed a subspace ofM2, consider any Φ ∈ U . We then

get

IMH
(Φ)(t) =

∫
[τ,t]×C

Γψ(y)1(a,T ](s)MH(ds, dy) = Γ

∫
[a,t]×C

ψ(y)MH(ds, dy)1t>a

= Γ(M(t)(ψ)−M(a)(ψ))1t>a = Γ

(
〈H(t), ψ〉 − 〈H(a), ψ〉 −

∫ t

a

〈H(s), ∆̄
2 ψ〉ds

)
1t>a.

As Ψ ∈ D0 and Γ is Ha-measurable, we get from the martingale problem (MP0) that
elements in IMH

(U) are martingales with Y (τ) = 0. In addition, as U ⊂ L2(MH), we get
for all Φ ∈ U

E[(IMH
(Φ)(t))2] = E

(∫
[τ,t]×C

Φ(s, y)MH(ds, dy)

)2


= E

[
γ

∫
[τ,t]×C

Φ(s, y)2H(s)(dy)ds

]
≤ E

[
γ

∫
[τ,T ]×C

Φ(s, y)2H(s)(dy)ds

]
<∞.

Consequently, IMH
(Φ) is square-integrable and thus IMH

(U) ⊂M2.
From Theorem 4.7 in [7] and Example 3.1 in [13] we get the existence of a unique

ρ ∈ L2(MH) such that

Y (t) =

∫
[τ,t]×C

ρ(s, y)MH(ds, dy) for all t ∈ [τ, T ] (3.6)

holds Pτ,m-a.s.. Consequently, the representation (3.4) is unique and by Proposition 3.3
the mapping IMH

is a bijective isometry, which allows us to prove the following.

Proposition 3.4. The space {∇MY : Y ∈ IMH
(U)} is dense in L2(MH) and the space

IMH
(U) is dense inM2.
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Proof. From (3.2) and the definition of ∇M , we obtain that {∇MY : Y ∈ IMH
(U)} = U

holds. As U is dense in L2(MH), this yields the density of {∇MY : Y ∈ IMH
(U)} in

L2(MH). Further, as IMH
is a bijective isometry, we get the density of IMH

(U) inM2.

Taking this density result into account, we can prove the following proposition, which
can be interpreted as an integration by parts formula.

Proposition 3.5. If Y ∈ IMH
(U), ∇MY is the unique element in L2(MH) such that

E[Y (T )Z(T )] = E

[
γ

∫
[τ,T ]×C

∇MY (s, y)∇MZ(s, y)H(s)(dy)ds

]
(3.7)

holds for all Z ∈ IMH
(U).

Proof. From (3.4) and (3.5) we get

E[Y (T )Z(T )] = E

[∫
[τ,T ]×C

∇MY (s, y)MH(ds, dy)

∫
[τ,T ]×C

∇MZ(s, y)MH(ds, dy)

]

= E

[
γ

∫
[τ,T ]×C

∇MY (s, y)∇MZ(s, y)H(s)(dy)ds

]
.

The uniqueness is obtained from the following: Assume Φ ∈ L2(MH) also satisfies

E[Y (T )Z(T )] = E

[
γ

∫
[τ,T ]×C

Φ(s, y)∇MZ(s, y)H(s)(dy)ds

]
.

Then,

0 = E

[
γ

∫
[τ,T ]×C

(Φ(s, y)−∇MY (s, y))∇MZ(s, y)H(s)(dy)ds

]
holds for all Z ∈ IMH

(U). As {∇MZ : Z ∈ IMH
(U)} is dense in L2(MH), this yields the

equality of Φ and ∇MY in L2(MH) and thus the uniqueness.

The interpretation as an integration by parts formula becomes clear if we write (3.7)
in the following alternative form, which holds for all Φ ∈ L2(MH):

E

[
Y (T )

∫
[τ,T ]×C

Φ(s, y)MH(ds, dy)

]
= E

[
γ

∫
[τ,T ]×C

∇MY (s, y)Φ(s, y)H(s)(dy)ds

]
.

By using the uniqueness of ∇MY in (3.7), we can extend the operator ∇M from the
subspace IMH

(U) to all ofM2.

Theorem 3.6. The operator∇M defined on IMH
(U) can be uniquely extend to a bounded

operator

∇M : M2 → L2(MH)

Y 7→ ∇MY.

This operator is a bijection and the unique continuous extension is given by the following:
For a given Y ∈M2, ∇MY is the unique element in L2(MH) such that

E[Y (T )Z(T )] = E

[
γ

∫
[τ,T ]×C

∇MY (s, y)∇MZ(s, y)H(s)(dy)ds

]
(3.8)

holds for all Z ∈ IMH
(U).
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Proof. As ∇M : IMH
(U) → L2(MH) is a bounded linear operator, L2(MH) is a Hilbert

space and IMH
(U) is dense in M2, the BLT theorem (bounded linear transformation

theorem; see e.g. Theorem 5.19 in [8]) yields the existence of a unique continuous
bounded extension of ∇M toM2. As the restriction of the operator defined by (3.8) to
IMH

(U) coincides with the initial operator by Proposition 3.5, (3.8) uniquely defines the
continuous extension.

As for every Y ∈ M2 there exists a unique ρ such that (3.6) holds, we can com-
bine (3.6) with (3.5) and (3.4) to get for all Z ∈ IMH

(U)

E[Y (T )Z(T )] = E

[∫
[τ,T ]×C

ρ(s, y)MH(ds, dy)Z(T )

]

= E

[∫
[τ,T ]×C

ρ(s, y)∇MZ(s, y)H(s)(dy)ds

]
.

Thus, ρ and ∇MY have to coincide in L2(MH) because of the uniqueness of the integrand
in (3.6).

Using this, we can prove that the operator is bijective. To do so, let Y , Y ′ ∈M2 with
∇MY = ∇MY ′ and ∇MY , ∇MY ′ ∈ L2(MH). Then, as IMH

(U) is dense in M2, we get
from

0 = E

[∫
[τ,T ]×C

(∇MY (s, y)−∇MY ′(s, y))∇MZ(s, y)H(s)(dy)ds

]

= E

[(∫
[τ,T ]×C

∇MY (s, y)MH(ds, dy)−
∫

[τ,T ]×C
∇MY ′(s, y)MH(ds, dy)

)
Z(T )

]
= E[(Y (T )− Y ′(T ))Z(T )]

for all Z ∈ IMH
(U) that Y = Y ′ inM2 holds. Consequently, the operator ∇M is injective

and as for every Φ ∈ L2(MH) the process given by

Y =

∫
[τ,·]×C

Φ(s, y)MH(ds, dy)

is inM2 and satisfies ∇MY = Φ, the operator is also surjective. Therefore, the operator
is bijective.

The operator ∇M defined onM2 has the following nice properties which, while not
of particular interest for the martingale representation formula, are worth mentioning.

Proposition 3.7. The operator ∇M defined onM2 is an isometry and the adjoint opera-
tor of IMH

, the stochastic integral with respect to the martingale measure MH .

Proof. Let Y ∈M2. As in the previous case, we get the isometry property from

‖∇MY ‖2L2(MX) = E

[
γ

∫
[τ,T ]×C

(∇MY (s, y))2H(s)(dy)ds

]

= E

(∫
[τ,T ]×C

∇MY (s, y)MH(ds, dy)

)2


=

∥∥∥∥∥
∫

[τ,·]×C
∇MY (s, y)MH(ds, dy)

∥∥∥∥∥
2

M2

= ‖Y ‖2M2 .
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To show that ∇M is the adjoint operator of IMH
, let Φ ∈ L2(MH). It then follows

〈IMH
(Φ), Y 〉M2 = E

[∫
[τ,T ]×C

Φ(s, y)MH(ds, dy)Y (T )

]

= E

[∫
[τ,T ]×C

Φ(s, y)MH(ds, dy)

∫
[τ,T ]×C

∇MY (s, y)MH(ds, dy)

]

= E

[
γ

∫
[τ,T ]×C

Φ(s, y)∇MY (s, y)H(s)(dy)ds

]
= 〈Φ,∇MY 〉L2(MH),

which proves that ∇M is the adjoint operator.

From the above, we obtain the following martingale representation formula that
extends (3.4) to all square-integrable (Ht)t-martingales.

Theorem 3.8. For any square integrable (Ht)t-martingale Y and every t ∈ [τ, T ] it holds

Y (t) = Y (0) +

∫
[τ,t]×C

∇MY (s, y)MH(ds, dy) Pτ,m − a.s.. (3.9)

Proof. First, assume that Y ∈ M2. From the proof of Theorem 3.6 we know that the
unique integrand ρ in (3.6) is given by ∇MY . Therefore, for Y ∈ M2 and t ∈ [τ, T ], it
holds

Y (t) =

∫
[τ,t]×C

∇MY (s, y)MH(ds, dy)

Pτ,m-almost surely.
To obtain the result for all square-integrable (Ht)t-martingales Y , we can once again

get a process Ỹ ∈ M2 by setting Ỹ = Y − Y (0). Then, applying the above to Ỹ and
adding Y (0) to both sides yields (3.9).

Remark 3.9. By following the same steps, one can obtain a version of Theorem 3.8
based on the super-Brownian motion instead of the historical Brownian motion. While
we leave the details to the reader, we do note that the space D0 in the definition of U is
replaced by the Schwartz space and the uniqueness of integrand in (3.4) is proved in [6].

4 Comparison to the Result by Evans and Perkins

We start this section with a brief summary of the results in [6] and [7] before we
compare our result to the existing one. Note that the following results from the literature
are slightly adjusted to match our setting and that we skip over most of the details for
the sake of brevity.

Let X be a Dawson-Watanabe superprocess and MX the associated martingale
measure. If a square-integrable functional F is applied to X, then the result of interest
in [6] states that there exists an unique suitable integrand φF such that F (XT ) can be
written as

F (XT ) = E[F (XT )] +

∫
[0,T ]×E

φF (s, x)MX(ds, dx). (4.1)

As an immediate consequence, every square-integrable martingale Y can be written as

Y (t) = E[Y (0)] +

∫
[0,t]×E

f(s, x)MX(ds, dx)

for some square-integrable integrand f .
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In [7] a result similar to (4.1) is proven in a scenario with X replaced by a historical
Brownian motion H. In addition to that, if the function F satisfies some regularity
conditions, the authors obtained the explicit form of the integrand φF and thus the
explicit form of the representation, which is given by

F (HT ) = E[F (HT )] +

∫
[τ,T ]×C

Js;yF (HT )MH(ds, dy). (4.2)

The integrand Js;yF (HT ) is given by a specific predictable projection of the process

Js;yF (HT ) =

∫
C([τ,T ],MF (C))

F (HT + h)− F (HT )Qs;y
s−

(dh),

withQs;y
s−

playing the role of the canonical measure in the Poisson cluster representation
of the path of H from s to T and the operator Js;y resembling the Malliavin derivative
for diffusions. The proof of (4.2) is motivated by Bismut’s perturbation argument in the
context of Brownian motion. For details on these concepts, we refer to the original work
[7].

To compare the result in [7] to the one presented in Section 3, note that, if we set
t = T , (3.9) becomes

Y (T ) = E[Y (T )] +

∫
[τ,T ]×C

∇MY (s, y)MH(ds, dy).

As Y (T ) is HT -measurable, there exists a function G such that Y (T ) = G(HT ), from
which we get a representation of form

G(HT ) = E[G(HT )] +

∫
[τ,T ]×C

∇MG(HT )(s, y)MH(ds, dy).

If the function G satisfies the regularity conditions on F in [7], the uniqueness of the
representation yields that the two integrands have to coincide with respect to ‖ · ‖L2(MH),
i.e.

∇MG(HT )(s, y) = Js;yG(HT ) with respect to ‖ · ‖L2(MH).

In particular, if F in (4.2) is such that F (HT ) ∈ IMH
(U), we can use the definition of ∇M

on IMH
(U) as well as (3.2) to compute the integrand using the Dupire derivative so that

Js;yF (HT ) = DyF (s,Hs) with respect to ‖ · ‖L2(MH).

In conclusion, the approach by Evans and Perkins is based on a two step derivation.
In a first step, Js;yF (HT ) is computed. As Js;yF (HT ) is not predictable, computing the
predictable projection Js;yF (HT ) is necessary to obtain the integrand in the represen-
tation. This is in line with the derivation of the classical derivation of the Clark-Ocone
formula based on Malliavin calculus.

In contrast to that, our approach is based on a single step as the Dupire derivative
D as well as the operator ∇M are already predictable. However, if one starts with a
function G, it is necessary to first derive the martingale Y from the functional G for
this single step procedure. Of course, this also constitutes a predictable projection.
Hence, one can conclude that the operations predicatable projection and differentiation
commute. A detailed comparison of the the approach based on Malliavin calculus and the
approach based on functional calculus for real-valued diffusions is presented in Chapter
7.3 in [1], where this commutativity is also discussed.

Finally, while the approach in [7] requires a deeper understanding of the cluster rep-
resentation of the historical Brownian motion and its paths, our approach is solely based
on properties obtained from the martingale problem defining the historical Brownian
motion.
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