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Abstract

We study a regularization by noise phenomenon for the continuous parabolic Anderson
model with a potential shifted along paths of fractional Brownian motion. We demon-
strate that provided the Hurst parameter is chosen sufficiently small, this shift allows
to establish well-posedness and stability to the corresponding problem – without
the need of renormalization – in any dimension. We moreover provide a robustified
Feynman-Kac type formula for the unique solution to the regularized problem building
upon regularity estimates for the local time of fractional Brownian motion as well as
non-linear Young integration.
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1 Introduction

Consider the problem

∂tu =
1

2
∆u− V u, u(0) = f. (1.1)

As it is well known, provided f and V are sufficiently smooth, we obtain the unique
solution to the above problem via the Feynman-Kac formula

u(t, x) = Ex
[
f(Wt) exp

(
−
∫ t

0

V (s,Wt−s)ds

)]
,

where (Wt)t is a standard Brownian motion in Rd on a stochastic basis (Ω,F ,P, (Ft)t)
and Ex[(·)] denotes the expectation conditional on the Brownian motion starting in
x ∈ Rd. In the case of V enjoying only distributional regularity, this reasoning is no
longer applicable. A famous example in this context is the continuous parabolic Anderson
model (PAM)

∂tu =
1

2
∆u− ξu, u(0) = f, (1.2)
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Regularization by noise for PAM and related models

where ξ is spatial white noise on Td or Rd. While in the case d = 1 (1.2) is still well posed
due to the regularizing effect of the Laplacian, already d = 2, 3 require renormalization
and the implementation of advanced tools from the theory of singular SPDEs such
as regularity structures or paracontrolled distributions [28], [17], [18], [16], [1], [26,
Example 1.21]. These approaches break down for d ≥ 4.

In the following, we intend to study evolution problems of the above form with a
potential shifted along paths of fractional Brownian motion wH of Hurst parameter H,
i.e.

∂tu =
1

2
∆u− Ṽ u, u(0) = f, (1.3)

where we denote Ṽ (t, x) := V (x − wHt ) in case V enjoys sufficient regularity to admit
pointwise evaluations or respectivelty Ṽ (t, ϕ) = 〈V, ϕ(· + wHt )〉 for any smooth test
function ϕ in case V only enjoys some distributional regularity. The study of (1.3) is
motivated by its formal connection to transport noise perturbations of (1.1). Indeed,
provided v solves

∂tv =
1

2
∆v − V v +∇v · ẇHt , u(0) = f, (1.4)

then formally, u(t, x) := v(t, x− wHt ) is a solution to (1.3). Conversely, given a solution u
to (1.3), v(t, x) := u(t, x+ wHt ) formally solves (1.4)1.

We show that by shifting the reference frame of the potential in such a way, we
can restore well-posedness to (1.3) and obtain stability results even in the setting of
distributional valued V . As an application, we establish well-posedness of a shifted
parabolic Anderson model

∂tu =
1

2
∆u− ξ̃u, u(0) = f (1.5)

in arbitrary dimension, provided the Hurst parameter H is chosen sufficiently small.
Towards this end, we exploit a pathwise regularization phenomenon on the level

of the Feynman-Kac formula building mainly on [20]. More concretely, we establish
in Lemma 2.2 below that for smooth potentials V ε, we may rewrite the Feynman-Kac
formula for (1.3) as

uε(t, x) = Ex
[
f(Wt) exp

(
−(IAt,ε)t

)]
, (1.6)

where I denotes Gubinelli’s Sewing operator2, At,ε the germ

At,εs,r = (V ε ∗ Ls,r)(Wt−s),

and L the local time associated with the fractional Brownian motion wH . Due to Young’s
inequality in Besov spaces, (1.6) might be well defined even for distributional potentials
V , provided the local time L enjoys sufficient spatial regularity3. We therefore refer
to (1.6) as a robustified Feynman-Kac formula. This main observation allows us to
subsequently pass by a mollification argument: Given a distributional V , we consider
first V ε smooth such that ‖V ε − V ‖H−η → 0. For such V ε, we may express the unique
solution uε to the associated PDE as in (1.6) by Lemma 2.2. Next, in Lemma 2.4 we
establish that due to the regularizing effect of the local time L, (uε)ε will converge in
appropriate topologies to

u(t, x) = Ex
[
f(Wt) exp

(
−(IAt)t

)]
, (1.7)

1We refer to [4], [31] where a similar transformation was employed to study regularization by transport
noise for transport equations. Note that to make this connection rigorous, the main challenge consists in
giving meaning to ∇v · ẇH

t , which is done in [4], [31] using higher order rough path theory (refer also to [8,
Section 2.4], [3]).

2Refer to [15] and Lemma 3.3 in the Appendix.
3This is precisely what [20, Theorem 3.1], also cited explicitly below, provides us with.
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Regularization by noise for PAM and related models

that then becomes a candidate for a solution to (1.3). Notice that the expression Ṽ u

appearing in the equation is however a priori ill-defined. Yet, exploiting our explicit
robustified Feynman-Kac representation (1.7), we can easily establish higher spatial
regularity of u. In particular, we demonstrate that provided the initial condition f is
chosen sufficiently smooth and H sufficiently small, u enjoys sufficient regularity for the
product

V (·)u(t, ·+ wHt )

to be well defined in the sense of Lemma 1.5 for any t ∈ [0, T ]. Under these more
restrictive conditions, we are thus able to identify (1.7) as a weak solution to (1.3).

1.1 Formulation and discussion of the main result

Theorem 1.1. For η ≥ 0 and d ∈ N, let V ∈ H−η(Rd) and f ∈ C1(Rd). Let wH be
a d-dimensional fractional Brownian motion on (ΩH ,FH ,PH) whose Hurst parameter
satisfies H < 1

2 (1 + η + d/2)−1. Then for any smooth V ε such that ‖V ε − V ‖H−η → 0 and

Ṽ ε(t, x) := V ε(x− wHt ), the sequence (uε)ε of unique solutions to the the problem

∂tu
ε =

1

2
∆uε − Ṽ εuε, u(0) = f (1.8)

is Cauchy in C([0, T ] × Rd) equipped with the topology of uniform convergence, PH -
almost surely. For Ats,u = (V ∗ Ls,u)(Wt−s), the limit u ∈ C([0, T ] × Rd) satisfies the
Feynman-Kac formula

u(t, x) = Ex[f(Wt) exp−(IAt)t], (1.9)

independent of the sequence (V ε)ε chosen to approximate V ∈ H−η. Moreover, provided
further η 6∈ N and H < 1

2 (1 + η + dηe + d/2)−1 and f ∈ Cdηe, we have u(t, ·) ∈ Cdηe

uniformly in [0, T ], PH -almost surely. In particular the product V (·)u(t, · + wHt ) is well
defined for any t ∈ [0, T ] in the sense of Lemma 1.5 and u is a weak solution to

∂tu =
1

2
∆u− Ṽ u, u(0) = f (1.10)

i.e. for any ϕ ∈ C∞c (Rd) and t ∈ [0, T ] we have

〈ut − f, ϕ〉 =

∫ t

0

〈us,
1

2
∆ϕ〉ds+

∫ t

0

〈V (·)u(·+ wHs ), ϕ(·+ wHs )〉ds.

Corollary 1.2 (Regularized PAM). Consider spatial white noise on the d-dimensional
torus Td. Its realizations are known to lie in H−(d/2+ε) for any ε > 0 almost surely
[34]. Hence, imposing H < 1

2 (1 + d)−1, we can apply the first part of our main result
Theorem 1.1. Demanding further H < 1

2 (1 + d + dd/2 + 1/4e)−1, we may employ the
second part, yielding a weak solution.

Remark 1.3. Note that due to the robustness of our approach, several canonical exten-
sions to the above statements follow readily mutatis mutandis: Instead of considering the
Laplacian, more general non-degenerate diffusion operators can be considered in (1.10).
Moreover, instead of shifting the potential V along paths of fractional Brownian motion,
shifts along any path that admits a sufficiently regular local time are conceivable.

Remark 1.4 (On uniqueness). By Theorem 1.1 the function u of (1.9) is independent of
the sequence (V ε)ε chosen to approximate the problem. We therefore obtain uniqueness
of solutions to (1.10) in the class of functions that are limits of solutions to mollified prob-
lems of the form of (1.8). For a genuine uniqueness statement without this restriction,
one could attempt to show that any solution to (1.10) admits the Feynman-Kac formula
(1.9) along the lines of [25, Theorem 5.7.6] for example. Note however that since such
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Regularization by noise for PAM and related models

results require some minimal regularity on Ṽ (typically continuity), we would require
again a mollification step,thus obtaining again only uniqueness in the class of function
that are limits of solutions to the mollified problem.

1.2 Short overview of existing literature

The idea of employing a robustified Feynman-Kac formula in the study of heat equa-
tions with some form of multiplicative noise can be traced back to at least [30], [23], [22]
for various types of space-time fractional Brownian motions. [21] combines these consid-
erations with non-linear Young theory similar in spirit to the setting presented in this
article. Remark however that our qualitatively different approach of considering random
translations of the potential allows us to treat considerably more singular potentials.
Furthermore, robustifications of the Feynman-Kac formula have been employed in the
study of rough stochastic PDEs for example in [8, Chapter 12] or [7]. Regularization by
additive noise for the multiplicative stochastic heat equation was recently established by
[6] building upon ideas on pathwise regularization by noise in the spirit of [5], [10], [20].
Let us mention that this approach to regularization by noise has recently seen numerous
applications for example to interacting particle systems [19], distribution dependent
SDEs [12], [13] and multiplicative SDEs [11], [2].

1.3 Notation

We employ the standard notation necessary to formulate and apply the Sewing Lemma
for which we refer to Appendix 3.B. Let S ′ denote the space of tempered distributions.
For η ∈ R, we denote by Hη the inhomogeneous Bessel potential space of order η, i.e.

Hη :=
{
f ∈ S ′| ‖f‖Hη =

∥∥∥(1 + |(·)|)η f̂
∥∥∥
L2
<∞

}
.

Moreover, for α > 0 and α 6∈ N we denote by Cα the Hölder space

Cα :=

{
f ∈ S ′| ‖f‖Cα = ‖f‖Cbαc + sup

x 6=y

|(Dkf)(x)− (Dkf)(y)|
|x− y|α−bαc

<∞

}
,

where for n ∈ N0

‖f‖Cn =

n∑
k=0

∥∥Dkf
∥∥
∞ . (1.11)

We denote by Cn the space of n-times continuously differentiable functions such that
(1.11) is finite. Let us remark that the first two spaces above are related to more general
Besov spaces in the sense that Hα = Bα2,2 for any α ∈ R and Cα = Bα∞,∞ for α > 0 and
α 6∈ N. In particular, note that by Young’s inequality in Besov spaces [27], we have

‖f ∗ g‖Cα−η . ‖f‖Hα ‖g‖H−η (1.12)

for any α − η such that α − η > 0 and α − η 6∈ N. Let us also recall the multiplication
theorem for Besov spaces (see e.g. [29, Corollary 2.1.35], [33, Theorem 19.7]) adapted
to our setting:

Lemma 1.5. Let α > 0 such that α− η > 0. Then for any ε > 0 and u, v ∈ S ′ we have

‖u · V ‖H−η−ε . ‖u‖Cα ‖V ‖H−η ,

i.e. the multiplication operator extends to a continuous bilinear map · : Cα × H−η →
H−η−ε.
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Regularization by noise for PAM and related models

2 Proof of Theorem 1.1

For the readers convenience we begin by stating the following result on the regularity
of local times associated with fractional Brownian motion that we will use throughout.
We refer to the Appendix 3.A the basic definitions of occupation measures, local times
and the occupation times formula.

Lemma 2.1 ([20, Theorem 3.1] ). Let wH be a d-dimensional fractional Brownian motion
of Hurst parameter H < 1/d on (ΩH ,FH ,PH). Then there exists a null set N such
that for all ω ∈ N c, the path wH(ω) has a local time L(ω) and for λ < 1

2H −
d
2 and

γ ∈ [0, 1− (λ+ d
2 )H) we have

‖Ls,t(ω)‖Hλ ≤ CT (ω)|t− s|γ . (2.1)

for any s, t ∈ [0, T ], where Ls,t = Lt − Ls.
Throughout the remainder of the paper and for H < 1/d satisfying additionally the

conditions demanded in the statements below, we shall fix a realization of fractional
Brownian motion wH on (ΩH ,FH ,PH) that admits a local time L and for which Lemma
2.1 can be applied in the corresponding regularity regime.

2.1 Solutions to the mollified equation converge

For η ≥ 0 and V ∈ H−η, let V ε be a mollification, i.e. V ε smooth such that
‖V ε − V ‖H−η → 0. Then for Ṽ ε(t, x) := V ε(x− wHt ) we know that the unique solution to
the problem

∂tu
ε =

1

2
∆uε − (Ṽ ε)uε, uε(0) = f, (2.2)

is given by

uε(t, x) = Ex
[
f(Wt) exp

(
−
∫ t

0

V ε(Wt−s − wHs )ds

)]
,

where (Wt)t is a standard Brownian motion in Rd on a stochastic basis (Ω,F ,P, (Ft)t)
and Ex[(·)] denotes the expectation conditional on the Brownian motion starting in
x ∈ Rd. We first establish that we may replace the above Lebesgue integral in time by
an appropriate sewing that is capable of leveraging the regularizing effect due to the
highly oscillating fractional Brownian motion. Towards this end, we exploit the Sewing
Lemma 3.3.

Lemma 2.2 (Identification of Riemann integral as Sewing). For δ > 0, let
V ∈ H(1∨d/2)+δ(Rd). Let W be a standard Brownian motion on Rd on a stochastic
basis (Ω,F ,P, (Ft)t). Then for almost every ω ∈ Ω the germ

Ats,r := (V ∗ Ls,r)(Wt−s(ω)) =

∫ r

s

V (Wt−s(ω)− wHv )dv

admits a Sewing (IAt) on [0, t] and moreover for any t ∈ [0, T ] we have∫ t

0

V (Wt−s − wHs )ds = (IAt)t.

Proof. Remark first that by Lemma 2.1 we have for some ε > 0 and any (s, t) ∈ ∆2([0, T ]):

‖Ls,t‖L2 ≤ CT |t− s|1/2+ε.

Moreover, by Young’s inequality in Besov spaces (1.12), we have that

‖V ∗ Ls,t‖C1+δ . ‖V ‖H1+δ ‖Ls,t‖L2 .
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Regularization by noise for PAM and related models

We also have for almost every ω ∈ Ω that W ∈ C1/2−ε/2. We therefore obtain for
(s, u, r, t) ∈ ∆4([0, T ]) that

|(δAt)s,u,r| = |V ∗ Lu,r(Wt−s)− V ∗ Lu,r(Wt−u)|

. ‖V ‖H1+δ ‖Ls,t‖L2 |r − u|1/2+ε|u− s|1/2−ε/2.

We conclude that At does indeed admit a Sewing on [0, t] and for (s, u, t) ∈ ∆3([0, T ]) we
have

|Ats,u − (IAt)s,u| = O(|u− s|1+ε/2).

Next, observe that the germ

Ãts,u :=

∫ u

s

V (Wt−v − wHv )dv

trivially admits a Sewing, as δÃt = 0 wherefore we have (IÃt) = Ãt. Moreover note that
because of V ∈ Hd/2+δ ↪→ Cδ we have for (s, u, t) ∈ ∆3∣∣∣Ãts,u −Ats,u∣∣∣ . ∫ u

s

|Wt−s −Wt−v|δdv . |u− s|1+δ(1−ε/2),

allowing to conclude∣∣∣∣∫ u

s

V (Wt−v − wHv )dv − (IAt)s,u
∣∣∣∣ ≤ |Ãts,u −Ats,u|+ |Ats,u − (IAt)s,u| . |u− s|1+δ(1−ε/2).

Hence the function

s ∈ [0, t]→
∫ s

0

V (Wt−r − wHr )dr − (IAt)s

is constant. Since it moreover starts in zero, this establishes the claim.

Remark 2.3. Remark that in the above statement, we did not exploit any regularization
from the local time, but instead demanded regularity of the potential V . As a conse-
quence, the only constraint on the Hurst parameter at this stage is H < 1/d, which
simply assures the existence of a local time. In the following, we will impose further
restrictions on the Hurst parameter, allowing to pass to less regular potentials V .

By the previous Lemma 2.2, we have that indeed

uε(t, x) = Ex
[
f(Wt) exp

(
−
∫ t

0

V ε(Wt−s − wHs )ds

)]
= Ex

[
f(Wt) exp

(
−(IAt,ε)t

)]
,

where
At,εs,u := (V ε ∗ Ls,u)(Wt−s).

In the next Lemma we address the question: Under which condition on V and H is it
possible to pass to a limit ε→ 0?

Lemma 2.4 (Convergence of mollifications). For η ≥ 0, d ∈ N, let f ∈ C1(Rd), V ∈
H−η(Rd) and H < 1

2 (1 + η + d/2)−1. Let uε be the unique solution to the mollified
problem (2.2) and set

u(t, x) := Ex
[
f(Wt) exp

(
−(IAt)t

)]
(2.3)

where
Ats,u := (V ∗ Ls,u)(Wt−s).

Then uε converges uniformly to u on [0, T ]×Rd.
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Proof. Let us start by establishing that u is well defined under the conditions stated in
the Lemma. By Lemma 2.1, we have for some δ > 0

‖Ls,t‖H1+η+δ . |t− s|1/2+δ.

Note that again, by Young’s inequality in Besov spaces, we have

‖V ∗ Ls,t‖C1+δ ≤ ‖V ‖H−η ‖Ls,t‖H1+η+δ

meaning again in particular that V ∗ Ls,t lies in C1. Similar to the previous Lemma 2.2,
we can conclude that indeed, At admits a sewing, since

|(δAt)s,u,r| = |V ∗ Lu,r(Wt−s)− V ∗ Lu,r(Wt−u)|

.

(
sup

x 6=y∈[0,T ]

|Wx(ω)−Wy(ω)|
|x− y|1/2−δ/2

)
︸ ︷︷ ︸

=:cδ(ω)

|r − u|1/2+δ|u− s|1/2−δ/2.

The above ensures that for almost every ω ∈ Ω the expression (IAt)t is well defined.
We further demonstrate that (IAt)t admits exponential moments with respect to the
measure P, allowing to establish well posedness of (2.3). By the Sewing Lemma 3.3, we
have for t ∈ [0, T ] the a priori bound

|(IAt)t| ≤ |At0,t|+ |(IAt)0,t −At0,t|

≤ ‖V ∗ L0,t‖∞ +
∥∥δAt∥∥

1+δ/2
T 1+δ/2

. 1 + cδ(ω).

(2.4)

Hence, we conclude that for some a > 0, we have

|Ex
[
f(Wt) exp (−(IAt)t)

]
| . ‖f‖∞E

x[exp (acδ(ω))] <∞

by Lemma 3.5. This shows that the function u in (2.3) is well defined as a function in
C0([0, T ] × Rd). Towards establishing convergence, let us first remark that similar to
(2.4), we have

|(IAt,ε)t| . 1 + cδ(ω)

uniformly in ε > 0. This permits the following bound

|uεt(x)− ut(x)| ≤
∣∣∣Ex [f(Wt)(e

−(IAt)t − e−(IAt,ε)t)
]∣∣∣

≤ Ex
[
|f(Wt)|eacδ |(IAt)t − (IAt,ε)t|)

]
.

Next, note that due to the linearity of the Sewing operator I

|(IAt)t − (IAt,ε)t| ≤
∥∥At −At,ε∥∥

1/2
T 1/2 +

∥∥δ(At −At,ε)∥∥
1+δ/2

T 1+δ/2.

We have moreover that

|(At −At,ε)s,r| . ‖V − V ε‖H−η ‖Ls,r‖Hη+δ . ‖V − V
ε‖H−η |r − s|

1/2,

as well as similar to the above calculations

|(δ(At −At,ε))s,u,r| = |(V − V ε) ∗ Lu,r(Wt−s)− (V − V ε) ∗ Lu,r(Wt−u)|

. cδ(ω) ‖V − V ε‖H−η |r − u|
1/2+δ|u− s|1/2−δ/2.

Overall, this permits to conclude that

|uεt(x)− ut(x)| . ‖V − V ε‖H−η ‖f‖∞E
x[cδ exp (a(1 + cδ))] . ‖V − V ε‖H−η ‖f‖∞

exploiting Lemma 3.5. Hence we have established the claim.
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2.2 Weak solutions

In the following section, we undertake to establish in what sense and under what
conditions the function u obtained in the previous section solves our original problem.
We recall again that the main obstacle to address lies in the appearance of the product
Ṽ u. This obstacle will be overcome by establishing higher spatial regularity of u building
upon our robustified Feynman-Kac representation for u in Lemma 2.4 provided we
demand more regularity in the initial condition f as well as the local time L. In this way,
Lemma 1.5 allows us to give a meaning to the product Ṽ u, thereby allowing to conclude
that u satisfies the original problem in the weak sense of Theorem 1.1.

Lemma 2.5 (Spatial regularity of u). For n ∈ N suppose H < 1
2 (1+η+n+d/2)−1, f ∈ Cn

and V ∈ H−η. Then for every t ∈ [0, T ], the function

u(t, x) := Ex
[
f(Wt) exp

(
−(IAt)0,t

)]
, (2.5)

where
Ats,r = (V ∗ Ls,r)(Wt−s)

lies in Cn. Moreover, uε → u in Cn, uniformly in t ∈ [0, T ].

Proof. Fix t ∈ [0, T ]. We show that the function

x→ (IAt(x))t,

where
Ats,r(x) = (V ∗ Ls,r)(Wt−s + x)

is n times differentiable and that moreover, all derivatives up to order n are uniformly
bounded in space, integrable with respect to P. Towards this end, let us note that

Dk
x(IAt(x))t = (I(Dk

xA
t)(x))t. (2.6)

This can be established by using Lemma 3.4. For the sake of conciseness, we restrict
ourselves to the case d = 1 and one derivative. Let us define

At,ns,r = n ((V ∗ Ls,r)(Wt−s + x+ 1/n)− (V ∗ Ls,r)(Wt−s + x)) .

Then it can be seen easily that ‖At,n −DxA
t‖1/2 → 0 uniformly in t ∈ [0, T ]. Moreover,

δAt,ns,u,r = n ((V ∗ Lu,r)(Wt−s + x+ 1/n)− (V ∗ Lu,r)(Wt−s + x))

− n ((V ∗ Lu,r)(Wt−u + x+ 1/n) + (V ∗ Lu,r)(Wt−u + x))

= (V ∗DxLu,r)(Wt−s + x)− (V ∗DxLu,r)(Wt−u + x) +O(1/n)|u− s|1+2δ

. cδ(ω)|r − u|1/2+δ|u− s|1/2−δ/2 +O(1/n)|u− s|1+2δ,

meaning that indeed supn ‖δAt,n‖1+δ/2 < ∞, allowing to conclude (2.6) by Lemma 3.4.
By the Faà di Bruno formula, we have

dn

dxn
(
f(Wt + x) exp

(
−(IAt(x))t

))
= exp

(
−(IAt(x))t

) n∑
k=0

(
n

k

)(
Dn−k
x f(Wt + x)

)
Bk(−(IDxA

t(x))t, · · · − (IDk
xA

t(x))t),

where Bk denotes the k-th complete Bell polynomial with the convention B0 = 1. Note in
particular that (IDk

xA
t(x))t is uniformly bounded in space due to the regularity of the

local time in this setting. Moreover, we have for any k ≤ n the a priori bound

|(IDk
xA

t(x))t| . (1 + cδ(ω)).
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We therefore have for any a > 0

|Bk(−D(IAt)0,t, . . . D
k(IAt)0,t)| . exp (acγ(ω))

wherefore
dn

dxn
(
f(Bt + x) exp

(
−(IAt)0,t

))
is well defined, uniformly bounded in x ∈ Rd and integrable with respect to P. Overall,
this allows to conclude that indeed u(t, ·) ∈ Cn for any t ∈ [0, T ]. Finally, going through
similar considerations for uε and remarking that

(IDk
x(At −At,ε(x)))t → 0

uniformly in t, x ∈ [0, T ]×Rd, we infer that uε(t, ·)→ u(t, ·) in Cn uniformly in t ∈ [0, T ].

Invoking Lemma 1.5, we can now conclude the proof of Theorem 1.1 by observing
the following:

Corollary 2.6. Suppose H < 1
2 (1 + η + dηe + d/2)−1, f ∈ Cdηe and V ∈ H−η. Then for

any t ∈ [0, T ], the product

〈(Ṽ u)t, ϕ〉 := 〈V (·)u(t, ·+ wHt ), ϕ(·+ wHt )〉

is well defined in the sense of Lemma 1.5. In particular, we infer that u is a weak solution
to the original problem.

3 Appendix

3.A Local times and occupation times formula

We recall for the reader the basic concepts of occupation measures, local times and
the occupation times formula. A comprehensive review paper on these topics is [14].

Definition 3.1. Let w : [0, T ]→ Rd be a measurable path. Then the occupation measure
at time t ∈ [0, T ], written µwt is the Borel measure on Rd defined by

µwt (A) := λ({s ∈ [0, t] : ws ∈ A}), A ∈ B(Rd),

where λ denotes the standard Lebesgue measure.

The occupation measure thus measures how much time the process w spends in
certain Borel sets. Provided for any t ∈ [0, T ], the measure is absolutely continuous
with respect to the Lebesgue measure on Rd, we call the corresponding Radon-Nikodym
derivative local time of the process w:

Definition 3.2. Let w : [0, T ] → Rd be a measurable path. Assume that there exists a
measurable function Lw : [0, T ]×Rd → R+ such that

µwt (A) =

∫
A

Lwt (z)dz,

for any A ∈ B(Rd) and t ∈ [0, T ]. Then we call Lw local time of w.

Note that by the definition of the occupation measure, we have for any bounded
measurable function f : Rd → R that∫ t

0

f(ws)ds =

∫
Rd
f(z)µwt (dz). (3.1)

The above equation (3.1) is called occupation times formula. Remark that in particular,
provided w admits a local time, we also have for any x ∈ Rd∫ t

0

f(x− ws)ds =

∫
Rd
f(x− z)µwt (dz) =

∫
Rd
f(x− z)Lwt (z)dz = (f ∗ Lwt )(x). (3.2)
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3.B The sewing lemma

We recall the Sewing Lemma due to [15] (see also [8, Lemma 4.2]). Let E be a
Banach space, [0, T ] a given interval. Let ∆n denote the n-th simplex of [0, T ], i.e.
∆n := {(t1, . . . , tn)|0 ≤ t1 · · · ≤ tn ≤ T}. For a function A : ∆2 → E define the mapping
δA : ∆3 → E via

(δA)s,u,t := As,t −As,u −Au,t.

Provided At,t = 0 we say that for α, β > 0 we have A ∈ Cα,β2 (E) if ‖A‖α,β <∞, where

‖A‖α := sup
(s,t)∈∆2

‖As,t‖E
|t− s|α

, ‖δA‖β := sup
(s,u,t)∈∆3

‖(δA)s,u,t‖E
|t− s|β

and ‖A‖α,β := ‖A‖α + ‖δA‖β. For a function f : [0, T ] → E, we denote fs,t := ft − fs.
Moreover, if for any sequence (Pn([s, t]))n of partitions of [s, t] whose mesh size goes to
zero, the quantity

lim
n→∞

∑
[u,v]∈Pn([s,t])

Au,v

converges to the same limit, we note

(IA)s,t := lim
n→∞

∑
[u,v]∈Pn([s,t])

Au,v.

Lemma 3.3 (Sewing, [15]). Let 0 < α ≤ 1 < β. Then for any A ∈ Cα,β2 (E), (IA) is well
defined (we say that A admits the sewing (IA)). Moreover, denoting (IA)t := (IA)0,t,
we have (IA) ∈ Cα([0, T ], E) and (IA)0 = 0 and for some constant c > 0 depending only
on β we have

‖(IA)t − (IA)s −As,t‖E ≤ c ‖δA‖β |t− s|
β .

Lemma 3.4 (Lemma A.2 [9]). For 0 < α ≤ 1 < β and E a Banach space, let A ∈ Cα,β2 (E)

and (An)n ⊂ Cα,β2 (E) such that for some R > 0 supn∈N ‖δAn‖β ≤ R and such that
‖An −A‖α → 0. Then

‖I(A−An)‖α → 0.

3.C Exponential moments for the Hölder modulus of continuity of Brownian
motion

For the sake of completeness, we provide a sketch of the proof that the γ-Hölder
modulus of continuity of Brownian motion is exponentially integrable for γ ∈ (0, 1/2).
Refer also to [24] for more refined integrability statements.

Lemma 3.5. Let B be a standard Brownian motion. Then for any γ < 1/2 and a > 0, we
have

E

[
exp

(
a sup
s 6=t∈[0,T ]

|Bt −Bs|
|t− s|γ

)]
<∞.

Proof. Without loss of generality, set T = 1. Remark first that we have for k ∈ N

E[|Bt −Bs|k] ≤ |t− s|k/2(k − 1)!!

We follow the classical proof of Kolmogorov’s continuity theorem (refer for example to
[32, Theorem 10.1]). For Dm := 2−mN0 ∩ [0, 1) and D = ∪mDm set

∆m = {(s, t) ∈ Dm ×Dm : |t− s| ≤ 2−m}.
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We then have for σj := sup(s,t)∈∆j
|B(t)−B(s)| the bound

E[σkj ] ≤
∑

(s,t)∈∆j

E[|Bt −Bs|k] ≤ 2 · 2j(1−k/2))(k − 1)!!

Following further the proof of Kolmogorov’s continuity theorem as in [32, Theorem 10.1],
we obtain

E

( sup
s6=t∈D

|Bt −Bs|
|t− s|γ

)k1/k

≤ 21+γ
∞∑
j=0

2jγE[σkj ]1/k

≤ 21/k · 21+γ((k − 1)!!)1/k
∞∑
j=0

2jγ(2−j(1/2−1/k)).

Now let k0 be the smallest natural such that γ < 1/2 − 1/k0. We then obtain for any
k ≥ k0

E

( sup
s6=t∈D

|Bt −Bs|
|t− s|γ

)k1/k

≤ 21/k · 21+γ((k − 1)!!)1/k
∞∑
j=0

2j(γ+1/k−1/2)

≤ 21/k · 21+γ((k − 1)!!)1/k
∞∑
j=0

2j(γ+1/k0−1/2)

≤ C21/k · 21+γ((k − 1)!!)1/k.

Therefore, we have

∞∑
k=k0

ak

k!
E

( sup
s6=t∈[0,1]

|Bt −Bs|
|t− s|γ

)k ≤ 2

∞∑
k=k0

(21+γCa)k

k!!
<∞,

which proves the claim.

References

[1] R. Allez and K. Chouk, The continuous Anderson hamiltonian in dimension two, 2015,
arXiv:1511.02718.

[2] F. Bechtold and M. Hofmanová, Weak solutions for singular multiplicative SDEs via regular-
ization by noise, 2022, arXiv:2203.13745.

[3] C. Bellingeri, A. Djurdjevac, P. K. Friz, and N. Tapia, Transport and continuity equations
with (very) rough noise, Partial Differential Equations and Applications 2 (2021), no. 4.
MR4338294

[4] R. Catellier, Rough linear transport equation with an irregular drift, Stochastics and Partial
Differential Equations: Analysis and Computations 4 (2016), no. 3, 477–534. MR3538009

[5] R. Catellier and M. Gubinelli, Averaging along irregular curves and regularisation of ODEs,
Stochastic Processes and their Applications 126 (2016), no. 8, 2323–2366. MR3505229

[6] R. Catellier and F. Harang, Pathwise regularization of the stochastic heat equation with
multiplicative noise through irregular perturbation, 2021, arXiv:2101.00915.

[7] J. Diehl, P. Friz, and W. Stannat, Stochastic partial differential equations: a rough paths
view on weak solutions via Feynman–Kac, Annales de la Faculté des sciences de Toulouse:
Mathématiques Ser. 6, 26 (2017), no. 4, 911–947 (en). MR3746646

[8] P. Friz and M. Hairer, A course on rough paths, Universitext, Springer, Cham, 2014.
MR3289027

ECP 27 (2022), paper 47.
Page 11/13

https://www.imstat.org/ecp

https://arXiv.org/abs/1511.02718
https://arXiv.org/abs/2203.13745
https://mathscinet.ams.org/mathscinet-getitem?mr=4338294
https://mathscinet.ams.org/mathscinet-getitem?mr=3538009
https://mathscinet.ams.org/mathscinet-getitem?mr=3505229
https://arXiv.org/abs/2101.00915
https://mathscinet.ams.org/mathscinet-getitem?mr=3746646
https://mathscinet.ams.org/mathscinet-getitem?mr=3289027
https://doi.org/10.1214/22-ECP490
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Regularization by noise for PAM and related models

[9] L. Galeati, Nonlinear young differential equations: A review, Journal of Dynamics and
Differential Equations (2021).

[10] L. Galeati and M. Gubinelli, Noiseless regularisation by noise, Revista Matemática Iberoamer-
icana 38 (2021), no. 2, 433–502. MR4404773

[11] L. Galeati and F. Harang, Regularization of multiplicative sdes through additive noise, 2020,
arXiv:2008.02335.

[12] L. Galeati, F. A. Harang, and A. Mayorcas. Distribution dependent SDEs driven by additive
fractional brownian motion. Probability Theory and Related Fields, May 2022.

[13] L. Galeati, F. Harang, and A. Mayorcas, Distribution dependent SDEs driven by additive
continuous noise, Electronic Journal of Probability 27 (2022), 1–38. MR4388460

[14] D. Geman and J. Horowitz, Occupation densities, The Annals of Probability 8 (1980), no. 1,
1–67. MR0556414

[15] M Gubinelli, Controlling rough paths, J. Func. Anal. 216 (2004), no. 1, 86–140. MR2091358

[16] M. Gubinelli, P. Imkeller, and N. Perkowski, Paracontrolled distributions and singular PDEs,
Forum of Mathematics, Pi 3e6 (2015), 1–75. MR3406823

[17] M. Hairer and C. Labbé, A simple construction of the continuum parabolic Anderson model
on R2, Electronic Communications in Probability 20 (2015), no. none, 1–11. MR3358965

[18] M.Hairer and C. Labbé, Multiplicative stochastic heat equations on the whole space, Journal
of the European Mathematical Society 20 (2018), no. 4, 1005–1054. MR3779690

[19] F. Harang and A. Mayorcas, Pathwise regularisation of singular interacting particle systems
and their mean field limits, 2020, arXiv:2010.15517.

[20] F. Harang and N. Perkowski, C∞-regularization of ODEs perturbed by noise, Stochastics and
Dynamics (2021), 2140010. MR4342752

[21] Y. Hu and K. Lê, Nonlinear young integrals and differential systems in Hölder media, Trans-
actions of the American Mathematical Society 369 (2016), no. 3, 1935–2002. MR3581224

[22] Y. Hu, F. Lu, and D. Nualart, Feynman–Kac formula for the heat equation driven by fractional
noise with Hurst parameter H < 1/2, The Annals of Probability 40 (2012), no. 3, 1041–1068.
MR2962086

[23] Y. Hu, D. Nualart, and J. Song, Feynman–Kac formula for heat equation driven by fractional
white noise, The Annals of Probability 39 (2011), no. 1, 291–326. MR2778803

[24] T. P. Hytönen and M. C. Veraar, On Besov regularity of Brownian motions in infinite dimensions,
Probability and Mathematical Statistics 28 (2008), Fasc. 1, 143–162. MR2445509

[25] I. Karatzas and I.K.S. Shreve, Brownian motion and stochastic calculus, Graduate Texts in
Mathematics (113) (Book 113), Springer New York, 1991. MR1121940

[26] W. König, The parabolic Anderson model, Springer International Publishing, 2016.
MR3526112

[27] F. Kühn and R. Schilling, Convolution inequalities for Besov and Triebel–Lizorkin spaces, and
applications to convolution semigroups, 2021, arXiv:2101.03886. MR4339468

[28] C. Labbé, The continuous Anderson hamiltonian in d ≤ 3, Journal of Functional Analysis 277
(2019), no. 9, 3187–3235. MR3997634

[29] J. Martin, Refinements of the solution theory for singular SPDEs, Ph.D. thesis, Humboldt-
Universität zu Berlin, 2018.

[30] O. Mocioalca and F. Viens, Skorohod integration and stochastic calculus beyond the fractional
brownian scale, Journal of Functional Analysis 222 (2005), no. 2, 385–434. MR2132395

[31] T. Nilssen, Rough linear PDE’s with discontinuous coefficients – existence of solutions via
regularization by fractional Brownian motion, Electronic Journal of Probability 25 (2020),
no. none, 1–33. MR4089784

[32] R. Schilling and L. Partzsch, Brownian motion: An introduction to stochastic processes, De
Gruyter, 2012. MR2962168

[33] W. van Zuijlen, Theory of function spaces, Lecture notes (2020), http://www.wias-berlin.de/
people/vanzuijlen/LN_theory_of_function_spaces.pdf.

ECP 27 (2022), paper 47.
Page 12/13

https://www.imstat.org/ecp

https://mathscinet.ams.org/mathscinet-getitem?mr=4404773
https://arXiv.org/abs/2008.02335
https://mathscinet.ams.org/mathscinet-getitem?mr=4388460
https://mathscinet.ams.org/mathscinet-getitem?mr=0556414
https://mathscinet.ams.org/mathscinet-getitem?mr=2091358
https://mathscinet.ams.org/mathscinet-getitem?mr=3406823
https://mathscinet.ams.org/mathscinet-getitem?mr=3358965
https://mathscinet.ams.org/mathscinet-getitem?mr=3779690
https://arXiv.org/abs/2010.15517
https://mathscinet.ams.org/mathscinet-getitem?mr=4342752
https://mathscinet.ams.org/mathscinet-getitem?mr=3581224
https://mathscinet.ams.org/mathscinet-getitem?mr=2962086
https://mathscinet.ams.org/mathscinet-getitem?mr=2778803
https://mathscinet.ams.org/mathscinet-getitem?mr=2445509
https://mathscinet.ams.org/mathscinet-getitem?mr=1121940
https://mathscinet.ams.org/mathscinet-getitem?mr=3526112
https://arXiv.org/abs/2101.03886
https://mathscinet.ams.org/mathscinet-getitem?mr=4339468
https://mathscinet.ams.org/mathscinet-getitem?mr=3997634
https://mathscinet.ams.org/mathscinet-getitem?mr=2132395
https://mathscinet.ams.org/mathscinet-getitem?mr=4089784
https://mathscinet.ams.org/mathscinet-getitem?mr=2962168
http://www.wias-berlin.de/people/vanzuijlen/LN_theory_of_function_spaces.pdf
http://www.wias-berlin.de/people/vanzuijlen/LN_theory_of_function_spaces.pdf
https://doi.org/10.1214/22-ECP490
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Regularization by noise for PAM and related models

[34] M. Veraar, Regularity of gaussian white noise on the d-dimensional torus, Banach Center
Publications 95 (2011), 385–398. MR2918350

Acknowledgments. The author wishes to thank Cyril Labbé for early discussions,
Martina Hofmanová, Jörn Wichmann and Emanuela Gussetti for comments and sugges-
tions on a preliminary version of this work as well as the anonymous referees for their
suggestions that helped to improve the manuscript.

ECP 27 (2022), paper 47.
Page 13/13

https://www.imstat.org/ecp

https://mathscinet.ams.org/mathscinet-getitem?mr=2918350
https://doi.org/10.1214/22-ECP490
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Electronic Journal of Probability
Electronic Communications in Probability

Advantages of publishing in EJP-ECP

•Very high standards

•Free for authors, free for readers

•Quick publication (no backlog)

•Secure publication (LOCKSS1)

•Easy interface (EJMS2)

Economical model of EJP-ECP

•Non profit, sponsored by IMS3, BS4, ProjectEuclid5

•Purely electronic

Help keep the journal free and vigorous

•Donate to the IMS open access fund6 (click here to donate!)

•Submit your best articles to EJP-ECP

•Choose EJP-ECP over for-profit journals

1LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
2EJMS: Electronic Journal Management System: https://vtex.lt/services/ejms-peer-review/
3IMS: Institute of Mathematical Statistics http://www.imstat.org/
4BS: Bernoulli Society http://www.bernoulli-society.org/
5Project Euclid: https://projecteuclid.org/
6IMS Open Access Fund: https://imstat.org/shop/donation/

http://en.wikipedia.org/wiki/LOCKSS
https://vtex.lt/services/ejms-peer-review
http://en.wikipedia.org/wiki/Institute_of_Mathematical_Statistics
http://en.wikipedia.org/wiki/Bernoulli_Society
https://projecteuclid.org/
https://imstat.org/shop/donation/
http://www.lockss.org/
https://vtex.lt/services/ejms-peer-review/
http://www.imstat.org/
http://www.bernoulli-society.org/
https://projecteuclid.org/
https://imstat.org/shop/donation/

	Introduction
	Formulation and discussion of the main result
	Short overview of existing literature
	Notation

	Proof of Theorem 1.1
	Solutions to the mollified equation converge
	Weak solutions

	Appendix
	Local times and occupation times formula
	The sewing lemma
	Exponential moments for the Hölder modulus of continuity of Brownian motion

	References

