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Abstract

González Cázares and Ivanovs (2021) suggested a new method for “recovering” the
Brownian motion component from the trajectory of a Lévy process that required
sampling from an independent Brownian motion process. We show that such a
procedure works equally well without any additional source of randomness if one uses
normal quantiles instead of the ordered increments of the auxiliary Brownian motion
process.
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1 Introduction and main results

The present note is complementing a recent interesting paper [4] (see also related pa-
per [3]) presenting an original idea on how to “recover” the Brownian motion component
from the observed Lévy process

Xt = Yt + σWt, t ∈ [0, 1],

where the standard Brownian motion W is independent of the pure jump process Y and
σ > 0. More precisely, the authors of [4] recovered the path of the Brownian bridge
{Wt − tW1}t∈[0,1] (noting that it is not possible to consistently “extract” the linear drift
from the Brownian motion process trajectory, due to the equivalence of the distributions
of Brownian motion processes with different linear drifts).

Apart from being an interesting mathematical result by itself, such a separation can
be useful in some applications as well. For instance, if the Brownian component is
interpreted as noise, it enables one to recover (up to a linear drift) the signal Y from the
observed process X. Further comments (and some relevant references) on how one can
benefit from such a separation in statistical problems can be found in [4].

The first method used in [4] for recovering the Brownian motion component was
based on a construction that curiously required randomization. To describe that method,
we need to introduce some notations. For an n-tuple X = (x1, . . . , xn) of real numbers
that are all different from each other (this will a.s. be the case for all the random
samples considered in this note, so without loss of generality we will assume in what
follows that they all do have this property, omitting “a.s.” in the respective relations),
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On recovering the Brownian motion component

denote by Rk(X ) :=
∑n
j=1 1(xj ≤ xk) the rank of xk in X , k = 1, . . . , n, and by (X )j

and [X ]j the jth component of X and jth order statistic for X , respectively, so that
(X )k = xk and [X ]Rk(X ) = xk. For a random process {Vt}t∈[0,1] and n ≥ 1, we set
∆nV := (V1/n − V0, V2/n − V1/n, . . . , V1 − V(n−1)/n) ∈ Rn.

Now assume that {W ′t}t∈[0,1] is a standard Brownian motion process that is indepen-
dent of X and put

W
(n)
t :=

bntc∑
i=1

[∆nW
′]Ri(∆nX), t ∈ [0, 1].

In words, we first re-order one-step increments of W ′ on the grid k/n, k = 0, 1, . . . , n,
such that the sequence of their ranks is the same as the sequence of the ranks of the
increments of X on the same grid, and then form W (n) as the process of the partial sums
of that re-ordered sequence of the increments of W ′.

The following theorem re-states the first part of the main result in [4]. Set β∗ :=

inf
{
p > 0 :

∫
(−1,1)

|x|pΠ(dx) <∞
}

, where Π is the jump measure of Y .

Theorem 1.1. For any p ∈ (β∗, 2] ∪ {2}, as n→∞,

sup
t∈[0,1]

∣∣Wt −W (n)
t − (W1 −W (n)

1 )t
∣∣ = oP (n−1/2+p/4). (1.1)

The natural question that arises here is about the role of the independently sampled
process W ′: why do we need this auxiliary random object? Does it necessarily need to
be a standard Brownian motion? It it possible to modify the suggested method to avoid
using any auxiliary independent random processes?

Simulations showed that the described scheme still works when W ′ is an independent
fractional Brownian motion process with an arbitrary Hurst parameter H ∈ (0, 1) (one
just needs to scale the process so that the marginal distributions of the components of
∆nW

′ would be the same as for ∆nW ). This observation suggested that the true role
of the auxiliary process W ′ is just to provide approximations to normal quantiles and
that one can “recover” W using this kind of approach without sampling any independent
random process. We show in the present note that this is the case indeed.

Denote by Φ the standard normal distribution function, by Φ := 1−Φ the distribution
tail of Φ, by ϕ the density of Φ, and by Q := Φ−1 the standard normal quantile function.
Finally, set

W̃
(n)
t := n−1/2

bntc∑
i=1

Q(Ri(∆nX)/(n+ 1)), t ∈ [0, 1]. (1.2)

Our main result is the following theorem.

Theorem 1.2. The assertion of Theorem 1.1 remains true if the processW (n) is replaced
in it with W̃ (n).

2 Proofs

One of the key elements of our proof of Theorem 1.2 is the bound on the rate of
approximation of the quantile function Q by the step function

Qn(u) :=

n∑
k=1

Q
( k

n+ 1

)
1
(
u ∈

[k − 1

n
,
k

n

))
, u ∈ (0, 1), (2.1)

that we state in the following lemma.
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On recovering the Brownian motion component

Lemma 2.1. For any n ≥ 1, one has∫ 1

0

(Q(u)−Qn(u))2du ≤ 3.73

n
.

The proof of this bound uses three elementary auxiliary results established below in
Lemmata 2.2–2.4.

Lemma 2.2. Let f ∈ C1(a0, b0) be convex and non-decreasing on [a, b] ⊂ (a0, b0). Then,
for any v0 ∈ [a, b], ∫ b

a

(f(v)− f(v0))2dv ≤ 1

3
(f ′(b))2(b− a)3.

Proof of Lemma 2.2. For v, v0 ∈ [a, b], one has

|f(v)− f(v0)| =
∣∣∣∣∫ v

v0

f ′(s) ds

∣∣∣∣ ≤ f ′(b)|v − v0|

as f ′(s) ≥ 0 is non-decreasing by assumption. Hence∫ b

a

(f(v)− f(v0))2dv ≤ (f ′(b))2

∫ b

a

(v − v0)2dv ≤ 1

3
(f ′(b))2

(
(b− v0)3 − (a− v0)3),

completing the proof since clearly y3 − x3 ≤ (y − x)3 for x ≤ 0 ≤ y.

Lemma 2.3. For any u ∈ (0.5, 1), one has 1− u ≤
√

π
2ϕ(Q(u)).

Proof of Lemma 2.3. The desired inequality follows from the observation that it turns
into equality at the endpoints u = 0.5 and u = 1 and that its RHS is a concave function
as [ϕ(Q(u))]′′ = −

√
2πeQ

2(u)/2 < 0.

Lemma 2.4. Assume that f(v), v ∈ [a, b], is a non-decreasing function, v0 ∈ [a, 1
2 (a+ b)].

Then

I1 :=

∫ b

a

(f(v)− f(v0))2dv ≤
∫ b

a

(f(v)− f(a))2dv =: I2.

Proof of Lemma 2.4. Expanding the squares, one has

I2 − I1 = 2(f(v0)− f(a))

∫ b

a

f(v) dv + (f2(a)− f2(v0))(b− a)

= (f(v0)− f(a))

[
2

∫ b

a

f(v) dv − (f(v0) + f(a))(b− a)

]
≥ 0

since, due to the monotonicity of f ,∫ b

a

f(v) dv =

∫ v0

a

· · ·+
∫ b

v0

· · · ≥ f(a)(v0 − a) + f(v0)(b− v0)

=
1

2
f(a)(b− a) +

1

2
f(v0)(b− a) + (f(v0)− f(a))(

1

2
(a+ b)− v0),

where the last term is non-negative by the assumptions.

Proof of Lemma 2.1. One has∫ 1

0

(Q(u)−Qn(u))2du =

n∑
k=1

∫ k/n

(k−1)/n

(
Q(u)−Q

( k

n+ 1

))2

du. (2.2)
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On recovering the Brownian motion component

By symmetry, it is enough to bound the terms with k ≥ n/2 only, assuming for simplicity
that n is even.

AsQ is clearly convex and increasing on ( 1
2 , 1), for n/2 < k < n we get by Lemmata 2.2

and 2.3 that∫ k/n

(k−1)/n

(
Q(u)−Q

( k

n+ 1

))2

du ≤ 1

3

(
Q′
(k
n

))2

n−3 =
n−3

3ϕ2(Q( kn ))
≤ πn−1

6(n− k)2
.

Therefore

n−1∑
k=n/2+1

∫ k/n

(k−1)/n

(
Q(u)−Q

( k

n+ 1

))2

du ≤ π

6n

n−1∑
k=n/2+1

1

(n− k)2
≤ π

6n

∞∑
m=1

1

m2
=

π3

36n
.

(2.3)

For the last term in the sum on the RHS of (2.2), setting q := Q(1 − 1/n), from
Lemma 2.4 we obtain that

Jn : =

∫ 1

(n−1)/n

(
Q(u)−Q

( n

n+ 1

))2

du ≤
∫ 1

(n−1)/n

(Q(u)− q)2du

=

∫ 1

(n−1)/n

Q(u)2du− 2q

∫ 1

(n−1)/n

Q(u)du+ q2n−1.

Integrating by parts, we get∫ 1

(n−1)/n

Q(u)2du = E(Z2
1 ;Z1 > q) =

∫ ∞
q

z2ϕ(z)dz

= [−zϕ(z)]∞q +

∫ ∞
q

ϕ(z)dz = qϕ(q) + Φ(q),

whereas ∫ 1

(n−1)/n

Q(u)du = E(Z1;Z1 > q) =

∫ ∞
q

zϕ(z)dz = −
∫ ∞
q

dϕ(z) = ϕ(q).

Since Φ(q) = n−1 and q2n−1− qϕ(q) = q2(Φ(q)−ϕ(q)/q) < 0 by the well-known inequality
for the normal Mills’ ratio (see e.g. Ch. VII.1 in [2]), we conclude that

Jn ≤ qϕ(q) + n−1 − 2qϕ(q) + q2n−1 ≤ n−1.

Together with (2.3) and an elementary bound for the constant π
3

18 +2 < 3.73 this completes
the proof of Lemma 2.1.

One more key element of our proof of Theorem 1.2 is the following convergence
result for the processes of partial sums of exchangeable random variables.

Lemma 2.5. Let γn,1, γn,2, . . . , γn,n, n ≥ 1, be a triangular array of random variables that
are exchangeable in each row and such that

∑n
k=1 γn,k = 0 a.s. and, as n→∞,

n∑
k=1

γ2
n,k = oP (1). (2.4)

Then max1≤i≤n
∣∣∑i

k=1 γn,k
∣∣ = oP (1).

The assertion of Lemma 2.5 is an immediate consequence of Theorem 3.13 in [5] on
convergence of partial sums processes. In our case, the limiting process in that theorem
is identically equal to zero, the convergence of characteristic triples following from the
assumptions and the obvious observation that max1≤k≤n |γn,k| = oP (1) from (2.4).
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On recovering the Brownian motion component

Proof of Theorem 1.2. As in the proof of Theorem 1.1 in [4], we will start with the
observation that

sup
t∈[0,1]

|Wt −Wbntc/n| = OP
(
n−1/2(lnn)1/2

)
, (2.5)

which is an immediate consequence of the Lévy’s modulus of continuity theorem (see e.g.
p. 114 in [6]). Therefore, in the problem of bounding the error in the version of (1.1) with
W̃ (n) instead of W (n), we only need to consider the maximum of the absolute deviations
on the grid t = i

n , 1 ≤ i ≤ n.

To this end, we observe that W̃ (n)
1 = 0 since Q( 1

2 + h) +Q( 1
2 − h) = 0, h ∈ [0, 1

2 ), and
hence, letting

ηn,k := (∆nW )k − n−1/2Q(Rk(∆nX)/(n+ 1))− n−1W1,

one has

Wi/n − W̃
(n)
i/n − (W1 − W̃ (n)

1 )i/n =

i∑
k=1

ηn,k. (2.6)

Next, similarly to the decomposition of ξni on p. 2422 in [4], we write ηn,k = η̃n,k + η̂n,k,
where

η̃n,k : = [∆nW ]Rk(∆nX) − n−1/2Q(Rk(∆nX)/(n+ 1))− n−1W1,

η̂n,k : = (∆nW )k − [∆nW ]Rk(∆nX).

That

max
1≤i≤n

∣∣∣∣ i∑
k=1

η̂n,k

∣∣∣∣ = oP (n−1/2+p/4) as n→∞ (2.7)

was proved on p. 2425 in [4]. To complete the proof of our theorem, we will now show
that

max
1≤i≤n

∣∣∣∣ i∑
k=1

η̃n,k

∣∣∣∣ = OP
(
n−1/2(ln lnn)1/2

)
as n→∞. (2.8)

First note that it is not hard to verify that (2.8) is equivalent to the assertion that, for
any positive sequence εn → 0,

max
1≤i≤n

∣∣∣∣ i∑
k=1

η̃n,k

∣∣∣∣ = oP
(
ε−1
n n−1/2(ln lnn)1/2

)
as n→∞. (2.9)

Further, it is easy to see that the random variables η̃n,1, . . . , η̃n,n are exchangeable and∑n
k=1 η̃n,k = 0. Moreover, one has

n∑
k=1

η̃2
n,k = OP

(
n−1 ln lnn

)
as n→∞. (2.10)

To prove (2.10), note that the components of the vector

Zn = (Z1, . . . , Zn) := n1/2
(
(∆nW )1, . . . , (∆nW )n

)
are independent standard normal random variables, and let Zn := n−1

∑n
k=1 Zk.
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On recovering the Brownian motion component

Setting ζn,k := [Zn]k−Q( k
n+1 ), k = 1, . . . , n, we observe that ζn := n−1

∑n
k=1 ζn,k = Zn

and hence

η̃n,k = n−1/2([Zn]Rk(∆nX) −Q(Rk(∆nX)/(n+ 1))− Zn) = n−1/2(ζn,Rk(∆nX) − ζn).

Therefore,
n∑
k=1

η̃2
n,k = n−1

n∑
k=1

(ζn,k − ζn)2 = n−1
n∑
k=1

ζ2
n,k − ζ

2

n.

Here ζ
2

n = Z
2

n
d
= n−1Z2

1 = OP (n−1). Further, denoting by

Q∗n(u) :=

n∑
k=1

[Zn]k1
(
u ∈

[k − 1

n
,
k

n

))
, u ∈ (0, 1),

the empirical quantile function for Zn and recalling notation Qn from (2.1), one has

n−1
n∑
k=1

ζ2
n,k = n−1

n∑
k=1

(
[Zn]k −Q

( k

n+ 1

))2

=

∫ 1

0

(Q∗n(u)−Qn(u))2du

≤ 2

∫ 1

0

(Q∗n(u)−Q(u))2du+ 2

∫ 1

0

(Q(u)−Qn(u))2du.

It follows from Theorem 1 in [1] that the first term in the second line is OP (n−1 ln lnn),
whereas the second term in that line is O(n−1) by Lemma 2.1. This completes the proof
of (2.10)

Now, for an arbitrary positive sequence εn → 0, set γn,k := εnn
1/2(ln lnn)−1/2η̃n,k,

k = 1, . . . , n. It follows from (2.10) that
∑n
k=1 γ

2
n,k = OP (ε2

n) = oP (1), and therefore
Lemma 2.5 implies the desired relation (2.9) (and hence (2.8)). The assertion of Theo-
rem 1.2 follows from representation (2.6) and relations (2.5), (2.7) and (2.8).
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