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Abstract

We show that for lazy simple random walks on finite spherically symmetric trees,
the ratio of the mixing time and the relaxation time is bounded by a universal con-
stant. Consequently, lazy simple random walks on any sequence of finite spherically
symmetric trees do not exhibit pre-cutoff; this conclusion also holds for continuous-
time simple random walks. This answers a question recently proposed by Gantert,
Nestoridi, and Schmid. We also show that for lazy simple random walks on finite
spherically symmetric trees, hitting times of vertices are (uniformly) non concentrated.
Finally, we study the stability of our results under rough isometries.
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1 Introduction

Random walks on certain families of graphs exhibit the cutoff phenomenon, which
is a fast transition in the convergence to the stationary distribution (see, e.g., [5] and
[18]). In this note we focus on families of trees. Peres and Sousi presented in [21] a
first example of a sequence of trees on which the lazy simple random walk exhibits
cutoff. More recently, Gantert, Nestoridi, and Schmid gave a sufficient condition to
guarantee that the lazy simple random walk on a sequence of trees exhibits cutoff (see
[11, Theorem 1.6]). They also showed that, in some sense, cutoff on trees is a rare
phenomenon. More concretely, the authors presented in [11] some estimations on the
mixing time and relaxation time to show that the families of the (continuous-time) simple
random walks on several classes of trees, including Galton-Watson trees, do not exhibit
cutoff. Among other results, it is proved that if T is an infinite spherically symmetric
tree of maximum degree ∆, and (Tn)n∈N is a family of trees obtained by truncating T to
its first n levels, for all n ∈ N, then the family of the (continuous-time) simple random
walks on (Tn)n∈N does not exhibit cutoff. The main goal of this paper is to answer
Question 6.1 in [11], that asks whether the assumption in the above result on having
a bounded maximum degree can be relaxed. As a consequence of our main result, if
(Tn)n∈N is any sequence of finite spherically symmetric trees, then the family of the
(continuous-time) simple random walks on (Tn)n∈N does not exhibit cutoff. This answers
the last question, but also shows that the trees Tn do not need to be truncations of a
single infinite spherically symmetric tree.
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Theorem 1.1 in [6] shows that cutoff for the (continuous-time) simple random walks
on (Tn)n∈N is equivalent to cutoff for the (discrete-time) lazy simple random walks on
(Tn)n∈N, so it is enough to study the last ones. The next result shows that the ratio of
the mixing time and the relaxation time of the lazy simple random walk on a spherically
symmetric tree is bounded by a universal constant. Then criterion (2.2) gives that
(Tn)n∈N does not exhibit pre-cutoff, which is a weak version of cutoff (see Section 2).

Theorem 1.1. There exists a universal constant C > 0 so that the lazy simple random
walk on a spherically symmetric tree T satisfies

trel ≥ Ctmix. (1.1)

Consequently, if (Tn)n∈N is a sequence of finite spherically symmetric trees, then the
family of the lazy simple random walks on (Tn)n∈N does not exhibit pre-cutoff.

Although the proof of Theorem 1.1 does not optimize the constant, it proves that we
can take C = 1

144 .
Let (Xt) be the lazy simple random walk on a connected graph G = (V,E). Given

A ⊆ V , write τA for the first time that (Xt) hits A, that is, τA = inf{t ≥ 0: Xt ∈ A}.
When A = {a} we simply write τa. Similarly, τ+a = inf{t ≥ 1: Xt = a}. In Section 4, we
study concentration of hitting times of vertices on spherically symmetric trees. This is
also studied in [19] for general Markov chains. For the lazy simple random walk on a
simple graph, one can use Chebyshev’s inequality to extract from Theorem 1.2 in [19]
the following lower bound of the variance.

Proposition 1.2. There is a universal constant D > 0 so that the lazy simple random
walk on a simple graph G = (V,E) with n ≥ 2 vertices satisfies

Varx(τy) ≥ DEx(τy)2

(log n)2
, ∀x, y ∈ V.

The above bound can be improved if the simple graph is a spherically symmetric tree.

Theorem 1.3. There is a universal constant C ′ > 0 so that the lazy simple random walk
on a spherically symmetric tree T satisfies

Varx(τ+y ) ≥ C ′Ex(τ+y )2 ∀x, y ∈ T.

In particular, this gives nonconcentration for return times when x = y. Some results
for general graphs are studied in [12]. Although the proof of Theorem 1.3 does not
focus on optimizing the constant, it shows that we can take C ′ = 1

484 . This is not true
for general graphs, or even general trees, as the family of trees constructed in [21]
shows. This also follows from Lemma 2.3 in [19], where the authors consider a slight
modification of the previous family that, for some distinct vertices x and y, satisfies

Varx(τy) = O

(
Ex(τy)2

log n

)
.

Finally, in Section 5 we study the stability of Theorem 1.1 under rough isometries. In
general, cutoff is not preserved by rough isometries (see Theorem 2 in [14]). However,
as Proposition 5.1 shows, it is preserved when we consider trees. This observation is
also made in [14, Remark 1.7]. Thus, the following result is an immediate consequence
of Theorem 1.1 and Proposition 5.1.

Corollary 1.4. Let (Tn)n∈N be a family of spherically symmetric trees with bounded
degree ∆. For n ∈ N, let T ′n be a tree roughly isometric to Tn with constants α and β not
depending on n. Then, the lazy simple random walk on (T ′n)n∈N does not exhibit cutoff.
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2 Preliminaries

Given two probability measures µ, ν on a set V , their total variation distance is

‖µ− ν‖TV = max
A⊆V

|µ(A)− ν(A)|.

Let (Xt) be the lazy simple random walk on a connected graph G = (V,E), that is, every
step with probability 1

2 the chain either stays at the same vertex or goes to an adjacent
vertex chosen uniformly at random. Given a, b ∈ V , we write τa,b = inf{t ≥ τb : Xt = a},
where X0 = a. The commute time is ta↔b = Ea(τa,b). The transition matrix of (Xt) is
denoted by P , and its stationary distribution is denoted by π. It is well known that P is
reversible, that is, π(x)P (x, y) = π(y)P (y, x) for all x, y ∈ V . The ε -mixing time of (Xt)

is

tmix(ε) = inf

{
t ≥ 0: max

x∈V
‖P t(x, ·)− π‖TV ≤ ε

}
∀ ε ∈ (0, 1).

The mixing time of (Xt) is tmix = tmix( 1
4 ). It is well known that all eigenvalues of the

transition matrix of a reversible lazy chain are positive. Let λ2 be the second greatest
eigenvalue of P . The spectral gap of the chain is defined by γ = 1− λ2. The relaxation
time is defined by trel = 1

γ . The following characterization of the spectral gap (see [17,
Remark 13.8]) will be useful to prove our main result.

γ = min
f∈RV

Varπ(f)6=0

E(f)

Varπ(f)
, (2.1)

where E(f) := 1
2

∑
x,y∈V |f(x)− f(y)|2π(x)P (x, y) is the Dirichlet form of f .

Let (Gn)n∈N be a sequence of graphs and let (tnmix(ε))n∈N be the collection of ε-mixing
times of random walks on (Gn)n∈N. We say that this family of random walks on (Gn)n∈N
exhibits cutoff if for any ε ∈ (0, 1)

lim
n→∞

tnmix(ε)

tnmix(1− ε)
= 1.

The cutoff phenomenon was first verified in [8], and was formally introduced in the
seminal paper of Aldous and Diaconis [2]. Ever since then, the cutoff phenomenon has
been widely studied for many specific examples of Markov chains. As a weaker condition,
the family of random walks on (Gn)n∈N is said to exhibit pre-cutoff if

sup
0<ε< 1

2

lim sup
n→∞

tnmix(ε)

tnmix(1− ε)
<∞.

A necessary condition to have pre-cutoff is that for some ε ∈ (0, 1) (or equivalently, for
all ε ∈ (0, 1))

lim
n→∞

tnmix(ε)

tnrel
=∞, (2.2)

where (tnrel)n∈N denotes the collection of relaxation times of the family of random walks
on (Gn)n∈N (see [17, Proposition 18.4]). Despite Aldous’ finding that in general Condition
2.2 is not sufficient to have a cutoff (see Chapter 18 of [17]), it is believed to be sufficient
for many families of Markov chains, such as lazy simple random walks on trees (see [4]).

Recall that a tree is a connected graph with no cycles. A rooted tree has a distin-
guished vertex o, called the root. The depth of a vertex v is its graph distance to the root.
The height of a tree is the maximum depth. A level of the tree consists of all vertices
at the same depth. A leaf is a vertex of degree one and a branching point is a vertex
of degree at least 3. A rooted tree T is spherically symmetric if all vertices at the same
level have the same degree. We write degk for the degree of the vertices at level k.
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3 No cutoff in Spherically symmetric trees

In this section, we answer Question 6.1 in [11] by showing that the family of the
(continuous-time) simple random walks on a sequence of finite spherically symmetric
trees (Tn)n∈N does not exhibit cutoff. Recall that [6, Theorem 1.1] allows us to restrict
our study to the (discrete-time) lazy simple random walk. In view of (2.2), the desired
result follows from the bound on the ratio of the mixing time and the relaxation time that
Theorem 1.1 provides.

Recall that there exists a universal constant C1 > 0 for which, for any vertex y of a
tree T , the mixing time for the simple random walk on T is bounded as follows:

tmix ≤ C1 max
x∈V

Ex(τy).

See [20, Lemma 9.3], where it is proved for central nodes, and [11, Proposition 3.1]
for a reference of the general result. As the following lemma shows, when the tree is
spherically symmetric, for a specific choice of the vertex y we can take C1 = 12.

Lemma 3.1. Let T be a finite spherically symmetric tree of height h and let v be a vertex
at level h. If deg0 ≥ 2 or T has no branching points, let v∗ be the root of T . Otherwise,
let v∗ be the closest branching point to the root. Then, the lazy simple random walk on
T satisfies

tmix ≤ 4(Eo(τv∗) + 2Ev(τv∗)). (3.1)

Proof. Consider the following coupling (Xt, Yt) of two lazy simple random walks, started
from states x and y on the tree. At each move, toss a coin to decide which of the two
chains moves. The chosen chain will move to one neighbor chosen uniformly at random,
while the other one stays at the same position. Run these two chains according to this
rule until they are at the same level of the tree. After that, the chain (Xt) will evolve as
the lazy simple random walk, and the chain (Yt) will move closer to or further to the
root if and only if (Xt) moves closer to or further to the root. Once they are at the same
vertex, (Yt) mimics (Xt). Let τcouple = inf{t ≥ 0: Xs = Ys for all s ≥ t}. Then, Corollary
5.5 in [17] gives

tmix ≤ 4 max
x,y∈V

E(τcouple).

Finally, observe that no matter what the initial states x and y are, the expected time until
both chains are at level h is bounded by the expected time that the lazy simple random
walk needs to go from o to level h, which is bounded by Eo(τv∗) + Ev(τv∗). Then, by the
time the chains go back to the vertex v∗ they must be equal, so we have

max
x,y∈V

E(τcouple) ≤ Eo(τv∗) + 2Ev(τv∗).

The next lemma gives a lower bound for the relaxation time of reversible Markov
chains in terms of hitting times of sets when the chain starts from stationary. It follows
from Lemma 10 in [3], but we give a direct proof for completeness.

Lemma 3.2. Let (Xt) be a reversible Markov chain on a state space V with stationary
distribution π. For any subset A ⊆ V with 0 < π(A) < 1,

trel ≥
π(A)

π(Ac)
Eπ(τA).

Proof. Define f : V −→ R by f(x) = Ex(τA). By conditioning of the first step, for any
x /∈ A we have

f(x) = 1 +
∑
y∈V

P (x, y)f(y) = 1 + Pf(x).
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A well-known fact, that can be proved with a simple computation, is that the Dirichlet
form of f satisfies E(f) = 〈(I−P )f, f〉π, where I and P denote the identity and transition
matrix, respectively. Since f vanishes on A, we have that

E(f) = 〈f − Pf, f〉π = 〈1, f〉π =
∑
x/∈A

f(x)π(x) = Eπ(f) = Eπ(τA). (3.2)

Write µ for π conditioned on Ac and observe that

Eπ(f2) = π(Ac)Eµ(f2) ≥ π(Ac)Eµ(f)2 =
1

π(Ac)
Eπ(f)2.

Thus,

Varπ(f) = Eπ(f2)− Eπ(f)2 ≥
(

1

π(Ac)
− 1

)
Eπ(f)2 =

π(A)

π(Ac)
Eπ(f)2 =

π(A)

π(Ac)
Eπ(τA)2.

The result now follows from the characterization of the spectral gap (2.1).

The following simple lemma will be useful for future estimations.

Lemma 3.3. Given h ∈ N, let f : {0, . . . , h+ 1} −→ R be a concave increasing function
satisfying f(0) = 0, and let w be a probability measure on {0, . . . , h + 1} such that
w(0) ≤ . . . ≤ w(h) and w(0) ≤ w(h+ 1). Then,

Ew(f2) ≥ 1

7
f(h+ 1)2.

Proof. First, if h = 1 we can use the concavity of f and w(0) ≤ w(2) to get

Ew(f2) = w(1)f(1)2 + w(2)f(2)2 ≥
(
w(1)

4
+ w(2)

)
f(2)2 ≥ f(2)2

4
.

For h ≥ 2, write w1 and w2 for w conditioned on {0, h + 1} and {1, . . . , h}, respectively.
Observe that Ew(f2) ≥ min{Ew1

(f2),Ew2
(f2)}. On the one hand, we have

Ew1(f2) =
w(h+ 1)f(h+ 1)2

w(0) + w(h+ 1)
≥ f(h+ 1)2

2
.

On the other hand, define f̃ : {1, . . . , h} −→ R by f̃(j) = j
hf(h) for every j ∈ {1, . . . , h}.

Using that f is concave we get f ≥ f̃ . Moreover, since f̃ is increasing and w2(1) ≤
w2(2) ≤ . . . ≤ w2(h) we have

Ew2
(f2) ≥ Ew2

(f̃2) ≥ 1

h

h∑
j=1

f̃(j)2 =
f(h)2

h3

h∑
j=1

j2 ≥ f(h)2

3
. (3.3)

Since f is concave we also have f(h) ≥ h
h+1f(h + 1) ≥ 2

3f(h + 1), so the result follows
from (3.3).

Proof of Theorem 1.1. Let T = (V,E) be a finite spherically symmetric tree of height h.
If deg0 ≥ 2, then set ` = 0. Otherwise, let ` be the level at which we find the closest
branching point to the root. If deg0 = 1 and there are no branching points (and so the
graph is a segment), set ` = h.

Let S = {o = v0, v1, . . . , v`} be the set of vertices that belong to the (possible) initial
segment of the graph. Notice that if deg0 ≥ 2, then S = {o}. In the case when the graph
is not a segment, let T (1), . . . , T (r) be the connected components that we obtain after
removing the vertices of S. Let A be the union of the first b r2c connected components and
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o

v1

...

v`

Figure 1: Example of a spherically symmetric tree. Labeled vertices correspond to the
set S. White, black, and gray vertices correspond to the sets A, B, and C, respectively.

let B be the union of the last b r2c connected components. If r is odd, set C = T (b r2c+ 1).
Otherwise, set C = ∅ (see Figure 1).

In view of Lemma 3.1, we distinguish two cases. Assume that 5
2Eo(τv`) ≤ Ev(τv`),

where v is a leaf of T at level h (and so the graph is not a segment). Take D = A ∪ C ∪ S.
Then, Lemma 3.2 gives

trel ≥
π(D)

π(Dc)
Eπ(τD) =

π(D)

π(B)
Eπ(τD). (3.4)

For every j = 1, . . . , h, let Vj be the set of vertices at level j. Define g1 : {`, . . . , h} −→ R

by g1(j) = Evj (τD), where vj ∈ Vj . Observe that

Eπ(τD) =
∑
x∈B

Ex(τD)π(x) =

h∑
j=`+1

g1(j)π(Vj ∩B) = π(B)

h∑
j=`+1

g1(j)
π(Vj ∩B)

π(B)
.

Applying Lemma 3.3 with f(j) =
√
g1(j + `) and w(j) =

π(Vj+`∩B)
π(B) for j = 0, . . . , h − `,

gives

Eπ(τD) = π(B)Eω(f2) ≥ π(B)

7
f(h− `)2 =

π(B)

7
Ev(τv`),

where v is a leaf at level h. Hence, inequality (3.4) and Lemma 3.1 yield

trel ≥
π(D)

7
Ev(τv`) ≥

1

14
· 1

4( 2
5 + 2)

tmix ≥
1

135
tmix. (3.5)

Next, assume that Ev(τv`) ≤ 5
2Eo(τv`), where v is a leaf of T at level h. In particular,

deg0 = 1. We will use (2.1) again to bound the relaxation time. Define g2 : V −→ R by

g2(x) =

{
i if x = vi for i ∈ {0, . . . , `};
` otherwise.

On the one hand, we can compute the Dirichlet form of g2 as follows:

E(g2) =
1

2

∑
x,y∈V

|g2(x)− g2(y)|2π(x)P (x, y) =
1

2

∑̀
k=0

π(vk)
∑̀
i=0
i 6=k

P (vk, vi)

=
1

4

`−1∑
k=0

π(vk) +
1

2

π(v`)

2 deg`
=

1

4

`

|E|
.
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On the other hand, the variance of g can be estimated as

Varπ(g2) =
∑
x∈V
|g2(x)− Eπ(g2)|2π(x) ≥

∑
x∈S
|g2(x)− Eπ(g2)|2π(x)

≥ 1

|E|

(
1

2
|0− Eπ(g2)|2 +

1

2
|`− Eπ(g2)|2 +

`−1∑
k=1

|k − Eπ(g2)|2
)
,

where S denotes the initial segment of the tree (see Figure 1). Now, if we study the
above expression as a function of Eπ(g2), it is easy to see that the minimum is attained
when Eπ(g2) = `

2 , and so we have that

Varπ(g2) ≥ 1

|E|
∑̀
k=1

∣∣∣∣k − `

2

∣∣∣∣2 =
1

|E|
`3 + 2`

12
≥ 1

12

`3

|E|
.

The expected time for the lazy simple random walk to go from o to v` is 2`2 (see Section
10.4 in [17]), so in view of (2.1) and Lemma 3.1, we conclude that

trel ≥
Varπ(g2)

E(g2)
≥ 4

12
`2 ≥ 4

12
· 1

8(1 + 5)
tmix =

1

144
tmix. (3.6)

This proves the first part of the statement. Now, the second part follows from (2.2).

4 Hitting times

In this section, we present the proof of Theorem 1.3, which will be broken into several
lemmata. Given x and y vertices of T , first we study the case when y is an ancestor of
x. By a Markov chain on an (undirected) graph G with transition matrix P , we mean
that transition probabilities satisfy P (x, y) > 0 if and only if {x, y} is an edge of G. Given
vertices x 6= y ∈ G, let Gx,y denote the union of the connected components of G \ {x} not
containing y (see Figure 2 for an example when G is a tree). We start with the following
general lemma.

Lemma 4.1. Let (Xt) be an irreducible Markov chain on a graph G starting at x ∈ G.
Given y ∈ G \ {x}, we have that τy = R + S, where R is the time needed for the chain
restricted to G \Gx,y to go from x to y, and S is a random variable positively correlated
to R satisfying

Var(S) ≥ E(S)2. (4.1)

Proof. If Gx,y = ∅, we can take S = 0 and R = τy. Otherwise, let N be the number of
times that the chain visits the set Gx,y and comes back to x before hitting y. Note that
N + 1 follows a geometric distribution with parameter p = Px

{
τy < τGx,y

}
. Consider

random variables τ1, . . . , τN representing the length of those excursions. Then S =∑N
j=1 τj gives the total time that the chain spends on Gx,y before hitting y. Thus,

R = τy − S gives the time that the chain spends on G \Gx,y before hitting y. It is easy
to see that E(R|N) and E(S|N) are independent random variables that increase as N
increases, which implies that R and S are positively correlated. Indeed, we have

E(RS) = E(E(RS|N)) = E(E(R|N)E(S|N)) ≥ E(E(R|N))E(E(S|N)) = E(R)E(S),

where the second equality comes from the independence of E(R|N) and E(S|N), and the
inequality comes from Chebyshev’s inequality for monotone random variables. Finally,
the law of total variance yields

Var(S) ≥ Var(E(S|N)) = Var(NE(τ1)) =
1− p
p2

E(τ1)2 = (1− p)−1E(S)2 ≥ E(S)2.
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o

y

x

Figure 2: Example of a spherically symmetric tree in which y is an ancestor of x. The
set Gx,y considered in Lemma 4.1 corresponds to the black vertices. When studying the
hitting time from x to y, gray vertices can be discarded.

Let (Xt) be the lazy simple random walk on a spherically symmetric tree T of height
h. Identifying all vertices at the same level we obtain the associated birth-and-death
chain (X̃t) defined on {0, . . . , h} (see Figure 3). We write P̃ for its transition matrix and π̃
for its stationary distribution. Given x, y ∈ T so that y is an ancestor of x, the hitting time
of y starting from x for (Xt) and for (X̃t) is the same. Moreover, we may assume that
the state y is absorbing since it does not change the hitting time of y. The idea is to use
Lemma 4.1 to reduce the study of the hitting time τy to the case when h = d(x, y). Then
we can decompose the hitting time of y as a sum of independent geometric variables.
The continuous-time version of this decomposition was proved by Karlin and McGregor
(see [15, Equation (45)]), and reproved by Keilson in [16]. Here we use its discrete-time
version, which was given by Fill (see [10, Theorem 1.2]).

Lemma 4.2. Let (X̃t) be a lazy birth-and-death chain defined on {0, . . . , h} satisfying pj ≥
qj for every j ∈ {0, . . . , h− 1}, where pj and qj denote the birth and death probabilities,
respectively. Then,

Varn(τ0) ≥ 1

121
En(τ0)2 ∀n ∈ {0, . . . , h}.

Proof. First, take n = h. As we just observed, we may assume that 0 is absorbing. Let
Pn be the corresponding sub-stochastic matrix which is the restriction of P̃ to {1, . . . , n},
and let γ1 ≥ . . . ≥ γn be its eigenvalues. Using Theorem 1.2 in [10] to write τ0 as a sum

o

0

1

2

3

4

5

Figure 3: Example of a spherically symmetric tree and its associated birth-and-death
chain, seen as a segment with multiple edges.
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of n geometric random variables, whose parameters are 1− γj for j = 1, . . . , n, gives

Varn(τ0) =

n∑
i=1

γi
(1− γi)2

≥ γ1
(1− γ1)2

. (4.2)

Define f : {0, . . . , n} −→ R by f(t) = Et(τ0) for every t ∈ {0, . . . , n}. From (3.2) we see
that the Dirichlet form of f can be bounded above by En(τ0). Moreover, since pj ≥ qj
for every j ∈ {0, . . . , h− 1}, then the sequence (π̃(j))h−1j=1 is increasing and π̃(0) ≤ π̃(h).
Thus, we can apply Lemma 3.3 to the function f with w(j) = π̃(j) for j ∈ {0, . . . , n} to
obtain that Eπ̃(f2) can be bounded below by 1

7En(τ0)2. Thus, the Rayleigh-Ritz formula
(cf., e.g., [13, §90]) yields

1

1− γ1
≥ Eπ̃(f2)

E(f)
≥ 1

7
En(τ0). (4.3)

Finally, since the chain is lazy, by using Perron-Frobenius theorem we deduce that γ1 ≥ 1
2 ,

so (4.2) and (4.3) gives

Varn(τ0) ≥ 1

98
En(τ0)2. (4.4)

Assume now that n < h. Using Lemma 4.1 we can write τ0 = R+ S, where R is the time
needed for the chain restricted to {0, . . . , n} starting at n to hit 0. On the one hand, if
E(R) ≥ 10E(S) we have

Varn(τ0) ≥ Var(R) ≥ 1

98
E(R)2 ≥ 102

98(112)
En(τ0)2 ≥ 1

119
En(τ0)2,

where the first inequality follows from the positive correlation of R and S, and the second
inequality follows from (4.4). On the other hand, if E(R) ≤ 10E(S), we have

Varn(τ0) ≥ Var(S) ≥ E(S)2 ≥ 1

112
En(τ0)2 =

1

121
En(τ0)2,

where the first inequality uses the positive correlation of R and S, and the second
inequality uses (4.1).

The next result follows immediately from Lemma 4.2.

Corollary 4.3. Let T be a spherically symmetric tree. Let x, y ∈ T such that y is an
ancestor of x. Then, the lazy simple random walk on T satisfies

Varx(τy) ≥ 1

121
Ex(τy)2.

Finally, the case when x is an ancestor of y follows from the next lemma, which shows
that hitting times for random walks on graphs are not concentrated when the starting
point x is a central node. Indeed, it proves something more general.

Lemma 4.4. Let (Xt) be an irreducible Markov chain on a graph G. Then,

Varx(τy) ≥ π(Gx,y)2Ex(τy)2 ∀x 6= y ∈ G.

Proof. Take x 6= y ∈ G. Using Lemma 4.1 we write τy = R+ S, where S is the time that
the chain spends in Gx,y until it hits y (see Figure 4). We can apply [17, Lemma 10.5]
with µ = ν = δx and τ = τx,y to get

E(S) ≥
∑

z∈Gx,y

Ex

(
τx,y∑
t=0

1{Xt=z}

)
=

∑
z∈Gx,y

tx↔yπ(z) = π(Gx,y)tx↔y ≥ π(Gx,y)Ex(τy).

The result now follows from (4.1).
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x

y

Figure 4: Example of a spherically symmetric tree in which x is an ancestor of y. The set
Gx,y considered in Lemma 4.4 corresponds to the black vertices.

Proof of Theorem 1.3. Assume first that x 6= y, so we have τy = τ+y if the chain starts at
x. Let q ∈ T be the nearest common ancestor of x and y. First, the time to go from x

to y is the sum of the time to go from x to q and the time to go from q to y, which are
independent random variables, and so Varx(τy) = Varx(τq)+Varq(τy). Next, Corollary 4.3
gives Varx(τq) ≥ 1

121Ex(τq)
2. If y = q we have finished. For y 6= q, Lemma 4.4 applied to

q and y gives Varq(τy) ≥ π(Tq,y)2Eq(τy)2. Observe that if q is either the closest branching
point to the root or a descendant of it, then π(Tq,y) ≥ 1

2 . Consequently,

Varx(τy) ≥ 1

121
(Ex(τq)

2 + Eq(τy)2) ≥ 1

242
(Ex(τq) + Eq(τy))

2
=

1

242
Ex(τy)2.

Otherwise, we must have q = x. Let (x = u0, . . . , ud(x,y) = y) be the (unique) path joining
x and y. Let u` be the closest branching point to x. If there are no branching points,
set u` = y. As before, we have that Varx(τy) = Varx(τu`) + Varu`(τy). Applying Corollary
4.3 to x and u` gives Varx(τu`) ≥ 1

121Ex(τu`)
2. If u` = y there is nothing else to prove.

Otherwise, Lemma 4.4 applied to u` and y gives Varu`(τy) ≥ π(Tu`,y)2Eu`(τy)2, where
π(Tu`,y) ≥ 1

2 . Therefore,

Varx(τy) ≥ 1

121
(Ex(τu`)

2 + Eu`(τy)2) ≥ 1

242
(Ex(τu`) + Eu`(τy))

2
=

1

242
Ex(τy)2.

Asumme now that x = y. Observe that Ex(τ+x )− 1 =
∑
z∈V P (x, z)Ez(τx). Thus,

Varx(τ+x ) ≥
∑
z∈V

P (x, z) Varz(τx) ≥
∑
z∈V

P (x, z)
Ez(τx)2

242
≥ (Ex(τ+x )− 1)2

121
≥ Ex(τ+x )2

484
.

5 Stability under rough isometries

Consider two graphs G = (V,E) and G′ = (V ′, E′) with graph distances d and d′. A
function φ : V −→ V ′ is a rough isometry if there are α > 0 and β > 0 such that,

α−1d(x, y)− β ≤ d′(φ(x), φ(y)) ≤ αd(x, y) + β ∀x, y ∈ V, (5.1)

and such that every vertex of G′ is within distance β of the image of V . If such a function
exists, we say that G and G′ are roughly isometric.

The relaxation time of the lazy simple random walk on a graph is preserved, up to a
constant, under rough isometries. Moreover, this constant only depends on the degree
of the graph and the constants α and β given by the rough isometry. This fact follows
from the path comparison method described in [17, Theorem 13.20] and Lemma 3.14
in [7]. Although the mixing time is not stable under rough isometries in general (see
[9]), it was proved in [20] that for (weighted) trees, the mixing time of the lazy simple
random walk is stable under bounded perturbation of the edge weights. More generally,
Theorem 1.1 in [1] shows that for general trees, the mixing time is preserved up to a
constant under rough isometries. This constant only depends on the degree of the graph
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and the constants α and β. Recall that condition (2.2) is equivalent to cutoff for lazy
simple random walks on trees. Thus, the previous observations give the following result.

Proposition 5.1. Let (Tn)n∈N and (T ′n)n∈N be sequences of trees with bounded degree
∆. Assume that Tn and T ′n are roughly isometric with α and β not depending on n. Then,
the lazy simple random walk on (Tn)n∈N exhibits cutoff if and only if it does on (T ′n)n∈N.
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