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Abstract

It is well known that given two probability measures µ and ν on R in convex order
there exists a discrete-time martingale with these marginals. Several solutions are
known (for example from the literature on the Skorokhod embedding problem in
Brownian motion). But, if we add a requirement that the martingale should minimise
the expected value of some functional of its starting and finishing positions then the
problem becomes more difficult. Beiglböck and Juillet (Ann. Probab. 44 (2016) 42–
106) introduced the shadow measure which induces a family of martingale couplings,
and solves the optimal martingale transport problem for a class of bivariate objective
functions. In this article we extend their (existence and uniqueness) results by
providing an explicit construction of the shadow measure and, as an application, give
a simple proof of its associativity.
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1 Introduction

Given two probability measures µ, ν on R, a transport plan or coupling between µ and
ν is a probability measure π on R2 such that π(A×R) = µ(A) and π(R×B) = ν(B) for all
Borel sets A,B of R. It is often convenient to express a coupling π via its disintegration
with respect to the first marginal µ, π(dx, dy) = µ(dx)πx(dy) where x 7→ πx is a µ-almost
surely unique probability kernel. In the language of the classical optimal transport, each
transport plan π corresponds to a joint distribution of X ∼ µ and Y ∼ ν and then it
is natural to ask for couplings which, (not only possess nice structures or properties
but also) for a given cost function c : R → R, minimise the expected cost Eπ[c(X,Y )].
Brenier’s Theorem (see Brenier [5], and Rüschendorf and Rachev [23]) considers the
problem in Rd with an Euclidean cost c(x, y) = |y − x|2. Then, under some regularity
assumptions, the optimal coupling is a push forward measure induced by the gradient of
a convex function φ : Rd 7→ R. In other words, the optimal coupling π̂ is deterministic
and of the form

π̂(dx, dy) = µ(dx)δ∇φ(x)(dy).

In one dimension, this says that π̂ is concentrated on a graph of an increasing function.
Furthermore, it is optimal for (at least) costs c(x, y) = h(y − x), where h : R 7→ R is
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The potential of the shadow measure

strictly convex, and coincides with the monotone (Hoeffding-Fréchet) coupling πHF

(which is often called the quantile coupling).
In the martingale version of optimal transport, introduced in the context of a specific

cost function by Hobson and Neuberger [14] and more generally by Beiglböck et al. [2]
and Galichon et al. [9], the goal is to construct a martingale (Mi)i=1,2 with M1 ∼ µ and
M2 ∼ ν, and such that E[c(M1,M2)] is minimised. The martingale requirement places a
non-trivial constraint on the possible joint distributions of M1 and M2 and the martingale
transports correspond to measures π on R2 with univariate marginals µ and ν such that
the kernel in the disintegration of π satisfies the barycenter property∫

yπx(dy) = x, for µ-almost every x ∈ R.

For arbitrary probability measures µ and ν the existence of a martingale transport
is not guaranteed and requires that µ is smaller than ν in convex order, which we
write as µ ≤cx ν. That this condition is necessary and sufficient for there to exist a
martingale with given marginals was proved by Strassen [24] (and extended to the level
of continuous time processes by Kellerer [18, 19]).

Provided that µ ≤cx ν, one then seeks to find optimal martingale couplings. For
quadratic costs the martingale transport problem is trivial: any martingale coupling is
an optimiser. Solutions are known for several other specific but important costs. Hobson
and Neuberger [14] and Hobson and Klimmek [13], in the context of mathematical
finance, provide the (non-explicit and explicit, respectively) constructions of the optimal
martingale couplings πHN and πHK for the cost functions c(x, y) = −|x− y| and c(x, y) =

|x− y|, respectively. (Hobson and Klimmek [13] work under the dispersion assumption
whereby µ ≥ ν on an interval I and µ ≤ ν outside I.) Beiglböck and Juillet [4] introduced
the so-called left-curtain coupling πlc (a martingale counterpart of the quantile coupling
in the classical optimal transport) and proved its optimality for costs of the form c(x, y) =

h(y − x) for some differentiable function h with strictly convex derivative.
All of the aforementioned martingale couplings have nice structural properties: if µ

is atom-free then card(spt{πHNx })≤ 2, card(spt{πHKx })≤ 3 with card(spt{πHKx } \ {x})≤ 2

and card(spt{πlcx })≤ 2 for µ-almost every x ∈ R. In particular, in each case there
exist lower and upper functions on which the couplings are concentrated. Under the
dispersion assumption, Hobson and Klimmek [13] constructed the upper and lower
functions for πHK , while for πHN only the existence is known. When the initial law µ is
atomic, an explicit construction of the characteristic functions of the left-curtain coupling
is provided in Beiglböck and Juillet [4]. Another construction of πlc (using ordinary
differential equations) is given by Henry-Labordère and Touzi [10] for atomless initial
measures µ. For general initial and target laws Hobson and Norgilas [15] constructed
the upper and lower functions that characterise the generalised (or lifted ) left-curtain
martingale coupling using weak approximation of measures. Several other authors
further investigate the properties and extensions of the left-curtain coupling, see Henry-
Labordère et al. [11], Beiglböck et al. [3, 1], Juillet [16, 17], Nutz et al. [20, 21] and
Brückerhoff at al. [6].

To study the transport plans in the martingale setting, Beiglböck and Juillet [4]
introduced the extended convex order of two measures. Its significance lies in the fact
that, for each pair of measures µ, ν with µ less than ν in the extended convex order, there
exists a martingale that transports µ into ν (without necessarily covering all of ν). In
particular, the set of measures η with µ ≤cx η ≤ ν, is non-empty. Each such η corresponds
to a terminal law of a martingale that embeds µ into ν. Among these terminal laws there
are at least two canonical choices, namely, the smallest and the largest element with
respect to the convex order, which correspond to the most concentrated and the most
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disperse attainable terminal law of the transporting martingale, respectively. Beiglböck
and Juillet [4] proved the existence and uniqueness of both of these extreme measures
and baptised the minimal measure, which is the main object of interest in this paper, the
shadow (of µ in ν). One of the main achievements of this paper is Theorem 4.7, which
provides an explicit construction of the shadow measure. This allows us to give a simple
proof of the existence and uniqueness which is considerably more direct than that given
in [4].

Arguably the most important structural property of the shadow measure is its associa-
tivity (see Theorem 4.8). In particular, it is the main ingredient in defining the left-curtain
martingale coupling, or more generally, any martingale coupling induced by the shadow
measure. More specifically, the left-curtain martingale coupling is defined as the unique
measure πlc on R2 such that, for each x ∈ R, πlc|(−∞,x])×R has the first marginal µ|(−∞,x]
and the second marginal Sν(µ|(−∞,x]), where Sν(µ|(−∞,x]) is the shadow of µ|(−∞,x] in ν.

The current paper is structured as follows. In Section 2 we discuss the relevant
notions of probability measures and (extended) convex order, and state some crucial (for
our main theorems) results regarding the convex hull of a function. In Section 3 we use
potential-geometric arguments to explicitly construct the maximal measure with respect
to convex order (the opposite of the shadow measure). Section 4 is dedicated to our
main results. First, in Theorem 4.7 we provide an explicit construction of the shadow
measure in terms of its potential function. Then we use this result to give a simplified
proof of the associativity of the shadow, see Theorem 4.8.

2 Preliminaries

2.1 Measures and Convex order

LetM (respectively P) be the set of measures (respectively probability measures)
on R with finite total mass and finite first moment, i.e., if η ∈ M, then η(R) < ∞ and∫
R
|x|η(dx) <∞. Given a measure η ∈M (not necessarily a probability measure), define

η =
∫
R
xη(dx) to be the first moment of η (and then η/η(R) is the barycentre of η). Let

Iη be the smallest interval containing the support of η, and let {`η, rη} be the endpoints
of Iη. If η has an atom at `η then `η is included in Iη, and otherwise it is excluded, and
similarly for rη.

For α ≥ 0 and β ∈ R let D(α, β) denote the set of increasing, convex functions
f : R 7→ R+ such that limz↓−∞{f(z)} = 0 and limz↑∞{f(z)− (αz − β)} = 0. Then, when
α = 0, D(0, β) is empty unless β = 0 and then D(0, 0) contains one element, the zero
function.

For η ∈M, define the functions Pη, Cη : R 7→ R+ by

Pη(k) :=

∫
R

(k − x)+η(dx), k ∈ R, Cη(k) :=

∫
R

(x− k)+η(dx), k ∈ R,

respectively. Then Pη(k) ≥ 0∨(η(R)k−η) and Cη(k) ≥ 0∨(η−η(R)k). Also Cη(k)−Pη(k) =

(η − η(R)k).

The following properties of Pη can be found in Chacon [7], and Chacon and Walsh [8]:
Pη ∈ D(η(R), η) and {k : Pη(k) > (η(R)k − η)+} = {k : Cη(k) > (η − η(R)k)+} = (`η, rη).
Conversely (see, for example, Proposition 2.1 in Hirsch et al. [12]), if h is a non-negative,
non-decreasing and convex function with h ∈ D(km, kf ) for some numbers km ≥ 0 and
kf ∈ R (with kf = 0 if km = 0), then there exists a unique measure η ∈ M, with total
mass η(R) = km and first moment η = kf , such that h = Pη. In particular, η is uniquely
identified by the second derivative of h in the sense of distributions. Furthermore, Pη
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and Cη are related to the potential Uη, defined by

Uη(k) := −
∫
R

|k − x|η(dx), k ∈ R,

via −Uη = Cη + Pη. We will call Pη (and Cη) a modified potential. Finally note that all
three second derivatives C ′′η , P

′′
η and −U ′′η /2 identify the same underlying measure η.

For η, χ ∈M, we write η ≤ χ if η(A) ≤ χ(A) for all Borel measurable subsets A of R,
or equivalently if ∫

fdη ≤
∫
fdχ, for all non-negative f : R 7→ R+.

Since η and χ can be identified as second derivatives of Pχ and Pη respectively, we have
η ≤ χ if and only if Pχ − Pη is convex, i.e., Pη has a smaller curvature than Pχ.

Two measures η, χ ∈M are in convex order, and we write η ≤cx χ, if∫
fdη ≤

∫
fdχ, for all convex f : R 7→ R. (2.1)

Since we can apply (2.1) to all affine functions, including f(x) = ±1 and f(x) = ±x, we
obtain that if η ≤cx χ then η and χ have the same total mass (η(R) = χ(R)) and the
same first moment (η = χ). Moreover, necessarily we must have `χ ≤ `η ≤ rη ≤ rχ.
From simple approximation arguments (see Hirsch et al. [12]) we also have that if η
and χ have the same total mass and the same barycentre, then η ≤cx χ if and only if
Pη(k) ≤ Pχ(k), k ∈ R.

For our purposes in the sequel we need a generalisation of the convex order of two
measures. We follow Beiglböck and Juillet [4] and say η, χ ∈ M are in an extended
convex order, and write η ≤E χ, if∫

fdη ≤
∫
fdχ, for all non-negative, convex f : R 7→ R+.

If η ≤cx χ then also η ≤E χ (since non-negative convex functions are convex), while if
η ≤ χ, we also have that η ≤E χ (since non-negative convex functions are non-negative).
Note that, if η ≤E χ, then η(R) ≤ χ(R) (apply the non-negative convex function φ(x) = 1

in the definition of ≤E). It is also easy to prove using the above characterisation of
convex order via potential functions that if η(R) = χ(R), then η ≤E χ is equivalent to
η ≤cx χ.

For η, χ ∈ P, let Π(η, χ) be the set of probability measures on R2 with the first
marginal η and second marginal χ. Let ΠM (η, χ) be the set of martingale couplings
of η and χ. Then ΠM (η, χ) =

{
π ∈ Π(η, χ) : (2.2) holds

}
, where (2.2) is the martingale

condition∫
x∈B

∫
y∈R

yπ(dx, dy) =

∫
x∈B

∫
y∈R

xπ(dx, dy) =

∫
B

xη(dx), ∀ Borel B ⊆ R. (2.2)

Equivalently, ΠM (η, χ) consists of all transport plans π (i.e., elements of Π(η, χ)) such that
the disintegration in probability measures (πx)x∈R with respect to η satisfies

∫
R
yπx(dy) =

x for η-almost every x. For any π ∈ ΠM (η, χ) and convex f : R 7→ R, by (conditional)
Jensen’s inequality we have that∫

R

f(x)η(dx) ≤
∫
R

∫
R

f(y)πx(dy)η(dx) =

∫
R

f(y)π(R, dy) =

∫
R

f(y)χ(dy),

so that η ≤cx χ. On the other hand, Strassen [24] showed that a converse is also true
(i.e., η ≤cx χ implies that ΠM (η, χ) 6= ∅), so that ΠM (η, χ) is non-empty if and only if
η ≤cx χ.
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For µ, ν ∈M with µ ≤E ν we defineMν
µ = {η ∈M : µ ≤cx η ≤ ν}. ThenMν

µ is a set
of terminal laws of a martingale that embeds µ into ν. Note that η ∈ Mν

µ if and only if
Pη ∈ P(µ, ν), where

P(µ, ν) := {P̃ ∈ D(µ(R), µ) : Pν − P̃ is convex and Pµ ≤ P̃}.

Remark 2.1. If µ ≤cx ν thenMν
µ is the singleton {ν}.

2.2 Convex hull

Our key results will be expressed in terms of the convex hull. For f : R 7→ (−∞,∞)

let f c be the largest convex function which lies below f . In our typical application f

will be non-negative and this property will be inherited by f c. However, in general we
may have f c equal to −∞ on R, and the results of this section are stated in a way which
includes this case. Note that if a function g is equal to −∞ (or∞) everywhere, then we
deem it to be both linear and convex, and set gc equal to g.

Fix x, z ∈ R with x ≤ z. For x < z, define Lfx,z : [x, z] 7→ R by

Lfx,z(y) = f(x)
z − y
z − x

+ f(z)
y − x
z − x

, y ∈ [x, z] (2.3)

and for x = z, define Lfx,x : {x} 7→ R by Lfx,x(x) = f(x). Then, see Rockafellar [22,
Corollary 17.1.5],

f c(y) = inf
x≤y≤z

Lfx,z(y), y ∈ R. (2.4)

Moreover, it is not hard to see (for example, by drawing the graphs of f and f c) that
f c replaces the non-convex segments of f by straight lines. (Proofs of lemmas in this
section are given in Section 5.)

Lemma 2.2. Let f : R 7→ R be lower semi-continuous. Suppose f > fc on (a, b) ⊆ R.
Then f c is linear on (a, b).

The following lemmas are the main ingredients in the proofs of Theorem 4.7 and
Theorem 4.8.

Lemma 2.3. Let f, g : R 7→ R be two convex functions. Define ψ : R 7→ (−∞,∞] by
ψ = g − (g − f)c. Then ψ is convex.

Lemma 2.4. Let f : R 7→ R be any measurable function and let g : R 7→ R be a convex
function. Then

(f − g)c = (f c − g)c.

Lemma 2.5. Assume that f ∈ D(α, β) and g ∈ D(a, b) for some α, a ≥ 0, β, b ∈ R. Let
h : R 7→ R be defined by h(k) := (a− α)k − (b− β).

Suppose that g ≥ f . Then α ≤ a. If α = a then β ≥ b.
Suppose that g ≥ f and g − f ≥ h. Then (g − f)c ∈ D(a− α, b− β).

Note that in the above lemma if α = a and β > b then there are no pairs of functions
(f, g) with f ∈ D(a, β), g ∈ D(a, b) and g(z)− f(z) ≥ h(z) = β − b. We cannot have both
limz↓−∞(g(z) − f(z)) = 0 and g(z) − f(z) ≥ h(z) = β − b > 0. In this case the final
statement of the lemma is vacuous.

3 The maximal element

In this section we find the largest measure (w.r.t. convex order) in Mν
µ (see The-

orem 3.3). It follows that Mν
µ 6= ∅. The reader who is only interested in the shadow

measure can omit this section and move directly to Section 4. The only result we will
use in the study of the shadow measure is the existence of an element η ∈ Mν

µ which
also follows from Proposition 4.3, although then this paper is no longer self-contained.
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The key result of this section is that there is a simple, explicit expression for the
maximal element ofMν

µ in terms of its potential.

Definition 3.1 (Counter-shadow measure). Let µ, ν ∈ M and assume µ ≤E ν. The
counter-shadow of µ in ν, denoted by T ν(µ), has the following properties:

1. µ ≤cx T ν(µ) ≤ ν,

2. If η is another measure satisfying µ ≤cx η ≤ ν then η ≤cx T ν(µ).

By Remark 2.1, if µ ≤cx ν then necessarily T ν(µ) = ν.

Lemma 3.2 (Beiglböck and Juillet [4], Lemma 4.5). For µ, ν ∈ M with µ ≤E ν, T ν(µ)

exists and is unique.

Beiglböck and Juillet [4] not only prove the existence and uniqueness of T ν(µ), but
also show how to construct T ν(µ). Our first result provides an alternative, simple and
explicit construction of T ν(µ) via potential functions. Let P̃ νµ : R 7→ R be given by

P̃ νµ (k) = min{Pν(k), Cν(k) + (µ(R)k − µ)}. See Fig. 1. Recall put-call parity: Cν(k) =

Pν(k) + ν − kν(R). Then an alternative expression for P̃ νµ is

P̃ νµ (k) = Pν(k)− ((ν(R)− µ(R))k − (ν̄ − µ̄))+, k ∈ R. (3.1)

k 7→ Cν(k)

k 7→ Cν(k) + (µ(R)k − µ)

k 7→ Pν(k)

k 7→ P̃ νµ (k)
k 7→ PT ν(µ)(k)

µ
µ(R)

ν
ν(R)

k∗ k∗

Figure 1: Construction of PT ν(µ). Dotted curves correspond to the graphs of Cν and Pµ,
while the dash-dotted curve corresponds to k 7→ Cν(k) + (µ(R)k − µ). The dashed curve
represents P̃ νµ . Note that P̃ νµ is continuous. The solid curve below P̃ νµ corresponds to
PT ν(µ), the (modified) potential of the counter-shadow. Note that, on (k∗, k

∗), PT ν(µ) is

linear and strictly below P̃ νµ , while on R \ (k∗, k
∗) it is equal to P̃ νµ .

Theorem 3.3. Suppose µ, ν ∈M with µ ≤E ν. Then PT ν(µ) = (P̃ νµ )c.

Proof. For ν(R) = µ(R) we must have ν̄ = µ̄ and T ν(µ) = ν. The result can be verified
directly in this case and we exclude it from this point onwards.

The proof in the general case makes extensive use of the definitions and results of
Section 2. Note first that since µ ≤E ν, Pν ≥ Pµ and Cν(k) + (µ(R)k − µ) ≥ Cµ(k) +

(µ(R)k − µ) = Pµ(k). Then P̃ νµ ≥ Pµ ≥ 0.

Let Pχ = (P̃ νµ )c be our candidate function. Since Pχ is convex, its second derivative
(in the sense of distributions) corresponds to a measure, which we denote by χ.
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We first show that PT ν(µ) ≤ Pχ. Since PT ν(µ) is convex and Pχ is the largest convex

function below P̃ νµ , it is enough to show that PT ν(µ) ≤ P̃ νµ . Since T ν(µ) ≤ ν, PT ν(µ) ≤ Pν .

On the other hand, since µ ≤cx T ν(µ), µ(R) = T ν(µ)(R) and µ = T ν(µ), and therefore,
for all k ∈ R, PT ν(µ)(k) = CT ν(µ)(k) + (µ(R)k−µ) ≤ Cν(k) + (µ(R)k−µ), where we again

used that T ν(µ) ≤ ν. Combining both cases we conclude that PT ν(µ) ≤ P̃ νµ and thus
PT ν(µ) ≤ Pχ.

To finish the proof we will show that χ ∈Mν
µ, or equivalently, that Pχ ∈ P(µ, ν). Then

by the maximality of T ν(µ) we have that χ ≤cx T ν(µ), which implies that Pχ ≤ PT ν(µ).
First, we already saw that Pµ ≤ P̃ νµ . Then, since Pµ is convex, Pµ ≤ (P̃ νµ )c = Pχ ≤ P̃ νµ .

Further, since Pµ is an element of D(µ(R), µ) and P̃ νµ has the same limiting behaviour as
an element of D(µ(R), µ), it follows that Pχ ∈ D(µ(R), µ), and therefore µ ≤cx χ.

It is left to show that χ ≤ ν, or equivalently, that Pν − Pχ is convex. We have that
p given by p(k) = ((ν(R) − µ(R))k − (ν̄ − µ̄))+ is a convex function and therefore by
Lemma 2.3, with g = Pν and f = p, Pν − (Pν − p)c is convex. But, using the expression in
(3.1), Pν − (Pν − p)c = Pν − Pχ.

Let µ = µ1 + µ2 for some µ1, µ2 ∈M and ν ∈M with µ ≤E ν. ThenMν
µ1
6= ∅ and, in

particular, we can embed µ1 into ν using any martingale coupling π ∈ ΠM (µ1, T
ν(µ1)). A

natural question is then whetherMν−T ν(µ1)
µ2 is non-empty, so that the remaining mass µ2

can also be embedded in what remains of ν.

Example 3.4. Let µ = 1
2 (δ−1 + δ1) and ν = 1

3 (δ−2 + δ0 + δ2). Then µ ≤cx ν. Consider
µ1 = 2

3µ and µ2 = µ− µ1 = 1
3µ. Then T ν(µ1) = 1

3 (δ−2 + δ2). However, µ2 ≤cx ν − T ν(µ1)

does not hold. Indeed, ν − T ν(µ1) = 1
3δ0 ≤cx µ2.

As Example 3.4 demonstrates, for µ1, µ2, ν ∈ M with µ1 + µ2 = µ ≤E ν, if we first
transport µ1 to T ν(µ1), then we cannot, in general, embed µ2 in ν − T ν(µ1) in a way
which respects the martingale property. As a consequence, for arbitrary measures in
convex order we cannot expect the maximal element to induce a martingale coupling. In
the next section we study the minimal element ofMν

µ, namely the shadow measure. The
shadow measure has the property that if µ1 + µ2 = µ ≤E ν and we transport µ1 to the
shadow Sν(µ1) of µ1 in ν, then µ2 is in extended convex order with what remains of ν,
i.e., µ2 ≤E ν − Sν(µ1).

4 The shadow measure

The goal of this section is to give a simple formula for the shadow of µ in ν via
its potential, and hence to give a simple and direct proof of existence of the shadow
measure.

Definition 4.1 (Shadow measure). Let µ, ν ∈M and assume µ ≤E ν. The shadow of µ
in ν, denoted by Sν(µ), has the following properties

1. µ ≤cx Sν(µ) ≤ ν,

2. If η is another measure satisfying µ ≤cx η ≤ ν, then Sν(µ) ≤cx η.

Remark 4.2. If µ ≤cx ν then, in the light of Remark 2.1, Sν(µ) = ν = T ν(µ).

Proposition 4.3 (Beiglböck and Juillet [4], Lemma 4.6). For µ, ν ∈M with µ ≤E ν, Sν(µ)

exists and is unique.

Given µ and ν with µ ≤E ν (and, by Remark 4.2, with µ(R) < ν(R)) in this section we
construct the shadow measure Sν(µ) via (modified) potential function PSν(µ). This gives
an independent proof of existence; uniqueness is easy.

We begin with some preliminary lemmas.
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Lemma 4.4. Suppose µ, ν ∈M. The following are equivalent:

(i) µ ≤E ν;

(ii) there exists η ∈M such that µ ≤cx η ≤ ν;

(iii) there exists χ ∈M such that µ ≤ χ ≤cx ν.

Proof. That (i) implies (ii) follows from Theorem 3.3 (or from Proposition 4.3, but then
this paper is not self-contained).

For (ii) implies (iii), let η be as in part (ii). Then it is easily verified that χ, defined
by χ = ν − η + µ, satisfies χ ∈M and µ ≤ χ ≤cx ν. (To prove (iii) implies (ii) reverse the
roles of η and χ, i.e., take χ as in part (iii) and define η = ν − χ+ µ.)

Finally we show that (iii) implies (i). Suppose µ ≤ χ ≤cx ν. Then, for any non-negative
and convex f : R 7→ R+, ∫

fdµ ≤
∫
fdχ ≤

∫
fdν,

and thus, from the definition of ≤E in Section 2, µ ≤E ν. (The proof of (ii) implies (i) is
identical.)

Corollary 4.5. Let µ, ν ∈M with µ ≤E ν. Define β ∈M by β := (ν(R)− µ(R))δ ν−µ
ν(R)−µ(R)

,

so that Pβ(k) = ((ν(R)− µ(R))k − (ν − µ))+.
Then (Pν − Pµ) ≥ Pβ .

Proof. Let η ∈ M be as in (ii) of Lemma 4.4. By the remarks in Section 2, since
µ ≤cx η, we have that µ(R) = η(R) and µ = η, and therefore (ν − η)(R) = β(R)

and (ν − η) = ν − µ = β. Since a point mass is smaller in convex order than any
other distribution with the same mass and mean, it follows that β ≤cx ν − η. Then
Pβ ≤ Pν−η = Pν − Pη ≤ Pν − Pµ.

The next result follows when Lemma 2.5 with g = Pν and f = Pµ is combined with
Corollary 4.5:

Corollary 4.6. Suppose µ ≤E ν. Then (Pν − Pµ)c ∈ D(ν(R)− µ(R), ν − µ).

Note that if µ ≤E ν and µ(R) = ν(R) then µ ≤cx ν and µ = ν so that (Pν − Pµ)c is the
zero function which is the unique element in D(0, 0).

Theorem 4.7. Let µ, ν ∈M with µ ≤E ν. Then the shadow of µ in ν is uniquely defined
and given by

PSν(µ) = Pν − (Pν − Pµ)c. (4.1)

Proof. Rephrasing Definition 4.1 above for the shadow measure (and splitting the first
element into three parts), a function h is the potential of the shadow of µ in ν if

1 h ∈ D(µ(R), µ),

1′ (Pν − h) ≤ (Pν − Pµ),

1′′ Pν − h is a potential function, i.e., Pν − h ∈ D(α, β) for some α ≥ 0, β ∈ R,

2 If p is another potential function with properties 1, 1′, 1′′ then (Pν − h) ≥ (Pν − p).

By Corollary 4.6 we have (Pν−Pµ)c ∈ D(ν(R)−µ(R), ν−µ). Now set h = Pν− (Pν−Pµ)c.
First we verify that h ∈ D(µ(R), µ). By applying Lemma 2.3, with g = Pν and f = Pµ, we
have that h is convex and therefore h = hc. Then, since h ≥ Pµ(R)δµ/µ(R)

≥ 0, applying
Lemma 2.5 with g = Pν and f = (Pν − Pµ)c we conclude that h ∈ D(µ(R), µ).

Now we claim that Pν − h = (Pν − Pµ)c satisfies the properties 1′, 1′′, 2. We already
saw that (Pν − Pµ)c ∈ D((ν(R) − µ(R)), ν − µ), i.e., (Pν − Pµ)c is a potential function,
and thus property 1′′ is satisfied. On the other hand, properties 1′ and 2 follow from the
definition and the maximality of the convex hull, respectively.
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We now turn to the associativity of the shadow measure. As alluded to in the
introduction, it is one of the most important results on the structure of shadows. The
proof of the associativity (Theorem 4.8) given in Beiglböck and Juillet [4] is delicate and
based on the approximation of µ by atomic measures. Thanks to Theorem 4.7, we are
able to provide a simple proof of Theorem 4.8.

Theorem 4.8 (Beiglböck and Juillet [4], Theorem 4.8). Suppose µ = µ1 + µ2 for some
µ1, µ2 ∈M and µ ≤E ν. Then µ2 ≤E ν − Sν(µ1) and

Sν(µ1 + µ2) = Sν(µ1) + Sν−S
ν(µ1)(µ2). (4.2)

Proof. We first prove that µ2 ≤E ν − Sν(µ1). Define Pθ : R→ R+ by

Pθ(k) = (Pν − Pµ1
)c(k)− ((Pν − Pµ1

)c − Pµ2
)c(k), k ∈ R.

We will show that Pθ ∈ P(µ2, ν − Sν(µ1)). Then the second derivative of Pθ corresponds

to a measure θ ∈Mν−Sν(µ1)
µ2 , which by Lemma 4.4 is enough to prove the assertion.

Convexity of Pθ is a direct consequence of Lemma 2.3 with g = (Pν − Pµ1)c and
f = Pµ2 . Moreover, since Pν−Sν(µ1) = Pν − PSν(µ1) = (Pν − Pµ1)c, we have that

Pν−Sν(µ1) − Pθ = ((Pν − Pµ1
)c − Pµ2

)c ≤ (Pν − Pµ1
)c − Pµ2

,

and it follows that (Pν−Sν(µ1)−Pθ) is convex and Pµ2
≤ Pθ. To prove that µ2 ≤E ν−Sν(µ1)

it only remains to show that Pθ has the correct limiting behaviour to ensure that Pθ ∈
D(µ2(R), µ2).

First, since µ1 ≤E ν, by Corollary 4.6 we have that (Pν − Pµ1
)c ∈ D(ν(R)− µ1(R), ν −

µ1). Similarly, since µ1+µ2 ≤E ν, (Pν−Pµ1
−Pµ2

)c ∈ D(ν(R)−µ1(R)−µ2(R), ν − µ1 − µ2).
But, by Lemma 2.4, with f = (Pν − Pµ1

) and g = Pµ2
, we have that ((Pν − Pµ1

)c −
Pµ2

)c = (Pν − Pµ1
− Pµ2

)c. Finally, recall that Pθ ≥ Pµ2
≥ Pµ2(R)δµ2/µ2(R)

and, since
Pθ is convex, Pθ = P cθ . Therefore, by applying Lemma 2.5 with g = (Pν − Pµ1

)c and
f = ((Pν − Pµ1

)c − Pµ2
)c, we conclude that Pθ ∈ D(µ2(R), µ2).

We are left to prove the associativity property (4.2). By applying Theorem 4.7 to
Sν(µ1 + µ2) we have by Lemma 2.4 that

PSν(µ1+µ2) = Pν − ((Pν − Pµ1
)− Pµ2

)
c

= Pν − ((Pν − Pµ1
)c − Pµ2

)
c
,

whilst applying Theorem 4.7 to Sν(µ1) and Sν−S
ν(µ1)(µ2) gives

PSν(µ1) + PSν−Sν (µ1)(µ2)
= {Pν − (Pν − Pµ1

)c}+
{
Pν−Sν(µ1) − (Pν−Sν(µ1) − Pµ2

)c
}

= Pν − ((Pν − Pµ1
)c − Pµ2

)
c
,

where we again used that Pν−Sν(µ1) = Pν − PSν(µ1) = (Pν − Pµ1
)c.

We give one further result which is easy to prove using Theorem 4.7 and which
describes a structural property of the shadow. The purpose of including this result is
to show that the potential method can be used to give new results, as well as to give
shorter proofs of existing ones.

Proposition 4.9. Suppose ξ, µ, ν ∈M with ξ ≤ µ ≤E ν. Then, ξ ≤E ν, ξ ≤E Sν(µ) and

SS
ν(µ)(ξ) = Sν(ξ).

Proof. Let f be non-negative and convex. Then,
∫
fdξ ≤

∫
fdµ ≤

∫
fdSν(µ) ≤

∫
fdν

and both ξ ≤E Sν(µ) and ξ ≤E ν. By Theorem 4.7, we have PSν(ξ) = Pν − (Pν − Pξ)c.
Applying Theorem 4.7 to PSSν (µ)(ξ), and writing σ = µ− ξ so that Pµ = Pξ + Pσ,

PSSν (µ)(ξ) = PSν(µ)−(PSν(µ)−Pξ)c =
{
Pν−(Pν−Pξ−Pσ)c

}
−
(
Pν−(Pν−Pξ−Pσ)c−Pξ

)c
.
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Three applications of Lemma 2.4 give that

PSSν (µ)(ξ) =
{
Pν − ((Pν − Pξ)c − Pσ)c

}
−
(

(Pν − Pξ)c − ((Pν − Pξ)c − Pσ)c
)c
.

Finally, by Lemma 2.3 (with g = (Pν − Pξ)c and f = Pσ) we have that (Pν − Pξ)c − ((Pν −
Pξ)

c − Pσ)c is convex and then

PSSν (µ)(ξ) =
{
Pν − ((Pν − Pξ)c − Pσ)c

}
−
(

(Pν − Pξ)c − ((Pν − Pξ)c − Pσ)c
)

= Pν − (Pν − Pξ)c = PSν(ξ).

Example 4.10. The assertion of Proposition 4.9 does not hold for ξ, µ, ν ∈ M with
ξ ≤E µ ≤E ν. To see this, let ξ = 1

3δ0, µ = 1
3 (δ−2 + δ2) and ν = 1

3 (δ−2 + δ0 + δ2). Then
Sν(µ) = µ and SS

ν(µ)(ξ) = Sµ(ξ) = 1
6 (δ−2 + δ2) 6= ξ = Sν(ξ).

5 Proofs

Proof of Lemma 2.2. If f c ≡ −∞ then it is linear and we are done. Henceforth we
exclude this case.

Suppose f c is not a straight line on (a, b). Then, by the convexity of f c, for all x ∈ (a, b)

we have

f c(x) <
b− x
b− a

f c(a) +
x− a
b− a

f c(b) = Lf
c

a,b(x).

Let η = infu∈(a,b){f(u) − Lf
c

a,b(u)}. If η ≥ 0 then f ≥ Lf
c

a,b on (a, b) and f ≥ f c ∨ Lf
c

a,b,
contradicting the maximality of f c as a convex minorant of f .

Now suppose that η < 0. Since f is lower semi-continuous, f −Lf
c

a,b is also lower semi-

continuous, and therefore attains its infimum on [a, b]. Fix z ∈ arginfu∈[a,b]{f(u)−Lf
c

a,b(u)}.
Since f(k)− Lf

c

a,b(k) = f(k)− f c(k) ≥ 0 for k ∈ {a, b}, a, b /∈ arginfu∈[a,b]{f(u)− Lf
c

a,b(u)},
and thus z ∈ (a, b). Then since f > f c on (a, b) we have 0 > η = f(z) − Lf

c

a,b(z) >

f c(z) − Lf
c

a,b(z). Then f c ∨ (Lf
c

a,b + η) is convex, is a minorant of f and is strictly larger
than f c (in particular at z) again contradicting the maximality of f c as a convex minorant
of f .

Proof of Lemma 2.3. Let h = g − f . We show that ψ = g − hc is convex.
If hc ≡ −∞ then ψ ≡ +∞ which is convex. Henceforth we exclude this case.
First note that, since hc(y) ≤ h(y), ψ(y) = g(y)− hc(y) ≥ f(y), y ∈ R.
Define A= := {y : h(y) = hc(y)} and A> := {y : h(y) > hc(y)}. Then ψ = f on A=,

while ψ > f on A>.
Recall that φ : R 7→ R is convex if for all x, y, z ∈ R, with x ≤ y ≤ z,

φ(y) ≤ Lφx,z(y).

Suppose y ∈ A=. Then, for all x ≤ y ≤ z, since f is convex and ψ ≥ f ,

ψ(y) = f(y) ≤ Lfx,z(y) ≤ Lψx,z(y).

In the rest of the proof we take y ∈ A>, and x, z ∈ R with −∞ < x ≤ y ≤ z <∞ and
show that ψ(y) ≤ Lψx,z(y). Let By be the set of open intervals containing y which are
subsets of A>. If y ∈ A> then, by continuity of h and hc, By := {(a, b) ⊆ R : y ∈ (a, b) ⊆
A>} is non-empty. Moreover By has a largest element: B̂y := supBy. Denote by X(y)

(resp. Z(y)) the left (resp. right) end-point of B̂y. By Lemma 2.2, we have that hc is linear
on (X(y), Z(y)). Moreover, by continuity of h and hc, if X(y) (resp. Z(y)) is finite, then
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X(y) ∈ A= (resp. Z(y) ∈ A=). If both X(y) and Z(y) are finite then hc(y) = LhX(y),Z(y)(y).

In general, B̂ = (X(y), Z(y)) ⊆ A>.
Suppose −∞ < x ≤ X(y) < Z(y) ≤ z < ∞. Then, since g is convex and hc(y) =

LhX(y),Z(y)(y),

ψ(y) = g(y)− hc(y) ≤ LgX(y),Z(y)(y)− LhX(y),Z(y)(y) = LfX(y),Z(y)(y)

and then

ψ(y) ≤ LfX(y),Z(y)(y) ≤ LL
f
x,z

X(y),Z(y)(y) = Lfx,z(y) ≤ Lψx,z(y)

by the convexity of f (and hence f ≤ Lfx,z on [x, z]) and the fact that f ≤ ψ.
Suppose X(y) ≤ x ≤ y ≤ z ≤ Z(y). Note that we allow X(y) = −∞ (resp. Z(y) =∞),

but in that case x > X(y) = −∞ (resp. z < Z(y) = ∞). By Lemma 2.2, hc is linear on
(x, z), and therefore hc(y) = Lh

c

x,z(y). Using convexity of g on R we conclude that

ψ(y) = g(y)− hc(y) ≤ Lgx,z(y)− Lh
c

x,z(y) = Lψx,z(y).

Suppose X(y) ≤ x ≤ y < Z(y) ≤ z. (The case x ≤ X(y) < y ≤ z ≤ Z(y) follows by
symmetry.) Since z <∞ we have that Z(y) <∞, but X(y) may be finite or infinite. In
this case hc is also linear on (x, Z(y)) and therefore hc(y) = Lh

c

x,Z(y)(y). Then

ψ(y) = g(y)− hc(y) ≤ Lgx,Z(y)(y)− Lh
c

x,Z(y)(y) = Lψx,Z(y)(y), (5.1)

where the inequality follows from the convexity of g on R. Now note that, since f is
convex and f ≤ ψ,

ψ(Z(y)) = g(Z(y))− h(Z(y)) = f(Z(y)) ≤ Lfx,z(Z(y)) ≤ Lψx,z(Z(y)),

from which we conclude that Lψx,Z(y)(y) ≤ Lψx,z(y), and then combining with (5.1), ψ(y) ≤
Lψx,z(y). This finishes the proof.

Proof of Lemma 2.4. First, since f ≥ f c, (f − g)c ≥ (f c − g)c. On the other hand, we
have (f − g)c ≤ (f − g) and therefore (f − g)c + g ≤ f . Since the sum of two convex
functions is convex, (f − g)c + g is also convex. Hence, (f − g)c + g ≤ f c, and therefore
(f − g)c ≤ (f c − g). Since (f c − g)c is the largest convex function dominated by (f c − g),
(f − g)c ≤ (f c − g)c. It follows that (f − g)c = (f c − g)c.

Proof of Lemma 2.5. Since g ∈ D(a, b) and f ∈ D(α, β) with g ≥ f , we have that

0 ≤ lim
k→∞

{g(k)− f(k)} = lim
k→∞

{g(k)− (ak − b)− f(k) + (αk − β) + (a− α)k − (b− β)}

= lim
k→∞

{(a− α)k − (b− β)} = lim
k→∞

h(k),

and therefore a ≥ α. Also, if α = a then β ≥ b.
Now suppose f ≤ g and g − f ≥ h. Then g − f ≥ h+ and since h+ is convex, we have

that (g− f) ≥ (g− f)c ≥ h+. Then, lim|k|→∞{g(k)− f(k)−h+(k)} = 0, and it follows that
(g − f)c ∈ D(a− α, b− β).
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