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Abstract

Let Mn be a random n× n matrix with i.i.d. Bernoulli(1/2) entries. We show that for
fixed k ≥ 1,

lim
n→∞

1

n
log2P[corankMn ≥ k] = −k.
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1 Introduction

A fundamental, and intensely studied, problem in combinatorial random matrix theory
is the determination of the probability of singularity of n× n random Bernoulli matrices
(i.e. n× n matrices for which each entry is independently 0 or 1 with equal probability).
The study of this problem was initiated in work of Komlós [10]. After intermediate works
over a period of over 50 years [9, 14, 15, 2], the breakthrough work of Tikhomirov [16]
showed that for any fixed p ∈ (0, 1/2],

P[Mn(Ber(p)) is singular] = (1− p+ on(1))n,

where we use the notation Mm×n(ξ) to denote an m× n random matrix with i.i.d. entries
distributed as ξ, and the lighter notation Mn(ξ) for Mn×n(ξ). Also, Ber(p) is the random
variable which takes on the value 1 with probability p and 0 with probability 1− p.

By considering the probability of a row of the matrix being 0, one sees that the result
of Tikhomirov is optimal up to the on(1) term. Recently, several works [6, 7, 8, 11, 1]
have addressed the more refined question of determining the probability of singularity
of Mn(ξ) up to a (1 + on(1)) factor; in contrast, the aforementioned result of Tikhomirov
determines this probability only up to a subexponential (in n) factor. While these works
have succeeded in the case of sparse Bernoulli matrices (with sparsity allowed to depend
on n) [6, 11, 1], as well as in the case of a fixed ξ which is not uniform on its support [7, 8],
we note that for the case of Ber(1/2), the estimate of Tikhomirov remains essentially the
best known.
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Rank deficiency of random matrices

A condition equivalent to singularity of Mn(ξ) is that the corank of Mn(ξ) is at least
1. Given this formulation, the following question immediately suggests itself: given
k ≥ 1, what is the probability that the corank of Mn(ξ) is at least k? In the case when
ξ = Ber(p) for fixed p ∈ (0, 1/2], by considering the event that first k rows of the matrix
are identically 0, we see that this probability is at least (1− p)nk. The previously best-
known upper bound appears to be due to Kahn, Komlós, and Szemerédi [9], who showed
that there exists a function f : N→ R+ with f(k)→ 0 as k →∞ such that

P[corankMn(Ber(1/2)) ≥ k] ≤ f(k)n.

The above simple lower bound shows that the decay of f(k) can be at most 2−k; it has
been suggested (cf. [17, Section 4], ‘It is tempting to conjecture...’) that this rate of
decay is essentially sharp, i.e. that

P[corankMn(Ber(1/2)) ≥ k] = (1/2 + on(1))kn.

The main result of this paper confirms this belief.

Theorem 1.1. Fix p ∈ (0, 1/2] and let ξ = Ber(p). Fix k ≥ 1 and ε > 0. Then, for
n ≥ n1.1(p, k, ε), we have

P[corankMn(ξ) ≥ k] = (1− p+ ε)kn.

Remark 1.2. A modification of our proof, with Theorem 2.8 replaced by the corre-
sponding version in [8], shows that for any fixed ξ which is supported on finitely many
points,

P[corankMn(ξ) ≥ k] ≤ (max
z∈R

P[ξ = z] + on(1))kn.

We conjecture that, in general, the following holds.

Conjecture 1.3. Fix a random variable ξ supported on finitely many points. Fix k ≥ 1

and ε > 0. Then for n ≥ n1.3(ξ, k, ε), we have

P[corankMn(ξ) ≥ k] ≤ (P[ξ = 0] + ε)kn + (P[ξ1 = · · · = ξk+1] + ε)n,

where ξ1, . . . , ξk+1 are independent samples of ξ.

A stronger conjecture is that the dominant contribution to the probability of the
corank being at least k comes from the event of having groups of rows which coincide
with each other, and a corresponding number of zero rows, or the same for columns (i.e.,
these ‘local’ events determine the probability up to an overall (1 + on(1)) factor). In the
case when ξ = Ber(p), p ∈ (0, 1/2), the event of having k rows which are identically zero
is exponentially more likely than any of these other ‘local’ events. In concurrent and
independent work, Huang [6] has proved this stronger conjecture (with accompanying
singular value bounds) for sufficiently sparse Bernoulli matrices i.e. ξ = Ber(pn) with

1 ≤ lim inf
n→∞

pn · n
log n

≤ lim sup
n→∞

pn · n
log n

<∞;

it is plausible that, combined with the techniques in [11], the upper bound on the
lim sup can be relaxed (perhaps even up to pn ≤ c for some small constant c). In the
complementary dense case considered here, we leave the resolution of this stronger
conjecture as a subject for future research.

Finally, we mention that in recent years, there have been several other works on the
(co)rank of random matrices (e.g. [4, 3]). However, the focus of these works is on the
determination of the typical (co)rank of various models, which is completely different
from our goal of (sharply) determining the rate of the probability of having corank at
least k for matrices which are of full rank with high probability.
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Rank deficiency of random matrices

1.1 Notation

Given a positive integer N ≥ 1, let SN−1 be the set of unit vectors in RN . Let ‖·‖2 be
the Euclidean norm. For a matrix A = (Aij), let ‖A‖ be its spectral norm (i.e., `2 → `2

operator norm) and let ‖A‖HS be its Hilbert-Schmidt norm, defined as

‖A‖2HS =
∑

A2
ij .

We let [N ] denote the discrete interval {1, . . . , N}. Given an m× n matrix A and a subset
S ⊆ [n] of columns, we let AS be the m × |S| submatrix of A consisting only of the
columns in S.

For an RN -valued random variable ξ and a real number r ≥ 0, we define the Lévy
concentration function by

L(ξ, r) := sup
z∈RN

P[‖ξ − z‖2 ≤ r].

Note that the case N = 1 coincides with the usual (scalar) Lévy concentration function.
We let `1(Z) denote the set of functions f : Z→ R satisfying

∑
z∈Z |f(z)| <∞.

We also make use of asymptotic notation. Given functions f, g, we write f = Oα(g) or
f .α g to mean f ≤ Cαg, where Cα is some constant depending on α. We write f = Ωα(g)

or f &α g to mean f ≥ cαg, where cα > 0 is some constant depending on α. We write
f = Θα(g) to mean that both f = Oα(g) and f = Ωα(g) hold.

Finally, we will omit floors and ceilings when they make no essential difference.

2 Proof of Theorem 1.1

2.1 Preliminaries

We collect some (by now) standard notions in the non-asymptotic theory of random
matrices. For parameters δ, ρ ∈ (0, 1) and an integer n ≥ 1, Compn(δ, ρ) denotes the set
of unit vectors in Rn which have Euclidean distance at most ρ to the set of δn-sparse
vectors. Incompn(δ, ρ) := Sn−1 \ Compn(δ, ρ). When the ambient dimension is clear from
context, we will drop the subscript n.

We will need to consider the anticoncentration behavior of a vector with respect to
i.i.d. Ber(p) random variables. For this, we will use the threshold function, which was
isolated in the work of Tikhomirov [16].

Definition 2.1. For p ∈ (0, 1/2], L ≥ 1, and x ∈ Rn, we define

Tp(x, L) := sup

{
t ∈ (0, 1) : L

( n∑
i=1

bixi, t

)
> Lt

}
,

where b1, . . . , bn are independent Ber(p) random variables.

2.2 Overview of the proof

In this subsection, we present the (short) proof of Theorem 1.1, modulo the key Propo-
sition 2.2 and Theorem 2.8, which we will formally state and prove in the subsequent
subsections.

Proof of Theorem 1.1. For δ, ρ ∈ (0, 1), let EC(δ, ρ) be the event that for every (n− k)× n
sub-matrix A ofMn(ξ), and for all x ∈ Sn−1 such that Ax = 0, we have that x ∈ Comp(δ, ρ).
In words, the right-kernel unit vectors of every (n− k)× n sub-matrix of Mn(ξ) are in
Comp(δ, ρ).
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Denote the rows of Mn(ξ) by R1, . . . , Rn. If rankMn(ξ) ≤ n− k, then there must be
some k rows of Mn(ξ) which are in the span of the remaining n− k rows. Since the rows
are i.i.d, it follows from the union bound that

P[rankMn(ξ) ≤ n− k] ≤ P[EC(δ, ρ)] + P[rankMn(ξ) ≤ n− k ∧ EC(δ, ρ)c]

≤ P[EC(δ, ρ)] +

(
n

k

)
P[{R1, . . . , Rk ∈ span(Rk+1, . . . , Rn)} ∧ EC(δ, ρ)c].

In Proposition 2.2, which is the key innovation of this work, we will show that there
exist δ, ρ ∈ (0, 1) (depending on k, p, ε) such that for all sufficiently large n (depending on
k, p, ε),

P[EC(δ, ρ)] ≤ (1− p+ ε)kn.

Now, fix this choice of δ, ρ and denote the corresponding event EC(δ, ρ) simply by EC .
Since

(
n
k

)
≤ nk ≤ (1+ε)n for n sufficiently large, it remains to show that for all sufficiently

large n,
P[{R1, . . . , Rk ∈ span(Rk+1, . . . , Rn)} ∧ EcC ] ≤ (1− p+ ε)nk.

In Theorem 2.8, we show the following dichotomy: consider the (n− k)× n matrix
M(n−k)×n(ξ) formed by the rows Rk+1, . . . , Rn. With probability at least 1− 4−kn, either

• every unit vector in the right-kernel of M(n−k)×n(ξ) is in Comp(δ, ρ), or
• there is a unit vector v = v(Rk+1, . . . , Rn) in the right-kernel of M(n−k)×n(ξ) with

Tp(v, L2.8) ≤ (1− p+ ε)n,

where L2.8 is a constant depending on k, p, ε.

Note that, on the event EcC , the first case cannot occur. Let A denote the set of possible
realizations of Rk+1, . . . , Rn for which the second case occurs; for every such realization
a ∈ A, we have a unit vector v = v(a) satisfying the conclusion of the second case. Then,

P[R1, . . ., Rk ∈ span(Rk+1, . . . , Rn) ∧ EcC ]

≤ sup
a∈A

P[〈R1, v(a)〉 = · · · = 〈Rk, v(a)〉 = 0] + 4−kn

≤ Lk2.8(1− p+ ε)kn + 4−kn.

The last inequality uses the independence of the rows, the definition of the threshold
function, and the property Tp(v(a), L2.8) ≤ (1 − p + ε)n. The result now follows upon
rescaling ε.

2.3 Compressible vectors

In this subsection, we prove Proposition 2.2. Recall the event EC(δ, ρ) defined at the
start of the proof of Theorem 1.1.

Proposition 2.2. Fix p ∈ (0, 1/2], k ≥ 1, and ε > 0. There exist δ, ρ ∈ (0, 1) and n0
(depending on p, k, ε) such that for all n ≥ n0,

P[EC(δ, ρ)] ≤ (1− p+ ε)kn.

The proof of Proposition 2.2 requires two ingredients, the first of which is the classical
Kolmogorov-Lévy-Rogozin anticoncentration inequality.

Lemma 2.3 ([12]). Let ξ1, . . . , ξn be independent random variables. Then, for any real
numbers r1, . . . , rn > 0 and any real number r ≥ maxi∈[n] ri,

L
( n∑
i=1

ξi, r

)
≤ C2.3r√∑n

i=1(1− L(ξi, ri))r2i
,

where C2.3 > 0 is an absolute constant.
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The second ingredient is a version of restricted invertibility which allows one to select
a subset of columns of full rank.

Lemma 2.4 ([5, Theorem 1]). Let U be an n×m matrix of rank n. Then, there exists a
subset S ⊆ [m] of columns of size |S| = n such that

‖U−1S ‖
2
HS ≤ (m− n+ 1) · Tr[(UUT )−1].

The following is the key lemma in the proof of Proposition 2.2.

Lemma 2.5. Fix p ∈ (0, 1/2] and k ≥ 1. There exists θ = θ2.5(p, k) > 0 for which the
following holds. If M is a k × n matrix whose rows are orthonormal vectors and x is an
n-dimensional random vector with independent Ber(p) components, then

L(Mx, θ) ≤ (1− p)k.

Remark 2.6. Our proof shows that θ(p, k) can be taken to be of size poly(p) exp(−Ω(k)).
We suspect this is far from the truth and conjecture that one can take θ(p, k) to be of size
poly(p, 1/k).

Proof. For each 1 ≤ i ≤ k, let Ti ⊆ [n] be the indices j ∈ [n] corresponding to the
bC2

2.325k/pc (which is ≥ k) largest values |Mij |, where (for concreteness) we break ties
according to the natural ordering of the integers. Let T = ∪ki=1Ti. Since

∑n
j=1 |Mij |2 = 1

for every i ∈ [k], it follows that for every j ∈ T c,

|Mij | ≤ 5−k
√
p/C2.3 ∀i ∈ [k].

We have two cases.
Case I: There exists some i ∈ [k] such that

∑
j∈T c |Mij |2 ≥ 4−k. In this case, by

applying Lemma 2.3 with r = 5−k
√
p/(3C2.3) and rj = |Mij |/3, we find that

L
( ∑
j∈T c

Mijxj , r

)
≤ C2.3

C−12.35−k
√
p/3

2−k
√
p/9

< 2−k ≤ (1− p)k.

Since

L(Mx, r) ≤ L((Mx)i, r) ≤ L
( ∑
j∈T c

Mijxj , r

)
,

we have the required conclusion with θ = r = 5−k
√
p/(3C2.3).

Case II: For every i ∈ [k],
∑
j∈T c |Mij |2 ≤ 4−k. Let U = MT denote the k× |T | matrix

formed by the columns of M corresponding to T . Note that k ≤ |T | ≤ C2
2.3k25k/p. Let

C1, . . . , Cn denote the columns of M . Since MMT = I, we have

‖I − UUT ‖ = ‖MMT − UUT ‖ ≤
∑
j∈T c

‖CjCTj ‖

=
∑
j∈T c

‖Cj‖22 =
∑
i∈[k]

∑
j∈T c

|Mij |2

≤ k4−k < 1/2.

In particular, the eigenvalues of UUT are in (1/2, 1] so that

Tr[(UUT )−1] < 2k.

Therefore, by Lemma 2.4, there exists a set of columns S ⊆ T of size |S| = k such that

‖M−1S ‖
2
HS = ‖U−1S ‖

2
HS ≤ 2C2

2.3k
225k/p.
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Hence, the smallest singular value of MS , denoted by σk(MS), must satisfy

σk(MS) ≥
√
p

2C2.3k5k
.

We claim that for

r =

√
p

5C2.3k5k
,

we have that
L(Mx, r) ≤ (1− p)k.

Since
L(Mx, r) ≤ L(MSxS , r),

it suffices to show that
L(MSxS , r) ≤ (1− p)k.

Since xS is a k-dimensional vector with i.i.d. Ber(p) entries, it follows that xS is supported
on {0, 1}k with maximum atom probability (1−p)k. Moreover, by definition of the smallest
singular value, we see that for any x 6= y ∈ {0, 1}k,

‖MSx−MSy‖2 ≥ σk(MS)‖x− y‖2 ≥ σk(MS),

which shows that
L(MSxS , r) ≤ max

x∈{0,1}k
P[xS = x] = (1− p)k.

Thus, in either case, we can take

θ =

√
p

5C2.3k5k
.

The previous lemma allows us to quickly deduce the following which, in the special
case k = 1, is the usual ‘invertibility with respect to a single vector’ (cf. [16, Lemma 3.5]).

Lemma 2.7. Fix p ∈ (0, 1/2], k ≥ 1, and ε > 0. Let ξ = Ber(p). There exists c2.7 =

c2.7(p, k, ε) > 0 for which the following holds. Let n ≥ n2.7(p, k, ε) and let V = [v1, . . . , vk]

be an n× k matrix with orthonormal columns. Then,

P[‖M(n−k)×n(ξ)V ‖HS ≤ c2.7
√
n] ≤ (1− p+ ε)kn.

Proof. Denote the rows of M(n−k)×n(ξ) by R1, . . . , Rn−k. Let θ = θ2.5(p, k). Note that if

‖M(n−k)×n(ξ)V ‖HS ≤ θ
√
ε′(n− k),

then at most ε′(n− k) rows Ri can satisfy ‖RiV ‖2 > θ. Denote the set of these rows by I.
By Lemma 2.5 and the independence of the rows, we have for all I ⊆ [n], |I| ≤ ε′(n− k)

that

P[I = I] ≤ P[‖RiV ‖2 ≤ θ ∀i ∈ Ic] ≤
∏
i∈Ic

P[‖V T (Ri)
T ‖2 ≤ θ] ≤ (1− p)k·(1−ε

′)(n−k).

Therefore, by the union bound over the choice of I, we have

P[‖M(n−k)×n(ξ)V ‖HS ≤ θ
√
ε′(n− k)] ≤ n ·

(
n− k

ε′(n− k)

)
(1− p)k·(1−ε

′)(n−k).

Therefore taking c2.7 = θ
√
ε′/2 for sufficiently small ε′ = ε′(p, k, ε) and taking n sufficiently

large gives the desired conclusion.
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Combining this with a standard epsilon-net argument allows us to prove Proposi-
tion 2.2.

Proof of Proposition 2.2. Let E(δ, ρ) denote the event that for every x ∈ Sn−1 such that

(M(n−k)×n(ξ))x = 0,

we have x ∈ Comp(δ, ρ). By the union bound,

P[EC(δ, ρ)] ≤
(
n

k

)
P[E(δ, ρ)],

so that (after rescaling ε) it suffices to show that

P[E(δ, ρ)] ≤ (1− p+ ε)kn.

Since the right-kernel of M(n−k)×n(ξ) has dimension at least k, it follows that on the
event E(δ, ρ), we can find k orthonormal vectors, v1, . . . , vk, such that vi ∈ Comp(δ, ρ) and
(M(n−k)×n(ξ))vi = 0. Let V denote the n× k matrix with columns v1, . . . , vk. Then,

M(n−k)×n(ξ)V = 0. (2.1)

Let H ⊆ Rn denote the subspace of vectors x = (x1, . . . , xn) such that x1+ · · ·+xn = 0.
Let EK be the event that the operator norm of (M(n−k)×n(ξ))|H (i.e., the linear operator
from H to Rn−k which coincides with M(n−k)×n(ξ) on H) is at most K

√
n. Since ξ is

sub-Gaussian, it follows from standard estimates (cf. [16, Lemma 3.4]) that

P[EK ] ≥ 1− exp(−cξK2n).

In particular, by choosing K to be of order
√
k, we can ensure that this probability is at

least 1− 4−kn. Then, by the union bound, it suffices to show that

P[E(δ, ρ) ∩ EK ] ≤ (1− p+ ε)kn.

We will show this by combining Lemma 2.7 with a standard epsilon-net argument.
Let ε′ > 0 be a sufficiently small parameter to be chosen later. A standard volumetric
net, ‘densified’ in the all-ones direction shows (cf. [16, Proposition 3.6]) that there exists
a (deterministic) net N of Comp(δ, ρ), of size at most (C/ε′)δn (where C is allowed to
depend on K), such that for any x ∈ Comp(δ, ρ), there exists y ∈ N such that on the
event EK ,

‖M(n−k)×n(ξ)(x− y)‖2 ≤ (ε′ + ρ)K
√
n.

Let V denote the set of all n× k matrices whose columns are orthonormal vectors in
Comp(δ, ρ). Then, by considering the k-fold product of N , we obtain a net of V. Using
the standard trick of replacing points in this net by the closest point in V (see e.g. [13,
Lemma 4.2]), we can obtain a (deterministic) netM ⊆ V of size |M| ≤ (C/ε′)δkn such
that for every V ∈ V, there exists V ′ ∈M such that, on the event EK ,

‖M(n−k)×n(ξ)(V − V ′)‖HS ≤ 2(ε′ + ρ)K
√
kn.

Therefore, by (2.1) and the union bound, we have

P[E(δ, ρ) ∩ EK ] ≤ P[EK ∩ {∃V ∈ V : M(n−k)×n(ξ)V = 0}]

≤
∑
V ′∈M

P[‖M(n−k)×n(ξ)V ′‖HS ≤ 2(ε′ + ρ)K
√
kn]
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≤
(
C

ε′

)δkn
· (1− p+ ε/2)kn

≤ (1− p+ ε)kn,

where the penultimate line follows from Lemma 2.7 by taking ρ = ε′, n sufficiently
large, and ε′ sufficiently small depending on k, p, ε, and the last line follows by taking n
sufficiently large and δ sufficiently small depending on ε′, ε.

2.4 Incompressible vectors

Recall the notion of the threshold of a vector (Definition 2.1). The following is the
structure theorem/dichotomy used in the proof of Theorem 1.1. The case k = 1 is implicit
in [16], although the statement given here is closer to the one in work of the authors [8,
Proposition 3.7].

Theorem 2.8 (Modification of [8, Proposition 3.7]). Let δ, ρ, ε ∈ (0, 1) and k ≥ 1. There
exist L2.8 = L2.8(k, δ, ρ, p, ε) and n2.8 = n2.8(k, δ, ρ, p, ε) such that for all n ≥ n2.8, with
probability at least 1− 4−kn, exactly one of the following holds.

• Every unit vector v in the right-kernel of M(n−k)×n(ξ) is in Comp(δ, ρ), or

• there is a unit vector v in the right-kernel of M(n−k)×n(ξ) with Tp(v, L2.8) ≤ (1− p+

ε)n.

Remark 2.9. The proof of the above theorem, for the case k = 1, is the main contribution
of [16] and requires several deep and powerful ideas. This is, by far, the most technically
difficult part of the argument. However, given [16], the modification presented above
follows in a straightforward manner. For concreteness, we compare the statement with
that of [8, Proposition 3.7]. The first difference is that in Theorem 2.8, we are missing
k rows, as opposed to 1 row in [8], but since k is sufficiently small compared to n,
this difference in row counts has essentially no effect on the union bound computation
presented in [8]. The second difference is that in Theorem 2.8, we are considering
the independent threshold model rather than the “multislice” models considered in [8],
which actually simplifies the proof.
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