
Electron. Commun. Probab. 27 (2022), article no. 13, 1–12.
https://doi.org/10.1214/22-ECP453
ISSN: 1083-589X

ELECTRONIC
COMMUNICATIONS
in PROBABILITY

Connectedness of the Free Uniform Spanning Forest as a

function of edge weights

Marcell Alexy* Márton Borbényi† András Imolay‡

Ádám Timár§ ¶

Abstract

Let G be the Cartesian product of a regular tree T and a finite connected transitive
graph H. It is shown in [4] that the Free Uniform Spanning Forest (FSF) of this
graph may not be connected, but the dependence of this connectedness on H remains
somewhat mysterious. We study the case when a positive weight w is put on the edges
of the H-copies in G, and conjecture that the connectedness of the FSF exhibits a
phase transition. For large enough w we show that the FSF is connected, while for
a wide family of H and T , the FSF is disconnected when w is small (relying on [4]).
Finally, we prove that when H is the graph of one edge, then for any w, the FSF

is a single tree, and we give an explicit formula for the distribution of the distance
between two points within the tree.
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1 Introduction

Consider some finite graph H with a weight function (“conductances”) ŵ : E(H)→
R+

0 on its edges. One may take an unweighted graph and view it as one where the weights
are constant 1. Choose a spanning tree of H at random, where the probability of a
spanning tree T will be proportional to Πe∈E(T )ŵ(e). The so-defined probability measure
is called the Uniform Spanning Tree (UST) of (H, ŵ). For a given infinite graph G and
conductances ŵ, consider some exhaustion of G by a sequence of connected finite graphs
Gn, and let UST(Gn) be the UST of the weighted graph (Gn, ŵ|Gn

). It is known that
the weak limit of UST(Gn) exists [3], meaning that for any e1, . . . , ek, f1, . . . , fm ∈ E(G),
P(e1, . . . , ek ∈ UST(Gn), f1, . . . , fm 6∈ UST(Gn)) converges, and to the same limit for any
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Connectedness of the FUSF as a function of edge weights

choice of the sequence Gn. The limiting measure is called the Free Uniform Spanning
Forest (FUSF or FSF) of (G, ŵ). See [2] for background, references, and the basic
properties of the FSF.

It was generally expected that the FSF of “tree-like graphs” would consist of a single
tree, until Gábor Pete and the last author showed in [4] that for suitably chosen d and
connected finite transitive graph H, the Cartesian product Td�H of the d-regular tree
Td and H has a disconnected FSF. From the proof, however, it is not clear what happens
to the disconnectedness of the FSF if we do some natural changes to d and H, e.g.,
increase d with a fixed H, or fix d and take a lift of H. No monotonicity result of this
type is known. A question in the same spirit is to ask how the connectedness of the FSF
changes if we put constant positive weight w on every edge of the H-copies in Td�H
and then change w. What happens if w is very small or large? Does there always exist
some w where there is a single FSF component? Is there always some w where there
are infinitely many FSF components (with an H that has at least 2 vertices)? Is there
any kind of monotonicity in w, and perhaps even a critical value that separates the
phases of disconnectedness and connectedness? The present paper contributes to the
understanding of these questions. In particular, initial steps are taken in Conjecture 1.1.

Let H be a finite connected graph and Td be the d-regular tree. For an arbitrary
given w > 0, define the weight function ŵ on the edges of G = Td�H so that ŵ(e) = 1 if
e is of the form {(x1, y), (x2, y)} and ŵ(e) = w if e is of the form {(x, y1), (x, y2)}. Define
FSFw(G) as the FSF of (G, ŵ).

Conjecture 1.1. If FSFw′ and FSFw′′ are connected for some w′′ > w′ > 0 then FSFw
is connected for every w ∈ [w′, w′′]. Similar statement holds for disconnectedness.
Moreover, there exists a γ ∈ [0,∞] such that FSFw has a unique component whenever
w > γ, and FSFw has infinitely many components whenever w < γ.

We mention that having more than one component automatically implies having
infinitely many for a much wider class of transitive graphs than the ones considered
here ([1], [6], or see [4] for a short direct proof for the special product graphs that we
consider here).

The simplest nontrivial example of a graph of the form Td�H is the case when
H = K2 is a single edge. It is not clear what to expect: on one hand the graph may be
“too close” to the tree to produce disconnected FSF, on the other hand one may speculate
that for small enough w the relatively large weighted degree of the tree could be the
reason for a similar phenomenon as in [4] and make the FSF fall apart. Pengfei Tang
has shown in [5] that the FSF is connected for the unweighted question for Td�K2. (His
proof was worked out for a slightly different graph, but it is mentioned in [5] that a
similar argument can be applied for G = Td�K2.) The method of [4], which needs H to
be relatively large, did not give an insight into this special case either. We settle this
question of H = K2 through an enumeration, which will also enable us to bound the
decay of the distance between two points (Lemma 2.10).

Theorem 1.2. For every w > 0, FSFw(Td�K2) is connected.

Tang’s method in Subsection 5.2 of [5], using effective resistance bounds, seems to
be adaptable to show Theorem 1.2, but it will not give the precise quantitative result
for the connectivity within the FSF as Lemma 2.10. Theorem 1.2 shows that the phase
transition in Conjecture 1.1 is trivial when H = K2 in the sense that γ = 0. As we will see
in the next part of the paper, such degeneracy can never happen with γ =∞. Namely,
we verify Conjecture 1.1 for large enough w < ∞, with only the assumption that H is
regular, finite and connected. The matter of how typical γ = 0 may be is unclear to us;
the open questions and Theorem 1.1 in [4] are certainly related to this. As a further
contribution towards Conjecture 1.1, we roughly sketch how the arguments in [4] can
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be applied to show that the conjecture holds in a neighborhood of 0 for a large class of
Td and H, as in the next theorem.

Theorem 1.3. For every finite connected regular graph H and d-regular tree Td, there
exists a W < ∞ such that for every w > W the forest FSFw(Td�H) is connected.
Conversely, if H is transitive, d is large enough compared to the degree in H, and
|H| > d5/2, then for every w ≤ 1 the forest FSFw(Td�H) has infinitely many components
almost surely.

1.1 Notation

Denote by t(G) the (weighted) number of spanning trees of a finite graph G. Let
T�wH be the graph obtained by the Cartesian product of T and H, with w weights
on the edges of the form {(x, y1), (x, y2)}, and weight 1 on the rest of the edges. For
shorthand throughout Section 2 we use T̂ = T�wK2 for any graph T . In a graph product
T�wH we call bag the subgraphs of the form {v} × wH where v ∈ T . Let Tn denote the
ball with radius n around a fixed vertex u in Td. With a (convenient) slight redundancy,
the FSF of T�wH is the same object as the FSFw of T�H.

We will rely on one particular consequence of Wilson’s algorithm on finite graphs [7],
namely that for a finite connected graph G, the path between points a, b ∈ V (G) within
UST(G) has the same distribution as the loop-erased random walk path LERWG(a→ b)

from a to b, which is constructed as follows. Run random walk in G starting from a until
hitting b, and erase all the loops in the order of their appearance along the walk, to
obtain a simple path from a to b. The same link between the UST and LERW is true when
G has positive edge weights, in which case random walk on this network is understood
instead of simple random walk, with weights being the conductances. See Chapter 4.1 of
[2] for more details. In general, for an arbitrary walk (X1, . . . , Xn), LE(X1, . . . , Xn) will
denote its loop-erasure.

2 Product of a tree and a weighted edge

2.1 Recursive formulas for the number of weighted spanning trees

Fix a constant d ≥ 3. Most of the definitions in this section depend on d, but we
usually will not write it as an index.

Let u ∈ Td a fixed vertex, remember that Tn is the ball around u with radius n.

Definition 2.1. Define the perfect (d − 1)-ary tree with height n recursively in the
following way. A perfect (d− 1)-ary tree with height 0 is a single vertex, the root. For
n > 0 a perfect (d − 1)-ary tree with height n has a root, and it is connected with the
roots of d− 1 pieces of perfect (d− 1)-ary trees with height n− 1.

For brevity, from now on we call the perfect (d− 1)-ary tree simply as a perfect tree
and we denote the height n perfect tree by An.

An alternative way to define the perfect tree is that if we delete an edge incident with
u from Tn, then the component containing u is An (and the other component is an An−1).

Let o be the root of An. Denote by A1
n−1, A

2
n−1, ..., A

d−1
n−1 the subgraphs of An from the

recursive Definition 2.1, and let their roots be o1, o2, ..., od−1, so these are the neighbours
of o in An. Let e be the edge between (o, 0) and (o, 1) in Ân. In Ân and T̂n let (v, 0) and
(v, 1) be the two vertices in the bag {v}�wK2 for any vertex v. Let Gi be the subgraph
of Ân spanned by the vertices of Âin−1 and (o, 0) and (o, 1) for all 1 ≤ i ≤ d− 1. Note that

each edge of Ân is exactly in one of the Gi’s except e, which is contained in all of the
Gi’s.

Definition 2.2. For a shorthand of t(Ân) we use an, and let a′n denote the weighted
number of spanning trees of Ân containing e.
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We prove recursive formulas for these quantities.

Lemma 2.3.

a′n = w

(
2an−1 +

1

w
a′n−1

)d−1
Â2

Â1
1

e

... ...

One of the edges from {(o, 0), (o1, 0)}
and {(o, 1), (o1, 1)} is in T .
T ∩ Â1

1 is a spanning tree in Â1
1.

Â2

Â1
1

e

e1 ... ...

Both edges from {(o, 0), (o1, 0)}
and {(o, 1), (o1, 1)} are in T .

T ∩ Â1
1∪{e1} is a spanning tree in Â1

1

Proof. The w multiplier comes from the weight w on e.
Note that a subgraph T of Ân is a spanning tree containing e if and only if T ∩Gi is a

spanning tree containing e for all 1 ≤ i ≤ d− 1.
So we need to count the weighted number of spanning trees of Gi containing e (not

multiplying with the weight w on e as we already counted the weight of e). Let T be
such a spanning tree. Consider the edges {(o, 0), (oi, 0)} and {(o, 1), (oi, 1)}. This is a
cut of Gi, so at least one of them must be in T . There are two cases depending on
| {{(o, 0), (oi, 0)}, {(o, 1), (oi, 1)}} ∩ T | (see an example in the figures).

If this number is one (left figure), then we have 2 options choosing which one, and
T ∩ Âin−1 must be a spanning tree of Âin−1, so there are 2an−1 weighted options.

If both of the edges are in T (right figure), then T ∩ Âin−1 ∪ {{(oi, 0), (oi, 1)}} is a

spanning tree of Âin−1, and any spanning tree of Âin−1 containing the edge {(oi, 0), (oi, 1)}
does arise as T ∩ Âin−1 plus the edge {(oi, 0), (oi, 1)}, so this is bijection, and it gets a
1
w multiplier when we count the weighted number, as the weight of {(oi, 0), (oi, 1)} is
w. So this is 1

wa
′
n−1 weighted options. Therefore, independently for each Gi, we have(

2an−1 + 1
wa
′
n−1
)

weighted possibilities. The conclusion follows.

Lemma 2.4.

an = a′n + (d− 1)an−1

(
2an−1 +

1

w
a′n−1

)d−2
Â2

Â1
1

e

... ...

Both edges {(o, 0), (o1, 0)} and
{(o, 1), (o1, 1)} are in T , but e is not.
T ∩ Â1

1 is a spanning tree in Â1
1.

Proof. The weighted number of spanning trees that contain e is a′n. It is easy to see
that T is a spanning tree that does not contain e, if and only if T ∩ Gi is a spanning
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tree of Gi not containing e for some i (see an example in the figure), and T ∩ Gj is a
graph not containing e, with T ∩ Gj ∪ {e} is a spanning tree of Gj for all j 6= i. We
have d− 1 options to choose i, then {(o, 0), (oi, 0)} and {(o, 1), (oi, 1)} must be in T and
T ∩ Âin−1 is a spanning tree of Âin−1, so this is an−1 weighted options. For the other j’s
we need to count the number of weighted spanning trees of Gj containing the edge e
(without the weight of e), which is exactly the same we did in Lemma 2.3, so we have(
2an−1 + 1

wa
′
n−1
)

weighted possibilities, from which the proof is complete.

Lemma 2.5.

t(T̂n) = 2anan−1 +
1

w
(ana

′
n−1 + a′nan−1)

Â0

Â1

One edge is in T,
T ∩ Â1 is a tree,
T ∩ Â0 is a tree.

e0Â0

Â1

Both edges are in T,
T ∩ Â1 is a tree,
T ∩ Â0 ∪ {e0} is a tree.

e1

Â0

Â1

Both edges are in T,
T ∩ Â1 ∪ {e1} is a tree,
T ∩ Â0 is a tree.

Proof. Tn can be constructed by taking an An graph and an An−1 graph and connecting
their roots. In each spanning tree T of T̂n either T ∩ Ân or T ∩ Ân−1 is a spanning tree, or
both (see an example in the figures). If both, then we have 2 options to connect them, so
it is 2anan−1 weighted options. If Ân∩T is a spanning tree, but Ân−1∩T is disconnected,
then we have to put both edges between Ân and Ân−1 into T , and as in Lemma 2.3, we
can think of Ân−1 ∩ T as a spanning tree containing the edge between the 2 vertices in
the bag of the root of Ân−1, minus this edge, so it is 1

wana
′
n−1 weighted possibilities. In

the same way we get 1
wa
′
nan−1 for the third case. Summing these we get the desired

result.

Let tm(T̂n) be the number of spanning trees in T̂n with the unique path from (u, 0) to
(u, 1) touching exactly m bags. Note that as a bag only contains 2 vertices, we don’t have
plenty of options for a path between (u, 0) and (u, 1). The only way for a path touching m
bags is that we do m− 1 moves in tree edges, going into the m’th bag, then in the m’th
step we move within the bag, and then m− 1 steps back up in tree edges.

Lemma 2.6. For each pair n > m ≥ 2 we have

tm(T̂n) = d(d− 1)m−2w

(
2an−1 +

1

w
a′n−1

)(
2an−m +

1

w
a′n−m

) m∏
i=1

(
2an−i +

1

w
a′n−i

)d−2
,

and in the m = 1 case, for n > 1 the following is true.

t1(T̂n) = w

(
2an−1 +

1

w
a′n−1

)d
.

Proof. The proof of the m = 1 case is the same as the proof of Lemma 2.3, except here
the root has degree d, so the exponent is d instead of d− 1.

For the m > 1 case there are d(d− 1)m−2 paths from (u, 0) to (u, 1) touching m bags,
as the first m− 1 steps determine the path, and this is an arbitrary m− 1 long path in
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... ... ......

Â2 Â2

Â1

Â0 Â0

A possible spanning tree T of T̂3 with the path highlighted between the vertices in
the root bag. It touches 3 bags, so we count it in t3(T̂3). There are 2 pieces of Â2, 1

piece of Â1, and 2 pieces of Â0 hanging from the main path.

Tn, so for the first step we have d options, and for the rest there are d− 1 possibilities.
We always have exactly 1 step within a bag in the path, which gives the multiplier w in
the equation.

Now assume that we know the path from (u, 0) to (u, 1). We want to count the number
of spanning trees containing this path. The projection of this path to Tn is a path of
length m − 1, with u as one of its endpoints. No matter what this path is, there are
always d− 1 pieces of An−1, d− 2 pieces of An−2, d− 2 pieces of An−3, . . . , d− 2 pieces of
An−m+1 and d− 1 pieces of An−m subtrees, that are hanging from the path, i.e. disjoint
from the projected path, and with root connected to it (see an example in the figure). As
in the proof of Lemma 2.3 we have independently (2an−i + 1

wa
′
n−i) weighted possibilities

for each Ân−i so that the whole subgraph is a spanning tree. Multiplying these we get
the number of spanning trees with this path.

2.2 Distribution of the distances in FSFw(Td�K2)

Let A be the infinite tree with degrees d, except one vertex, which has degree d− 1,
call this special vertex o. Let e be the edge in the bag of o in Â. Define c := P(e ∈
FSFw(A�K2)). The sequence Ân is an exhaustion of Â, so by the definition of FSFw we
have

c = lim
n→∞

a′n
an
.

Let cn =
a′n
an

.

Lemma 2.7. The sequence sn :=
ad−1
n−1

an
converges to a number s and

s =
c

w
(
2 + c

w

)d−1 .
Proof. From Lemma 2.3 we have

cnan = w

(
2an−1 +

1

w
a′n−1

)d−1
= wad−1n−1

(
2 +

cn−1
w

)d−1
.

After rearranging and letting n→∞,

c

w
(
2 + c

w

)d−1 = lim
n→∞

cn

w
(
2 + cn−1

w

)d−1 = lim
n→∞

ad−1n−1
an

= s.
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From Lemma 2.4,

an = a′n + (d− 1)an−1

(
2an−1 +

1

w
a′n−1

)d−2
= cnan + (d− 1)ansn

(
2 +

cn−1
w

)d−2
.

Dividing this by an, taking n→∞ and substituting the identity from Lemma 2.7. we get

1 = c+
(d− 1)c

(
2 + c

w

)d−2
w
(
2 + c

w

)d−1 = c+
c(d− 1)

2w + c
.

After rearranging we get a quadratic equation of c:

c2 + c(2w + d− 2)− 2w = 0 (2.1)

The constant term is negative, so we have two real roots, a negative and a positive
and c ≥ 0, so we get the following Theorem.

Theorem 2.8.

P(e ∈ FSFw(A�K2)) = c =
2− d− 2w +

√
(2w + d− 2)2 + 8w

2

Proof. From (2.1) with quadratic formula.

Remark 2.9. We can also get a formula for s if we substitute the equation from Theo-
rem 2.8 to the equation in Lemma 2.7.

Let qm := limn→∞
tm(T̂n)

t(T̂n)
. This number has another meaning. This is the probability

that for a u ∈ Td, (u, 0) and (u, 1) belong to the same component of FSFw in Td�K2 and
their distance in the tree is 2m − 1, in other words the path between them touches m
bags.

Lemma 2.10. For any integer m ≥ 2, qm = K
(

(d−1)c
2w+c

)m
, where K = d(2w+c)2

(2w+2c)(d−1)2 is a

constant that does not depend on m.

Proof. We call two positive sequences (un, vn) equivalent (un ∼ vn) if limn→∞ un/vn = 1.
We are going to prove that tm(T̂n) and t(T̂n) are asymptotically the same as a constant

times anan−1.

lim
n→∞

tm(T̂n)

t(T̂n)
= lim
n→∞

anan−1

t(T̂n)
lim
n→∞

tm(T̂n)

anan−1
.

Recall the following constants:

lim
n→∞

a′n
an

= c and lim
n→∞

ad−1n−1
an

= s.

Using these, and Lemma 2.5,

lim
n→∞

anan−1

t(T̂n)
= lim
n→∞

anan−1

2anan−1 + 1
w (ana′n−1 + a′nan−1)

= lim
n→∞

1

2 + 1
w (

a′n−1

an−1
+

a′n
an

)
=

1

2 + 2c
w

.

From Lemma 2.6,

lim
n→∞

tm(T̂n)

anan−1
=

lim
n→∞

d(d− 1)m−2w
(

2an−1 + 1
wa
′
n−1

)(
2an−m + 1

wa
′
n−m

)∏m
i=1

(
2an−i + 1

wa
′
n−i

)d−2
anan−1

.
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Here
(
2an−i + 1

wa
′
n−i
)
∼ an−i

(
2 + c

w

)
. Hence

tm(T̂n) ∼ wd(d− 1)m−2an−1

(
m∏
i=1

ad−2n−i

)
an−m

(
2 +

c

w

)(d−2)m+2

.

Using the fact that ad−1n−i ∼ san−i+1, one can prove easily by induction that

an−1
(∏m

i=1 a
d−2
n−i
)
an−m ∼ an−1ansm. Thus, combining the two calculations,

tm(T̂n)

anan−1
∼ wd(d− 1)m−2

(
2 +

c

w

)(d−2)m+2

sm.

Therefore

lim
n→∞

tm(T̂n)

t(T̂n)
= K(d− 1)m

(
2 +

c

w

)(d−2)m
sm,

using

K =
1

2 + 2c
w

· wd 1

(d− 1)2

(
2 +

c

w

)2
=

d(2w + c)2

(2w + 2c)(d− 1)2

as we defined K in the statement of the lemma. It means that qm=K((d−1)s(2+ c
w )d−2)m.

Using Lemma 2.7, we know that s = c

w(2+ c
w )

d−1 , thus qm = K
(

(d−1)c
2w+c

)m
.

Lemma 2.11.

P({(u, 0), (u, 1)} ∈ FSFw(Td�K2)) = q1 =
(2w + c)c

2w + 2c
.

Proof. From the m = 1 case of Lemma 2.6, we have

lim
n→∞

t1(T̂n)

anan−1
= lim
n→∞

w
(
2an−1 + 1

wa
′
n−1
)d

anan−1
= lim
n→∞

wsnanan−1
(
2 + cn−1

w

)d
anan−1

= ws
(

2 +
c

w

)d
.

In the proof of Lemma 2.10, we calculated

lim
n→∞

anan−1

t(T̂n)
=

1

2 + 2c
w

.

Combining these and using Lemma 2.7, we have

q1 = lim
n→∞

t1(T̂n)

t(T̂n)
= lim
n→∞

anan−1

t(T̂n)
lim
n→∞

t1(T̂n)

anan−1
=

1

2 + 2c
w

· c
(

2 +
c

w

)
=

(2w + c)c

2w + 2c
.

From Lemma 2.10 and Lemma 2.11 we know that the distribution of the distance of
two vertices in the same bag in the FSFw has an “almost” geometric distribution; the
sequence q2, q3, ... is a geometric progression but q1 does not fit in.

Lemma 2.12. Let u ∈ Td. Then (u, 0) and (u, 1) are in the same component of the FSFw
of Td�K2 with probability 1.

Proof. We want to prove that the path between (u, 0) and (u, 1) is almost surely finite, so∑∞
m=1 qm = 1. From (2.1) we have 2wc+ c2 = 2w + 2c− cd, hence

(2w + c)c

2w + 2c
=

2w + 2c− cd
2w + 2c

= 1− cd

2w + 2c
,

and (2.1) can also be transformed to 2w + c = 2w+c−(d−1)c
c , thus

K =
d(2w + c)2

(2w + 2c)(d− 1)2
=
d((2w + c)2 − (d− 1)c(2w + c))

(2w + 2c)(d− 1)2c
=

cd

2w + 2c
·

1− (d−1)c
2w+c(

(d−1)c
2w+c

)2 .
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Combining these with Lemma 2.10 and Lemma 2.11, we have

∞∑
m=1

qm =
(2w + c)c

2w + 2c
+K

∞∑
m=2

(
(d− 1)c

2w + c

)m
= 1− cd

2w + 2c
+K ·

(
(d−1)c
2w+c

)2
1− (d−1)c

2w+c

= 1.

Lemma 2.13. Let H be an arbitrary finite connected graph and consider the weighted
graph G = Td�wH. If any pair a, b of vertices in the same bag belongs to the same
component of FSFw almost surely, then the FSFw is almost surely connected.

Proof. Take two adjacent bags. Let the set of edges between them called E′. The event
that at least one edge of E′ is in FSFw is a cylinder event, for every graph Gn of an
exhausting finite sequence for G this event has probability one to hold for the UST.
Hence in the FSFw there is an edge from E′ with probability one. Thus there are always
two connected vertices in the two adjacent bags. By assumption, all vertices within a
bag are in the same component, therefore all vertices in these two adjacent bags are in
the same component. This is true for any two adjacent bags, thus for all edges in Td.
Using countable intersection, we conclude that the FSFw of that graph is connected with
probability one.

Now we have everything, to prove the main result of this section:

Proof of Theorem 1.2. From Lemma 2.12. and Lemma 2.13. the statement follows.

Remark 2.14. It is a natural question to ask whether this method can be generalized
to other graphs instead of K2. Unfortunately, we strongly relied on the fact that in T̂n
a path between (u, 0) and (u, 1) looks quite nice, while if we change K2 to some larger
graph then plenty of other options arise which we cannot handle with this enumerative
method.

3 The general case, large and small weights

In this section we are going to prove Theorem 1.3. The first part will follow from the
next theorem.

Theorem 3.1. Given an arbitrary d > 2 and a finite, regular, connected graph H, there
is a W > 0 such that the FSFw of the graph G = Td�H is almost surely connected for all
w > W .

As before, denote by Tn the ball of radius n in Td. Let U be the central bag of Tn�wH:
the bag that corresponds to the center of this ball.

Definition 3.2. A trip is a walk (X1, X2, . . . , XT ) such that X1 ∈ U , XT ∈ U , and Xi 6∈ U
whenever i ∈ {2, . . . , T − 1}.
Definition 3.3. Bag D is memorable for a trip (X1, . . . , XT ), if the trip intersects D, and
satisfies the following. If τ ∈ [1, T ] is the last step when Xτ ∈ D, then for every bag
D′( 6= U,D) that separates U and D, V (D′) 6= V (D′) ∩ {Xτ+1, . . . , XT }.
Proposition 3.4. Let X = (X1, . . . , XT ) be a walk in Tn�wH, with X1 in the central bag
U of Tn�wH. Suppose that X ′ = (Xk, Xk+1, . . . , Xk′) is some subwalk which is a trip and
intersects bag D. Assume that D is not memorable for X ′. Then the loop-erasure of
(X1, . . . , Xk′) does not intersect D.

Proof. By our assumptions there exists a largest number τ with k < τ < k′ and Xτ ∈ D.
Since D is not memorable, there exists a bag D′ that separates U and D, and with the
property that V (D′) = V (D′) ∩ {Xτ+1, . . . , Xk′}. Let t be the first time after τ that we
enter D′. Such a t exists, because Xτ ∈ D and Xk′ ∈ U . Let L be LE(X1, . . . , Xt). If
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L∩D = ∅, then the claim is proved, because we do not visit D after t > τ . Otherwise the
first time that L enters D′ is strictly before t (since L has to enter D′ before entering D
and reentering D′ at Xt). Let this first vertex of entrance be v. By assumption on X ′,
(Xt, . . . , Xk′) visits every vertex of D′. Let t′ ≥ t be the first time that Xt′ = v. Then the
loop-erasure of (X1, . . . , Xt′) erases everything that happened after the first entrance
to D′ at v. In particular, it erases every step in D before t′, so LE(X1, . . . , Xt′) ∩D = ∅.
Since k′ > t′ (X ′ is a trip), and no step after t′ > τ is in D, the claim is proved.

Lemma 3.5. There exists a W > 0 such that for any α > 0 there is an m such that the
following holds for every w > W . Let u ∈ U , n > m and X = (X1, . . . , XT ) be a trip in
Tn�wH with X1 = u. Then we have

P(X has a memorable bag outside Tm�wH) < α.

Proof. Choose ε := 1
2(d−1) . Let w > W , where we specify W at the end of this paragraph.

If (Z1, Z2, ...) is a random walk in Td�wH started from a bag B, then let λ be the first
time when it exits B. If w was large enough, we have for any starting vertex x = Z1 and
last vertex y = Zλ

P({Z1, . . . , Zλ} = V (B) | Z1 = x, Zλ = y) > 1− ε, (3.1)

because the minimum over x and y of the probability on the left tends to 1 as w goes to
infinity. Fix W so that the above inequality holds.

Fix bag D; we will use notation from Definition 3.3. Let t be the first time after τ that
we enter D′. Let Ax be the event that the random walk started from a point x ∈ D′ visits
every vertex of D′ before leaving D′. Denote by Px the distribution of a random walk
Y = (Y1, . . . , YR) started from x = Y1 and stopped at the first entrance to U . Let Bx be
the event that Y does not visit D. Then

P((Xt, . . . , XT ) ∈ Ax|Xt = x) = Px(Ax|Bx) = Px(Ax) ≥ 1− ε, (3.2)

where the inequality is from (3.1), and the last equality follows from the fact that Bx is
independent of Ax, because it only depends on the steps taken in the tree-coordinate and
hence it is independent of the steps in the H-coordinates between two tree-coordinate
steps. (To see this, note that the random walk path (Y1, . . . , YR) by Px could be generated
by first generating a suitable random walk path T in Td, and then adding a suitably
chosen random number of random H-steps in between every consecutive pair of steps
of T , independently from each other and from T .) Since x was arbitrary, from (3.2) we
obtain

P((Xt, . . . , XT ) ∈ AXt) ≥ 1− ε. (3.3)

Let U = D1, D2, . . . , D` = D be the ray of bags between U and D. Denote by ti the
first time that X enters Di after τ and let ri be the first time exiting Di after ti. Finally,
let Ai be the the event that (Xti , . . . , XT ) visits every vertex of Di before leaving Di,
in other words, {Xti , . . . , Xri} = V (Di). Note that, conditional on {Xti} and {Xri}, the
events {Aj} are independent, hence from the uniform lower bound (3.3) we have:

P
(
∃i ∈ [2, . . . , `− 1] : Ai | Xt2 , . . . , Xtl−1

, Xr2 , . . . , Xrl−1

)
≥ 1− ε`−2.

Using the law of total probability

P
(
∃i ∈ [2, . . . , `− 1] : Ai

)
≥ 1− ε`−2.
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We have just shown that D is memorable for X with probability less than ε`−2. There are
d(d− 1)s−1 vertices of Tn with distance s from the root for all 1 ≤ s ≤ n, so

P(X has a memorable bag outside Tm�wH) ≤
∑

B 6∈Tm�wH

P(B is memorable for X ) ≤

n∑
s=m+1

εs−2d(d− 1)s−1 =
d

ε

n∑
s=m+1

(ε(d− 1))s−1 <
d

ε
(ε(d− 1))m

1

1− ε(d− 1)
.

By definition ε(d− 1) < 1. The number on the right hand side does not depend on n, thus
we can choose m big enough so that it is less than α.

Proof of Theorem 3.1. Let W be as in Lemma 3.5.
Let α0 > 0 be arbitrary. We want to prove that if w > W then for all vertices a, b of G,

there exists an m with

lim
n→∞

P(LERWTn�wH(a→ b) leaves Tm�wH) ≤ α0.

This is equivalent with the definition of connectedness of the FSFw in Td�H, because by
Wilson’s algorithm LERWTn�wH(a→ b) has the same distribution as the path between
a and b in UST(Tn�wH). By Lemma 2.13., one may assume that a and b are in the
same bag, U . Define h as the minimum of the probability over all pairs x 6= y ∈ U that
the random walk in Tn�wH started from x hits y before leaving U . Let k be a positive
integer, chosen to satisfy P(Geom(h) ≥ k) < α0/2, where Geom(h) denotes a geometric
random variable of parameter h.

Choose m as in Lemma 3.5, with α := α0/2k. Denote by X a random walk started
from a in Tn�wH and stopped when first hitting b. One can construct X as follows.
Start random walk from a. If we hit b before leaving U , we are finished, otherwise let
Xs1 be the last step of this walk in U before first leaving U . Then consider the trip
(Xs1 , . . . , Xt1). From the last vertex Xt1 ∈ U of this trip, continue the random walk until
either hitting b or exiting U . The probability of the former is at least h; otherwise let
Xs2 be the last vertex in U before leaving U , and starting from this vertex generate the
trip (Xs2 , . . . , Xt2). Continue similarly, until at some point we hit b and at that point the
construction of X is finished. We see that after the end of every trip we had probability
at least h to hit b, hence the total number of trips needed is stochastically dominated by
a geometric random variable of parameter h. Let J be such a random variable. If LE(X )

intersects bag D, then D is memorable for one of the sub-trips of X by Proposition 3.4.
The probability that a trip has a memorable bag outside of Tm�wH is less than α by
Lemma 3.5. A union bound gives us

P(LE(X ) leaves Tm�cH) < P(J > k) + kα ≤ α0,

completing the proof.

Proof of Theorem 1.3. The first part of the theorem is essentially Theorem 3.1.
For the second part, the case of small w, we have the same conditions on the graph

as in the unweighted case of Theorem 1.1 in [4] and one could repeat the arguments
therein, with minor modifications which we sketch next. The result of Section 2 about
random walk on the tree is obviously unchanged, while Lemma 3.1 also remains valid,
with a different constant b, for the following reason. Replace 2k6 in (3.2) by 2k6/w. Then
the entire paragraph containing (3.2) remains valid if we change every occurrence of d
to wd, and that of 2k6 to 2k6/w. The rest of the proof of Lemma 3.1 in [4] goes through
without any change. The “second ingredient”, as explained after the proof of Lemma
3.1, is based on the fact that random walk does not spend much time in a bag. The
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key stochastic domination results are even “more true” than in [4] when we have small
weights on the H-edges, while the parts about random walk within a bag, such as Lemma
3.2, remain unchanged. The rest of the proof is automatically adapted to our setting.
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