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Abstract

We analyse the eigenvectors of the adjacency matrix of the Erdős-Rényi graph on
N vertices with edge probability d

N
. We determine the full region of delocalization

by determining the critical values of d
logN

down to which delocalization persists: for
d

logN
> 1

log 4−1
all eigenvectors are completely delocalized, and for d

logN
> 1 all eigen-

vectors with eigenvalues away from the spectral edges are completely delocalized.
Below these critical values, it is known [1, 3] that localized eigenvectors exist in the
corresponding spectral regions.
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1 Introduction

Let A be the adjacency matrix of the Erdős-Rényi graph G(N, d/N), defined as the
random graph on N vertices where each edge of the complete graph is kept with proba-
bility d/N independently of the others. The subject of this note is the delocalization of
the eigenvectors of A in the limit of large N . A commonly used measure of delocalization
of a vector u ∈ CN , which we also adopt here, is the quotient

q(u) ..=
‖u‖2∞
‖u‖22

,

where ‖u‖p denotes the `p-norm of u. Informally, q(u) � 1 corresponds to a localized
vector and q(u) = N−1+o(1) to a completely delocalized vector. We refer to [1] and the
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The completely delocalized region of the Erdős-Rényi graph

references therein for an extensive discussion on the question of localization versus
delocalization of the eigenvectors of random graphs and random matrices in general.

Complete delocalization for all eigenvectors of A was established in [10] for d >
(logN)6 and in [12] for d > C logN for some large constant C. The scale d � logN is well
known to be critical for the graph G(N, d/N), in the sense that it is the scale at which the
concentration of the degrees fails. Above this scale, G(N, d/N) is typically homogeneous;
below this scale, G(N, d/N) is typically inhomogeneous and exhibits isolated vertices,
hubs, and leaves. Such structures may cause the delocalization of eigenvectors to
fail. The most basic instance of this failure is the well-known connectivity threshold of
G(N, d/N) at d = logN [9, 7]: for any constant κ > 0, if d > (1 + κ) logN then the graph
is connected with high probability, while if d 6 (1− κ) logN the graph contains isolated
vertices with high probability. In the latter case, we trivially have localized eigenvectors
at the origin. A much more subtle localization phenomenon, associated with hubs, was
uncovered in [1] (see also [2, 13, 5, 4] for previous results on eigenvalues): defining

b∗ ..=
1

log 4− 1
≈ 2.59, (1.1)

if d 6 (b∗ − κ) logN then a semilocalized phase exists near the edge of the spectrum,
characterized by q(u) > N−γ for some γ < 1. Moreover, in [3] it was proved that if
d 6 (b∗ − κ) logN then the extreme1 eigenvectors of A are localized.

In [1] it was proved that on the scale d � logN complete delocalization persists in
the spectral region [−2 + κ,−κ] ∪ [κ, 2 − κ] for the matrix A/

√
d. This spectral region

excludes precisely the two regions exhibiting localized or semilocalized eigenvectors
described in the previous paragraph: the neighbourhoods (−κ, κ) and ±(2− κ,∞) of the
origin and of the spectral edges, respectively. In fact, in [1] it was proved that complete
delocalization in this spectral region persists down to scales d�

√
logN , below which it

fails throughout the spectrum.
Hence, the question of when delocalization occurs in the neighbourhoods (−κ, κ)

and ±(2− κ,∞) was left open. We settle it here. Writing d = b logN for some constant
b > 0, we show that complete delocalization for A/

√
d holds throughout the spectrum

provided that b > b∗ and in [−2 + κ, 2 − κ] provided that b > 1. As explained above,
this result is optimal since for any b < b∗ there are localized states near the spectral
edges, and for any b < 1 there are localized states in (−κ, κ). Hence, combined with [1],
our result gives a complete description of the delocalized spectral region of A/

√
d. In

addition, it shows that the extreme eigenvectors of A/
√
d undergo a sharp transition

from completely delocalized to localized as b crosses b∗. We refer to Figure 1 below for a
phase diagram summarizing our results.

We now state our main delocalization result.

Theorem 1.1. For any constant κ > 0 the following holds with probability 1− o(1).

(i) If d > (b∗ + κ) logN then all eigenvectors u of A satisfy q(u) 6 N−1+κ.

(ii) If d > (1 + κ) logN then all eigenvectors u of A whose eigenvalues are bounded in
absolute value by (2− κ)

√
d satisfy q(u) 6 N−1+κ.

Delocalization in the sense of q(u) 6 N−1+κ has been a central topic in random
matrix theory ever since the seminal work [11]. The proof of Theorem 1.1 is based
on an extension of the delocalization argument from [1]. There, it was shown that the
spectral measure of the Green function of A/

√
d at some vertex x is well approximated

in a certain spectral region by the spectral measure at the root of an infinite regular
tree, whose root has the same degree as x and all its children have degree d. In this

1Here, and throughout this introduction, we leave aside the largest eigenvalue of A, which for d � logN is
the Perron-Frobenius eigenvalue and constitutes an outlier separated from the rest of the spectrum.
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The completely delocalized region of the Erdős-Rényi graph

λ

b

−2 0 2

delocalized (this paper)
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Figure 1: The phase diagram of the rescaled adjacency matrix A/
√
d of the Erdős-Rényi

graph G(N, d/N) at criticality, where d = b logN with b fixed. The horizontal axis records
the location in the spectrum and the vertical axis the sparseness parameter b. Here,
b∗ is defined in (1.1) and C is the large constant from [12]. The spectrum is confined
to the coloured region [2, 13]. This diagram summarises the results of [1, 3, 12] and
the present paper. In the red region the eigenvectors are completely delocalized; the
light red region was established in [1, 12] and the dark red region is established in the
present paper. In the light blue region the eigenvectors are semilocalized [1], and near
the spectral edge (dark blue line) they are localized [3]. The grey regions have width
o(1) and have not been fully analysed yet.

paper, we establish this approximation in the full region where these spectral measures
are regular. The main observation underlying our proof is that this spectral measure
develops a singularity near the origin if and only if the normalized degree of x (see (2.4)
below) is small, and it also develops a singularity in the interval ±[2,∞) if and only if the
normalized degree of x is at least 2. We combine this observation with elementary tail
bounds on the maximal and minimal degrees of G(N, d/N).

The rest of this paper is devoted to the proof of Theorem 1.1.

Notation Every quantity that is not explicitly constant depends on N . In statements
of conditions we use κ to denote a positive constant. We use X = O(Y ) and |X| . Y

interchangeably to mean |X| 6 CY for some constant C. We write X � Y if X . Y and
X & Y . We abbreviate [N ] ..= {1, 2, . . . , N}.

2 Conditional delocalization for sparse matrices

In this section, we state a version of Theorem 1.1 in the more general setup of sparse
matrices in Proposition 2.1 below. In Subsection 2.1, we then conclude Theorem 1.1
from Proposition 2.1 by analysing the degree distribution of Erdős-Rényi graphs.

We now introduce these sparse matrices, which generalize (appropriately scaled)
adjacency matrices of Erdős-Rényi graphs. We consider matrices M of the form

M = H + fee∗ . (2.1)
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The completely delocalized region of the Erdős-Rényi graph

Here, 0 6 f 6 Nκ/6, e ..= N−1/2(1, 1, . . . , 1)∗ and H = (Hij) ∈ CN×N is a Hermitian
random matrix satisfying the following assumptions for some d with

κ logN 6 d 6 κ−1 logN. (2.2)

(A1) The upper-triangular entries (Hij
.. 1 6 i 6 j 6 N ) are independent.

(A2) We have EHij = 0 and E|Hij |2 = (1 +O(δij))/N for all i, j.

(A3) Almost surely, |Hij | 6 κ−1d−1/2 for all i, j.

We assume throughout the remainder of this paper that (2.2) holds.
The next proposition is our main result on the eigenvector delocalization of matrices

M as defined in (2.1). For its formulation, we need the following notion of high probability
events. We say that a (possibly N -dependent) event Ξ occurs with very high probability
if for each constant ν > 0 there is a constant C > 0 such that P(Ξ) > 1 − CN−ν

for all sufficiently large N . Moreover, we say that an event Ξ occurs with very high
probability on an event Ω if for each constant ν > 0 there is a constant C > 0 such that
P(Ξ ∩ Ω) > P(Ω)− CN−ν for all sufficiently large N . The eigenvector delocalization of
M turns out to depend on the behaviour of the `2-norms of the columns of H which we
denote by

βx ..=
∑
y∈[N ]

|Hxy|2. (2.3)

Proposition 2.1. Let κ > 0 be a constant. Let M be as in (2.1) such that (A1) – (A3)
and (2.2) hold.

(i) With very high probability on the event {βx > κ for all x}, all eigenvectors u of M
with eigenvalues in [−2 + κ, 2− κ] satisfy q(u) 6 N−1+κ.

(ii) With very high probability on the event {βx 6 2− κ for all x}, all eigenvectors u of
M with eigenvalues outside (−κ, κ) satisfy q(u) 6 N−1+κ.

The proof of Proposition 2.1 shall be given directly after the statement of Lemma 3.2
below.

2.1 Delocalization for Erdős-Rényi graphs – proof of Theorem 1.1

Let now A be the adjacency matrix of the Erdős-Rényi graph G(N, d/N). For any
vertex x ∈ [N ], we define its normalized degree

αx ..=
1

d

∑
y∈[N ]

Axy. (2.4)

The next lemma provides tail bounds for the extreme normalized degrees.

Lemma 2.2. Let 0 6 d 6
√
N and write d = b logN . For any small enough ε > 0 we have

the bounds

P(∃x .. αx > 2− ε) 6 2 exp

[
− logN

(
b

b∗
− 1− 2ε

)]
, (2.5)

P(∃x .. αx 6 ε) 6 2 exp
[
− logN

(
b(1 + 2ε log ε)− 1

)]
. (2.6)

We defer the proof of Lemma 2.2 to the end of this section and first combine it with
Proposition 2.1 to deduce Theorem 1.1. Proposition 2.1 is applicable as M = d−1/2A

satisfies (2.1) with f =
√
d . (logN)1/2 6 Nκ/6. Moreover, we have

βx = αx +O

(
d+ logN

N

)
(2.7)

with very high probability (see [1, Remark 4.3] for details).
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The completely delocalized region of the Erdős-Rényi graph

Proof of Theorem 1.1. For d > C logN , Theorem 1.1 has been proved in [12]. Hence, we
restrict to the regime (2.2) in the remainder of this proof.

We start with the proof of (ii). From (2.6), (2.7) and the lower bound on d in (ii), we
conclude that the event {βx > κ for all x} occurs with probability 1− o(1). Therefore, (ii)
follows from Proposition 2.1 (i) with the choice M = d−1/2A.

If the lower bound on d from (i) holds then (2.5), (2.6) and (2.7) yield that {κ 6
βx 6 2 − κ for all x} occurs with probability 1 − o(1). Hence, (i) is a consequence of
Proposition 2.1.

Proof of Lemma 2.2. The estimate (2.5) is an easy consequence of Bennett’s inequality
(see e.g. [8, Section 2.7]) and a union bound. For the proof of (2.6), by a union bound
and standard Poisson approximation results (see e.g. [3, Lemmas D.1, D.3, D.4]), it
suffices to prove that, if X denotes a Poisson random variable with expectation d, then
NP(X 6 εd) is bounded by the right-hand side of (2.6) multiplied by 3/4. Indeed, for ε
small enough, we have

P(X 6 εd)=
∑

k6bεdc

dk

k!
d−d 6

4

3

dbεdc

bεdc!
e−d 6

3

2
e−d+εd(1−log ε) 6

3

2
exp
[
−b(1+2ε log ε) logN

]
,

where in the third step we used Stirling’s approximation.

3 Conditional local law for sparse matrices and proof of Proposi-
tion 2.1

We now introduce the notation required for the main result of this section, Theo-
rem 3.1 below. We start with the indicator functions

ψl
..= 1βx>κ for all x, ψu

..= 1βx62−κ for all x,

which impose lower and upper bounds on all βx, respectively. Moreover, we define the
associated spectral domains

Sl
..= [−2 + κ, 2− κ]× [N−1+κ, 1], Su

..= (R \ (−κ, κ))× [N−1+κ, 1].

For z ∈ C with Im z > 0 and α > 0, we introduce

mα(z) ..= − 1

z + αm(z)
, m(z) ..=

−z +
√
z2 − 4

2
, (3.1)

where the square root is chosen so that m has a branch cut on [−2, 2]. The function
m is the Stieltjes transform of the semicircle law, and mα is the Stieltjes transform of
an explicit probability measure on R (see [1, eq. (4.11), (4.12) and the surrounding
explanations]).

Finally, we denote the resolvent of M by G(z) ..= (M − z)−1 with entries Gxy(z).

Theorem 3.1 (Conditional local law). Let M be as in (2.1) such that (A1) – (A3) and (2.2)
hold. Let # ∈ {l,u}. Then we have

ψ# max
x,y∈[N ]

|Gxy(z)− δxymβx
(z)| . (logN)−1/7, ψ#

∣∣∣∣ 1

N
TrG(z)−m(z)

∣∣∣∣ . (logN)−1/7

for all z ∈ S# with very high probability.

The proof of Theorem 3.1 is given at the end of Subsection 3.1. The next lemma
collects a few basic properties of mα.
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The completely delocalized region of the Erdős-Rényi graph

Lemma 3.2 (Properties ofmα). Let κ > 0 be a constant. If α > κ and z ∈ Sl, or α 6 2− κ
and z ∈ Su, then

|mα(z)| . 1, (3.2)

|mα(z)−m(z)| . |α− 1|. (3.3)

We defer the proof of Lemma 3.2 to the end of this subsection and first combine it
with Theorem 3.1 to prove Proposition 2.1.

Proof of Proposition 2.1. Following [1, proof of Theorem 1.8] as well as replacing [1,
Theorem 4.2] by Theorem 3.1 and [1, eq. (A.4)] by (3.2) yield Proposition 2.1.

For the following proof, we note that m(z) is the unique solution of the self-consistent
equation

m(z) = − 1

z +m(z)
(3.4)

with Imm(z) > 0 for Im z > 0.

Proof of Lemma 3.2. The definition of mα in (3.1) together with (3.4) implies

mα −m = m2mα(α− 1).

Therefore, to show Lemma 3.2, it suffices to prove the boundedness of mα, i.e. (3.2),
in the respective domains. We will use some standard properties of m in the following.
Their proofs can e.g. be found in [6, Lemma 3.3].

If α > κ then the boundedness ofmα(z) for z ∈ Sl follows from (3.1) and (A.2). We now
assume α 6 2−κ and z ∈ Su. If α 6 2−κ and |Re z| > 2−κ/2 then |z+αm| > κ/2 by (A.1)
and, hence, the boundedness follows from (3.1). If α > κ/2 and κ 6 |Re z| 6 2− κ/2 then
the boundedness has been established before. Finally, if α 6 κ/2 then |z + αm| > κ/2

due to (A.1) and |z| > κ for z ∈ Su.

3.1 Proof of local law – Theorem 3.1

For the proof of Theorem 3.1, we call a vertex x ∈ [N ] typical [1] if∣∣∣∣∑
y 6=x

(
|Hxy|2 −

1

N

)∣∣∣∣ 6 (logN)−1/3 and

∣∣∣∣∑
y 6=x

(
|Hxy|2 −

1

N

)
G(x)
yy

∣∣∣∣ 6 (logN)−1/3,

(3.5)
where G(x)

yy
..=
(
((Mab)a,b∈[N ]\{x} − z)−1

)
yy

. We denote the set of typical vertices by T .
Note that T depends on the spectral parameter z.

Furthermore, we introduce the control parameter Λ, the indicator function φt with
t > 0 defined through

Λ(z) ..= max
x,y∈[N ]

|Gxy(z)− δxymβx
(z)|, φt(z) ..= 1Λ(z)6(logN)−1/t , (3.6)

and the average of the diagonal resolvent entries on the typical vertices

s(z) ..= |T |−1
∑
x∈T

Gxx(z). (3.7)

Lemma 3.3 (Approximate self-consistent equation). Let # ∈ {l,u}. Then for each
constant t > 0, we have

(ψ#φt(z) + 1Im z=1)(1 + zGxx(z) + s(z)Gxx(z)) = O((logN)−1/3)

for x ∈ T and z ∈ S# with very high probability.
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The completely delocalized region of the Erdős-Rényi graph

Proof. This follows directly from some results of [1]. We recall the definition θ ..=

1maxx,y|Gxy|6Γ from [1, eq. (4.19)]. Note that ψ#φt 6 θ on S# by (3.2) if Γ is chosen
large enough. Moreover, 1Im z=1 6 θ as |Gxy| 6 (Im z)−1 trivially and Γ > 1. By [1,
Proposition 4.8 (i)] with ϕa � (logN)−1/3 and d � logN , we deduce the estimate

θ|T c| . N exp(−c(logN)1/3) . N(logN)−1/3 (3.8)

with very high probability. Using these observations, from [1, Lemma 4.16],
[1, eq. (4.38a)], the definition of a typical vertex in (3.5), [1, eq. (4.38c)], and (3.8), we ob-
tain Lemma 3.3 (see also [1, eq. (4.44)] with d � logN by (2.2) and ϕa � (logN)−1/3).

Averaging over x ∈ T in Lemma 3.3 shows that s(z) satisfies an approximate version
of the self-consistent equation (3.4) for m(z) defined in (3.1). The self-consistent equa-
tion (3.4) has another solution, denoted by m̃(z), whose imaginary part is negative. It is
given by

m̃(z) ..=
−z −

√
z2 − 4

2
. (3.9)

Lemma 3.4 (Initial bound and bootstrapping steps). Let # ∈ {l,u} and z ∈ S#. Then the
following holds.

(i) If Im z = 1 then, with very high probability,

Λ(z) . (logN)−1/6.

(ii) If |m(z)− m̃(z)| > 2(logN)−1/7 then, with very high probability,

ψ#φ7(z)Λ(z) . (logN)−1/6.

(iii) If |m(z)− m̃(z)| 6 2(logN)−1/7 then, with very high probability,

ψ#φ8(z)Λ(z) . (logN)−1/7.

Proof. We first note that throughout the following arguments it suffices to consider the
diagonal terms, Gxx−mβx

, in the definition of Λ, since θmaxx 6=y|Gxy| . (logN)−1/2 with
very high probability by [1, eq. (4.38b)]. We refer to the proof of Lemma 3.3 for the
definition of θ and the proof that θ = 1 in all cases considered in Lemma 3.4.

Let t > 0 be a constant. By averaging over x ∈ T in Lemma 3.3, we conclude that

(ψ#φt + 1Im z=1)(1 + zs+ s2) = O
(
(logN)−1/3

)
for z ∈ S# with very high probability. Therefore, standard stability estimates for (3.4)
(e.g. [12, Lemma 4.4]) yield

(ψ#φt + 1Im z=1) min{|s−m|, |s− m̃|} . (logN)−1/6 (3.10)

for z ∈ S# with very high probability.
If Im z = 1 then we conclude from (3.10) that |m − s| . (logN)−1/6 since Im s > 0,

Imm > 0, Im m̃ < 0 and |m− m̃| & 1. Together with Lemma 3.3, for x ∈ T , this implies

Gxx = −1 +O((logN)−1/3)

z + s
= m+O((logN)−1/6)

if Im z = 1 due to (3.4) and (A.1). Thus, |Gxx − mβx
| 6 |Gxx − m| + |m − mβx

| =

O((logN)−1/6) by (3.3). This proves

max
x∈T
|Gxx −mβx | . (logN)−1/6. (3.11)
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The completely delocalized region of the Erdős-Rényi graph

Next, let x /∈ T . Following [1, proof of eq. (4.48)] and using (3.11) instead of [1,
eq. (4.46)], we obtain

Gxx −mβx
= −mβx

1

−z − βxm+ εx
εx (3.12)

with very high probability if Im z = 1, where εx = O((1 + βx)(logN)−1/6). Since mβx
is

the Stieltjes transform of a probability measure on R, we have |mβx
| 6 (Im z)−1 and

Immβx
& 1 if Im z = 1. Hence, (3.12) implies |Gxx −mβx

| . (logN)−1/6 with very high
probability. This proves (i).

If |m−m̃| > 2(logN)−1/7 then we conclude from (3.3), (3.5), (3.10) and the definitions
of φ7 and s from (3.6) and (3.7), respectively, that ψ#φ7|s−m| . (logN)−1/6. Then we
follow the arguments in the proof of (i) and obtain that (3.11) and (3.12) hold with very
high probability on the event {ψ#φ7 = 1}.

We now estimate the right-hand side of (3.12). From (A.2) and φ7ψlεx = O((1 +

βx)(logN)−1/6), we conclude that |−z − βxm+ εx| > |Im z + βxImm− Im εx| & βx. Thus,
using |εx| . βx(logN)−1/6 by βx > κ and (3.2) in (3.12) completes the proof of (ii) if # = l.
If # = u then βx 6 2−κ implies |εx| . (logN)−1/6. Hence, |−z−βxm+εx| = |m−1

βx
+εx| & 1

due to (3.1) and |mβx
| . 1 on Su by (3.2). Applying these estimates to the right-hand

side of (3.12) completes the proof of (ii).

For the proof of (iii), we note that (3.10) and the condition |m − m̃| 6 2(logN)−1/7

imply ψ#φ8|s−m| . (logN)−1/7. Hence, proceeding as in the proof of (ii) shows (iii).

We now establish Theorem 3.1 by showing that φ7 = 1 = φ8 for Im z = 1 and
bootstrapping this information to small values of Im z using Lemma 3.4.

Proof of Theorem 3.1. Fix z ∈ S#. Set zk ..= Re z+ i max{(1−N−3k), Im z} for k ∈ N and
K ..= min{k ∈ N : Im zk = Im z}. Note that zk ∈ S# for all k ∈ N. Since Im z 7→ |m(z) −
m̃(z)| is monotonically increasing (as can be seen by an explicit computation using (3.1)
and (3.9)), there is a uniqueK∗ ∈ N such that 0 6 K∗ 6 K, |m(zk)−m̃(zk)| > 2(logN)−1/7

for all k 6 K∗ and |m(zk) − m̃(zk)| 6 2(logN)−1/7 for all k ∈ (K∗,K] ∩ N. Note that
K∗ > 0 while K∗ = K is possible.

Throughout the remainder of the argument, we work on the event {ψ# = 1}.
We now show by induction that φ7(zk) = 1 for all k 6 K∗ with very high probability.

By Lemma 3.4 (i), we have Λ(z0) . (logN)−1/6, i.e. φ7(z0) = 1.

We assume that φ7(zk−1) = 1 for some k 6 K∗. The resolvent entries Gxy and mβx
are

Lipschitz-continuous in z with constant N2 if Im z > N−1. Hence, owing to Im zk > N−1

for all k, we have

Λ(zk) 6 Λ(zk−1) + 2N−1. (3.13)

Since Λ(zk−1) . (logN)−1/6 by Lemma 3.4 (ii), we conclude from (3.13) that Λ(zk) 6
(logN)−1/7, i.e. φ7(zk) = 1.

Therefore, φ7(zK∗) = 1 and (3.13) imply Λ(zK∗+1) 6 (logN)−1/8, i.e. φ8(zK∗+1) = 1.
Arguing as above with Lemma 3.4 (ii) replaced by Lemma 3.4 (iii), we obtain φ8(zk) = 1

for all k 6 K. In particular, ψ#Λ = ψ#Λ(zK) . (logN)−1/7 by Lemma 3.4 (iii). This
proves the first bound in Theorem 3.1.

For the second bound, we note that mβx
= m + O((logN)−1/3) for x ∈ T by (3.3)

and (3.5) while |Gxx −mβx
|+ |mβx

|+ |m| . 1 for x /∈ T by (A.1). Therefore, the second
bound in Theorem 3.1 follows from averaging the first bound in Theorem 3.1 over x ∈ [N ],
distinguishing the cases x ∈ T and x /∈ T and using (3.8).

In the case # = l, Theorem 3.1 can be proved by adjusting some arguments from [1]
as we explain in the next remark.
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Remark 3.5 (Alternative proof of Theorem 3.1 for # = l). If # = l then following [1, proof
of Proposition 4.18] and replacing [1, eq. (A.4) and (A.5)] by (3.2) and (3.3), respectively,
yields

1Λ6λψlΛ 6 C(logN)−1/3 (3.14)

for all z ∈ Sl with very high probability, where λ 6 1 is an arbitrary constant. Then we
obtain Theorem 3.1 by following [1, proof of Theorem 4.2], choosing λ appropriately and
using (3.14) instead of [1, Proposition 4.18].

A Basic estimates on m

The next lemma collects a few basic estimates of the Stieltjes transform m defined
in (3.1).

Lemma A.1. For each z ∈ C with Im z > 0, we have

|m(z)| 6 1. (A.1)

For each z ∈ Sl, we have
Imm(z) & 1. (A.2)

Proof. The upper bound (A.1) follows from inverting (3.4), taking the imaginary part of
the result and using that Imm(z) > 0. For the proof of (A.2), we refer to [6, eq. (3.3)].
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[10] L. Erdős, A. Knowles, H.-T. Yau, and J. Yin, Spectral statistics of Erdős-Rényi graphs I: Local
semicircle law, Ann. Prob. 41 (2013), 2279–2375. MR3098073
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