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1 Introduction

In Non-commutative probability, the concept of random variable is generalized to a
scheme of operators where new notions of independence of random variables appear.
Some of the most important notions of independence [10] are the free, Boolean, and
monotone ones.

One of the main objectives in non-commutative probability is to obtain analogues of
relevant theorems in classical probability. Such is the case of the Berry-Esseen theorem
[4, 6]. This theorem is a quantitative version of the Central Limit Theorem (CLT) that is
important to justify many applications. Recall that the Kolmogorov distance between two
probability measures µ and ν is defined by dkol(µ, ν) := supx∈R |µ((−∞, x])− ν((−∞, x])|.
Let mn(µ) denote the n-th moment of a measure µ. The Berry-Esseen theorem states
that if µ is a probability measure with m1(µ) = 0, m2(µ) = 1, and

∫
R
|t|3dµ(t) = ρ < ∞,

then there exist an absolute constant C > 0 such that

dkol(D 1√
n
µ∗n,N ) ≤ Cρn−1/2,

where ∗ stands for the convolution, N represents the standard normal distribution, and
Daµ denotes the dilation of a measure µ by a factor a > 0; this means that Daµ(B) =

µ(a−1B) for all Borel sets B ⊂ R.
The proof of the Berry-Esseen theorem, see Section XVI.5 in Feller [7], is based on a

general smoothing inequality in terms of the Fourier transform to bound the Kolmogorov
distance between distributions and on obtaining an adequate approximation to the
Fourier transform of the n-fold iteration of the classic convolution.
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On a Berry-Esseen type limit theorem for Boolean convolution

In free probability, the analogue of the Berry-Esseen theorem for the free CLT was
obtained by Chistyakov and Götze [5]. Their result says that if µ is a measure with
m1(µ) = 0, m2(µ) = 1, and m4(µ) <∞, then there exist an absolute constant C > 0 such
that

dkol(D 1√
n
µ�n,S ) ≤ C(|m3(µ)|+m4(µ)

1/2)n−1/2,

where � stands for the free convolution and S represents the standard semicircle
distribution.

In monotone probability theory, Wang, Arizmendi, and Salazar [2] proved a Berry-
Esseen type estimate for the monotone CLT: if µ is a measure with m1(µ) = 0, m2(µ) = 1,
and finite sixth moment, then dkol(D 1√

n
µ.n,a) = O(n−1/4), where . stands for the

monotone convolution and a denotes the standard arcsine distribution.

The proofs in [5] and [2] to obtain the Berry-Esseen type estimates for the central
limit theorems in free and monotone probability, respectively, rely on Bai’s inequality [3],
which is a smoothing inequality in terms of the Cauchy transform (see Subsection 2.2) to
bound the Kolmogorov distance between two distributions, and on obtaining adequate
expressions for the Cauchy transform of the n-fold iteration of the free and monotone
convolutions.

In the case of Boolean probability, a Berry-Essen type result for the Boolean CLT was
obtained by Arizmendi and Salazar [1]. In this case, convergence in the Kolmogorov
distance does not hold. Instead, one should use Levy distance, denoted by dlev (see
Subsection 2.1), since it metrizes weak convergence of measures. Let ] denote the
Boolean convolution and b denote the symmetric Bernoulli distribution, 1

2δ−1 + 1
2δ1.

Suppose that µ is a probability measure with m1(µ) = 0 and m2(µ) = 1. Arizmendi and
Salazar proved that if µ has bounded support, then dlev(D 1√

n
µ]n,b) = O(n−1/2), and if µ

has finite fourth moment, then dlev(D 1√
n
µ]n,b) = O(n−1/3).

In this paper, we obtain the following theorem that improves the above results on
Berry-Esseen type estimates for the Boolean CLT. The estimate in this theorem is sharp,
see Remark 3.1.

Theorem 1.1. Let µ be a probability measure such that m1(µ) = 0, m2(µ) = 1, and
m6(µ) <∞. Define the measure µn := D 1√

n
µ]n. Then, for n large enough we have that

dlev(µn,b) ≤
7

2

C + 2√
n
,

where C is a constant that depends only on µ.

In the bounded case, the proof in [1] of the Berry-Esseen type estimate for the
Boolean CLT is based on accurately approximating the Cauchy transform of the n-fold
iteration of the Boolean convolution, while in the unbounded case the proof is based
on a general inequality to bound the Levy distance of any measure to the Bernoulli
distribution.

Now, the proof of Theorem 1 is also based on such inequality. However, we combine
it with a quantitative version of the Stieltjes-Perron inversion formula (Theorem 2 below)
and further refinements of estimates related to the Cauchy transform.

Apart from this introduction, the sections of this paper are organized as follows. In
Section 2, we present the preliminary material and technical results necessary to prove
our main result. Particularly, in Section 2.2, we present Theorem 2 and discuss some
interesting consequences. In Section 3, we prove Theorems 1 and 2.
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2 Preliminaries

In this section we define all the concepts used in this work and discuss some basic
properties of them. In Subsection 2.1, we define the Levy distance and state a proposition
that gives an upper bound of the Levy distance of a probability measure to the Bernoulli
measure. In Subsection 2.2, we introduce the Cauchy transform and the F-transform.
We also state Theorem 2 which gives a quantitative estimate to recover a measure from
its Cauchy transform. In Subsection 2.3, we define the Boolean convolution in terms of
the F-transform and obtain an expression for the F-transform of the n-fold iteration of
the Boolean convolution of a measure with itself.

2.1 The Lévy distance

Let µ and ν probability measures. We define the Lévy distance, see [8], between
them to be

dlev(µ, ν) := inf{ε > 0 | F (x− ε)− ε ≤ G(x) ≤ F (x+ ε) + ε for all x ∈ R},

where F and G are the cumulative distribution functions of µ and ν respectively.
The following Proposition is the Lemma 2 in [1], and it is a key ingredient in the proof

of Theorem 1.

Proposition 2.1. Let µ be a probability measure of zero mean and unit variance. Sup-
pose further that µ((−1− ε,−1 + ε) ∪ (1− ε, 1 + ε)) ≥ 1− ε for some ε ∈ (0, 1). Then

dlev(µ,b) ≤
7

2
ε.

2.2 The Cauchy transform

Throughout the paper z denotes a complex number and we write z = x+ iy, where x
and y are real numbers.

The Cauchy transform (or Stieltjes transform) [12] of a non-negative Borel measure
µ is defined as

Gµ(z) :=

∫
R

1

z − t
dµ(t) for z ∈ C+,

where C+ denotes the open upper complex half-plane.
We can recover a measure µ ∈M from its Cauchy transform via the Stieltjes-Perron

inversion formula:

µ([a, b]) = lim
y↓0
− 1

π

∫ b

a

=(Gµ(x+ iy))dx,

provided that µ({a, b}) = 0.
The following theorem is a quantitative version of the Stieltjes-Perron inversion

formula which is tailored for our purposes. This will be proved in Section 3.1.

Theorem 2.2. Let µ be a probability measure. Let −∞ ≤ a < b ≤ ∞. Then we have that
for all y > 0

µ((a+ δ, b− δ])− 2y

πδ
≤ − 1

π

∫ b

a

=Gµ(x+ iy)dx ≤ µ((a− δ, b+ δ]) +
2y

πδ
.

Note that if δ =
√
y and y ↓ 0, then we obtain the Stieltjes-Perron inversion formula

for probability measures. Moreover, taking a = −∞ and δ =
√

2y
π , we deduce that

dlev(µ
y, µ) ≤

√
2y

π
,
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where µy is the probability measure of density − 1
π=(Gµ(x + iy))dx, i.e. µy = µ ∗ Cy

where Cy is the Cauchy distribution with location 0 and scale y. This further implies the
following inequality for the Lévy distance between two probability measures in terms of
the Cauchy transform

dlev(µ, ν) ≤
√

8y

π
+

1

π

∫
R

|=(Gµ(z))−=(Gν(z))|dx.

Next, we discuss some bounds for the Cauchy transform.
Since |z − t| ≥ y for all t ∈ R, then it follows that

|Gµ(z)| ≤
µ(R)

y
for z ∈ C+. (2.1)

The following proposition gives another bound for |Gµ(z)| in terms of the moments of
µ.

Proposition 2.3. Let µ be a measure and i ≥ 0. Then we have that

|Gµ(z)| <
2µ(R)

|x|
+

2i
∫
R
|t|idµ(t)
y|x|i

,

for any x > 0.

Proof. We have that

|Gµ(z)| ≤
∫
|t|≤ |x|2

1

|x− t|
dµ(t) +

∫
|t|> |x|2

1

y
dµ(t)

≤ 2

|x|

∫
dµ(t) +

1

y

∫
|t|> |x|2

dµ(t)

<
2µ(R)

|x|
+

2i
∫
R
|t|idµ(t)
y|x|i

.

In particular, taking i = 2 we obtain that

|Gµ(z)| <
2µ(R)

|x|
+

4
∫
t2dµ(t)

yx2
. (2.2)

The reciprocal Cauchy transform (or F -transform) of a positive Borel measure
µ ∈M is defined as

Fµ(z) :=
1

Gµ(z)
for z ∈ C+.

Directly by definition, it is not too difficult to see that for a probability measure µ and
a > 0, then

FDaµ(z) = aFµ(z/a) for z ∈ C+. (2.3)

The next proposition gives a fundamental representation of the F -transform for the
probability measures that are of our interest.

Proposition 2.4. Let µ a probability measure such that m1(µ) = 0, m2(µ) = 1, and
m6(µ) <∞. Then there exists a real number α and a non-negative Borel measure ω such
that m2(ω) <∞ and

Fµ(z) = z − 1

z − α−Gω(z)
for z ∈ C+.
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Proof. Let µ as in the hypothesis. Since m1(µ) = 0 and m2(µ) = 1, then by Proposition
2.1 in [9] we have that there exists a probability measure ν such that

Fµ(z) = z −Gν(z) for z ∈ C+.

Moreover, since m6(µ) <∞, then by Proposition 4.8 also in [9] we have that m4(ν) <

∞. Again by the same propositions aplied to ν, we get that there exists a real number α
and non-negative measure ω such that m2(ω) <∞ and

Fν(z) = z − α−Gω(z) for z ∈ C+.

The desired representation follows from the above equations.

2.3 Boolean convolution

Given probability measures µ and ν, the Boolean convolution µ ] ν, introduced by
Speicher and Woroudi [11], is the probability measure defined by the equation

Fµ]ν(z) = Fµ(z) + Fν(z)− z for z ∈ C+.

Let µ be a probability measure and n be a positive integer. We want to obtain an
expression for the F-transform of µn := D 1√

n
(µ]n).

First note that

Fµ]n(z) = (1− n)z + nFµ(z) for z ∈ C+.

Now, suppose further that m1(µ) = 0, m2(µ) = 1, and m6(µ) <∞. Thus, by Proposi-
tion 2.4 we get that

Fµ]n(z) = z − n

z − α−Gω(z)
for z ∈ C+,

where α is a real number and and ω is a non-negative Borel measure such that
∫
t2dω(t) <

∞. Finally, applying (2.3) we obtain the representation

Fµn(z) = z − 1

z − α√
n
− 1√

n
Gω(
√
nz)

for z ∈ C+. (2.4)

3 Proofs

3.1 Proof of Theorem 2.2.

Let µ be a probability measure. Choose a and b such that −∞ ≤ a < b ≤ ∞ and fix
y > 0. First, we rewrite the following integral

∫ b

a

−=Gµ(x+ iy)dx =

∫ b

a

∫ ∞
−∞

y

(x− t)2 + y2
dµ(t)dx

=

∫ ∞
−∞

∫ b

a

y

(x− t)2 + y2
dxdµ(t)

=

∫ ∞
−∞

∫ b−t
y

a−t
y

1

x2 + 1
dxdµ(t).

Now, let δ ∈ (0, b−a2 ). It follows that
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∫ ∞
−∞

∫ b−t
y

a−t
y

1

x2 + 1
dxdµ(t) ≥

∫ b−δ

a+δ

∫ b−t
y

a−t
y

1

x2 + 1
dxdµ(t)

≥
∫ b−δ

a+δ

∫ δ
y

−δ
y

1

x2 + 1
dxdµ(t)

=

∫ b−δ

a+δ

(
π −

∫
|t|> δ

y

1

x2 + 1
dx
)
dµ(t)

≥
∫ b−δ

a+δ

(π − 2y

δ
)dµ(t)

≥ πµ((a+ δ, b− δ])− 2y

δ
.

So, we arrive to

µ((a+ δ, b− δ])− 2y

πδ
≤ − 1

π

∫ b

a

=Gµ(x+ iy)dx.

On the other hand, we have that∫ b

a

−=Gµ(x+ iy)dx =

∫ b+δ

a−δ

∫ b−t
y

a−t
y

1

x2 + 1
dxdµ(t) +

∫
t/∈(a−δ,b+δ]

∫ b−t
y

a−t
y

1

x2 + 1
dxdµ(t).

Next, note that

∫ b+δ

a−δ

∫ b−t
y

a−t
y

1

x2 + 1
dxdµ(t) ≤

∫ b+δ

a−δ

∫ ∞
−∞

1

x2 + 1
dxdµ(t) = πµ((a− δ, b+ δ]).

Hence, splitting the integral over the complement of the interval (a− δ, b+ δ], we get∫
t/∈(a−δ,b+δ]

∫ b−t
y

a−t
y

1

x2 + 1
dxdµ(t) =

∫ a−δ

−∞

∫ b−t
y

a−t
y

1

x2 + 1
dxdµ(t) +

∫ ∞
b+δ

∫ b−t
y

a−t
y

1

x2 + 1
dxdµ(t)

≤
∫ a−δ

−∞

∫ ∞
δ
y

1

x2 + 1
dxdµ(t) +

∫ ∞
b+δ

∫ −δ
y

−∞

1

x2 + 1
dxdµ(t)

≤ 2

∫ ∞
δ
y

1

x2 + 1
dxdµ(t)

=
2y

δ
.

Finally, we conclude that for any y > 0

−1
π

∫ b

a

=Gµ(x+ iy)dx ≤ µ((a− δ, b+ δ]) +
2y

πδ
.

3.2 Proof of Theorem 1.1

We are now ready to prove Theorem 1. Before this, let us make the following remark.

Remark 3.1. In [1] it is also shown that if we define pn := 1
2

√
1+4n+1√
1+4n

, qn := 1
2

√
1+4n−1√
1+4n

,

xn := 1−
√
1+4n√
4n

, and yn := 1+
√
1+4n√
4n

, then the probability measure given by µn := pnδxn +

qnδyn is such that µn = D 1√
n
µ]n1 and L(µn,b) ≥ 1

6
√
n

.
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Now, let us fix a probability measure µ such that m1(µ) = 0, m2(µ) = 1, and m6(µ) <

∞. Define µn := D 1√
n
(µ]n). We begin by obtaining some representations for the

imaginary part of the Cauchy transform of µn.
Note that

−=(Gµn(z)) =
=(Fµn(Z))
|Fµn(z)|2

. (3.1)

Recall that by (2.4) we have the representation

Fµn(z) = z − 1

z − α√
n
− 1√

n
Gω(
√
nz)

for z ∈ C+,

where α is a real number and ω is a non-negative Borel measure such that
∫
t2dω(t) <∞.

Define Wn(z) = z − α√
n
− 1√

n
Gω(
√
nz) so that Fµn(z) = z − 1

Wn(Z) . It follows that

−=Gµn(z) =
y|Wn(z)|2 + =(Wn(z))

|zWn(z)− 1|2
. (3.2)

Next, we establish two lemmas that carry the main estimations of the proof. But first,
we define some constants and give an inequality that is vital for making such estimations.
Let K = max{ω(R),

∫
t2dω(t)}. Now, take C > max{5, |α|+2, 4(K+1)2, 1+ 1

0.32 (30K+1)},
let n > max{202α2, 20 · 30K, 16C2}, and fix y = 1

n . Observe that by the inequality (2.2)
we deduce that

|Gω(
√
nz)| < 2K√

n|x|
+

4K√
nx2

. (3.3)

Lemma 3.2. We have that − 1
π

∫
Ai
=Gµn(z)dx ≤ 1

π
√
n

for i = 1, 2, provided that n is large

enough, and where A1 = (−∞,−1− C√
n
] and A2 = [1 + C√

n
,∞).

Proof. Assume that x ≤ −1− C√
n

. Since |x| > 1, then by (3.3) we have that |Gω(
√
nz)| <

6K√
n

.

First, we want to bound below |Fµn(z)|. Observe that <(Wn(z))≤x+ |α|√n+
1√
n
|Gω(

√
nz)|

< x + |α|√
n
+ 6K

n . As x ≤ −1 − C√
n

,
√
n > 6K, and C > |α| + 1, then it follows that

<(Wn(z)) < −1. Therefore, |Wn(z)| > 1, which further implies | 1
Wn(z)

| < 1. Hence, we

deduce that |<( 1
Wn(z)

)| < 1. Using this, we conclude that

|<(Fµn(z))| = |x−<(
1

Wn(z)
)| ≥ |x| − |<( 1

Wn(z)
)| > −x− 1,

for x ≤ −1− C√
n

.

Now, we want to bound above =(Fµn(z)). As seen above, for x ≤ −1 − C√
n

, one

has that −=(Gω(
√
nz)) ≤ |Gω(

√
nz)| < 6K√

n
and |Wn(z)| > 1. Therefore, =(Wn(z)) =

y − 1√
n
=(Gω(

√
nz)) < 1

n + 6K
n . Hence, we obtain that

=(Fµn(z)) = y +
=(Wn(z))

|Wn(z)|2
<

6K + 2

n
<
C

n
.

By the previous estimations and (3.1), we conclude that −=(Gµn(z)) <
C/n

(x+1)2 for

x ≤ −1− C√
n

. It follows that

− 1

π

∫
A1

=Gµn(z)dx <
1

π

∫ −1− C√
n

−∞

C/n

(x+ 1)2
dx =

1

π
√
n
.

By a similar argument, it can be shown that − 1
π

∫
A2
=Gµn(z)dx < 1

π
√
n

.
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Lemma 3.3. We have that − 1
π

∫
[−1+ C√

n
, 1− C√

n
]
=Gµn(z)dx < 2C

3
√
n
+ 6

π
√
n

.

Proof. We deliver the estimation of this integral in three parts.
First, let us suppose that x ∈ [0.4, 1− C√

n
]. By (3.3), it follows that |Gω(

√
nz)| < 30K√

n
.

Our objective is to bound −=(Gµn(z)). We begin by bounding =(Fµn(z)). We claim

that |Wn(z)| > 0.3. Indeed, from the definition of Wn(z) we see that |Wn(z)| ≥ |z| − |α|√n −
| 1√
n
Gω(
√
nz)| > x − |α|√

n
− 30K

n . So, the claim follows as n is larger than 20 · 30K and

202α2.
Next, note that =(Wn(z)) = y − 1√

n
=(Gω(

√
nz)) < 30K+1

n . It follows that

=(Fµn(z)) = y +
=(Wn(z))

|Wn(z)|2
<

1 + 1
0.32 (30K + 1)

n
<
C

n
.

Now, let us bound below |Fµn(z)|. Observe that

<( 1

Wn(z)
) =

1 + =(Wn(z))=( 1
Wn(z)

)

<(Wn(z))
.

We have that <(Wn(z)) ≤ x + | α√
n
+ 1√

n
Gω(
√
nz)| < 1 − C√

n
+ |α|√

n
+ 30K

n . Recall that

|Wn(z)| > 0.3 and =(Wn(z)) <
30K+1
n . It follows that 1+=(Wn(z))=( 1

Wn(z)
) > 1− (30K+1)2

0.32n2 .

Since the last quantity is bigger than <(Wn(z)), as C > |α| + 2 and n is larger than
(30k + 1)2 and 16, then we deduce that <( 1

Wn(z)
) > 1. Thus,

|Fµn(z)| ≥ |x−<(
1

Wn(z)
)| ≥ |<( 1

Wn(z)
)| − x > 1− x.

By the above estimations and (3.1), we obtain that −=(Gµn(z)) <
C/n

(x+1)2 for x ∈
(0.4, 1− C√

n
]. We conclude that

− 1

π

∫ 1− C√
n

0.4

=Gµn(z)dx <
1

π

∫ 1− C√
n

0.4

C/n

(1− x)2
dx <

1

π
√
n
. (3.4)

With minor modifications on this argument, we can also deduce that − 1
π

∫
[−1+ C√

n
,−0.4]

=Gµn(z)dx < 1
π
√
n

.

Secondly, suppose that x ∈ (
√
C√
n
, 0.4]. By (3.3), it follows that |Gω(

√
nz)| < ( 2√

C
+

2
√
n

C )K. Our goal is to bound the expression (3.2).

Note that |Wn(z)| ≤ |z| + |α|√
n
+ | 1√

n
Gω(
√
nz)| < x + y + |α|√

n
+ 2K√

Cn
+ 2K

C < 1 since

C > 6K + 1 and n is larger 202α2 and 200K. Moreover, as |z| < 1
2 , we obtain that

|zWn(z)− 1| ≥ 1− |zWn(z)| >
1

2
.

Now, we have that =(Wn(z)) = y − 1√
n
=(Gω(

√
nz)) < 1

n + 1√
n
( 2√

nx
+ 2√

nx2 )K, thus

y|Wn(z)|2 + =(Wn(z)) ≤
2

n
+

2K

nx
+

2K

nx2
.

By the above estimations and (3.2), we deduce that

− 1

π

∫ 0.4

√
C√
n

=Gµn(z)dx <
1

π

∫ 0.4

√
C√
n

2
n + 2K

nx + 2K
nx2

1
2

dx.

Since
∫ 0.4√

C√
n

1
nx2 <

1√
C
√
n

and x >
√
C√
n

, then we conclude that
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− 1

π

∫ 0.4

√
C√
n

=Gµn(z)dx <
2

πn
+

6K

π
√
C
√
n
<

2

π
√
n
. (3.5)

By a similar argument we can obtain the same estimation of this integral for x ∈
[−0.4,−

√
C√
n
].

Finally, suppose that x ∈ [−
√
C√
n
,
√
C√
n
]. It follows that |Wn(z)| ≤ |z|+ |α|√n+ |

1√
n
Gω(
√
nz)|.

Moreover, since |Gω(
√
nz)| < ω(R)√

ny
, then we conclude that |Wn(z)| < x + y + |α|√

n
+

ω(R) <
√
C
2 , as C > 4(K + 1)2 and n is larger than 202α2 and 16C2. Next, note that

|zWn(z)| ≤ |z||Wn(z)| < (
√
C√
n
+ 1

n )
√
C
2 < 1

2 as n > 16C2. Thus, we obtain that

|zWn(z)− 1| ≥ 1− |zWn(z)| >
1

2
.

Now, by the above estimations, we also have that

y|Wn(z)|2 + =(Wn(z)) <
C

4n
+

√
C

2
.

By (3.2), we deduce that −=(Gµn(z)) < C
2n +

√
C, and so we conclude that

− 1

π

∫ √
C√
n

−
√
C√
n

=(Gµn(z))dx <
2
√
C

π
√
n
(
C

2n
+
√
C) <

2C

3
√
n
,

as C > 5 and n > 16C2. From this estimation, (3.4), and (3.5), the desired result
follows.

Now, we are ready to conclude the proof. Let ε1 = C√
n

and ε2 = 2√
n

. By Theorem 2,
we have that

µn((−∞,−1− ε1 − ε2]) ≤ −
1

π

∫ −1−ε1
−∞

=(Gµn(z))dx+
2y

πε2
,

µn([−1 + ε1 + ε2, 1− ε1 − ε2]) ≤ −
1

π

∫ 1−ε1

−1+ε1
=(Gµn(z))dx+

2y

πε2
, and

µn([1 + ε1 + ε2,∞]) ≤ − 1

π

∫ ∞
1+ε1

=(Gµn(z))dx+
2y

πε2
.

The previous lemmas implies that µn((−∞,−1 − ε1 − ε2]) < 1
π
√
n
+ 1

π
√
n

, µn([−1 +

ε1 + ε2, 1 − ε1 − ε2]) < 2C
3
√
n
+ 6

π
√
n
+ 1

π
√
n

, and µn([1 + ε1 + ε2,∞]) < 1
π
√
n
+ 1

π
√
n

. Since
2C
3
√
n
+ 11

π
√
n
< C√

n
+ 2√

n
= ε1 + ε2 for C > 5, then we obtain that

µn((−1− ε1 − ε2,−1 + ε1 + ε2) ∪ (1− ε1 − ε2, 1 + ε1 + ε2)) > 1− ε1 − ε2.

Therefore, by Proposition (2.1), we conclude that

dlev(µn,b) ≤
7

2

C + 2√
n
.

The author thinks that it is an interesting question if for finite fourth moment, or even
finite absolute third moment, we still have an order of convergence O(n−1/2) in Theorem
1.

ECP 27 (2022), paper 11.
Page 9/10

https://www.imstat.org/ecp

https://doi.org/10.1214/22-ECP448
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


On a Berry-Esseen type limit theorem for Boolean convolution

References

[1] O. Arizmendi & M. Salazar, A Berry-Esseen type limit theorem for Boolean convolution, Archiv
der Mathematik 111.1 (2018), 101-111. MR3816982

[2] O. Arizmendi, M. Salazar & J.C. Wang, Berry–Esseen Type Estimate and Return Sequence
for Parabolic Iteration in the Upper Half-Plane, International Mathematics Research Notices
(2019). MR4349228

[3] Z. D. Bai, Convergence rate of expected spectral distributions of large random matrices part
i: Wigner matrices, Advances In Statistics (2008), 60-83. MR3948975

[4] A. C. Berry, The accuracy of the Gaussian approximation to the sum of independent variates,
Transactions of the american mathematical society 49.1 (1941), 122-136. MR0003498

[5] G. P. Chistyakov & F. Götze, Limit theorems in free probability theory. I, The Annals of
Probability 36.1 (2008), 54-90. MR2370598

[6] C.G. Esseen, On the Liapunoff limit of error in the theory of probability, Arkiv for matematik
astronomi och fysik 28 (1942), 1-19. MR0011909

[7] W. Feller, An Introduction to Probability Theory and Its Applications 2, 2nd ed. Wiley, New
York, 1971. MR0270403

[8] A. L. Gibbs & F. E. Su, On choosing and bounding probability metrics, International statistical
review 70.3 (2002), 419-435.

[9] T. Hasebe, On monotone convolution and monotone infinite divisivility, (2010), preprint,
arXiv:1002.3430. MR3010792

[10] N. Muraki, The five independences as natural products, Infinite Dimensional Analysis, Quan-
tum Probability and Related Topics 6.03 (2003), 337-371. MR2016316

[11] R. Speicher & R. Woroudi, Boolean convolution, Fields Inst. Commun. 12 (1993), 267-279.
MR1426845

[12] G. Teschl, Jacobi operators and completely integrable nonlinear lattices, Mathematical
Surveys and Monographs 72, American Mathematical Society, 2000. MR1711536

Acknowledgments. The author appreciates the various suggestions and comments
from the referees which helped improve the presentation of this paper. The author is
also indebted to Octavio Arizmendi for many stimulating discussions.

ECP 27 (2022), paper 11.
Page 10/10

https://www.imstat.org/ecp

https://mathscinet.ams.org/mathscinet-getitem?mr=3816982
https://mathscinet.ams.org/mathscinet-getitem?mr=4349228
https://mathscinet.ams.org/mathscinet-getitem?mr=3948975
https://mathscinet.ams.org/mathscinet-getitem?mr=0003498
https://mathscinet.ams.org/mathscinet-getitem?mr=2370598
https://mathscinet.ams.org/mathscinet-getitem?mr=0011909
https://mathscinet.ams.org/mathscinet-getitem?mr=0270403
https://arXiv.org/abs/1002.3430
https://mathscinet.ams.org/mathscinet-getitem?mr=3010792
https://mathscinet.ams.org/mathscinet-getitem?mr=2016316
https://mathscinet.ams.org/mathscinet-getitem?mr=1426845
https://mathscinet.ams.org/mathscinet-getitem?mr=1711536
https://doi.org/10.1214/22-ECP448
https://imstat.org/journals-and-publications/electronic-communications-in-probability/

	Introduction
	Preliminaries
	The Lévy distance
	The Cauchy transform
	Boolean convolution

	Proofs
	Proof of Theorem 2.2.
	Proof of Theorem 1.1

	References

