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1. Introduction

Let {X(t), t ∈ U} be a centered real-valued stationary process with spectral
density f(λ), λ ∈ Λ, and covariance function r(t), t ∈ U. We consider simul-
taneously the continuous-time (c.t.) case, where U = R := (−∞,∞), and the
discrete-time (d.t.) case, where U = Z := {0,±1,±2, . . .}. The domain Λ of the
frequency variable λ is Λ = R in the c.t. case, and Λ := [−π.π] in the d.t. case.

We want to make statistical inferences (parametric and nonparametric esti-
mation, and hypotheses testing) about the spectrum of X(t). In the classical
setting, the inferences are based on an observed finite realization XT of the
process X(t): XT := {X(t), t ∈ DT }, where DT := [0, T ] in the c.t. case and
DT := {1, . . . , T} in the d.t. case.

A sufficiently developed inferential theory is now available for stationary mod-
els based on the standard (non-tapered) data XT . We cite merely the following
references Anh et al. [4], Avram et al. [6], Casas and Gao [12], Dahlhaus [22],
Dahlhaus and Wefelmeyer [27], Dzhaparidze [29, 30], Dzhaparidze and Yaglom
[32], Fox and Taqqu [33], Gao [34], Gao et al. [35], Ginovyan [36, 37, 40, 42, 41,
44, 46], Giraitis et al. [55], Giraitis and Surgailis [56], Guyon [60], Hannan [61],
Has’minskii and Ibragimov [62], Heyde and Dai [63], Heyde and Gay [64], Ibragi-
mov [65, 66], Ibragimov and Khas’minskii [67], Leonenko and Sakhno [70], Millar
[72], Osidze [73, 74], Taniguchi [78], Taniguchi and Kakizawa [79], Tsai and Chan
[81], Walker [83], Whittle [84], where can also be found additional references.

In the statistical analysis of stationary processes, however, the data are fre-
quently tapered before calculating the statistic of interest, and the statistical
inference procedure, instead of the original data XT , is based on the tapered
data: Xh

T := {hT (t)X(t), t ∈ DT }}, where DT := [0, T ] in the c.t. case and
DT := {1, . . . , T} in the d.t. case, and hT (t) := h(t/T ) with h(t), t ∈ R being a
taper function.
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The use of data tapers in nonparametric time series was suggested by Tukey
[80]. The benefits of tapering the data have been widely reported in the literature
(see, e.g., Alomari et al. [1], Brillinger [9], Dahlhaus [18]–[21], [23], Dahlhaus and
Künsch [26], Ginovyan [46], Ginovyan and Sahakyan [52], Guyon [60], Janas
and von Sachs [69], Ludeña and Lavielle [71], Pristley [76], von Sachs [82], and
references therein).

For example, data-tapers are introduced to reduce the so-called ‘leakage ef-
fects’, that is, to obtain better estimation of the spectrum of the model in the
case where it contains high peaks. Other application of data-tapers is in sit-
uations in which some of the data values are missing. Also, the use of tapers
leads to bias reduction, which is especially important when dealing with spatial
data. In this case, the tapers can be used to fight the so-called ‘edge effects’ (for
details see Section 3).

In this paper, we survey some recent results on statistical inference (para-
metric and nonparametric statistical estimation, and hypotheses testing) about
the spectrum of stationary models with tapered data. We also discuss some
questions concerning tapered Toeplitz matrices and operators, central limit the-
orems for tapered Toeplitz type quadratic functionals, and tapered Fejér-type
kernels and singular integrals. These are the main tools for obtaining the corre-
sponding results, and also are of interest in themselves. The processes considered
will be discrete-time and continuous-time Gaussian, linear or Lévy-driven linear
processes with memory.

Some notation and conventions. The following notation and conventions
are used throughout the paper.
The symbol ‘:=’ stands for ‘by definition’; c.t.: = continuous-time; d.t.:= discrete-
time; s.d.:= spectral density; c.f.:= covariance function; CLT:= central limit

theorem. The symbols ‘
P→’ and ‘

d→’ stand for convergence in probability and

in distribution, respectively. The notation XT
d→ η ∼ N(0, σ2) as T → ∞ will

mean that the distribution of the random variable XT tends (as T → ∞) to
the centered normal distribution with variance σ2. E[·]: = expectation operator;
tr[A]: = trace of an operator (matrix) A; IA(·): = indicator of a set A ⊂ Λ;
WN(0, 1): = standard white-noise. The standard symbols N, Z and R denote
the sets of natural, integer and real numbers, respectively; N0 := N∪0. By Λ we
denote the frequency domain, that is, Λ := R in the c.t. case, and Λ := [−π.π]
in the d.t. case. By Lp(μ) := Lp(Λ, μ) (p ≥1) we denote the weighted Lebesgue
space with respect to the measure μ, and by || · ||p,μ we denote the norm in
Lp(μ). In the special case where dμ(λ) = dλ, we will use the notation Lp and
|| · ||p, respectively. The letters C and c with or without indices are used to
denote positive constants, the values of which can vary from line to line. Also,
in the d.t. case all the considered functions are assumed to be 2π-periodic and
periodically extended to R.

The structure of the paper. The rest of the paper is structured as follows.
In Section 2 we specify the model of interest – a stationary process, recall some
key notions and results from the theory of stationary processes. In Section 3 we
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introduce data tapers and the tapered periodogram, and present some benefits
of tapering. In Section 4 we discuss the nonparametric estimation problem. We
analyze the asymptotic properties, involving asymptotic unbiasedness, bias rate
convergence, consistency, a central limit theorem and asymptotic normality of
the empirical spectral functionals. In Section 5 we discuss the parametric esti-
mation problem. We present sufficient conditions for consistency and asymptotic
normality of minimum contrast estimator based on the Whittle contrast func-
tional for stationary linear models with tapered data. Section 6 is devoted to the
construction of goodness-of-fit tests for testing hypotheses that the hypothetical
spectral density of a stationary Gaussian model has the specified form, based
on the tapered data. In Section 7 we briefly discuss the methods and tools, used
to prove the results stated in Sections 4–6.

2. Preliminaries

In this section we specify the model of interest – a stationary process, recall
some key notions and results from the theory of stationary processes.

2.1. The model

2.1.1. Second-order (wide-sense) stationary process

Let {X(u), u ∈ U} be a centered real-valued second-order (wide-sense) station-
ary process defined on a probability space (Ω,F , P ) with covariance function
r(t), that is, E[X(u)] = 0, r(u) = E[X(t + u)X(t)], u, t ∈ U, where E[·] stands
for the expectation operator with respect to measure P . We consider simul-
taneously the c.t. case, where U = R := (−∞,∞), and the d.t. case, where
U = Z := {0,±1,±2, . . .}. We assume that X(u) is a non-degenerate process,
that is, Var[X(u)] = E|X(u)|2 = r(0) > 0. (Without loss of generality, we
assume that r(0) = 1). In the c.t. case the process X(u) is also assumed mean-
square continuous, that is, E[X(t) − X(s)]2 → 0 as t → s. This assumption is
equivalent to that of the covariance function r(u) be continuous at u = 0 (see,
e.g., Cramér and Leadbetter [17], Section 5.2).

By the Herglotz theorem in the d.t. case, and the Bochner-Khintchine the-
orem in the c.t. case (see, e.g., Cramér and Leadbetter [17]), there is a finite
measure μ on (Λ,B(Λ)), where Λ = R in the c.t. case, and Λ = [−π.π] in the
d.t. case, and B(Λ) is the Borel σ-algebra on Λ, such that for any u ∈ U the
covariance function r(u) admits the following spectral representation:

r(u) =

∫
Λ

exp{iλu}dμ(λ), u ∈ U. (2.1)

The measure μ in (2.1) is called the spectral measure of the processX(u). The
function F (λ) := μ[−π, λ] in the d.t. case and F (λ) := μ[−∞, λ] in the c.t. case,
is called the spectral function of the process X(t). If F (λ) is absolutely contin-
uous (with respect to Lebesgue measure), then the function f(λ) := dF (λ)/dλ
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is called the spectral density of the process X(t). Notice that if the spectral
density f(λ) exists, then f(λ) ≥ 0, f(λ) ∈ L1(Λ), and (2.1) becomes

r(u) =

∫
Λ

exp{iλu}f(λ)dλ, u ∈ U. (2.2)

Thus, the covariance function r(u) and the spectral function F (λ) (resp. the
spectral density function f(λ)) are equivalent specifications of the second order
properties for a stationary process {X(u), u ∈ U}.

2.1.2. Linear processes. Existence of spectral density functions

We will consider here stationary processes possessing spectral density functions.
For the following results we refer to Cramér and Leadbetter [17], Doob [28], and
Ibragimov and Linnik [68].

(a) The spectral function F (λ) of a d.t. stationary process {X(u), u ∈ Z}
is absolutely continuous (with respect to the Lebesgue measure), F (λ) =∫ λ

−π
f(x)dx, if and only if it can be represented as an infinite moving

average (MA(∞)):

X(u) =

∞∑
k=−∞

a(u− k)ξ(k),

∞∑
k=−∞

|a(k)|2 < ∞, (2.3)

where {ξ(k), k ∈ Z} ∼ WN(0,1) is a standard white-noise, that is, a se-
quence of orthonormal random variables.

(b) The covariance function r(u) and the spectral density f(λ) of X(u) are
given by formulas:

r(u) = EX(u)X(0) =

∞∑
k=−∞

a(u+ k)a(k), (2.4)

and

f(λ) =
1

2π
|â(λ)|2 =

1

2π

∣∣∣∣∣
∞∑

k=−∞
a(k)e−ikλ

∣∣∣∣∣
2

, λ ∈ [−π, π]. (2.5)

(c) In the case where ξ(k) is a sequence of Gaussian random variables, the
process X(u) is Gaussian.

Similar results hold for c.t. processes. Indeed, the following holds.

(a) The spectral function F (λ) of a c.t. stationary process {X(u), u ∈ R}
is absolutely continuous (with respect to Lebesgue measure), F (λ) =∫ λ

−∞ f(x)dx, if and only if it can be represented as an infinite continu-
ous moving average:

X(u) =

∫
R

a(u− t)dξ(t), ,

∫
R

|a(t)|2dt < ∞, (2.6)
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where {ξ(t), t ∈ R} is a process with orthogonal increments and E|d ξ(t)|2 =
dt.

(b) The covariance function r(u) and the spectral density f(λ) of X(u) are
given by formulas:

r(u) = EX(u)X(0) =

∫
R

a(u+ x)a(x)dx, (2.7)

and

f(λ) =
1

2π
|â(λ)|2 =

1

2π

∣∣∣∣∫
R

e−iλta(t)dt

∣∣∣∣2 , λ ∈ R. (2.8)

(c) In the case where ξ(t) is a Gaussian process, the process X(u) is Gaussian.

2.1.3. Lévy-driven linear process

We first recall that a Lévy process, {ξ(t), t ∈ R} is a process with independent
and stationary increments, continuous in probability, with sample-paths which
are right-continuous with left limits (càdlàg) and ξ(0) = ξ(0−) = 0. The Wiener
process {B(t), t ≥ 0} and the centered Poisson process {N(t)− EN(t), t ≥ 0}
are typical examples of centered Lévy processes. A Lévy-driven linear process
{X(t), t ∈ R} is a real-valued c.t. stationary process defined by (2.6), where
ξ(t) is a Lévy process satisfying the conditions: Eξ(t) = 0, Eξ2(1) = 1 and
Eξ4(1) < ∞. In the case where ξ(t) = B(t), X(t) is a Gaussian process (see,
e.g., Bai et al. [7]).

The function a(·) in representations (2.3) and (2.6) plays the role of a time-
invariant filter, and the linear processes defined by (2.3) and (2.6) can be viewed
as the output of a linear filter a(·) applied to the process ξ(t), called the inno-
vation or driving process of X(t).

Processes of the form (2.3) and (2.6) appear in many fields of science (eco-
nomics, finance, physics, etc.), and cover large classes of popular models in
time series modeling. For instance, the classical autoregressive moving average
(ARMA) models and their continuous counterparts the c.t. autoregressive mov-
ing average (CARMA) models are of the form (2.3) and (2.6), respectively, and
play a central role in the representations of stationary time series (see, e.g.,
Brockwell [10], Brockwell and Davis [11]).

2.1.4. Dependence (memory) structure of the model.

In the frequency domain setting, the statistical and spectral analysis of sta-
tionary processes requires two types of conditions on the spectral density f(λ).
The first type controls the singularities of f(λ), and involves the dependence (or
memory) structure of the process, while the second type – controls the smooth-
ness of f(λ). The memory structure of a stationary process is essentially a
measure of the dependence between all the variables in the process, considering
the effect of all correlations simultaneously. Traditionally memory structure has
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been defined in the time domain in terms of decay rates of the autocorrelations,
or in the frequency domain in terms of rates of explosion of low frequency spec-
tra (see, e.g., Beran et al. [8], Giraitis et al. [55], Guégan [58]). It is convenient
to characterize the memory structure in terms of the spectral density function.

We will distinguish the following types of stationary models:
(a) short memory (or short-range dependent),
(b) long memory (or long-range dependent),
(c) intermediate memory (or anti-persistent).

Short-memory models. Much of statistical inference is concerned with short-
memory stationary models, where the spectral density f(λ) of the model is
bounded away from zero and infinity, that is, there are constants C1 and C2

such that
0 < C1 ≤ f(λ) ≤ C2 < ∞ for all λ ∈ Λ.

A typical d.t. short memory model example is the stationary Autoregressive
Moving Average (ARMA)(p, q) process X(t) defined to be a stationary solution
of the difference equation:

ψp(B)X(t) = θq(B)ε(t), t ∈ Z,

where ψp and θq are polynomials of degrees p and q, respectively, B is the
backshift operator defined by BX(t) = X(t − 1), and {ε(t), t ∈ Z} is a d.t.
white noise, that is, a sequence of zero-mean, uncorrelated random variables
with variance σ2. The covariance r(k) of (ARMA)(p, q) process is exponentially
bounded:

|r(k)| ≤ Cr−k, k = 1, 2, . . . ; 0 < C < ∞; 0 < r < 1,

and the spectral density f(λ) is a rational function (see, e.g., Brockwell and
Davis [11], Section 3.1):

f(λ) =
σ2

2π
· |θq(e

−iλ)|2
|ψp(e−iλ)|2 . (2.9)

A typical c.t. short-memory model example is the stationary c.t. ARMA(p, q)
processes, denoted by CARMA(p, q), The spectral density function f(λ) of a
CARMA(p, q) processX(t) is given by the following formula (see, e.g., Brockwell
[10]):

f(λ) =
σ2

2π
· |βq(iλ)|2
|αp(iλ)|2

, (2.10)

where αp(z) = zp − αpz
(p−1) − · · · − α1 and βq(z) = 1 + β1z + · · · + βqz

q are
polynomials of degrees p and q, respectively.

Another important c.t. short-memory model is the Ornstein-Uhlenbeck pro-
cess, which is a Gaussian stationary process with covariance function r(t) =
σ2e−α|t| (t ∈ R), and spectral density

f(λ) =
σ2

π
· α2

λ2 + α2
, α > 0, λ ∈ R. (2.11)
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Discrete-time long-memory and anti-persistent models. Data in many fields of
science (economics, finance, hydrology, etc.), however, is well modeled by sta-
tionary processes whose spectral densities are unbounded or vanishing at some
fixed points (see, e.g., Beran et al. [8], Guégan [58], and references therein).

A long-memory model is defined to be a stationary process with unbounded
spectral density, and an anti-persistent model – a stationary process with van-
ishing (at some fixed points) spectral density.

In the discrete context, a basic long-memory model is the Autoregressive
Fractionally Integrated Moving Average (ARFIMA)(0, d, 0)) process X(t) de-
fined to be a stationary solution of the difference equation (see, e.g., Brockwell
and Davis [11], Section 13.2):

(1−B)dX(t) = ε(t), 0 < d < 1/2,

where B is the backshift operator and ε(t) is a d.t. white noise defined above.
The spectral density f(λ) of X(t) is given by

f(λ) = |1− e−iλ|−2d = (2 sin(λ/2))−2d, 0 < λ ≤ π, 0 < d < 1/2. (2.12)

Notice that f(λ) ∼ c |λ|−2d as λ → 0, that is, f(λ) blows up at λ = 0 like a
power function, which is the typical behavior of a long memory model.

A typical example of an anti-persistent model is the ARFIMA(0, d, 0) process
X(t) with spectral density specified by (2.12) with d < 0, which vanishes at λ =
0. Note that the condition d < 1/2 ensures that

∫ π

−π
f(λ)dλ < ∞, implying that

the process X(t) with spectral density (2.12) is well defined because E|X(t)|2 =∫ π

−π
f(λ)dλ.

Data can also occur in the form of a realization of a ‘mixed’ short-long-
intermediate-memory stationary process X(t). A well-known example of such a
process, which appears in many applied problems, is an ARFIMA(p, d, q) process
X(t) defined to be a stationary solution of the difference equation:

ψp(B)(1−B)dX(t) = θq(B)ε(t), d < 1/2,

where B is the backshift operator, ε(t) is a d.t. white noise, and ψp and θq are
polynomials of degrees p and q, respectively. The spectral density fX(λ) of X(t)
is given by

fX(λ) = |1− e−iλ|−2df(λ), d < 1/2, (2.13)

where f(λ) is the spectral density of an ARMA(p, q) process, given by (2.9).
Observe that for 0 < d < 1/2 the model X(t) specified by the spectral density
(2.13) displays long-memory, for d < 0 – intermediate-memory, and for d = 0
– short-memory. For d ≥ 1/2 the function fX(λ) in (2.13) is not integrable,
and thus it cannot represent a spectral density of a stationary process. Also, if
d ≤ −1, then the series X(t) is not invertible in the sense that it cannot be used
to recover a white noise ε(t) by passing X(t) through a linear filter (see, e.g.,
Brockweel and Davis [11]).

Another important long-memory model is the fractional Gaussian noise (fGn).
To define the fGn we first introduce the fractional Brownian motion (fBm)
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{BH(t), t ∈ R} with Hurst index H, 0 < H < 1, defined to be a centered Gaus-
sian H-self-similar process having stationary increments (see, e.g., Samorod-
nisky and Taqqu [77]). Then the increment process {X(k) := BH(k + 1) −
BH(k), k ∈ Z}, called fractional Gaussian noise (fGn), is a d.t. centered Gaus-
sian stationary process with spectral density function:

f(λ) = c |1− e−iλ|2
∞∑

k=−∞
|λ+ 2πk|−(2H+1), −π ≤ λ ≤ π, (2.14)

where c is a positive constant.
It follows from (2.14) that f(λ) ∼ c |λ|1−2H as λ → 0, that is, f(λ) blows up

if H > 1/2 and tends to zero if H < 1/2. Also, comparing (2.12) and (2.14),
we observe that, up to a constant, the spectral density of fGn has the same
behavior at the origin as ARFIMA(0, d, 0) with d = H − 1/2.

Thus, the fGn {X(k), k ∈ Z} has long-memory if 1/2 < H < 1 and is anti-
percipient if 0 < H < 1/2. The variables X(k), k ∈ Z, are independent if
H = 1/2. For more details we refer to Samorodnisky and Taqqu [77].

Continuous-time long-memory and anti-persistent models. In the continuous
context, a basic process which has commonly been used to model long-range
dependence is the fractional Brownian motion (fBm) BH with Hurst index H,
defined above, which can be regarded as a Gaussian process having a ‘spectral
density’:

f(λ) = c|λ|−(2H+1), c > 0, 0 < H < 1, λ ∈ R. (2.15)

The form (2.15) can be understood in a generalized sense (see, e.g., Yaglom
[85]), since the fBm BH is a nonstationary process.

A proper stationary model in lieu of fBm is the fractional Riesz-Bessel motion
(fRBm), introduced in Anh et al. [2], and defined as a c.t. Gaussian process X(t)
with spectral density

f(λ) = c |λ|−2α(1 + λ2)−β , λ ∈ R, 0 < c < ∞, (2.16)

where the exponents α and β are such that 0 < α < 1, β > 0 and α+ β > 1/2.
The exponent α determines the long-range dependence, while the exponent β
indicates the second-order intermittency of the process (see, e.g., Anh et al. [3]
and Gao et al. [35]).

Notice that the process X(t), specified by the spectral density (2.16), is sta-
tionary if 0 < α < 1/2 and is non-stationary with stationary increments if
1/2 ≤ α < 1. Observe also that the function f(λ) in (2.16) behaves as O(|λ|−2α)
as |λ| → 0 and as O(|λ|−2(α+β)) as |λ| → ∞. Thus, under the conditions
0 < α < 1/2, β > 0 and α + β > 1/2, the function f(λ) in (2.16) is well-
defined for both |λ| → 0 and |λ| → ∞ due to the presence of the component
(1 + λ2)−β , β > 0, which is the Fourier transform of the Bessel potential.

Comparing (2.15) and (2.16), we observe that the spectral density of fBm is
the limiting case as β → 0 that of fRBm with Hurst index H = α− 1/2.

Another important c.t. long-memory model is the CARFIMA(p,H, q) pro-
cess. The spectral density function f(λ) of a CARFIMA(p,H, q) process X(t)



Statistical inference with tapered data 163

is given by the following formula (see, e.g., Brockwell [10], and Tsai and Chan
[81]):

f(λ) =
σ2

2π
Γ(2H + 1) sin(πH)|λ|1−2H |βq(iλ)|2

|αp(iλ)|2
, (2.17)

where αp(z) = zp − αpz
(p−1) − · · · − α1 and βq(z) = 1 + β1z + · · · + βqz

q are
polynomials of degrees p and q, respectively. Notice that for H = 1/2, the spec-
tral density given by (2.17) becomes that of the short-memory CARMA(p, q)
process, given by (2.10).

3. Tapering, data tapers and the tapered periodogram

In this section we introduce data tapers and the tapered periodogram, and
present some benefits of tapering.

3.1. Motivation

Tapering is a technique which aim to improve the accuracy of spectral estimators
by making certain preliminary transformation to the original data before the
estimation procedure is applied. The main purpose of tapering is to reduce the
bias in the spectral estimators by reducing the bias due to the periodogram.
It is well known (see, e.g., Brillinger [9], Pristley [76], Dahlhaus [23]) that the
periodogram is not a good statistical estimator for unknown spectral density,
and it has two major disadvantages. The first one is that the periodogram is
not a consistent estimator for unknown spectral density and the periodogram
values at different frequences are nearly uncorrelated. The second important
disadvantage of the periodogram is the so-called leakage effect caused by the
strong peaks in the spectrum.

To explain how to avoid these disadvantages, assume for simplicity that the
underlying process X(t) is a d.t. process with an unknown spectral density f ,
and we want to estimate f based on the sample XT := {X(t), t = 1, . . . , T} (in
the c.t. case we have similar arguments).

As an estimator of f(λ) consider the periodogram IT (λ) of the process X(t):

IT (λ) :=
1

2πT

∣∣∣∣∣
T∑

t=1

X(u)e−itλ

∣∣∣∣∣
2

. (3.1)

Then for the expected value of IT (λ) we have the convolution:

E[IT (λ)] =

∫ π

−π

f(λ− μ)FT (μ)dμ, (3.2)

where FT (μ) is the classical Fejér kernel:

FT (μ) :=
1

2πT

sin2(Tμ/2)

sin2(μ/2)
. (3.3)
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In order to improve the estimator for f(λ), we first could try to replace the

periodogram IT (λ) by a better nonparametric estimator f̂T (λ), the smoothed
periodogram estimator with a suitable chosen smoothing spectral window W (·):

f̂T (λ) :=

∫ π

−π

IT (μ+ λ)WN (μ)dμ, (3.4)

where, e.g., WN (μ) = NW (Nμ) with N/T → 0 as T → ∞.
Although the usual asymptotic theory leads to satisfactory results for this

estimator, f̂T (λ) behaves in certain situations rather badly. It is well known (see,
e.g., Pristley [76], p. 558) that if the underlying model is short memory with
continuous spectral density, then the periodogram bias is, in general, negligible
compared with the bias due to the smoothing window. However, if the spectral
window has discontinuities, this is not the case.

The second disadvantage – the leakage effect – is due to properties of the
Fejér kernel FT (μ). It is known (see, e.g., Dahlhaus [21]) that FT (μ) has side
peaks of magnitude O(T−1) at frequencies μ = 2π(s + 1/2)/T with μ ∈ (0, π].
If in the convolution (3.2) such a side peak is multiplied with a strong peak
of the spectral density f this may result in an expectation that is too large,
that is, the spectrum is overestimated. The result is that other lower peaks are
superimposed and possibly not discovered. Thus, if no data taper is used the
estimator is not able to resolve lower peaks of the spectrum. This effect has
been called nonparametric leakage effect.

Remark 3.1. Due to the fact that the Whittle approximation of the log-
likelihood function can be considered as the information divergence between
the periodogram and the spectral density, the leakage effect will also transfer
to the parametric estimation procedure. This effect has been called parametric
leakage effect (see, e.g., Dahlhaus [21]).

To avoid the leakage effects and other “bad” effects, discussed below, we taper
the original data before the estimation procedure is applied.

The idea behind tapering is to replace the Fejér kernel FT (μ) by the more
general ‘tapered kernel’, and the objective is to choose the taper function in
such a way that the tapered kernel has much smaller side lobes than FT (μ).

The use of data tapers in nonparametric time series was suggested by Tukey
[80]. Then it was discussed by many authors both for parametric and nonpara-
metric estimation procedures. The benefits of tapering the data have been widely
reported in the literature (see, e.g., Alomari et al. [1], Anh et al. [5], Brillinger
[9], Dahlhaus [18]–[21], [23], Dahlhaus and Künsch [26], Ginovyan [46], Ginovyan
and Sahakyan [52], Guyon [60], Janas and von Sachs [69], Ludeña and Lavielle
[71], Pristley [76], von Sachs [82], and references therein).

For example, data-tapers are introduced to reduce the above described ‘leak-
age effects’, that is, to obtain better estimator of the spectrum of the model in
the case where it contains strong peaks. Tapering also can be used to reduce the
so-called ‘trough effects’, that is, to obtain better estimator of the spectrum in
the case where it contains strong troughs. The trough effect was first observed
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and discussed by Dahlhaus [21]. Other application of data-tapers is in situations
in which some of the data values are missing. Also, the use of tapers leads to
bias reduction, which is especially important when dealing with spatial data. In
this case, the tapers can be used to fight the so-called ‘edge effects’ (for details
see Section 3.3).

3.2. Data tapers and the tapered periodogram

Our inference procedures will be based on the tapered data Xh
T :

Xh
T := {hT (t)X(t), t ∈ DT }, (3.5)

where DT := [0, T ] in the c.t. case and DT := {1, . . . , T} in the d.t. case, and

hT (t) := h(t/T ) (3.6)

with h(t), t ∈ R being a taper function to be specified below.

Note. The case h(t) = I[0,1](t), where I[0,1](·) denotes the indicator of the seg-
ment [0, 1], will be referred to as the non-tapered case.

For k ∈ N := {1, 2, . . .}, denote by Hk,T (λ) the tapered Dirichlet type kernel,
defined by

Hk,T (λ) :=

⎧⎨⎩
∑T

t=1 h
k
T (t)e

−iλt in the d.t. case,∫ T

0
hk
T (t)e

−iλtdt in the c.t. case,
(3.7)

and put
Hk,T := Hk,T (0). (3.8)

Define the finite Fourier transform of the tapered data (3.5):

dhT (λ) :=

⎧⎨⎩
∑T

t=1 hT (t)X(t)e−iλt in the d.t. case,∫ T

0
hT (t)X(t)e−iλtdt in the c.t. case.

(3.9)

and the tapered periodogram IhT (λ) of the process X(t):

IhT (λ) : =
1

CT
dhT (λ)d

h
T (−λ)

=

⎧⎪⎪⎨⎪⎪⎩
1

CT

∣∣∣∑T
t=1 hT (t)X(t)e−iλt

∣∣∣2 in the d.t. case,

1
CT

∣∣∣∫ T

0
hT (t)X(t)e−iλtdt

∣∣∣2 in the c.t. case.

(3.10)

where
CT := 2πH2,T (0) 
= 0. (3.11)

Notice that for non-tapered case (h(t) = I[0,1](t)), we have CT = 2πT .
Throughout the paper, we will assume that the taper function h(·) satisfies

the following assumption.
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Assumption 3.1. The taper h : R → R is a continuous nonnegative function
of bounded variation and of bounded support [0, 1], such that Hk 
= 0, where

Hk := lim
T→∞

(1/T )Hk,T , and Hk,T is as in (3.8). (3.12)

Observe that in the c.t. case we have Hk =
∫ 1

0
hk(t)dt.

Remark 3.2. The data taper h(t) normally has a maximum at t = 1/2 and
decreases smoothly to zero as t tends to 0 or 1. For the d.t. case, an example
of a taper function h(t) satisfying Assumption 3.1 is the Tukey-Hanning taper
function h(t) = 0.5(1− cos(πt)) for t ∈ [0, 1]. For the c.t. case, a simple example
of a taper function h(t) satisfying Assumption 3.1 is the function h(t) = 1 − t
for t ∈ [0, 1]. See also Example 3.1 below.

3.3. Benefits of tapering

The leakage and trough effects. Dahlhaus’ workshop. Considering the parametric
estimation problem, Dahlhaus [19] proved that the tapered Whittle estimators
are asymptotically normal with the same increase of the asymptotic variance as
in the nonparametric case. Thus, asymptotic results do not describe the effects
observed in the small sample situation. On the other hand, due to extreme
technical complexity, exact calculations for finite sample size T are only possible
in very special situations, e.g., for AR(1) processes.

To handle these difficulties, in two important papers Dahlhaus [21, 23], the
author introduced and developed special asymptotic models that cover in some
sense the small sample situation both for parametric and nonparametric cases.
In this asymptotic setting, Dahlhaus demonstrated the benefits of tapering in
a rigorous way. In particular, using the proposed models, Dahlhaus explained
theoretically the leakage effect for the parametric Whittle estimator and for
nonparametric spectral estimator and showed that this effect can be removed by
applying a suitable data taper function. Also, he proved, contrary to widespread
conjectures (see, e.g., Brillinger [9], p.151 and Pristley [76], p.272), that data
tapers do not only reduce the bias, but may also reduce the variance of the
corresponding estimators (see Dahlhaus [23], p.161).

The idea behind Dahlhaus’ approach is the following. He required that the
estimators behave well for an increasing number of processes if the sample size
increases. For example, considering the equation (3.2), and taking into account
that the side peaks of the Fejér kernel FT (μ) for μ ∈ (0, π] is of order O(T−1),
he observed that the leakage effect disappears asymptotically. To preserve this
small sample effect, Dahlhaus suggested to let the magnitude of the main peak
of the spectrum increase with sample size T and studied the properties of the
estimators concerning the lower peaks of the spectrum. For instance, considering
the spectral density of an AR(p) process:

f(λ) =
σ2

2π
·

p∏
k=1

|1− zke
−iλ)|−2, (3.13)
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where zk are the roots of the process, and using simulation results, Dahlhaus
observed that it is quite easy to estimate the strongest peak, that is, the roots
closest to the unit circle, and concluded that it should be reasonable to assume
that these roots are known, whereas the other roots should be estimated.

Based on these arguments, Dahlhaus [21] introduced the following parametric
estimation model: write the spectral density fθ(λ) in the form of a product:

fθ(λ) = gT f
∗
θ (λ) (3.14)

with a ‘strong peak’ part gT (whose peaks may increase with sample size T )
and a part f∗

θ (λ), which is independent of T and whose parameter θ has to be
estimated.

In order to investigate the properties of the tapered Whittle estimators
Dahlhaus [21] introduced an increasing class of stochastic processes X (see Def-
inition 2.2 in Dahlhaus [21]), and imposed additional smoothness conditions on
the taper function h(·). Specifically, he introduced the class of taper functions
hT (t) := hT (t/T ) of degree (k, κ), where k ∈ N0 := {0, 1, 2, . . .} and κ ∈ [0, 1/2)
(see Definition 5.1 in Dahlhaus [21]). Denote this class by D(k, κ). Observe that
in the non-tapered case hT (t) := I[0,1](t/T ) the degree is (0, 0). The following
commonly used taper function belongs to the class D(k, κ).

Example 3.1 (Polynomial taper). Consider the function:

hρ(x) :=

⎧⎨⎩
4k(x/ρ)k(1− x/ρ)k x ∈ [0, ρ/2),
1 x ∈ [ρ/2, 1/2],
hρ(1− x) x ∈ (1/2, 1].

(3.15)

In Dahlhaus [21] (see also Dahlhaus [23]) it was shown that if ρ is fixed, then
the taper hT (t) is of degree (k, 0), and if ρ = ρT = T−κ/(k+1), then the taper
hT (t) is of degree (k, κ).

In Section 6 of Dahlhaus [21], the behavior of the tapered Whittle estima-
tors was studied for double indexed sequences of processes X(t, T ) ∈ X with
spectral density of the form (3.14), and taper functions hT (t) from the class
D(k, κ). Specifically, it was proved that if X(t, T ) is a sequence of stationary
Gaussian processes and hT (t) is a taper function from the class D(k, κ) satisfy-
ing limT→∞(TH4,T )/H

2
2,T = 1 (e.g., the polynomial taper in Example 3.1), then

the tapered Whittle estimator is Fisher efficient, and thus, it is equivalent to the
exact maximum likelihood estimator (for details see Theorem 6.3 in Dahlhaus
[21]). Moreover, it was proved that the classical non-tapered Whittle estimator
may even be inconsistent in the considered model (Dahlhaus [21], Theorem 7.1).
The same holds if strong troughs (values close to zero caused, e.g., by MA roots
close to the unit circle) are present in the spectrum (Dahlhaus [21], Theorem
7.2). This effect has been called the trough effect.

Remark 3.3. Observe that the Dahlhaus’ model is also of importance for the
study of long-range dependence. Recall that (see Section 2.1.4) long-range de-
pendence (or long memory), is normally assumed that the spectral density f(λ)
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has a singularity of the form |λ|−1+ε in the neighborhood of zero. Dahlhaus’
model includes spectral densities of the form (cf. (2.12)):

f(λ) = |1− (1− 1/T )e−iλ|−2sf∗
θ (λ), (3.16)

which for large T is approximately of the form |λ|−2sf∗
θ (λ) for mall λ (see

Dahlhaus [21], p. 816).

The bias and the edge effect. Edge effects are a serious problem in spatial statis-
tics because the number of boundary points increases with the dimension. As-
sume that a d.t. d-dimensional centered random field {X(t), t ∈ Z

d} is observed

on a rectangle PT := {1, . . . , T1}×· · ·×{1, . . . , Td} of sample size T :=
∏d

k=1 Tk.
Considering the usual parametric Whittle estimator, Guyon [59] observed that
if the estimator of the underlying unknown parameter is based on the sample
covariances cT (k), then there is a bias due to boundary (edge effect). If Tk → ∞
with the same speed in all directions, this bias is of order O(T−1/d), which is
for d ≥ 2 of the same order or a higher order as the standard deviation of cT (k)
which is usually O(T−1/2). To remedy this edge effect, Guyon [59] proposed the
use of an unbiased modification of sample covariances, c∗T (k), and gave a

√
T -

consistent and asymptotically normal estimator of the underlying parameter.
Dahlhaus and Künsch [26] observed that the Guyon estimator c∗N (k) has

some unpleasant properties. First, it is not always positive-definite so that the
spectral estimates based on c∗T (k) may be negative. The second disadvantage of
c∗T (k) is its large variance, particularly for larger lags. They showed that these
disadvantages of c∗N (k) can be avoided and nevertheless get an asymptotically
negligible bias by using the data tapers (for details see Dahlhaus and Künsch
[26], Theorem 1). In Anh et al. [5] was discussed the bias and edge effect for
estimators of spectral functionals both for d.t. and c.t. cases. It was shown that
under some smoothness conditions imposed on the taper function h the bias is
of order O(T−2) (for details see Anh et al. [5], Theorem 2.1). Notice that the
edge effect for Whittle estimator for a class of long-memory stationary Gaussian
fields was discussed in Ludeña and Lavielle [71].

4. Nonparametric estimation problem

Suppose we observe a finite realizationXT := {X(u), 0 ≤ u ≤ T (or u = 1, . . . , T
in the d.t. case)} of a centered stationary processX(u) with an unknown spectral
density function f(λ), λ ∈ Λ. We assume that f(λ) belongs to a given (infinite-
dimensional) class F ⊂ Lp := Lp(Λ) (p ≥ 1) of spectral densities possessing
some specified smoothness properties. The problem is to estimate the value
J(f) of a given functional J(·) at an unknown ‘point’ f ∈ F on the basis of
an observation XT , and investigate the asymptotic (as T → ∞) properties of
the suggested estimators, depending on the dependence structure of the model
X(u) and the smoothness structure of the ‘parametric’ set F ⊂ Lp(Λ) (p ≥ 1).

Linear and non-linear functionals of the periodogram play a key role in the
parametric estimation of the spectrum of stationary processes, when using the
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minimum contrast estimation method with various contrast functionals (see,
e.g., Anh et al. [4], Dzhaparidze [30], Ginovyan [36, 38, 39, 42, 43], Guyon
[60], Leonenko and Sakhno [70], Taniguchi and Kakizawa [79], and references
therein). In this section, we review the asymptotic properties, involving asymp-
totic unbiasedness, bias rate convergence, consistency, a central limit theorem
and asymptotic normality of the empirical spectral functionals based on the
tapered data. Some of these properties were discussed and proved in Ginovyan
and Sahakyan [52, 53]. For non-tapered case, these properties were established
in the papers Ginovyan [38, 42]. The results stated in this section are used to
prove consistency and asymptotic normality of the minimum contrast estima-
tor based on the Whittle contrast functional for stationary linear models with
tapered data (see Section 5). Here we follow the papers Ginovyan [39, 42, 43],
and Ginovyan and Sahakyan [52, 53].

4.1. Estimation of linear spectral functionals

We are interested in the nonparametric estimation problem, based on the ta-
pered data (3.5), of the following linear spectral functional:

J = J(f, g) :=

∫
Λ

f(λ)g(λ)dλ, (4.1)

where g(λ) ∈ Lq(Λ), 1/p+ 1/q = 1.
As an estimator Jh

T for functional J(f), given by (4.1), based on the tapered
data (3.5), we consider the averaged tapered periodogram (or a simple ‘plug-in’
statistic), defined by

Jh
T = J(IhT , g) :=

∫
Λ

IhT (λ)g(λ)dλ, (4.2)

where IhT (λ) is the tapered periodogram of the process X(t) given by (3.10).
Denote

Qh
T :=

⎧⎨⎩
∑T

t=1

∑T
s=1 ĝ(t− s)hT (t)hT (s)X(t)X(s) in the d.t. case,∫ T

0

∫ T

0
ĝ(t− s)hT (t)hT (s)X(t)X(s) dt ds in the c.t. case,

(4.3)

where ĝ(t) is the Fourier transform of function g(λ):

ĝ(t) :=

∫
Λ

eiλtg(λ)dλ, t ∈ Λ. (4.4)

In view of (3.10) and (4.2) – (4.4) we have

Jh
T = C−1

T Qh
T , (4.5)

where CT is as in (3.11). We will refer to g(λ) and to its Fourier transform ĝ(t) as
a generating function and generating kernel for the functional Jh

T , respectively.
Thus, to study the asymptotic properties of the estimator Jh

T , we have to
study the asymptotic distribution (as T → ∞) of the tapered Toeplitz type
quadratic functional Qh

T given by (4.3) (for details see Section 7.2).
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4.2. Asymptotic unbiasedness

We begin with the following assumption.

Assumption 4.1. The function

Ψ(u) =

∫
Λ

f(v)g(u+ v) dv (4.6)

belongs to L1(Λ) ∩ L2(Λ) and is continuous at u = 0.

Theorem 4.1. Let the functionals J := J(f, g) and Jh
T := J(IhT , g) be defined

by (4.1) and (4.2), respectively. Then under Assumptions 3.1 and 4.1 the statis-
tic Jh

T is an asymptotically unbiased estimator for J(f), that is, the following
relation holds:

lim
T→∞

[E(Jh
T )− J ] = 0. (4.7)

Remark 4.1. Using Hölder inequality, it can easily be shown that if f ∈ L1(Λ)∩
Lp1(Λ) and g ∈ L1(Λ)∩Lp2(Λ) with 1 ≤ p1, p2 ≤ ∞, 1/p1 + 1/p2 ≤ 1, then the
relation (4.7) is satisfied.

Under additional smoothness conditions on functions f(λ) and g(λ) we can
estimate the rate of convergence in (4.7). To state the corresponding result, we
first introduce some notation and assumptions.

Given numbers p ≥ 1, 0 < α < 1, r ∈ N0 := N ∪ {0}, where N is the set of
natural numbers, we set β = α + r and denote by Hp(β) the Lp-Hölder class,
that is, the class of those functions ψ(λ) ∈ Lp(Λ), which have r-th derivatives
in Lp(Λ) and with some positive constant C satisfy

||ψ(r)(·+ h)− ψ(r)(·)||p ≤ C|h|α.

Assumption 4.2. We say that a pair of integrable functions (f(λ), g(λ)), λ ∈ Λ,
satisfies condition (H), and write (f, g) ∈ (H), if f ∈ Hp(β1) for β1 > 0, p > 1
and g ∈ Hq(β2) for β2 > 0, q > 1 with 1/p+1/q = 1, and one of the conditions
a) – d) is satisfied:
a) β1 > 1/p, β2 > 1/q,
b) β1 ≤ 1/p, β2 ≤ 1/q and β1 + β2 > 1/2,
c) β1 > 1/p, 1/q − 1/2 < β2 ≤ 1/q,
d) β2 > 1/q, 1/p− 1/2 < β1 ≤ 1/p.

Remark 4.2. In Ginovian [38] it was proved that if (f, g) ∈ (H), then there
exist numbers p1 (p1 > p) and q1 (q1 > q), such that Hp(β1) ⊂ Lp1 , Hq(β2) ⊂
Lq1 and 1/p1 + 1/q1 ≤ 1/2.

Assumption 4.3. The spectral density f and the generating function g are
such that f, g ∈ L1(Λ) ∩ L2(Λ) (f, g ∈ L2(Λ) in the d.t. case) and g is of
bounded variation.
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The following theorem controls the bias E(Jh
T ) − J and provides sufficient

conditions assuring the proper rate of convergence of bias to zero, necessary for
asymptotic normality of the estimator Jh

T . Specifically, we have the following
result.

Theorem 4.2. Let the functionals J := J(f, g) and Jh
T := J(IhT , g) be defined

by (4.1) and (4.2), respectively. Then under Assumptions 3.1 and 4.2 (or 4.3),
the following asymptotic relation holds:

T 1/2
[
E(Jh

T )− J
]
→ 0 as T → ∞. (4.8)

Remark 4.3. We call an estimator Jh
T of J asymptotically unbiased of the order

of T β , β > 0 if limT→∞ T β [E(Jh
T )− J ] = 0. Thus, Theorem 4.2 states that the

statistic Jh
T is an asymptotically unbiased estimator for J of the order of T 1/2.

4.3. Consistency

Recall that an estimator Jh
T of J is said to be (a) consistent if Jh

T → J in
probability as T → ∞, (b) mean square consistent if E(Jh

T −J)2 → 0 as T → ∞,

(c)
√
T -consistent in the mean square sense if E

(
[
√
T (Jh

T − J)]2
)

= O(1) as

T → ∞,
To state the corresponding results we first introduce the following assump-

tion.

Assumption 4.4. (A) (d.t. case). The spectral density f(·) and the generating
function g(·) are such that f(·) ∈ Lp(Λ) (p ≥ 1) and g(·) ∈ Lq(Λ) (q ≥ 1) with
1/p+ 1/q ≤ 1/2

(B) (c.t. case). The spectral density f(·) and the generating function g(·) are
such that f(·) ∈ L1(Λ) ∩ Lp(Λ) (p ≥ 1) and g(·) ∈ L1(Λ) ∩ Lq(Λ) (q ≥ 1) with
1/p+ 1/q ≤ 1/2.

(C) (c.t. Lévy-driven case). The filter a(·), that is, the MA(∞) coefficients
(see (2.6)), and the generating kernel ĝ(·) are such that

a(·) ∈ L2(Λ) ∩ Lp(Λ), ĝ(·) ∈ Lq(Λ) with 1 ≤ p, q ≤ 2, 2/p+ 1/q ≥ 5/2.

We begin with a result on the asymptotic behavior of the variance Var(Jh
T ) =

E(Jh
T − E(Jh

T ))
2. The proof of the next theorem can be found in Ginovyan and

Sahakyan [52].

Theorem 4.3. Let the functionals J := J(f, g) and Jh
T := J(IhT , g) be defined by

(4.1) and (4.2), respectively. Then under Assumptions 3.1 and 4.4 the following
asymptotic relation holds:

lim
T→∞

TVar(Jh
T ) = σ2

h(J), (4.9)

where

σ2
h(J) := 4πe(h)

∫
Λ

f2(λ)g2(λ)dλ+ κ4e(h)

[∫
Λ

f(λ)g(λ)dλ

]2
. (4.10)
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Here κ4 is the fourth cumulant of ξ(1), and

e(h) := lim
T→∞

TH4,T

H2
2,T

. (4.11)

Observe that for c.t. case we have

e(h) = lim
T→∞

TH4,T

H2
2,T

=
H4

H2
2

=

∫ 1

0

h4(t)dt

(∫ 1

0

h2(t)dt

)−2

.

Remark 4.4. In the case where the underlying process X(t) is nonlinear for
the second term on the right-side of formula (4.10) we have an expresion in
terms of the tri-spectrum (the fourth order spectrum) of the process X(t) (see,
e.g., Dahlhaus [18], and Guyon [60], p.142).

From Theorems 4.1–4.3 we infer the following result.

Theorem 4.4. The following assertions hold.

(a) Under Assumptions 3.1, 4.1 and 4.4 the statistic Jh
T is a mean square

consistent estimator for J .
(b) Under Assumptions 3.1, 4.2 (or 4.3) and 4.4 the statistic Jh

T is a
√
T -

consistent in the mean square sense estimator for J .

4.4. Asymptotic normality

The next result contains sufficient conditions for functional Jh
T to obey the

central limit theorem (CLT), and was proved in Ginovyan and Sahakyan [52].

Theorem 4.5 (CLT). Let J := J(f, g) and Jh
T := J(IhT , g) be defined by (4.1)

and (4.2), respectively. Then under Assumptions 3.1 and 4.4 the functional Jh
T

obeys the central limit theorem. More precisely, we have

T 1/2
[
Jh
T − E(Jh

T )
] d→ η as T → ∞, (4.12)

where the symbol
d→ stands for convergence in distribution, and η is a normally

distributed random variable with mean zero and variance σ2
h(J) given by (4.10)

and (4.11).

Taking into account the equality

T 1/2
[
Jh
T − J

]
= T 1/2

[
E(Jh

T )− J
]
+ T 1/2

[
Jh
T − E(Jh

T )
]
, (4.13)

as an immediate consequence of Theorems 4.2 and 4.5, we obtain the next result
that contains sufficient conditions for a simple ‘plug-in’ statistic J(IhT ) to be an
asymptotically normal estimator for a linear spectral functional J .

Theorem 4.6. Let the functionals J := J(f, g) and Jh
T := J(IhT , g) be defined

by (4.1) and (4.2), respectively. Then under Assumptions 3.1, 4.2 (or 4.3) and
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4.4 the statistic Jh
T is an asymptotically normal estimator for functional J . More

precisely, we have

T 1/2
[
Jh
T − J

] d→ η as T → ∞, (4.14)

where η is as in Theorem 4.5, that is, η is a normally distributed random variable
with mean zero and variance σ2

h(J) given by (4.10) and (4.11).

Remark 4.5. Notice that if the underlying process X(u) is Gaussian (in this
case, κ4 = 0), then in formula (4.10) we have only the first term. Using the
results from Ginovyan [38] and Ginovyan and Sahakyan [47, 48], it can be
shown that in this case Theorem 4.6 is true under Assumptions 3.1 and 4.4.

Remark 4.6. In von Sachs [82] (see also Janas and von Sachs [69]) was consid-
ered nonparameric estimation problem for some non-linear integral functionals
of spectral density, using data-tapers. Consistency and asymptotic normality for
the corresponding non-linear functionals of the tapered periodogram was proved.
The obtained results were applied to the use of data-tapers in nonparametric
peak-insensitive spectrum estimation.

Example 4.1 (Estimation of covariance function). Assume that X(t) is a d.t.
process with spectral density f satisfying f ∈ L2(Λ), and let g(λ) = eiuλ, then

J(f) =

∫ π

−π

eiuλf(λ) dλ := r(u).

Thus, in this special case our problem becomes to the estimation of the co-
variance function r(u) = E[X(t + u)X(t)] of the process X(t). It is clear that
Assumptions 4.3 and 4.4(A) are satisfied, and we can apply Theorem 4.6 to
conclude that the simple “plug-in” statistic

Jh
T = r̂T (u) =

∫ π

−π

eiuλIhT (λ) dλ,

where h is a taper function satisfying Assumptions 3.1, is asymptotically normal
estimator for r(u) with asymptotic variance

σ2
u = 4πe(h)

∫ π

−π

cos2(uλ)f2(λ) dλ,

where e(h) is given by (4.11).

Example 4.2 (Estimation of spectral function). Assume that X(t) is as in
Example 4.1, that is, it is a d.t. process with spectral density f satisfying f ∈
L2(Λ), and let g(λ) = χ[0,μ](λ) be the indicator of an interval [0, μ], then

J(f) =

∫ π

−π

χ[0,μ](λ)f(λ) dλ =

∫ μ

0

f(λ) dλ := F (μ).
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Thus, in this case the estimand functional is the spectral function F (μ) of
the process X(u). It is clear that the assumptions of Theorem 4.6 are satisfied,
and hence we can conclude that the simple “plug-in” statistic

Jh
T = F̂T (μ) =

∫ μ

0

IhT (λ) dλ (4.15)

is asymptotically normal estimator for F (μ) with asymptotic variance

σ2(μ) = 4πe(h)

∫ μ

0

f2(s) ds,

where e(h) is given by (4.11).

5. Parametric Estimation Problem

We assume here that the spectral density f(λ) belongs to a given parametric
family of spectral densities F := {f(λ, θ) : θ ∈ Θ}, where θ := (θ1, . . . , θp)
is an unknown parameter and Θ is a subset in the Euclidean space R

p. The
problem of interest is to estimate the unknown parameter θ on the basis of the
tapered data (3.5), and investigate the asymptotic (as T → ∞) properties of
the suggested estimators, depending on the dependence (memory) structure of
the model X(t) and the smoothness of its spectral density f .

There are different methods of estimation: maximum likelihood, Whittle,
minimum contrast, etc. Here we focus on the Whittle method.

5.1. The Whittle estimation procedure

The Whittle estimation procedure, originally devised for d.t. short memory sta-
tionary processes, is based on the smoothed periodogram analysis on a fre-
quency domain, involving approximation of the likelihood function and asymp-
totic properties of empirical spectral functionals (see Whittle [84]). The Whittle
estimation method since its discovery has played a major role in the asymptotic
theory of parametric estimation in the frequency domain, and was the focus of
interest of many statisticians. Their aim was to weaken the conditions needed
to guarantee the validity of the Whittle approximation for d.t. short memory
models, to find analogues for long and intermediate memory models, to find
conditions under which the Whittle estimator is asymptotically equivalent to
the exact maximum likelihood estimator, and to extend the procedure to the
c.t. models and random fields.

For the d.t. case, it was shown that for Gaussian and linear stationary mod-
els the Whittle approach leads to consistent and asymptotically normal estima-
tors under short, intermediate and long memory assumptions. Moreover, it was
shown that in the Gaussian case the Whittle estimator is also asymptotically
efficient in the sense of Fisher (see, e. g., Dahlhaus [22], Dzhaparidze [29], Fox
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and Taqqu [33], Giraitis and Surgailis [56], Guyon [60], Heyde and Gay [64],
Taniguchi and Kakizawa [79], Walker [83], and references therein).

For c.t. models, the Whittle estimation procedure has been considered, for
example, in Anh et al. [4], Avram et al. [6], Casas and Gao [12], Dzhaparidze [29],
Dzhaparidze and Yaglom [32], Gao [34], Gao et al. [35], Leonenko and Sakhno
[70], Tsai and Chan [81], where can also be found additional references. In this
case, it was proved that the Whittle estimator is consistent and asymptotically
normal.

The Whittle estimation procedure based on the d.t. tapered data has been
studied in Alomari et al. [1], Dahlhaus [18, 19, 21], Dahlhaus and Künsch [26],
Guyon [60], Ludeña and Lavielle [71]. In the case where the underlying model is
a Lévy-driven c.t. linear process with possibly unbounded or vanishing spectral
density function, consistency and asymptotic normality of the Whittle estimator
was established in Ginovyan [45].

To explain the idea behind the Whittle estimation procedure, assume for sim-
plicity that the underlying process X(t) is a d.t. Gaussian process, and we want
to estimate the parameter θ based on the sample XT := {X(t), t = 1, . . . , T}. A
natural approach is to find the maximum likelihood estimator (MLE) θ̂T,MLE

of θ, that is, to maximize the likelihood function, or to minimize the −1/T×log-
likelihood function LT (θ), which in this case takes the form:

LT (θ) :=
1

2
ln 2π +

1

2T
ln detBT (fθ) +

1

2T
X′

T [BT (fθ)]
−1XT ,

where BT (fθ) is the Toeplitz matrix generated by fθ (i.e. the covariance matrix
of X(t)). Unfortunately, the above function is difficult to handle, and no ex-

plicit expression for the estimator θ̂T,MLE is known (even in the case of simple
models). An approach, suggested by P. Whittle, called the Whittle estimation
procedure, is to approximate the term ln detBT (fθ) by T

2

∫ π

−π
ln fθ(λ)dλ and

the inverse matrix [BT (fθ)]
−1 by the Toeplitz matrix BT (1/fθ). This leads to

the following approximation of the log-likelihood function LT (θ), introduced by
Whittle [84], and called Whittle functional:

LT,W (θ) =
1

4π

∫ π

−π

[
ln fθ(λ) +

IT (λ)

fθ(λ)

]
dλ, (5.1)

where IT (λ) is the ordinary periodogram of the process X(t) defined by (3.1).
Now minimizing the Whittle functional LT,W (θ) with respect to θ, we get

the Whittle estimator θ̂T for θ. It can be shown that if

T 1/2(LT (θ)− LT,W (θ) → 0 as n → ∞ in probability,

then the MLE θ̂T,MLE and the Whittle estimator θ̂T are asymptotically equiva-

lent in the sense that θ̂T also is consistent, asymptotically normal and asymptot-
ically Fisher-efficient (see, e.g., Coursol and Dacunha-Castelle [15], Dzhaparidze
[29], Dzhaparidze [30] (p.114), and Dzhaparidze and Yaglom [32]).
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In the continuous context, the Whittle procedure of estimation of a spectral
parameter θ based on the sample XT := {X(t), 0 ≤ t ≤ T} is to choose the

estimator θ̂T to minimize the weighted Whittle functional:

UT (θ) :=
1

4π

∫
R

[
ln f(λ, θ) +

IT (λ)

f(λ, θ)

]
· w(λ) dλ, (5.2)

where IT (λ) is the continuous periodogram of X(t), and w(λ) is a weight func-
tion (w(−λ) = w(λ), w(λ) ≥ 0, w(λ) ∈ L1(R)) for which the integral in (5.2) is
well defined. An example of common used weight function is w(λ) = 1/(1+λ2).

The Whittle procedure of estimation of a spectral parameter θ based on the
tapered sample (3.5) is to choose the estimator θ̂T,h to minimize the weighted
tapered Whittle functional:

UT,h(θ) :=
1

4π

∫
Λ

[
log f(λ, θ) +

IhT (λ)

f(λ, θ)

]
· w(λ) dλ, (5.3)

where IhT (λ) is the tapered periodogram of X(t), given by (3.10), and w(λ) is
a weight function for which the integral in (5.3) is well defined (in the d.t. case

as a weight function we take w(λ) ≡ 1). Thus, the Whittle estimator θ̂T,h of θ
based on the tapered sample (3.5) is defined by

θ̂T,h := Argmin
θ∈Θ

UT,h(θ), (5.4)

where UT,h(θ) is given by (5.3).

Remark 5.1. In connection with theWhittle approximation to the log-likelihood
function, Dahlhaus [24] has discussed several approximations for the inverse of
the Toeplitz matrix [BT (fθ)]

−1 (i.e. the covariance matrix). In particular, he
proved that for his increasing class of stochastic processes X and the class of
taper functions D(k, κ) (see Section 3.3), a taper function h ∈ D(k, κ) can be
chosen so that the tapered Toeplitz matrix Bh

T (1/fθ) is a better approximation
for the inverse [BT (fθ)]

−1 than the nontapered Toeplitz matrix BT (1/fθ).

Remark 5.2. In the c.t. case approximation of the likelihood function, similar
to the Whittle approximation (5.1), becomes a complicated problem. The issue
is that unlike the d..t. case, in the c.t. case there is no a measure analogous
to the Lebesgue measure with respect to which the probability distributions of
the observed process are absolutely continuous. We thus have to compute the
density of the probability distribution of the sample with respect to some fixed
dominating measure. Specifically, let {X(t), t ∈ R} be a c.t. Gaussian process,
XT := {X(t), 0 ≤ t ≤ T}, and let PT = PT (θ) be the related Gaussian measure
defined on the space of functions of t (0 ≤ t ≤ T ). Then the likelihood pT (XT )

is defined here as the Radon-Nikodym derivative dPT /dP
(0)
T of the measure PT

with respect to some standard dominating measure P
(0)
T on the same space.

Hence both the likelihood pT (XT ) and the log-likelihood LT (XT ) := ln pT (XT )
are functionals depending on XT .
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To the best of our knowledge, the equation (similar to the Whittle equation
(5.1)) for the main part LT,W of the log-likelihood LT , has been derived rigor-
ously so far only for a very special class of c.t. Gaussian stationary processes
with everywhere positive rational spectral densities of the form (2.10) (i.e. for
the class of Gaussian CARMA processes). For details, see Pisarenko [75] (see
also Dzhaparidze [29], and Dzhaparidze and Yaglom [32].

5.2. Asymptotic properties of the Whittle estimator

To state results involving properties of the Whittle estimator, we first introduce
the following set of assumptions.

Assumption 5.1. The true value θ0 of the parameter θ belongs to a compact
set Θ in the p-dimensional Euclidean space Rp, and f(λ, θ1) 
= f(λ, θ2) whenever
θ1 
= θ2 almost everywhere in Λ with respect to the Lebesgue measure.

Assumption 5.2. The functions f(λ, θ), f−1(λ, θ) and ∂
∂θk

f−1(λ, θ), k=1, . . . , p,

are continuous in (λ, θ).

Assumption 5.3. The functions f := f(λ, θ) and g := w(λ) ∂
∂θk

f−1(λ, θ) satisfy
Assumptions 4.2 or 4.3 for all k = 1, . . . , p and θ ∈ Θ.

Assumption 5.4. The functions f , g, a := a(λ, θ) (the MA(∞) coefficients)
and b := ĝ, where g is as in Assumption 5.3, satisfy Assumption 4.4.

Assumption 5.5. The functions ∂2

∂θk∂θj
f−1(λ, θ) and ∂3

∂θk∂θj∂θj
f−1(λ, θ), k, j, l=

1, . . . , p, are continuous in (λ, θ) for λ ∈ Λ, θ ∈ Nδ(θ0), where Nδ(θ0) := {θ :
|θ − θ0| < δ} is some neighborhood of θ0.

Assumption 5.6. The matrices

W (θ) := ‖wij(θ)‖, A(θ) := ‖aij(θ)‖, B(θ) := ‖bij(θ)‖, i, j = 1, . . . , p (5.5)

are positive definite, where

wij(θ) =
1

4π

∫
Λ

∂

∂θi
ln f(λ, θ)

∂

∂θj
ln f(λ, θ)w(λ)dλ, (5.6)

aij(θ) =
1

4π

∫
Λ

∂

∂θi
ln f(λ, θ)

∂

∂θj
ln f(λ, θ)w2(λ)dλ, (5.7)

bij(θ) =
κ4

16π2

∫
Λ

∂

∂θi
ln f(λ, θ)w(λ)dλ

∫
Λ

∂

∂θj
ln f(λ, θ)w(λ)dλ, (5.8)

and κ4 is the fourth cumulant of ξ(1).

The next theorem contains sufficient conditions for the tapered Whittle esti-
mator to be consistent (see Ginovyan [45]).

Theorem 5.1. Let θ̂T,h be the tapered Whittle estimator defined by (5.4) and let
θ0 be the true value of parameter θ. Then, under Assumptions 5.1–5.4 and 3.1,
the statistic θ̂T,h is a consistent estimator for θ, that is, θ̂T,h → θ0 in probability
as T → ∞.
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Having established the consistency of the Whittle estimator θ̂T,h, we can go

on to obtain the limiting distribution of T 1/2
(
θ̂T,h − θ0

)
in the usual way by

applying the Taylor’s formula, the mean value theorem, and Slutsky’s argu-
ments. Specifically we have the following result, showing that under the above
assumptions, the tapered Whittle estimator θ̂T,h is asymptotically normal (see
Ginovyan [45]).

Theorem 5.2. Suppose that Assumptions 5.1–5.6 and 3.1 are satisfied. Then
the Whittle estimator θ̂T,h of an unknown spectral parameter θ based on the
tapered data (3.5) is asymptotically normal. More precisely, we have

T 1/2
(
θ̂T,h − θ0

)
d→ Np (0, e(h)Γ(θ0)) as T → ∞, (5.9)

where Np(·, ·) denotes the p-dimensional normal law,
d→ stands for convergence

in distribution,

Γ(θ0) = W−1(θ0) (A(θ0) +B(θ0))W
−1(θ0), (5.10)

where the matrices W , A and B are defined in (5.5)-(5.8), and the tapering
factor e(h) is given by formula (4.11).

Remark 5.3 (The variance effect). Since tapering of the data, roughly speak-
ing, reduces the effective length of the data, it is not surprising that in the clas-
sical asymptotic setting, the corresponding tapered estimators, generally, will
have larger variances than their non-tapered counterparts. Specifically, using
the Cauchy-Schwartz inequality for the tapering factor e(h) (defined by formula
(4.11)) we have e(h) ≥ 1, and the equality is attained in the non-tapered case,
that is, for h(t) = I[0,1](t). Thus, the use of tapers, generally, will result in an
efficiency loss. However, as it was observed by Dahlhaus [23] (p.156, 161), ‘it is
not correct to conclude from this that tapering always increases the variance of
the estimators’, because a taper function h can be chosen to satisfy e(h) = 1.

In the classical asymptotic setting, for d.t. processes it is possible to choose
the taper function hT (t) := hT (t/T ) so that the corresponding tapered estimator
will be asymptotically efficient. To clarify this in the next corollary we consider
an important subclass of tapers (cf. Dahlhaus [19], Corollary 2.3).

Corollary 5.1. Suppose in addition to the assumptions of Theorem 5.2 that
the process X(t) (t ∈ Z) is Gaussian and that hT (t) := hT (t/T ) with continuous
functions hT : [0, 1] → [0,∞) of uniformly bounded variation BV (hT ) that con-
verge almost everywhere to a function h(x). Then the tapered Whittle estimator

θ̂T,h is asymptotically efficient if and only if h(x) = 1 almost everywhere.

Remark 5.4. In Dzaparidze and Yaglom [32] (p.68) it was shown that in the
non-tapered d.t. case the covariance structure (5.10) in Theorem 5.2 is the
smallest obtainable for a large class of estimators even in the non-Gaussian case.
Using this result, Corollary 5.1 can also be extended to the case of non-Gaussian
processes (see also Dahlhaus [19]).
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Remark 5.5. In the d.t. case as a weight function we take w(λ) ≡ 1, and the
matrices A(θ0) and W (θ0) coincide (see (5.5) – (5.7)). So, in this case, formula
(5.10) becomes Γ(θ0) = W−1(θ0) (W (θ0) +B(θ0))W

−1(θ0). If, in addition,
B(θ0) = 0 and the taper is as in Corollary 5.1, then we have e(h) = 1 and Γ(θ0) =

W−1(θ0), that is, the tapered Whittle estimator θ̂T,h is asymptotically efficient
(cf. Theorem 6.3 of Dahlhaus [20]). For example, for the polynomial taper in
Example 3.1, we have hρT

(x) → I[0,1](x) and e(h) = limT→∞(TH4,T )/H
2
2,T = 1

(see Dahlhaus [23]), and thus the corresponding tapered Whittle estimator θ̂T,h

is asymptotically efficient.

Remark 5.6. In view of the definition of the matrix B(θ)) (see (5.5), (5.8))
for d.t. processes (w(λ) ≡ 1), the equality B(θ) = 0 holds in the following two
cases (cf. Dahlhaus and Janas [25]).
Case 1. κ4 = 0. This condition is fulfilled, for example, if the innovations are
assumed to be Gaussian.
Case 2.

∫
Λ

∂
∂θ ln f(λ, θ)dλ = 0. This condition holds for several parametrizations,

which can be deduced from Kolmogorov’s formula (cf. Brockwell and Davis [11],
Section 5.8).

6. Goodness-of-fit tests

In this section we consider the following problem of hypotheses testing.
Based on the tapered sample Xh

T given by (3.5), we want to construct good-
ness-of-fit tests for testing a hypothesis H0 that the spectral density of the
process X(t) has the specified form f(λ). We will distinguish the following two
cases.

a) The hypothesis H0 is simple, that is, the hypothetical spectral density
f(λ) of X(t) does not depend on unknown parameters.

b) The hypothesis H0 is composite, that is, the hypothetical spectral density
f(λ) of X(t) depends on an unknown p–dimensional vector parameter
θ = (θ1, . . . , θp), that is, f(λ) = f(λ, θ), λ ∈ Λ, θ ∈ Θ ⊂ R

p.

The above stated problem in the non-tapered case has been considered by
many authors for different models. For instance, for independent observations,
the problem was considered in Chernov and Lehman [13], Chibisov [14], Cramer
[16], and Dzhaparidze and Nikulin [31]. For observations generated by d.t. Gaus-
sian stationary processes it was considered in Dzhaparidze [30], Ginovyan [41],
Hannan [61], and Osidze [73, 74]. For c.t. Gaussian stationary observations, the
problem was discussed in Ginovyan [44] and Osidze [73, 74]. For tapered case
the problem has been considered in Ginovyan [46].

To test the hypothesis H0, similar to the non-tapered case, it is natural to
introduce a measure of divergence (disparity) of the hypothetical and empirical
spectral densities, and construct a goodness-of-fit test based on the distribution
of the chosen measure (see, e.g., Dzhaparidze [30], Ginovyan [41, 44, 46], Hannan
[61], and Osidze [73, 74]).
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6.1. A Goodness-of-fit test for simple hypothesis

We first consider the relatively easy case a) of a simple hypothesis H0. As a
measure of divergence of the hypothetical spectral density f(λ) and the tapered
empirical spectral density IhT (λ), we consider the m–dimensional random vector

Φh
T :=

(
Φh

1T , . . . ,Φ
h
mT

)
(6.1)

with elements

Φh
jT : = ΦjT (X

h
T ) =

√
T√

4πe(h)

∫
Λ

[
IhT (λ)

f(λ)
− 1

]
ϕj(λ)dλ, j = 1, 2, . . . ,m,

(6.2)
where e(h) is as in (4.11) and {ϕj(λ), j = 1, 2, . . . ,m} is some orthonormal
system on Λ: ∫

Λ

ϕk(λ)ϕj(λ) dλ = δkj =

{
1 for k = j,

0 for k 
= j.
(6.3)

In Ginovyan [46] it was shown that under wide conditions on f(λ) and ϕj(λ),
the random vector Φh

T in (6.1) – (6.2) has asymptotically N(0, Im)–normal dis-
tribution as T → ∞, where Im is the m ×m identity matrix. Therefore in the
case of simple hypothesis H0, we can use the statistic

Sh
T = ST (X

h
T ) := Φ′

T (X
h
T )ΦT (X

h
T ) =

m∑
j=1

Φ2
jT (X

h
T ), (6.4)

which for T → ∞ will have a χ2–distribution with m degrees of freedom.
Thus, fixing an asymptotic level of significance α we can consider the class of

goodness-of-fit tests for testing the simple hypothesis H0 about the form of the
spectral density f with asymptotic level of significance α determined by critical
regions of the form:

{Xh
T : ST (X

h
T ) > dα},

where ST (X
h
T ) is given by (6.4), and dα is the α-quantile of χ2–distribution with

m degrees of freedom, that is, dα is determined from the condition:

P (χ2 > dα) =

∫ ∞

dα

km(x) dx = α,

where km(x) is the density of χ2–distribution with m degrees of freedom.
The next theorem contains sufficient conditions for statistic Sh

T , given by
(6.4), to have a limiting (as T → ∞) χ2–distribution with m degrees of freedom
(see Ginovyan [46]).

Theorem 6.1. Let the spectral density f(λ) and the orthonormal functions
{ϕj(λ), j = 1, 2, . . . ,m} be such that (f, gj) ∈ (H) for all j = 1, 2, . . . ,m, where
gj = ϕj/f (see Assumption 4.2). Then under Assumption 3.1 the limiting (as
T → ∞) distribution of the statistic Sh

T = ST (X
h
T ) given by (6.4) is a χ2–

distribution with m degrees of freedom.
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Remark 6.1. For the non-tapered case, for observations generated by d.t.
short-memory Gaussian stationary processes the result of Theorem 6.1 was first
proved in Hannan [61] (p. 94) (see, also, Dzhaparidze [30] and Osidze [73, 74]).
In the case where the spectral density has singularities (zeros and/or poles), the
result for d.t. processes was proved in Ginovyan [41]. The non-tapered counter-
part of Theorem 6.1 for c.t. processes was proved in Ginovyan [44].

6.2. A Goodness-of-fit test for composite hypothesis

Now we consider the case of composite hypothesis H0, and assume that the
hypothetical spectral density f = f(λ, θ) is known with the exception of a vector
parameter θ := (θ1, . . . , θp) ∈ Θ ⊂ R

p. In this case, the problem of construction
of goodness-of-fit tests becomes more complex, because we first have to choose an
appropriate statistical estimator θ̂T for the unknown parameter θ, constructed
on the basis of the tapered sample (3.5). It is important to remark that in this
case the limiting distribution of the test statistic will change in accordance with
properties of an estimator of θ, and generally will not be a χ2–distribution.

For testing a composite hypothesis H0, we again can use a statistic of type
(6.4), but with a statistical estimator θ̂T instead of unknown θ. The correspond-
ing statistic can be written as follows:

Sh
T (θ̂T ) = ST (X

h
T , θ̂T ) := Φ′

T (X
h
T , θ̂T )ΦT (X

h
T , θ̂T ) =

m∑
j=1

Φ2
jT (X

h
T , θ̂T ), (6.5)

where now

Φh
T (X

h
T , θ̂T ) :=

(
Φ1T (X

h
T , θ̂T ), . . . ,ΦmT (X

h
T , θ̂T )

)
with elements

ΦjT (X
h
T , θ̂T ) : =

√
T√

4πe(h)

∫
Λ

[
IhT (λ)

f(λ, θ̂T )
− 1

]
ϕj(λ)dλ, j = 1, 2, . . . ,m. (6.6)

So, we must choose an appropriate statistical estimator θ̂T for unknown θ,
and determine the limiting distribution of the statistic (6.5). Then, having the
limiting distribution of the statistic (6.5), for given level of significance α we can
consider the class of goodness-of-fit tests for testing the composite hypothesis
H0 about the form of the spectral density f with asymptotic level of significance
α determined by critical regions of the form:

{Xh
T : ST (X

h
T , θ̂T ) > dα},

where dα is the α-quantile of the limiting distribution of the statistic (6.5), that
is, dα is determined from the condition:∫ ∞

dα

k̂m(x) dx = α,
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where k̂m(x) is the density of the limiting distribution of Sh
T (θ̂T ) defined by

(6.5).
To state the corresponding result we first introduce the following set of as-

sumptions:

Assumption 6.1. For θ ∈ Θ, (f, gj) ∈ (H) for all j = 1, 2, . . . ,m, where
f := f(λ, θ) and gj := ϕj(λ)/f(λ, θ).

Assumption 6.2. For θ ∈ Θ, (f, hkj) ∈ (H) for all k = 1, 2, . . . , p and j =

1, 2, . . . ,m, where f := f(λ, θ) and hkj :=
ϕj(λ)

f(λ, θ)

∂

∂θk
ln f(λ, θ).

Assumption 6.3. The (p× p)–matrix Γ(θ0) = ||γkj(θ0)||k,j=1,p with elements

γkj(θ0) :=
1

4π

∫
Λ

[
∂

∂θk
ln f(λ, θ)

]
θ=θ0

[
∂

∂θj
ln f(λ, θ)

]
θ=θ0

dλ (6.7)

is non-singular.

Assumption 6.4. There exists a
√
T–consistent estimator θ̂T for the parameter

θ such that the following asymptotic relation holds:
√
T (θ̂T − θ0)− Γ−1(θ0)ΔT (θ0) = oP (1), (6.8)

where Γ−1(θ0) is the inverse of the matrix Γ(θ0) defined in Assumption 6.3, and

ΔT (θ) := Δh
T (θ) =

(
Δ1T (θ), . . . ,ΔpT (θ)

)
(6.9)

is a p-dimensional random vector with components

ΔkT (θ) : =

√
T√

4πe(h)

∫
Λ

[
IhT (λ)

f(λ, θ)
− 1

]
∂

∂θk
ln f(λ, θ) dλ, k = 1, . . . , p. (6.10)

The term oP (1) in (6.8) tends to zero in probability as T → ∞. (Recall that

an estimator θ̂T for θ is called
√
T–consistent if

√
T (θ̂T − θ) is bounded in

probability).

Remark 6.2. As an estimator θ̂T for θ satisfying (6.8) can be considered min-
imum contrast estimators (in particular, the Whittle estimator) based on the
tapered data. Minimum contrast estimators based on the tapered data for d.t.
processes have been studied in Dahlhaus [18, 20, 19], for Gaussian c.t. processes
in Ginovyan [45], and for some classes of c.t. non-Gaussian processes in Alomari
et al [1].

Let B(θ) := Bh(θ) = ||bjk(θ)||, j = 1, · · · ,m, k = 1, · · · , p, be a (m × p)–
matrix with elements

bjk(θ) :=
1√

4πe(h)

∫
Λ

ϕj(λ)
∂

∂θk
ln f(λ, θ) dλ, (6.11)

where ϕj(λ) (j = 1, 2, . . . ,m) are the functions from (6.2), and e(h) is as in
(4.11).

The following theorem was proved in Ginovyan [46].
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Theorem 6.2. Under Assumptions 3.1, 5.1 and 6.1–6.4 the limiting distribu-
tion (as T → ∞) of the statistic ST (X

h
T , θ̂T ) given by (6.5), coincides with the

distribution of the random variable

m−p∑
j=1

ξ2j +

p∑
j=1

νj ξ
2
m−p+j ,

where ξj, j = 1, 2, . . . ,m, are iid N(0, 1) random variables, while the numbers
νk (0 ≤ νk < 1), k = 1, 2, . . . , p, are the roots relative to ν of the following
equation:

det [(1− ν)Γ(θ0)−B′(θ0)B(θ0)] = 0. (6.12)

Remark 6.3. For the non-tapered case, for independent observations the re-
sult of Theorem 6.2 was first obtained by Chernov and Lehman [13] (see, also,
Chibisov [14]). For observations generated by d.t. short-memory Gaussian sta-
tionary processes the result was stated in Osidze [73] (see, also, Dzhaparidze
[30]). In the case where the spectral density has singularities, the result for d.t.
processes was proved in Ginovyan [41]. The non-tapered counterpart of Theorem
6.2 for c.t. processes was proved in Ginovyan [44].

Example 6.1. Let X(t) be a d.t. Autoregressive Process of order p (AR(p)),
that is, X(t) is a stationary process with the spectral density f(λ) = 1

2π ·∣∣αp(e
−iλ)

∣∣−2
, where αp(z) = 1− θ1z − · · · − θpz

p. Consider the functions ϕj(λ)

(j = 1, . . . ,m) defined by ϕj(λ) := ceijλαp(e
−iλ)

∣∣αp(e
−iλ)

∣∣−1
for j > p and

ϕj(λ) := 0 for j ≤ p, where c is a normalizing constant. As an estimator of
θ := (θ1, . . . , θp) consider the Whittle estimator, and as a taper the Tukey-
Hanning taper function h(t) (see Remark 3.2). Then it is easy to check that the
conditions of Theorem 6.2 are satisfied and B(θ) = 0. Therefore, the limiting
(as T → ∞) distribution of the statistic in (6.5) is a χ2–distribution with m− p
degrees of freedom.

7. Methods and tools

In this section we briefly discuss the methods and tools, used to prove the results
stated in Sections 4–6.

7.1. Approximation of traces of products of Toeplitz matrices and
operators.

The trace approximation problem for truncated Toeplitz operators and matrices
has been discussed in detail in the survey paper Ginovyan et al. [54] in the non-
tapered case. Here we present some important results in the tapered case, which
were used to prove the results stated in Sections 4–6.

Let ψ(λ) be an integrable real symmetric function defined on [−π, π], and
let h(t), t ∈ [0, 1] be a taper function. For T = 1, 2, . . ., the (T × T )-truncated
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tapered Toeplitz matrix generated by ψ and h, denoted by Bh
T (ψ), is defined by

the following equation:

Bh
T (ψ) := ‖ψ̂(t− s)hT (t)hT (s)‖, t, s = 1, 2 . . . , T , (7.1)

where ψ̂(t) (t ∈ Z) are the Fourier coefficients of ψ.
Given a real number T > 0 and an integrable real symmetric function ψ(λ)

defined on R, the T -truncated tapered Toeplitz operator (also called tapered
Wiener-Hopf operator) generated by ψ and a taper function h, denoted by
Wh

T (ψ) is defined as follows:

[Wh
T (ψ)u](t) =

∫ T

0

ψ̂(t− s)u(s)hT (s)ds, u(s) ∈ L2([0, T ];hT ), (7.2)

where ψ̂(·) is the Fourier transform of ψ(·), and L2([0, T ];hT ) denotes the
weighted L2-space with respect to the measure hT (t)dt.

Let h be a taper function satisfying Assumption 3.1, and let Ah
T (ψ) be either

the T × T tapered Toeplitz matrix Bh
T (ψ), or the T -truncated tapered Toeplitz

operator Wh
T (ψ) generated by a function ψ (see (7.1) and (7.2)).

Observe that, in view of (3.7), (3.8) (3.11), (3.12), (7.1) and (7.2), we have

1

T
tr
[
Ah

T (ψ)
]
=

1

T
· 2πH2,T (0) · ψ̂(0) = 2πH2

∫
Λ

ψ(λ)dλ. (7.3)

What happens to the relation (7.3) when Ah
T (ψ) is replaced by a product of

Toeplitz matrices (or operators)? Observe that the product of Toeplitz matrices
(resp. operators) is not a Toeplitz matrix (resp. operator).

The idea is to approximate the trace of the product of Toeplitz matrices
(resp. operators) by the trace of a Toeplitz matrix (resp. operator) generated by
the product of the generating functions. More precisely, let {ψ1, ψ2, . . . , ψm} be
a collection of integrable real symmetric functions defined on Λ. Let Ah

T (ψi) be
either the T × T tapered Toeplitz matrix Bh

T (ψi), or the T -truncated tapered
Toeplitz operator Wh

T (ψi) generated by a function ψi and a taper function h.
Define

SA,H,h(T ) :=
1

T
tr

[
m∏
i=1

Ah
T (ψi)

]
, MΛ,H,h := (2π)m−1Hm

∫
Λ

[
m∏
i=1

ψi(λ)

]
dλ,

where Hm is as in (3.12), and let

Δ(T ) := ΔA,Λ,H,h(T ) = |SA,H,h(T )−MΛ,H,h|. (7.4)

Proposition 7.1. Let Δ(T ) be as in (7.4). Each of the following conditions is
sufficient for

Δ(T ) = o(1) as T → ∞. (7.5)

(C1) ψi ∈ L1(Λ) ∩ Lpi(Λ), pi > 1, i = 1, 2, . . . ,m, with 1/p1 + · · ·+ 1/pm ≤ 1.
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(C2) The function ϕ(u) defined by

ϕ(u) : =

∫
Λ

ψ1(λ)ψ2(λ− u1)ψ3(λ− u2) · · ·ψm(λ− um−1) dλ, (7.6)

where u = (u1, u2, . . . , um−1) ∈ Λm−1, belongs to Lm−2(Λm−1) and is
continuous at 0 = (0, 0, . . . , 0) ∈ Λm−1.

Remark 7.1. In the non-tapered case, Proposition 7.1 was proved in Ginovyan
et al. [54], while in the tapered case, it was proved in Ginovyan [46]. Proposition
7.1 was used to prove Theorems 4.5, 4.6, 5.2 and 6.2.

Remark 7.2. More results concerning the trace approximation problem for
truncated Toeplitz operators and matrices can be found in Ginovyan and Sa-
hakyan [49, 50], and in Ginovyan et al. [54].

7.2. Central limit theorems for tapered quadratic functionals

In this subsection we state central limit theorems for tapered quadratic func-
tional Qh

T given by (4.3), which were used to prove the results stated in Sections
4–6 (see, e.g., Ginovyan [38], Ginovyan and Sahakyan [48, 49, 50, 52]).

Let Ah
T (f) be either the T × T tapered Toeplitz matrix Bh

T (f), or the T -
truncated tapered Toeplitz operator Wh

T (f) generated by the spectral density
f and taper h, and let Ah

T (g) denote either the T × T tapered Toeplitz matrix,
or the T -truncated tapered Toeplitz operator generated by the functions g and
h (for definitions see formulas (7.1) and (7.2)).

Remark 7.3. Observe that Ah
T (f) is the covariance matrix in the d.t. case and

the covariance operator in the c.t. case, and so is positive definite, while Ah
T (g)

need not be positive definite. Also, in view of (7.1) and (7.2)), the quadratic
functional Qh

T in (4.3) can be represented in terms of Ah
T (g) as follows:

Qh
T =

(
Ah

T (g)XT ,XT

)
, (7.7)

where XT := {X(t), t ∈ DT } with DT := [0, T ] in the c.t. case and DT :=
{1, . . . , T} in the d.t. case.

Similar to the non-tapered case, for the distribution of the quadratic func-
tional Qh

T we have the following result (cf. Ginovyan et al. [54], Grenander and
Szegő [57], Ibragimov [65]).

1. The quadratic functional Qh
T in (7.7) has the same distribution as the

sum
∑∞

j=1 λj,T ξ
2
j , where {ξj , j ≥ 1} are independent N(0, 1) Gaussian

random variables and {λj,T , j ≥ 1} are the eigenvalues of the operator
Ah

T (f)A
h
T (g).

2. The characteristic function ϕ(t) of Qh
T is given by formula:

ϕ(t) =

∞∏
j=1

|1− 2itλj,T |−1/2. (7.8)
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3. The k–th order cumulant χk(Q
h
T ) of Q

h
T is given by formula:

χk(QT ) = 2k−1(k − 1)!

∞∑
j=1

λk
j,T = 2k−1(k − 1)! tr [Ah

T (f)A
h
T (g)]

k. (7.9)

Thus, to describe the asymptotic distribution of the quadratic functional
Qh

T , we have to control the traces and eigenvalues of the products of truncated
tapered Toeplitz operators and matrices.

7.2.1. CLT for Gaussian models

We assume that the model process X(t) is Gaussian, and with no loss of gen-

erality, that g ≥ 0. We will use the following notation. By Q̃h
T we denote the

standard normalized quadratic functional:

Q̃h
T = T−1/2

(
Qh

T − E[Qh
T ]
)
. (7.10)

Also, we set

σ2
h := 16π3H4

∫
Λ

f2(λ)g2(λ) dλ, (7.11)

where H4 is as in (3.12). The notation

Q̃h
T

d→ η ∼ N(0, σ2
h) as T → ∞ (7.12)

will mean that the distribution of the random variable Q̃h
T tends (as T → ∞)

to the centered normal distribution with variance σ2
h given by (7.11).

The following theorems were proved in Ginovyan and Sahakyan [53].

Theorem 7.1. Assume that f ·g ∈ L1(Λ)∩L2(Λ), the taper function h satisfies
Assumption 3.1, and for T → ∞

χ2(Q̃
h
T ) =

2

T
tr
[
Ah

T (f)A
h
T (g)

]2 −→ σ2
h, (7.13)

where σ2
h is as in (7.11). Then Q̃h

T
d→ η ∼ N(0, σ2

h) as T → ∞.

Theorem 7.2. Assume that the function

ϕ(x1, x2, x3) =

∫
Λ

f(u)g(u− x1)f(u− x2)g(u− x3) du (7.14)

belongs to L2(Λ3) and is continuous at (0, 0, 0), and the taper function h satisfies

Assumption 3.1. Then Q̃h
T

d→ η ∼ N(0, σ2
h) as T → ∞.

Theorem 7.3. Assume that f(λ) ∈ Lp(Λ) (p ≥ 1) and g(λ) ∈ Lq(Λ) (q ≥ 1)
with 1/p+ 1/q ≤ 1/2, and the taper function h satisfies Assumption 3.1. Then

Q̃h
T

d→ η ∼ N(0, σ2
h) as T → ∞.
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Theorem 7.4. Let f ∈ L2(Λ), g ∈ L2(Λ), fg ∈ L2(Λ),∫
Λ

f2(λ)g2(λ− μ) dλ −→
∫
Λ

f2(λ)g2(λ) dλ as μ → 0, (7.15)

and let the taper function h satisfy Assumption 3.1. Then Q̃h
T

d→ η ∼ N(0, σ2
h)

as T → ∞.

To state the next theorem, we recall the class SV0(R) of slowly varying func-
tions at zero u(λ), λ ∈ R, satisfying the following conditions: for some a > 0,
u(λ) is bounded on [−a, a], limλ→0 u(λ) = 0, u(λ) = u(−λ) and 0 < u(λ) < u(μ)
for 0 < λ < μ < a.

Theorem 7.5. Assume that the functions f and g are integrable on R and
bounded outside any neighborhood of the origin, and satisfy for some a > 0

f(λ) ≤ |λ|−αL1(λ), |g(λ)| ≤ |λ|−βL2(λ), λ ∈ [−a, a], (7.16)

for some α < 1, β < 1 with α + β ≤ 1/2, where L1(x) and L2(x) are slowly
varying functions at zero satisfying

Li ∈ SV0(R), λ−(α+β)Li(λ) ∈ L2[−a, a], i = 1, 2. (7.17)

Also, let the taper function h satisfy Assumption 3.1. Then Q̃h
T

d→ η ∼ N(0, σ2
h)

as T → ∞.

The conditions α < 1 and β < 1 in Theorem 7.5 ensure that the Fourier
transforms of f and g are well defined. Observe that when α > 0 the process
X(t) may exhibit long-range dependence. We also allow here α + β to assume
the critical value 1/2. The assumptions f ·g ∈ L1(Λ), f, g ∈ L∞(Λ\ [−a, a]) and
(7.17) imply that f · g ∈ L2(Λ), so that the variance σ2

h in (7.11) is finite.

7.2.2. CLT for Lévy-driven stationary linear models

Now we assume that the underlying model X(t) is a Lévy-driven stationary
linear process defined by (2.6), where a(·) is a filter from L2(R), and ξ(t) is a
Lévy process satisfying the conditions: Eξ(t) = 0, Eξ2(1) = 1 and Eξ4(1) < ∞.

The central limit theorem that follows was proved in Ginovyan and Sahakyan
[52].

Theorem 7.6. Assume that the filter a(·) and the generating kernel ĝ(·) are
such that

a(·) ∈ Lp(R)∩L2(R), ĝ(·) ∈ Lq(R), 1 ≤ p, q ≤ 2, 2/p+1/q ≥ 5/2, (7.18)

and the taper h satisfies Assumption 3.1. Then Q̃h
T

d→ η ∼ N(0, σ2
L,h) as T → ∞,

where

σ2
L,h = 16π3H4

∫
R

f2(λ)g2(λ)dλ+ κ44π
2H4

[∫
R

f(λ)g(λ)dλ

]2
, (7.19)

where H4 is as in (3.12).
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Remark 7.4. Notice that if the underlying process X(t) is Gaussian, then in
formula (7.19) we have only the first term and so σ2

L,h = σ2
h (see (7.11)), because

in this case κ4 = 0. On the other hand, the condition (7.18) is more restrictive
than the conditions in Theorems 7.1–7.5. Thus, for Gaussian processes Theorems
7.1–7.5 improve Theorem 7.6. For non-tapered case Theorem 7.6 was proved in
Bai et al. [7].

7.3. Fejér-type kernels and singular integrals

We define Fejér-type tapered kernels and singular integrals, and state some of
their properties.

For a number k (k = 2, 3, . . .) and a taper function h satisfying Assumption
3.1 consider the following Fejér-type tapered kernel function:

Fh
k,T (u) :=

HT (u)

(2π)k−1Hk,T (0)
, u = (u1, . . . , uk−1) ∈ R

k−1, (7.20)

where

HT (u) := H1,T (u1) · · ·H1,T (uk−1)H1,T

⎛⎝−
k−1∑
j=1

uj

⎞⎠, (7.21)

and the function Hk,T (·) is defined by (3.7).
The next result shows that, similar to the classical Fejér kernel, the tapered

kernel Fh
k,T (u) is an approximation identity. Here we state the result in the c.t.

case (see Ginovyan and Sahakyan [52], Lemma 3.4). In the d.t. case the result
was stated in Dahlhaus [18].

Proposition 7.2. For any k = 2, 3, . . . and a taper function h satisfying As-
sumption 3.1 the kernel Fh

k,T (u), u = (u1, . . . , uk−1) ∈ R
k−1, possesses the

following properties:

a) supT>0

∫
Rk−1

∣∣∣Fh
k,T (u)

∣∣∣ du = C1 < ∞;

b)
∫
Rk−1 F

h
k,T (u) du = 1;

c) limT→∞
∫
E
c
δ

∣∣∣Fh
k,T (u)

∣∣∣ du = 0 for any δ > 0;

d) If k > 2 for any δ > 0 there exists a constant Mδ > 0 such that for T > 0∥∥Fh
k,T

∥∥
Lpk (Ec

δ)
≤ Mδ, (7.22)

where pk = k−2
k−3 for k > 3, p3 = ∞, Ec

δ = R
k−1 \ Eδ and

Eδ = {u = (u1, . . . , uk−1) ∈ R
k−1 : |ui| ≤ δ, i = 1, . . . , k − 1}.

e) If the function Q ∈ L1(Rk−1)
⋂

Lk−2(Rk−1) and is continuous at v =
(v1, . . . , vk−1) (L0 is the space of measurable functions), then

lim
T→∞

∫
Rk−1

Q(u+ v)Fh
k,T (u)du = Q(v). (7.23)
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Denote

Δh
2,T :=

∫
R2

f(λ)g(λ+ μ)Fh
2,T (μ)dλdμ−

∫
R

f(λ)g(λ)dλ, (7.24)

where Fh
2,T (μ) is given by (7.20) and (7.21).

The next two propositions give information on the rate of convergence to zero
of Δh

2,T as T → ∞ (see Ginovyan and Sahakyan [52], Lemmas 4.1 and 4.2).

Proposition 7.3. Assume that Assumptions 3.1 and 4.3 are satisfied. Then
the following asymptotic relation holds:

Δh
2,T = o

(
T−1/2

)
as T → ∞. (7.25)

Proposition 7.4. Assume that Assumptions 3.1 and 4.2 are satisfied. Then
the following inequality holds:

|Δh
2,T | ≤ Ch

⎧⎪⎨⎪⎩
T−(β1+β2), if β1 + β2 < 1

T−1 lnT, if β1 + β2 = 1

T−1, if β1 + β2 > 1,

T > 0, (7.26)

where Ch is a constant depending on h.

Notice that for non-tapered case (h(t) = I[0,1](t)), the above stated results
were proved in Ginovyan and Sahakyan [48] (see also Ginovyan and Sahakyan
[49, 50]). In the d.t. tapered case, Proposition 7.3 under different conditions was
proved in Dahlhaus [18].
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