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Abstract: Any decision about the release of microdata for public use is
supported by the estimation of measures of disclosure risk, the most popular
being the number τ1 of sample uniques that are also population uniques. In
such a context, parametric and nonparametric partition-based models have
been shown to have: i) the strength of leading to estimators of τ1 with de-
sirable features, including ease of implementation, computational efficiency
and scalability to massive data; ii) the weakness of producing underesti-
mates of τ1 in realistic scenarios, with the underestimation getting worse
as the tail behaviour of the empirical distribution of microdata gets heavier.
To fix this underestimation phenomenon, we propose a Bayesian nonpara-
metric partition-based model that can be tuned to the tail behaviour of the
empirical distribution of microdata. Our model relies on the Pitman–Yor
process prior, and it leads to a novel estimator of τ1 with all the desir-
able features of partition-based estimators and that, in addition, allows to
reduce underestimation by tuning a “discount” parameter. We show the
effectiveness of our estimator through its application to synthetic data and
real data.
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1. Introduction

Releasing microdata for public use requires a careful assessment of the risk of dis-
closure (Willenborg and Waal [26]). Consider a microdata sample (X1, . . . , Xn)
of units (individuals) from a finite population of size N ≥ n, such that each Xi is
a record containing identifying and sensitive information for the i-th unit. Iden-
tifying information consists of categorical variables which might match known
units of the population. A threat of disclosure results from the possibility that
an intruder, who could have personal or public information about the pop-
ulation (e.g. knowing who is included in the sample or using other available
datasets), might succeed in identifying an individual through such a match, and
hence be able to disclose sensitive information. To quantify disclosure risk, mi-
crodata units are partitioned according to a categorical variable that is defined
by cross-classifying all identifying variables. That is, units Xi’s are partitioned
into non-empty cells, with each cell containing individuals with the same com-
bination of values of identifying variables. A risk of disclosure arises from cells
in which both sample and population frequencies are small, since the rarer the
category the more likely the match is correct. Of special interest are cells with
frequency 1 (uniques) since, assuming no errors in matching processes or data
sources, for these cells the match is guaranteed to be correct (Bethlehem et al.
[2], Skinner et al. [24]). This has motivated inferences on measures of disclosure
risk that are functionals of the number of uniques, the most popular being the
number τ1 of sample uniques that are also population uniques. Once an esti-
mate τ̂1 of τ1 is obtained, a criterion to understand if the data would incur an
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excessive risk in being published is to set a relative risk threshold C and check
if the proportion of τ̂1 with respect to the sample size does not exceed it, i.e.
τ̂1/n ≤ C (Bethlehem et al. [2]). If this is not the case, more care must be used
before releasing data, possibly applying other privacy preserving methods.

Over the past three decades, a wide range of parametric and nonparametric
approaches, both classical (frequentist) and Bayesian, have been proposed to
estimate τ1. One may identify two main streams in the disclosure risk litera-
ture: i) modeling the sole microdata partition by parametric and nonparametric
partition-based models (Bethlehem et al. [2], Skinner et al. [24], Fienberg and
Makov [11], Samuels [21], Skinner and Elliot [23], Camerlenghi et al. [6]); ii)
modeling both the microdata partition and associations among identifying vari-
ables by parametric and semiparametric latent class models (Reiter [19], Skinner
and Shlomo [25], Manrique-Vallier and Reiter [13, 14], Carota et al. [4, 5]). All
these approaches have been applied to synthetic data and real data, showing
the effectiveness of τ1 as a sensible global measure for assessing the risk of dis-
closure. Partition-based models lead to estimators that are simple, linear in the
sampling information, computationally efficient and scalable to massive data
sets, though they typically show underestimation when the sampling fraction
n/N becomes smaller than a certain threshold (Camerlenghi et al. [6]). Latent
class models have typically a better empirical performance than partition-based
models, especially for small sampling fractions, though this is achieved at the
cost of an increased computational effort for the need of Markov chain Monte
Carlo methods for posterior approximation (Reiter [19], Manrique-Vallier and
Reiter [13]).

In this paper, we contribute to the partition-based literature from a Bayesian
nonparametric perspective. Bayesian nonparametric ideas for estimating τ1 date
back to the seminal work of Samuels [21], where the Dirichlet process (Ferguson
[10]) was applied as a prior model for the microdata partition. This approach
leads to an estimator of τ1 which is easy to implement, computationally effi-
cient, and scalable to massive data. Despite these desirable features, empirical
analyses in Samuels [21] show that such an approach underestimates τ1 in many
realistic scenarios, the issue being related to the tail behaviour of the empirical
distribution of microdata. That is, the heavier the tail the worse the underesti-
mation of τ1. As heavy-tail scenarios occur when the number of sample uniques
is large with respect to the population size, this phenomenon is a critical concern
in disclosure risk assessment. A simulation study in Figure 1 shows analogous
estimation issues for the most common partition-based estimators of τ1 in such a
heavy-tails setting. Our experiments use synthetic microdata from a power-law
distribution of exponent σ > 1, samples being the 10% of the population of size
106, and they are averaged over 1000 iterations. It emerges that the smaller σ,
namely the heavier the tail, the worse the underestimation of Bayesian para-
metric estimators (Bethlehem et al. [2], Skinner et al. [24]), and the worse the
overestimation of a nonparametric empirical Bayes estimator (Camerlenghi et
al. [6]).

To overcome the underestimation phenomenon of Samuels’ approach, we pro-
pose a Bayesian nonparametric partition-based model that can be tuned to the
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Fig 1. Empirical performance, with respect to the true τ1, of estimators τ̂1: nonparametric
Bayes (nb) of Samuels [21], nonparametric empirical Bayes (neb) of Camerlenghi et al. [6],
parametric Bayes (pb-1) of Bethlehem et al. [2], parametric Bayes (pb-2) of Skinner et al.
[24].

tail behaviour of the empirical distribution of microdata. In particular, as a
prior model for the microdata partition, we assume the Pitman–Yor process
(Perman et al. [15], Pitman [16], Pitman and Yor [18]). The Pitman–Yor pro-
cess prior generalizes the Dirichlet process prior by means of an additional “dis-
count” parameter that allows to control the tail behaviour of the prior, ranging
from geometric tails to heavy power-law tails (Pitman and Yor [18]). Under the
Pitman–Yor process prior, we present a simple characterization of the posterior
distribution of τ1, given the observed microdata, and we propose the posterior
mean as a Bayesian nonparametric estimator of τ1. Such an estimator has all
the same desirable features as Samuels’s estimator and, in addition, it allows
to reduce its underestimation of τ1 by tuning the “discount” parameter with
respect to observable microdata. Our approach stands out for being the first
partition-based approach to provide a closed-form posterior distribution of τ1,
which makes straightforward to quantify uncertainty of our Bayesian procedure
through credible intervals. We investigate the empirical performance of our ap-
proach through synthetic data and real data from the 2018 American Commu-
nity Survey, showing its effectiveness in reducing underestimation phenomenon
of Samuels’ approach.

The paper is structured as follows. In Section 2 we introduce the Pitman–Yor
process prior and its sampling structure, and present our Bayesian nonpara-
metric approach to infer τ1. Section 3 contains an illustration of the proposed
approach through synthetic data and real data. In Section 4 we conclude by
discussing our results and directions for future work. Proofs are deferred to the
Appendix.

2. Bayesian nonparametric inference for τ1

We consider a super-population of units belonging to an (ideally) infinite num-
ber of distinct symbols (zj)j≥1, taking values in a measurable space Z, with
unknown proportions (pj)j≥1 such that

∑
j≥1 pj = 1. The partition of micro-

data into non-empty cells, both at the sample and population level, is modeled
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as a random partition induced by sampling from the unknown discrete distri-
bution P =

∑
j≥1 pjδzj , where each symbol zj ∈ Z takes the interpretation of

a distinct combination of values of identifying variables. That is, a population
of N ≥ 1 of microdata units is assumed to be a random sample (X1, . . . , XN )
from P , of which the first n < N elements (X1, . . . , Xn) are observable. These
samples induce a random partition at population level consisting of KN cells of
frequencies (N1,N , . . . , NKN ,N ), and a random partition at the sample level con-
sisting of Kn cells of frequencies (N1,n, . . . , NKn,n). If I(·) denotes the indicator
function, then

τ1 =

Kn∑
i=1

I(Ni,n = 1)I(Ni,N = 1),

namely the number of sample uniques that are also population uniques (Beth-
lehem et al. [2], Skinner et al. [24]). Bayesian nonparametric inference for τ1
relies on the specification of a (nonparametric) prior distribution on the dis-
crete distribution P , which in turn leads to a prior model for the microdata
partition.

2.1. The Pitman–Yor process prior

We assume the Pitman–Yor process as a prior model for the unknown discrete
distribution P . A simple and intuitive definition of the Pitman–Yor process
follows from its stick-breaking construction (Pitman [16]). For α ∈ [0, 1) and θ >
−α let: i) (Vi)i≥1 be independent random variables such that Vi is distributed
as a Beta distribution with parameter (1 − α, θ + iα); ii) (Zj)j≥1 be random
variables, independent of the Vi’s, and independent and identically distributed as
a non-atomic distribution ν on Z. If we set p1 = V1 and pj = Vj

∏
1≤i≤j−1(1−

Vi) for j ≥ 2, which ensures that
∑

j≥1 pj = 1 almost surely, then Pα,θ =∑
j≥1 pjδZj is a Pitman–Yor process on Z with “discount” α and scale θ. The

Dirichlet process arises as a special case by letting α = 0. The Pitman–Yor
process generalizes the Dirichlet process by means of the “discount” α, which
controls the tail behaviour of Pα,θ, ranging from geometric tails to heavy power-
law tails. In particular, for α ∈ (0, 1), let (p(j))j≥1 be the random probabilities
pj ’s of Pα,θ in decreasing order. Then, as j → +∞ the p(j)’s follow a power-
law distribution of exponent σ = α−1 (Pitman and Yor [18]). This shows that
α ∈ (0, 1) tunes the power-law tail behaviour of Pα,θ through small probabilities
p(j)’s: the larger α the heavier the tail of Pα,θ, whereas a geometric tail arises
as α → 0.

According to de Finetti’s representation theorem, a random sample from Pα,θ

is part of an exchangeable sequence of Z-valued random variables (Xi)i≥1 whose
directing measure Π is the law of Pα,θ. Let (X1, . . . , Xn) be a random sample
from Pα,θ, i.e.

Xi | Pα,θ
iid∼ Pα,θ i = 1, . . . , n, (1)

Pα,θ ∼ Π.
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Because of the discreteness of Pα,θ, the sample (X1, . . . , Xn) induces a ran-
dom partition of {1, . . . , n} into Kn ≤ n blocks, labelled by distinct symbols
{Z∗

1 , . . . , Z
∗
Kn

}, with frequencies (N1,n, . . . , NKn,n) = (n1, . . . , nk) such that
Ni,n ≥ 1 for i = 1, . . . ,Kn and

∑
1≤i≤Kn

Ni,n = n (Pitman [Chapter 3, 17]) for
a detailed account. A generative model for the Xi’s, and hence for the induced
random partition, is provided by the predictive distribution of the Pitman–Yor
process, namely

P(Xn+1 ∈ · | X1, . . . , Xn) =
θ + kα

θ + n
ν(·) + 1

θ + n

k∑
i=1

(ni − α)δZ∗
j
(·), (2)

for n ≥ 1. That is, Xn+1 is of a new symbol (block), namely a symbol not
observed in the set {Z∗

1 , . . . , Z
∗
Kn

}, with probability (θ + kα)/(θ + n), or Xn+1

is of symbol (block) Z∗
i with probability (ni − α)/(θ + n), for i = 1, . . . , k. See

Pitman [Chapter 3, 17] for a detailed account on the predictive distribution
(2).

The predictive distribution of the Pitman–Yor process highlights the role of
the “discount” parameter α in the sampling process: it drives a combined effect
in terms of a reinforcement mechanism and the increase in the rate of generating
new symbols. In particular, a new symbol z∗ entering in the sample produces
two effects: i) it is assigned a mass proportional to (1−α) to the z∗’s empirical
component of (2); ii) it is assigned a mass proportional to α to the probability
of generating new symbols in (2). That is, the probability mass assigned to the
symbol z∗’s is less than proportional to 1, and the remaining probability mass is
assigned to the probability of generating new symbols. The first effect gives rise
to a reinforcement mechanism: the sampling procedure allocates more mass on
symbols with higher frequencies. The second effect implies that the probability
of generating new symbols, which overall still decreases as a function of n, is
increased by α/(θ+n+1). The larger α the stronger the reinforcement mecha-
nism and the higher is the probability of new symbols. For α = 0, that is under
the Dirichlet process prior, everything is proportional to symbols’ frequencies,
which do not alter the probability of discovering new symbols. We refer to Ba-
callado et al. [1] for a detailed account on the predictive distribution (2), as well
a generalizations thereof, and for characterizations of (2) with respect to the
use of the sampling information, i.e. “sufficientness postulate”, and of Pólya like
urn schemes.

Remark 1. The power-law tail behaviour of the Pitman–Yor process emerges
from the large n asymptotic behaviour of the number Kn of distinct symbols
and the number Mr,n of distinct symbols with frequency r ≥ 1 in n random
samples from Pα,θ. From Pitman [17, Theorem 3.8], Kn behaves as nα for large
n; this is the behaviour of the number of distinct symbols in n random samples
from a power-law distribution of exponent σ = α−1. Moreover, from Pitman
[17, Lemma 3.11] it holds that the proportion Mr,n/Kn of distinct symbols
with frequency r behaves as r−α−1 for large n and large r; this is, up to a
constant or proportionality, the distribution of the number of distinct symbols
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with frequency r in n random samples from a power-law distribution of exponent
σ = α−1.

2.2. Posterior inference for τ1

We consider microdata units to be modeled under the Bayesian nonparametric
framework (1). That is, a population of N ≥ 1 of microdata units is assumed
to be a random sample (X1, . . . , XN ) from a Pitman–Yor process, of which the
first n < N elements (X1, . . . , Xn) are observable. We characterize the posterior
distribution of τ1, given (X1, . . . , Xn). To introduce our main result, it is useful
to recall the generalized factorial distribution (Charalambides [7, Chapter 2]).
For a real a and r ∈ N let (a)(r) be the rising factorial, that is (a)(0) = 1 and
(a)(r) =

∏
0≤i≤r−1(a+ i) for r ∈ N� {0}, and for a > 0 and r, s ∈ N with r ≤ s

let C (r, s; a) be the generalized factorial coefficient (Charalambides [7]), that is
C (r, s; a) =

∑
0≤i≤s(−1)i{i!(s− i)!}−1(−ia)(r). For r ∈ N, b ∈ [0, 1] and c > 0,

a random variable Ub,c,r on {1, . . . , r} has a generalized factorial distribution if,
for x ∈ {1, . . . , r}

P(Ub,c,r = x) =
1

(bc)(r)
C (r, x; b)(c)(x). (3)

The next theorem provides the posterior distribution of τ1, given (X1, . . . , Xn),
as a mixture of a (general) hypergeometric distribution (Johnson et al. [12,
Chapter 6.2.5]) with respect to the generalized factorial distribution displayed
in (3). Then, a Bayesian nonparametric estimator of τ1 is given as the posterior
mean.

Theorem 1. For N ≥ 1 let (X1, . . . , XN ) be a random sample from Pα,θ,
of which the first n < N elements (X1, . . . , Xn) are observable and featuring
M1,n = m1 distinct symbols with frequency 1 (sample uniques). Then, for x ∈
{0, 1, . . . ,m1}

P(τ1 = x |X1, . . . , Xn) =
N−n∑
u=1

( θ+n
1−α−1

x

)(
u

m1−x

)
( θ+n

1−α−1+u
m1

) P(U1−α, θ+n
1−α ,N−n = u), (4)

and

τ̂1 = E(τ1 |X1, . . . , Xn) = m1

(θ + α+ n− 1)(N−n)

(θ + n)(N−n)
. (5)

See Appendix A for the proof of Theorem 1. Theorem 1 is the first example in
the literature to provide a closed-form posterior distribution of τ1. This is critical
to quantify, by means of Monte Carlo sampling, uncertainty of our Bayesian
procedure through credible intervals; see Section 2.3 below. According to (4),
for any fixed (α, θ), the number M1,n = m1 of sample uniques is sufficient for
estimating τ1. The estimator (5) is easy to implement, computationally efficient,
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and scalable to massive datasets. Moreover, it has a simple interpretation as the
proportion

wn,N (α, θ) =
(θ + n− 1 + α)(N−n)

(θ + n)(N−n)
∈ (0, 1),

of the number m1 of sample uniques. The estimator (5) is somehow reminiscent
of the “naive” nonparametric estimator (Bethlehem et al. [2], Skinner and Elliot
[23]) of τ1, namely

τ̄1 = m1
n

N
.

In particular, τ̂1 is a smoothed version of τ̄1, where the smoothing acts by
replacing the purely empirical proportion n/N with the parametric proportion
wn,N (α, θ). For any fixed θ, n and N , the proportion wn,N (α, θ) increases in
α, meaning that the larger α the higher τ̂1. This behaviour, which agrees with
the role of α discussed in Section 2.1, shows the effectiveness of the “discount”
α in tuning the inference to the tail behaviour of the empirical distribution of
microdata.

Remark 2. For α = 0, namely under the Dirichlet process prior, Theorem 1
simplifies remarkably. In particular, the posterior distribution (4) reduces to a
(general) hypergeometric distribution. That is, by setting α = 0, Equation (4)
reduces to

P(τ1 = x |X1, . . . , Xn) =

(
θ+n−1

x

)(
N−n
m1−x

)
(
θ+N−1

m1

) . (6)

for x ∈ {0, 1, . . . ,m1}. Moreover, by setting α = 0, Equation (5) reduces to the
estimator of Samuels [21], namely τ̂1 = m1(θ + n − 1)/(θ + N − 1). Equation
(4) thus completes the work of Samuels [21], where only the estimator τ̂1 was
provided.

By assuming both the sample and population to be large, it emerges: i)
the critical influence of the “discount” α in estimating τ1, with respect to the
scale θ; ii) the crucial limitation of the estimator proposed in Samuels [21]. In
particular, let f ≈ g meaning f/g → 1. As n,N → +∞ with n < N , for any
x ∈ {0, 1, . . . ,m1}

P(τ1 = x |X1, . . . , Xn) ≈
(
m1

x

){( n

N

)1−α
}x {

1−
( n

N

)1−α
}m1−x

, (7)

and hence

τ̂1 ≈ m1

( n

N

)1−α

. (8)

That is, for large n and N with n < N , the posterior distribution (4) admits a
first order (local) approximation in terms of a Binomial distribution with param-
eters {m1, (n/N)1−α}. See Appendix B for the proof of (7). This result shows
that, in realistic scenarios, the “discount” α is the sole tuning parameter of our
Bayesian nonparametric model. In other terms, for α = 0, namely under the
Dirichlet process prior, the approximated estimator (8) reduces to the “naive”
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estimator τ̄1. Equivalently, for large n and N , the “naive” estimator τ̄1 approx-
imates the estimator of Samuels [21]. Therefore, in realistic scenarios, Samuel’s
estimator is a purely empirical estimator, meaning that no tuning parameters
are available.

2.3. Computations

For any fixed α ∈ (0, 1) and θ > −α, the estimator (5) can be easily evalu-
ated for arbitrary values of n and N . Instead, the evaluation of the posterior
distribution (4) might be numerically unstable for large n and N , due to the
overwhelming computational burden for evaluating generalized factorial coeffi-
cients. To address this issue, we rely on Monte Carlo sampling of the posterior
distribution (4) to obtain credible intervals for the estimator (5). By the mixture
representation of (4), Monte Carlo sampling requires to sample from a (general)
hypergeometric distribution and from a generalized factorial distribution. The
former is straightforward, for arbitrary values of n and N , and routines are
available in standard software. The latter becomes easy upon noticing that it
coincides with the distribution of the number KN−n of distinct symbols in N−n
random samples from a Pitman–Yor process with “discount” (1− α) and scale
(θ + n). See Appendix C for a detailed explanation. For arbitrary values of n
and N , Monte Carlo sampling of the distribution of KN−n is straightforward by
Algorithm 1, which exploits the predictive distribution (2) of the Pitman–Yor
process.

Set k = 1;
for i = 1 to N − n− 1 do

Sample a binary variable s with probability {θ + n+ (1− α)k}/(θ + n+ i);
Set k ← k + s;

end
Return k.

Algorithm 1: Monte Carlo sampling of the mixing generalized factorial dis-
tribution.

To implement Theorem 1 we must specify the prior’s parameters (α, θ),
whose choice is critical for a correct estimation of τ1. Two common approaches
for estimating (α, θ) are: i) the hierarchical Bayes approach, which relies on
Bayesian estimates obtained from the posterior distribution of (α, θ) with re-
spect to suitable prior specification; ii) the empirical Bayes approach, which
relies on estimates obtained by maximizing, with respect to (α, θ), the marginal
likelihood of the observable sample. Here, we adopt the empirical Bayes ap-
proach. Let (X1, . . . , Xn) feature Kn = k distinct symbols with frequencies
(N1,n, . . . , NKn,n) = (n1, . . . , nk). Pitman [16, Proposition 9] provides the like-
lihood function of (X1, . . . , Xn), and the empirical Bayes approach reduces to
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Table 1

Estimates of τ1 for synthetic data. The parameters are σ (Zipf data) and π (Geometric
data). pb-1 is parametric Bayes of Bethlehem et al. [2]; pb-2 is parametric Bayes of

Skinner et al. [24], and neb is nonparametric empirical Bayes of Camerlenghi et al. [6].

data m1 τ1 pitman-yor dirichlet pr. pb-1 pb-2 neb

scenario i: N = 106, n = 105

Zipf 1.25 10818 6914 6818 [6689, 6947] 1123 [1042, 1203] 1543 946 8328
Zipf 1.50 2045 941 948 [890, 1006] 206 [171, 241] 224 194 1403
Zipf 1.75 557 205 203 [174, 232] 56 [38, 75] 58 66 283
Zipf 2.00 230 80 74 [56, 93] 23 [12, 35] 22 30 198

Geom. 10−4 9938 1027 1113 [1034, 1195] 1113 [1034, 1195] 4666 2095 740
Geom. 10−3 949 91 96 [73, 120] 96 [73, 120] 335 167 67

scenario ii: N = 5000, n = 500

Zipf 1.25 139 76 82 [67, 96] 16 [7, 27] 34 20 120
Zipf 1.50 62 23 28 [18, 38] 7 [1, 13] 12 7 51
Zipf 1.75 28 7 10 [4, 17] 3 [0, 8] 5 3 22
Zipf 2.00 11 3 3 [0, 7] 1 [0, 4] 2 1 6

Geom. 10−4 482 391 365 [341, 388] 365 [341, 388] 181 196 467
Geom. 10−3 387 95 129 [106, 153] 129 [106, 153] 160 158 320

solve:

(α̂, θ̂) = argmax
(α,θ)

{∏k−1
i=0 (θ + iα)

(θ)(n)

k∏
i=1

(1− α)(ni−1)

}
. (9)

The optimization problem (9) can be solved numerically and efficiently even for
large values of n, by means of routines available in standard softwares. We refer
to Favaro and Naulet [9] for provable guarantees of the estimator α̂. Alterna-
tively, one could specify a prior distribution on (α, θ). However, we found no
relevant differences between the fully Bayes and the empirical Bayes approach,
given that the posterior distribution of (α, θ) is highly concentrated, when n is
large.

3. Illustrations

3.1. Simulated data

We consider synthetic data from two super-populations P . For the first super-
population, we let the “true” probability masses (pj)j≥1 to be those of a Zipf
distribution with index σ > 1, so that data are generated from the discrete
distribution P = ζ(σ)−1

∑
j≥1 j

−σδzj , with ζ(σ) =
∑

j≥1 j
−σ. As we discussed

in Section 2, this is the scenario in which a Pitman–Yor specification is recom-
mended. We considered different values of σ = 1.25, 1.50, 1.75, 2, and different
combinations of n and N . The prior’s parameter (α, θ) is estimated through
maximum likelihood; see Section 2.3. Table 1 reports estimates of τ1, together
with 99% credible intervals (within brackets), and the “true” value of τ1. Credi-
ble intervals are obtained via Monte Carlo sampling of the posterior distribution
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Table 2

Maximum likelihood estimate for the parameter (α, θ) of the Pitman–Yor model.

Param. Zipf 1.25 Zipf 1.50 Zipf 1.75 Zipf 2.00 Geom. 10−4 Geom. 10−4

scenario i: N = 106, n = 105

α̂ 0.80 0.67 0.56 0.51 0 0

θ̂ 1.48 0.82 0.70 0.34 13559.80 1141.16

scenario ii: N = 5000, n = 500

α̂ 0.77 0.66 0.57 0.39 0 0

θ̂ 1.89 0.98 0.52 0.90 13529.12 1753.06

(1), by means of the scheme described in Section 2.3. Table 2 reports the corre-
sponding estimates of (α, θ) for the Pitman–Yor model. In all these scenarios,
the Bayesian nonparametric estimator (5) is much closer to the “true” value of
τ1, compared to its partition-based competitors. In particular, the approaches
of Bethlehem et al. [2], Skinner et al. [24] and Samuels [21] underestimate the
“true” τ1, whereas the approach of Camerlenghi et al. [6] tends to overestimate
it.

For the second super-population, we let P =
∑

j≥1 π(1 − π)j−1δzj , corre-
sponding to a geometric distribution with parameter π ∈ (0, 1). We consider
two different values of π = 10−3, 10−4 and the same sample size n and a pop-
ulation size N as before. As we discussed in Section 2, this is the ideal setting
for the Dirichlet process and this is indeed confirmed by Table 1. Moreover, the
Pitman–Yor estimator reduces to the Dirichlet process since we obtain α̂ = 0,
as reported in Table 2.

3.2. The 2018 American Community Survey

We consider real data from the 2018 American Community Survey (Manrique-
Vallier and Reiter [13], Carota et al. [4]). This dataset is a random sample of
the American population (usa.ipums.org/usa). We regard the 2018 American
Community data as a “population” of size N = 2, 432, 323, and we consider ob-
servable samples which are the 5% and 10% fractions of the population obtained
by sampling at random n = 121, 616 and n = 243, 232 individual, respectively.
We restricted the population to individuals older than 20, and we cross-classified
the records according to the following variables: census region (9 levels), race
(139 levels), and primary occupation (531 levels), obtaining KN = 60, 215 non
empty classes.

As detailed in Section 2, the Pitman–Yor specification should be employed
whenever the data follow a power-law behaviour. However, in real data problems
such an assumption must be empirically validated. A simple approach is com-
paring the observed number mr of distinct types with frequency r = 1, . . . , n
against the model-based expected frequencies under a Pitman–Yor specification,
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Fig 2. Graphical representation in logarithmic scale of the number of distinct types mr with
frequency r (dots) and their expectations E(Mr,n) under Pitman–Yor (solid line) and Dirich-
let process (dotted line) models, relative to the 5% and 10% sample data from the American
Community Survey.

namely

E(Mr,n) =
θ

(θ)(n)

(
n

r

)
(1− α)(r−1)(θ + α)(n−r), r = 1, . . . , n,

where the parameters in the above formula are replaced by their maximum
likelihood estimates; see also Favaro et al. [8] for further details. Poor in-sample
fit strongly suggests that the corresponding disclosure risk assessment will be
unreliable.

The observed values mr for r = 1, . . . , n and their model-based estimates for
the 5% and 10% fractions of the data from the American Community Survey
presented in Section 2.2 are reported in Figure 2, both under a Pitman–Yor and
Dirichlet process specification. These results confirm a very good in-sample fit
for the Pitman–Yor. Conversely, the Dirichlet process seems unsuitable for this
specific datasets. The prior’s parameters α and θ are estimated through maxi-
mum likelihood; see Section 2.3. Results in Table 3 confirm what we observed
for synthetic data, and in particular it is confirmed the superior empirical per-
formance of our estimators, with respect to partition-based competitors. The
approaches of Bethlehem et al. [2], Skinner et al. [24] and Samuels [21] underes-
timate the true τ1, whereas the approach of Camerlenghi et al. [6] overestimates
it.

Table 3

Estimates of τ1 for real data the 2018 American Community Survey. The estimate pb-1
refers to the parametric Bayes of Bethlehem et al. [2], pb-2 is the parametric Bayes of

Skinner et al. [24], and neb is the nonparametric empirical Bayes of Camerlenghi et al. [6].

Data percentage m1 τ1 Pitman–Yor Dirichlet process pb-1 pb-2 neb

5% 6776 1447 1458 [1372, 1546] 349 [303, 397] 1427 425 3492
10% 9620 2852 2958 [2842, 3075] 979 [903, 1056] 1799 1059 4526
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4. Discussion

In this paper, we considered the problem of Bayesian nonparametric estimation
of τ1, which is arguably the most popular measure of disclosure risk. Our study
is motivated by an early work of Samuels [21], where empirical analyses showed
that the use of Dirichlet process priors lead to underestimate τ1 in many real-
istic scenario, with the underestimation getting worse as the tail behaviour of
the empirical distribution of microdata gets heavier. Here, to overcome such an
underestimation phenomenon, we proposed the use of the Pitman–Yor process
prior, which generalizes the Dirichlet process prior through an additional “dis-
count” parameter that allows to control the tail behaviour of the prior, ranging
from geometric tails to heavy power-law tails. Under the Pitman–Yor process
prior, we obtained a simple characterization of the posterior distribution of τ1,
in terms of a compound (general) hypergeometric distribution, and made use
of the posterior mean as an estimator of τ1. Such a novel estimator has all
the desirable features as Samuels’ estimator, including ease of implementation,
computational efficiency and scalability to massive data, and, in addition, it
allows to reduce its underestimation of τ1 by tuning the “discount” parame-
ter with respect to observable microdata. We presented an empirical analysis
of our Bayesian nonparametric approach through synthetic data and real data,
showing its effectiveness in reducing underestimation phenomenon of Samuels’
approach.

While τ1 is known to be the most popular measure of disclosure risk (Bethle-
hem et al. [2] and Skinner et al. [24]), one might consider alternative measures
by broadening the definition of “uniqueness”. For instance, Fienberg and Makov
[11] considered a generalization of τ1 which is defined in terms of the number
of cells with frequency less or equal than 2. In general, one may consider the
following measure

τp,q =

Kn∑
i=1

I(Ni,n ≤ p)I(Ni,N ≤ p+ q),

namely the number of cells with sample frequency less or equal than p which
have population frequency less or equal than p+q. In particular, τ1 corresponds
to τ1,0. We refer to Appendix D for Bayesian nonparametric inference of τ1,q,
which is arguably the most natural generalization of τ1. It remains an open
problem to adapt our Bayesian nonparametric approach to deal with structurally
empty cells, i.e. structural zeros (Manrique-Vallier and Reiter [14]). In such
a context, it may be useful to consider spike and slab generalizations of the
Pitman-Yor process prior (Scarpa and Dunson [22], Canale et al. [3]). They
consist in replacing the non-atomic distribution ν of the Pitman-Yor process
prior with a distribution ν̃(ζ) = ζδ0 + (1 − ζ)ν, with ζ ∈ [0, 1] and ν being a
non-atomic distribution. Then ζ may then be used to include the information
on structural zeros, being interpretable as the proportion of structural zeros in
the population.
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Appendix A: Proof of Theorem 1

A.1. Generalized factorial coefficients

For t ∈ R, a > 0 and n ∈ N0, let (at)(n) be the rising factorial of at of order n,
i.e. (at)(n) =

∏
0≤i≤n−1(at + i). The (n, k)-th generalized factorial coefficient,

denoted by C (n, k; a), is the k-th coefficient in the expansion of (at)(n) into
rising factorials, i.e.

(at)(n) =

n∑
i=0

C (n, i; a)(t)(i), (10)

with C (0, 0; a) = 1, C (n, 0; a) = 0 for n > 0, C (n, i; a) = 0 for i > n. For b > 0,
let us consider the k-th coefficient in the expansion of (at − b)(n) into rising
factorials, so that

(at− b)(n) =

n∑
i=0

C (n, i; a, b)(t)(i), (11)

with C (0, 0; a, b) = 1, C (n, 0; a, b) = (−b)(n) for n > 0, C (n, i; a, b) = 0 for
i > n. The coefficient C (n, k; a, b) is referred to as the non-centered generalized
factorial coefficient (Charalambides [7]). Here, it is useful to recall the following
property

C (n, i; b1b2, b1r2 + r1) =

n∑
j=i

C (n, j; b1, r1)C (j, i; b2, r2), (12)

for any b1, b2 > 0 and r1, r2 > 0. The convolutional identity (12) can be found in
Charalambides [Chapter 2, 7] and plays a critical role in the proof of Theorem 1.

A.2. Generalized factorial and (general) hypergeometric
distributions

The generalized factorial distribution (Charalambides [7, Chapter 2]) is defined
by means of the identity (10), and it arises in the context of the classical coupon
collector problem (Charalambides [7, Example 2.7]). For r ∈ N and b, c > 0, a
random variable Ub,c,r on the set {1, . . . , r} has a generalized factorial distribu-
tion if

P(Ub,c,r = x) =
1

(bc)(r)
C (r, x; b)(c)(x)I(x ∈ {1, . . . , r}). (13)

The (general) hypergeometric distribution (Johnson et al. [12, Chapter 6.2.5])
has the same form as the classical hypergeometric distribution, though with a
more flexible parameterization. In particular, for r, s ∈ N and a > 0 such that
a > r, a random variableHa,r,s on the set {0, 1, . . . , r} has a generalized factorial
distribution if

P(Ha,r,s = x) =

(
a
x

)(
s

r−x

)
(
a+s
r

) I(x ∈ {0, 1, . . . , r}). (14)
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Distributional properties, and moments, of the general hypergeometric distri-
bution can be easily obtained from (14) (Johnson et al. [12, Chapter 6.3]). For
r, s ∈ N with s ≤ r let S(r, s) be the Stirling number of the second type (Char-
alambides [7, Chapter 2]), and let Γ denote the Gamma function. Then, for
z > 0 it holds

E{(Ha,r,s)
z} =

z∑
i=1

S(z, i)i!

(
r

i

)
Γ (a+ 1 + s− i) Γ (a+ 1)

Γ (a+ 1− i) Γ (a+ 1 + s)
. (15)

We refer to Charalambides [7] and Johnson et al. [12] for a comprehensive ac-
count of the generalized factorial distribution and the (general) hypergeometric
distribution.

A.3. Proof of Theorem 1

Let (X1, . . . , Xn) be a random sample from the Pitman-Yor process Pα,θ, and
let (X1, . . . , Xn) feature Kn = k distinct symbols, labelled by {Z∗

1 , . . . , Z
∗
Kn

},
with frequencies Nn = n, with Nn = (N1,n, . . . , NKn,n), and n = (n1, . . . , nk)
be such that Ni,n > 0 and

∑
1≤i≤Kn

Ni,n = n. Moreover, for any N > n let
(Xn+1, . . . , XN ) be an additional random sample from Pα,θ, and let Nj,N−n ≥ 0
be the number of records Xn+i, i = 1 . . . , N that coincide with the label Z∗

j , j =
1, . . . ,Kn. Moreover, let

VN−n = N − n−
Kn∑
i=1

Ni,N−n

be the number of Xn+i, i = 1, . . . , N that do not coincide with any Z∗
j ’s. To

compute the posterior distribution of τ1, we first determine its moment of order
z ≥ 1, i.e.,

E{(τ1)z | X1, . . . , Xn} (16)

= E{(τ1)z | Nn = n,Kn = k}

= E

{(
Kn∑
i=1

I(Ni,n = 1)I(Ni,N−n = 0)

)z

| Nn = n,Kn = k

}
.

For s, t ∈ N with s ≤ t recall that S(s, t) denotes the Stirling number of the
second type (Charalambides [7, Chapter 2]), and let Ct,s denote a set of combi-
nation defined as follows: Ct,0 = ∅ and Ct,s = {(c1, . . . , cs) : ci ∈ {1, . . . , t}, ci �=
cj , if i �= j} for any s ≥ 1. Accordingly, Equation (16) admits the following
expansion

E{(τ1)z | X1, . . . , Xn}

=

k∑
x=1

z∑
i1=1

i1−1∑
i2=1

· · ·
ix−2−1∑
ix−1=1

(
r

i1

)(
i1
i2

)
· · ·

(
ix−2

ix−1

)
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×
∑

(c1,...,cx)∈Ck,x

E

{
x∏

t=1

I(Nct,n=1)I(Nct,N−n=0)ix−t−ix−t+1 | Nn=n,Kn=k

}

=

z∑
x=1

S(z, x)x!
∑

(c1,...,cx)∈Ck,x

E

{
x∏

t=1

I(Nct,n=1)I(Nct,N−n=0) | Nn=n,Kn=k

}

=
z∑

x=1

S(z, x)x!
∑

(c1,...,cx)∈Ck,x

x∏
t=1

I(Nct,n=1)E

{
x∏

t=1

I(Nct,N−n=0) | Nn=n,Kn=k

}

=

z∑
x=1

S(z, x)x! (17)

×
∑

(c1,...,cx)∈Ck,x

x∏
t=1

I(Nct,n=1)P(Nc1,N−n=0, . . . , Ncx,N−n=0 | Nn=n,Kn=k).

The conditional probability (17) can be computed by a direct application of
Favaro et al. [8, Lemma 1]. In particular, from Favaro et al. [8, Equation 38 and
Equation 40]

P(Nc1,N−n = 0, . . . , Ncx,N−n = 0 | Nn = n,Kn = k, VN−n = v)

=
(n−

∑x
i=1 nci − (k − x)α)(N−n−v)

(n− kα)(N−n−v)
;

and

P(VN−n = v | Nn = n,Kn = k)

=

(
N − n

v

)
(n− kα)(N−n−v)

v∑
j=0

∏k+j−1
i=0 (θ+iα)

(θ)(n+(N−n))∏k−1
i=0 (θ+iα)

(θ)(n)

C (v, j;α)

αj
.

Then,

P(Nc1,N−n = 0, . . . , Ncx,N−n = 0 | Nn = n,Kn = k) (18)

=

N−n∑
v=0

(
N − n

v

)
(n− kα)(N−n−v)

v∑
j=0

∏k+j−1
i=0 (θ+iα)

(θ)(n+(N−n))∏k−1
i=0 (θ+iα)

(θ)(n)

C (v, j;α)

αj

×
(n−

∑x
i=1 nci − (k − x)α)(N−n−v)

(n− kα)(N−n−v)

=

N−n∑
j=0

1

αj

∏k+j−1
i=0 (θ+iα)

(θ)(n+(N−n))∏k−1
i=0 (θ+iα)

(θ)(n)

N−n∑
v=j

(
N − n

s

)
(n− kα)(N−n−v)C (v, j;α)

×
(n−

∑x
i=1 nci − (k − x)α)(N−n−v)

(n− kα)(N−n−v)



5642 S. Favaro et al.

=

N−n∑
j=0

1

αj

∏k+j−1
i=0 (θ+iα)

(θ)(n+(N−n))∏k−1
i=0 (θ+iα)

(θ)(n)

N−n∑
v=j

(
N − n

v

)
C (v, j;α)

× (n−
x∑

i=1

nci − (k − x)α)(N−n−v) (19)

=

N−n∑
j=0

1

αj

∏k+j−1
i=0 (θ+iα)

(θ)(n+(N−n))∏k−1
i=0 (θ+iα)

(θ)(n)

N−n∑
v=j

(
N − n

v

)
C (v, j;α)

× C (N − n− v, 0, α,−n+
x∑

i=1

nci + (k − x)α). (20)

Then, by the application of the convolutional identity (12) to the sum over v,
we get

P(Nc1,N−n = 0, . . . , Ncx,N−n = 0 | Nn = n,Kn = k)

=

N−n∑
j=0

∏k+j−1
i=0 (θ+iα)

(θ)(n+(N−n))∏k−1
i=0 (θ+iα)

(θ)(n)

C (N − n, j;α,−n+
∑x

i=1 nci + (k − x)α)

αj

=
1

(θ + n)(N−n)

N−n∑
j=0

(
θ

α
+ k

)
(j)

C (N − n, j;α,−n+

x∑
i=1

nci + (k − x)α).

Therefore, by the application of the identity (11) to the sum over j, we obtain
that

P(Nc1,N−n = 0, . . . Ncx,N−n = 0 | Nn = n,Kn = k)

=
(θ + n−

∑x
i=1 nci + xα)(N−n)

(θ + n)(N−n)
.

By a direct combination of Equation (17) and Equation (18), the moment for-
mula (16) is

E{(τ1)z | X1, . . . , Xn}

=

z∑
x=1

S(z, x)x!
∑

(c1,...,cx)∈Ck,x

x∏
t=1

I(Nct,n = 1)

× P(Nc1,N−n = 0, . . . , Ncx,N−n = 0 | Nn = n,Kn = k)

=

z∑
x=1

S(z, x)x!
∑

(c1,...,cx)∈Ck,x

x∏
t=1

I(Nct,n = 1)
(θ + n−

∑x
i=1 nci + xα)(N−n)

(θ + n)(N−n)
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=

z∑
x=1

S(z, x)x!

(
m1

x

)
(θ + n− x+ xα)(N−n)

(θ + n)(N−n)

=
1

(θ + n)(N−n)

z∑
x=1

S(z, x)x!

(
m1

x

){
(1− α)

(
θ + n

1− α
− x

)}
(N−n)

,

and from (10)

E{(τ1)z | X1, . . . , Xn}

=
1

(θ + n)(N−n)

z∑
x=1

S(z, x)x!

(
m1

x

)N−n∑
i=1

C (n, i; 1− α)

(
θ + n

1− α
− x

)
(i)

=
1

(θ + n)(N−n)

N−n∑
i=1

C (n, i; 1− α)

z∑
x=1

S(z, x)x!

(
m1

x

)Γ
(

θ+n
1−α + i− x

)
Γ
(

θ+n
1−α − x

)

=
1

(θ + n)(N−n)

N−n∑
i=1

C (n, i; 1− α)
Γ
(

θ+n
1−α + i

)
Γ
(

θ+n
1−α

)

×
z∑

x=1

S(z, x)x!

(
m1

x

)Γ
(

θ+n
1−α + i− x

)
Γ
(

θ+n
1−α

)
Γ
(

θ+n
1−α − x

)
Γ
(

θ+n
1−α + i

)
[by the application of (15)]

=
1

(θ + n)(N−n)

N−n∑
i=1

C (n, i; 1− α)

(
θ + n

1− α

)
(i)

E{(H θ+n
1−α−1,m1,i

)z} (21)

[by the definition of generalized factorial distribution (13)]

=

N−n∑
i=1

E{(H θ+n
1−α−1,m1,i

)z}P(U1−α, θ+n
1−α ,N−n = i). (22)

According to the above expression for E{(τ1)z | X1, . . . , Xn}, the proof of The-
orem 1 is completed by using the definition of (general) hypergeometric distri-
bution (14).

Appendix B: Proofs of Equation (7) and Equation (8)

Let (X1, . . . , Xn) be a random sample from Pα,θ, and let (X1, . . . , Xn) feature
Kn = k distinct symbols with Nn = (N1,n, . . . , NKn,n) corresponding frequen-
cies, n = (n1, . . . , nk) such that Ni,n > 0 and

∑
1≤i≤Kn

Ni,n = n. From the
proof on Theorem 1,

E{(τ1)z | X1, . . . , Xn} =
z∑

i=1

S(z, x)i!

(
m1

i

)
(θ + n− i+ iα)(N−n)

(θ + n)(N−n)
. (23)
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Recall that by means of Stirling formula Γ(n + i)/Γ(n) ≈ ni as n → +∞ is
a first order approximation of the Gamma function. By applying it to (23), as
n → +∞ and N → +∞.

E{(τ1)z | X1, . . . , Xn}

=

z∑
i=1

S(z, i)i!

(
m1

i

)
(θ + n− i+ iα)(N−n)

(θ + n)(N−n)

=
z∑

i=1

S(z, i)i!

(
m1

i

) Γ(θ+N−i+iα)
Γ(θ+n−i+iα)

Γ(θ+N)
Γ(θ+n)

≈
z∑

i=1

S(z, i)i!

(
m1

i

){( n

N

)1−α
}i

. (24)

Equation (24) is the moment of order z of a Binomial random variable with
parameter (m1, (n/N)1−α), with m1 being the number of trials and (n/N)1−α

being the probability of success in a trial. This completes the proof of Equation
(7) and Equation (8).

Appendix C: On the distribution of U
1−α, θ+n

1−α ,N−n

Let (X1, . . . , Xn) be a random sample from Pα,θ, and let (X1, . . . , Xn) feature
Kn = k distinct symbols with corresponding frequencies Nn = n, where Nn =
(N1,n, . . . , NKn,n) and n = (n1, . . . , nk) such that Ni,n > 0 and

∑
1≤i≤Kn

Ni,n =
n. The distribution of Kn is known from Pitman [17, Chapter 3]. In particular,
for x ∈ {1, . . . , n}

P(Kn = x) =
(θ/α)(x)

(θ)(n)
C (n, x;α). (25)

According to (25), the distribution of U1−α, θ+n
1−α ,N−n coincides with the distri-

bution of the number KN−n distinct symbols in N − n random samples from
P1−α,θ+n.

Appendix D: Bayesian nonparametric inference for τ1,q

Under the Pitman-Yor process prior, we characterize the posterior distribution
of τ1,q through its moments; this leads to a Bayesian nonparametric estimator
of τ1,q in terms of the posterior mean. The proof is along lines similar to the
proof of Theorem 1. Let (X1, . . . , Xn) be a random sample from the Pitman-Yor
process Pα,θ, and let (X1, . . . , Xn) feature Kn = k distinct symbols, labelled by
{Z∗

1 , . . . , Z
∗
Kn

}, with frequencies Nn = n, with Nn = (N1,n, . . . , NKn,n), and
n = (n1, . . . , nk) be such that Ni,n > 0 and

∑
1≤i≤Kn

Ni,n = n. Moreover, for
any N > n let (Xn+1, . . . , XN ) be an additional random sample from Pα,θ, and
let Nj,N−n ≥ 0 be the number of records Xn+i, i = 1 . . . , N that coincide with



Bayesian nonparametric disclosure risk assessment 5645

the label Z∗
j , j = 1, . . . ,Kn. Moreover, let VN−n = N − n −

∑
1≤i≤Kn

Ni,N−n

be the number of Xn+i, i = 1, . . . , N that do not coincide with any Z∗
j ’s. To

compute the posterior distribution of τ1,q, we first determine its moment of
order z ≥ 1, i.e.,

E{(τ1,q)z | X1, . . . , Xn} (26)

= E{(τ1,q)z | Nn = n,Kn = k}

= E

{(
Kn∑
i=1

I(Ni,n = 1)I(Ni,N−n ≤ q)

)z

| Nn = n,Kn = k

}
.

For s, t ∈ N with s ≤ t recall that S(s, t) denotes the Stirling number of the
second type (Charalambides [7, Chapter 2]), and let Ct,s denote a set of combi-
nation defined as follows: Ct,0 = ∅ and Ct,s = {(c1, . . . , cs) : ci ∈ {1, . . . , t}, ci �=
cj , if i �= j} for any s ≥ 1. Accordingly, Equation (26) admits the following
expansion

E{(τ1,q)z |X1, . . . , Xn}

=E

{[
k∑

i=1

(
q∑

h=0

I(Ni,n=1)I(Ni,N−n=h)

)]z

|Nn=nn,Kn=k

}

=

k∑
x=1

z∑
i1=1

i1−1∑
i2=1

· · ·
ix−2−1∑
ix−1=1

(
z

i1

)(
i1
i2

)
· · ·

(
ix−2

ix−1

)

×
∑

(c1,...,cx)∈Ck,x

E

⎧⎨
⎩

x∏
t=1

(
q∑

h=0

I(Nct,n=1)I(Nct,N−n=h)

)ix−t−ix−t+1

|Nn=nn,Kn=k

⎫⎬
⎭

=

k∑
x=1

z∑
i1=1

i1−1∑
i2=1

· · ·
ix−2−1∑
ix−1=1

(
z

i1

)(
i1
i2

)
· · ·

(
ix−2

ix−1

)

×
∑

(c1,...,cx)∈Ck,x

E

{
x∏

t=1

(
q∑

h=0

I(Nct,n=1)I(Nct,N−n=h)

)
|Nn=nn,Kn=k

}

=
z∑

x=1

S(z, x)x!

×
∑

(c1,...,cx)∈Ck,x

E

{
x∏

t=1

(
q∑

h=0

I(Nct,n=1)I(Nct,N−n=h)

)
|Nn=nn,Kn=k

}
.

Now, we define the (cartesian product) set Hq,x = {0, . . . , q}x, such that we can
write

E{(τ1,q)z |X1, . . . , Xn}

=

z∑
x=1

S(z, x)x!
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×
∑

(c1,...,cx)∈Ck,x

∑
(h1,...,hx)∈Hq,x

E

{
x∏

t=1

(I(Nct,n=1)I(Nct,N−n=ht))|Nn=nn,Kn=k

}

=

z∑
x=1

S(z, x)x!
∑

(h1,...,hx)∈Hq,x

×
∑

(c1,...,cx)∈Ck,x

x∏
t=1

I(Nct,n=1)E

{
x∏

t=1

(I(Nct,N−n=ht)) |Nn=nn,Kn=k

}

=

z∑
x=1

S(z, x)x!
∑

(h1,...,hx)∈Hq,x

(27)

×
∑

(c1,...,cx)∈Ck,x

x∏
t=1

I(Nct,n=1)P(Nc1,N−n=h1, . . . , Ncx,N−n=hx|Nn=nn,Kn=k).

The conditional probability in (27) can be computed from Lemma 1 in Favaro
et al. (2013). In particular, from Equation 38 and Equation 40 in Favaro et al.
(2013) we have

i)

Pr(Nc1,N−n = h1, . . . , Ncx,N−n = hx |Nn = nn,Kn = k, VN−n = v)

=
(N − n− v)!

(N − n− v −
∑x

t=1 ht)!

x∏
t=1

(nct − α)(ht)

ht!

×
(n−

∑x
t=1 nct − (k − x)α)(N−n−v−

∑x
t=1 ht)

(n− kα)(N−n−v)

ii)

Pr(VN−n = v |Nn = nn,Kn = k)

=

(
N − n

v

)
(n− kα)(N−n−v)

v∑
j=0

∏k+j−1
i=0 (θ+iα)

(θ)(n+(N−n))∏k−1
i=0 (θ+iα)

(θ)(n)

C (v, j;α)

αj
,

and

Pr(Nc1,N−n = h1, . . . , Ncx,N−n = hx |Nn = nn,Kn = k) (28)

=

N−n∑
v=0

(
N − n

v

)
(n− kα)(N−n−v)

v∑
j=0

∏k+j−1
i=0 (θ+iα)

(θ)(n+(N−n))∏k−1
i=0 (θ+iα)

(θ)(n)

C (v, j;α)

αj

× (N − n− v)!

(N − n− v −
∑x

t=1 ht)!

x∏
t=1

(nct − α)(ht)

ht!

×
(n−

∑x
t=1 nct − (k − x)α)(N−n−v−

∑x
t=1 ht)

(n− kα)(N−n−v)
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=

N−n∑
j=0

1

αj

∏k+j−1
i=0 (θ+iα)

(θ)(n+(N−n))∏k−1
i=0 (θ+iα)

(θ)(n)

N−n∑
v=j

(
N − n

v

)
(n− kα)(N−n−v)C (v, j;α)

× (N − n− v)!

(N − n− v −
∑x

t=1 ht)!

x∏
t=1

(nct − α)(ht)

ht!

×
(n−

∑x
t=1 nct − (k − x)α)(N−n−v−

∑x
t=1 ht)

(n− kα)(N−n−v)

=
(N − n)!

(N − n−
∑x

t=1 ht)!

x∏
t=1

(nct − α)(ht)

ht!

N−n∑
j=0

1

αj

∏k+j−1
i=0 (θ+iα)

(θ)(n+(N−n))∏k−1
i=0 (θ+iα)

(θ)(n)

×
N−n∑
v=j

C (v, j;α)
(N − n−

∑x
t=1 ht)!

(N − n− v −
∑x

t=1 ht)!v!

× (n−
x∑

t=1

nct − (k − x)α)(N−n−v−
∑x

t=1 ht)

=
(N − n)!

(N − n−
∑x

t=1 ht)!

x∏
t=1

(nct − α)(ht)

ht!

N−n∑
j=0

1

αj

∏k+j−1
i=0 (θ+iα)

(θ)(n+(N−n))∏k−1
i=0 (θ+iα)

(θ)(n)

×
N−n∑
v=j

(
N − n−

∑x
t=1 ht

v

)
C (v, j;α)

× C (N − n− v −
x∑

t=1

ht, 0;α,−n+

x∑
t=1

nct + (k − x)α)

=
(N − n)!

(N − n−
∑x

t=1 ht)!

x∏
t=1

(nct − α)(ht)

ht!

N−n∑
j=0

1

αj

∏k+j−1
i=0 (θ+iα)

(θ)(n+(N−n))∏k−1
i=0 (θ+iα)

(θ)(n)

× C (N − n−
x∑

t=1

ht, j;α,−n+
x∑

t=1

nct + (k − x)α)

=
(N − n)!

(N − n−
∑x

t=1 ht)!

x∏
t=1

(nct − α)(ht)

ht!

1

(θ + n)(N−n)

×
N−n∑
j=0

(
θ

α
+ k

)
(j)

C (N − n−
x∑

t=1

ht, j;α,−n+

x∑
t=1

nct + (k − x)α)

=
(N − n)!

(N − n−
∑x

t=1 ht)!

x∏
t=1

(nct − α)(ht)

ht!

1

(θ + n)(N−n)

× (θ + n−
x∑

i=1

nct + xα)(N−n−
∑x

t=1 ht).
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Then, by combining Equation (27) with Equation (28) we can write the following
identities

E{(τ1,q)z |X1, . . . , Xn}

=

z∑
x=1

S(z, x)x!
∑

(h1,...,hx)∈Hq,x

×
∑

(c1,...,cx)∈Ck,x

x∏
t=1

I(Nct,n=1)P(Nc1,N−n=h1, . . . , Ncx,N−n=hx|Nn=nn,Kn=k)

=

z∑
x=1

S(z, x)x!
∑

(h1,...,hx)∈Hq,x

×
∑

(c1,...,cx)∈Ck,x

x∏
t=1

I(Nct,n=1)
(N − n)!

(N − n−
∑x

t=1 ht)!

×
x∏

t=1

(nct − α)(ht)

ht!

(θ + n−
∑x

i=1 nct + xα)(N−n−
∑x

t=1 ht)

(θ + n)(N−n)

=
r∑

x=1

S(r, x)x!

(
m1

x

) ∑
(h1,...,hx)∈Hq,x

× (N − n)!

(N − n−
∑x

t=1 ht)!

x∏
t=1

(1− α)(ht)

ht!

(θ + n− x+ xα)(N−n−
∑x

t=1 ht)

(θ + n)(N−n)
.

Therefore,

E{(τ1,q)[z] |X1, . . . , Xn} (29)

= E

⎧⎨
⎩
(

k∑
i=1

(
q∑

h=0

I(Ni,n = 1)I(Ni,N−n = h)

))
[z]

|Nn = nn,Kn = k

⎫⎬
⎭

= z!

(
m1

z

) q∑
i1=0

· · ·
q∑

iz=0

× (N − n)!

(N − n−
∑z

t=1 it)!

z∏
t=1

(1− α)(it)

it!

(θ + n− z + zα)(N−n−
∑z

t=1 it)

(θ + n)(N−n)
.

Equation (29) leads, by means of standard arguments on inversion formula,
to the calculation of the conditional distribution of τ1,q given (X1, . . . , Xn). In
particular, a Bayesian nonparametric estimator of τ1,q, is given by the posterior
mean

τ̂1,q = E{τ1,q |X1, . . . , Xn}

= m1

q∑
i=0

(N − n)!

(N − n− i)!

(1− α)(i)

i!

(θ + n− 1 + α)(N−n−i)

(θ + n)(N−n)
.
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Note that τ̂1,0 coincides with τ̂1 in Theorem 1. We conclude the study of τ1,q
by considering the large n and large N asymptotic behaviour of the posterior
(falling) factorial moment E{(τ1,q)[r] |X1, . . . , Xn}. In particular, we write the
following

E{(τ1,q)[z] |X1, . . . , Xn}

= z!

(
m1

z

) q∑
i1=0

· · ·
q∑

iz=0

× (N − n)!

(N − n−
∑z

t=1 it)!

z∏
t=1

(1− α)(it)

it!

(θ + n− z + zα)(N−n−
∑z

t=1 it)

(θ + n)(N−n)

= z!

(
m1

z

) q∑
i1=0

· · ·
q∑

iz=0

× Γ(N − n+ 1)/Γ(N)

Γ(N − n−
∑z

t=1 it + 1)/Γ(N)

z∏
t=1

(1− α)(it)

it!

Γ(θ−z+zα+N−
∑z

t=1 it)/Γ(N)

Γ(Γ(θ+n−z+zα)/Γ(n)

Γ(θ+N)/Γ(N)
Γ(θ+n)/Γ(n)

≈ z!

(
m1

z

) q∑
i1=0

· · ·
q∑

iz=0

N−n+1

N−n−
∑z

t=1 it+1

z∏
t=1

(1− α)(it)

it!

Nθ−r+rα−
∑z

i=1 it

nθ−z+zα

Nθ

nθ

= z!

(
m1

z

)[( n

N

)1−α
]z q∑

i1=0

· · ·
q∑

iz=0

z∏
t=1

(1− α)(it)

it!

= z!

(
m1

z

)[( n

N

)1−α
]z [

Γ(2 + q − α)

Γ(1 + q)Γ(2− α)

]z

= z!

(
m1

z

)[( n

N

)1−α Γ(2 + q − α)

Γ(1 + q)Γ(2− α)

]z
. (30)

If ( n

N

)1−α Γ(2 + q − α)

Γ(1 + q)Γ(2− α)
∈ (0, 1) (31)

then Equation (30) is the falling factorial moment of order z of a Binomial
random variable with parameter (m1, (n/N)1−αΓ(2+ q−α)/Γ(1+ q)Γ(2−α)),
with m1 being the number of trials and (n/N)1−αΓ(2+ q−α)/Γ(1+ q)Γ(2−α)
being the probability of success in a trial. Note that (31) is always satisfied for
q = 0.
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