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1. Introduction

In this paper we are interested in estimating the unknown density f : R+ → R+

of a positive random variable X given independent and identically distributed
(i.i.d.) copies of Y = XU , where X and U are independent of each other and U
has a known density g : R+ → R+. In this setting the density fY : R+ → R+ of
Y is given by

fY (y) = [f ∗ g](y) :=
∫ ∞

0

f(x)g(y/x)x−1dx ∀y ∈ R+

such that ∗ denotes multiplicative convolution. The estimation of f using an
i.i.d. sample Y1, . . . , Yn from fY is thus an inverse problem called multiplicative
deconvolution.

[16] and [17] introduce and study intensively multiplicative censoring, which
corresponds to the particular multiplicative deconvolution problem with mul-
tiplicative error U uniformly distributed on [0, 1]. This model is often applied
in survival analysis as explained and motivated in [15]. The estimation of the
cumulative distribution function of X is considered in [17] and [2]. Series ex-
pansion methods are studied in [1] treating the model as an inverse problem.
The density estimation in a multiplicative censoring model is considered in [7]
using a kernel estimator and a convolution power kernel estimator. Assuming a
uniform error distribution on an interval [1− α, 1 + α] for α ∈ (0, 1) [9] analyze
a projection density estimator with respect to the Laguerre basis. [4] study a
beta-distributed error U .

In this work, covering all those three variations of the multiplicative censoring
model we consider a density estimator using the Mellin transform and a spectral
cut-off regularization of its inverse, which borrows ideas from [5]. The key to the
analysis of the multiplicative deconvolution problem is the convolution theorem
of the Mellin transform M, which roughly states M[fY ] = M[f ]M[g] for a den-
sity fY = f ∗g. Exploiting the convolution theorem [5] introduce a kernel density
estimator of f allowing more generally X and U to be real-valued. Moreover,
they point out that the following widely used naive approach is a special case of
their estimation strategy. Transforming the data by applying the logarithm the
model Y = XU writes log(Y ) = log(X) + log(U). In other words, multiplica-
tive convolution becomes convolution for the log-transformed data. As a con-
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sequence, the density of log(X) is eventually estimated employing usual strate-
gies for non-parametric deconvolution problems (see for example [12]) and then
transformed back to an estimator of f . However, it is difficult to interpret regu-
larity conditions on the density of log(X). Furthermore, the analysis of a global
risk of an estimator using this naive approach is challenging as [9] pointed out.

Our strategy differs in the following way. Making use of the convolution the-
orem of the Mellin transform and applying an additional spectral cut-off on
the inversion of the Mellin-transform we define a density estimator. We mea-
sure the accuracy of the estimator by introducing a global risk in terms of a
weighted L

2
R+

-norm. Exploiting properties of the Mellin transform we charac-
terize the underlying inverse problem and natural regularity conditions which
borrow ideas from the inverse problems community ([10]). The regularity con-
ditions expressed in the form of Mellin-Sobolev spaces and their relations to the
analytical properties of the density f are discussed in more details. The pro-
posed estimator, however, involves a tuning parameter which is selected by a
data-driven method. We establish an oracle inequality for the fully-data driven
spectral cut-off estimator under fairly mild assumptions on the error density
g. Moreover we show that uniformly over Mellin-Sobolev spaces the proposed
data-driven estimator is minimax-optimal. Precisely, we state both an upper
bound for the mean weighted integrated squared error of the fully-data driven
spectral cut-off estimator and a general lower bound for estimating the density
f based on i.i.d. copies from fY = f ∗ g.

The paper is organized as follows. In section 2 we collect properties of the
Mellin transform. We explain our general estimation strategy by first introduc-
ing and analyzing an estimator based on direct observations X1, . . . , Xn from
f . The estimator relies on an inversion of the Mellin transform which we stabi-
lize using a spectral cut-off. Exploiting then the multiplication theorem of the
Mellin-transform we propose a fully-data driven estimator of f based on the
sample Y1, . . . , Yn. We derive an oracle type upper bound for its mean weighted
integrated squared error. We finish the theoretical part by showing in section
3 that our fully-data driven estimator is minimax optimal over Mellin-Sobolev
spaces for a large class of error densities g. Finally, results of a simulation study
are reported in section 4 which visualize the reasonable finite sample perfor-
mance of our estimators. The proof of section 2 and section 3 are postponed to
the appendix.

2. Adaptive weighted L2
R+

estimation

In this section we introduce the Mellin transform and collect some of its prop-
erties. For a more detailed introduction we refer to [13] and [3].

2.1. Mellin transform

Let L1,loc
R+

denote the set of locally integrable real-valued functions. For h ∈ L
1,loc
R+

the Mellin transform of h in the point c+ it ∈ C is defined by
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Mc[h](t) := M[h](c+ it) :=

∫ ∞

0

xc−1+ith(x)dx (2.1)

provided that the integral is absolutely convergent. If there exists a c ∈ R

such that the mapping x �→ xc−1h(x) is integrable over R+ then the region
Ξh ⊆ C of absolute convergence of the integral in Eq. 2.1 is either a vertical
strip {s + it ∈ C : s ∈ (a, b), t ∈ R} for a < b with c ∈ (a, b) or a vertical
line {c + it ∈ C : t ∈ R}. In the case that Ξh is a vertical strip the function
s+ it �→ Ms[h](t) is analytical on this strip. In the literature Ξh is often called
strip of analyticity. In the following illustration we give some techniques to
determine Ξh.

Note that for any density h1 ∈ L
1,loc
R+

the vertical strip {1+it : t ∈ R} belongs

to Ξh1 , and hence the Mellin transform M1[h1] is well-defined. Furthermore the

region Ξh2 of h2 ∈ L
1,loc
R+

is a superset of the vertical strip {c+ it : c ∈ (a, b), t ∈
R} if h2(x) = O(x−a+ε) for x ↓ 0 and h2(x) = O(x−b−ε) for x → ∞ and for all
ε > 0 small enough.

Illustration 2.1. Now let us give a few examples of Mellin transforms of com-
monly considered distribution families.

1. Beta Distribution: Consider the family (gb)b∈N, gb(x) := 1(0,1)(x)b(1 −
x)b−1 for a b ∈ N and x ∈ R+. Obviously we see that Mc[gb] is well-
defined for c > 0 and it holds

Mc[gb](t) =
b∏

j=1

j

c− 1 + j + it
, t ∈ R.

2. Gamma Distribution: Consider the family (gd)d∈R+ , where for d, x ∈ R
+

gd(x) =
xd−1

Γ(d) exp(−x)1R+(x). Obviously we see that Mc[gd] is well-defined

for c > −d+ 1 and it holds

Mc[gd](t) =
Γ(c+ d− 1 + it)

Γ(d)
, t ∈ R.

3. Scaled Log-Gamma Distibution: Consider the family (gμ,a,λ)(μ,a,λ)∈R×R+×R+ ,

gμ,aλ(x) =
exp(λμ)λa

Γ(a) x−λ−1(log(x)− μ)a−11(eμ,∞)(x) for a, λ, x ∈ R
+ and

μ ∈ R. Then for c < λ+ 1 holds

Mc[gμ,a,λ](t) = λa exp(μ(c− 1 + it))(λ− c+ 1− it)−a, t ∈ R.

If a = 1 then gμ,1,λ is the density of a Pareto distribution with parameter
eμ and λ. If μ = 0 we have that g0,a,λ is the density of a Log-Gamma
distribution.

4. Weibull Distribution: Consider the family (gm)m∈R+ , where for m,x ∈ R
+

gm(x) = mxm−1 exp(−xm)1R+(x). Obviously we see that Mc[gm] is well-
defined for c > −m+ 1 and it holds

Mc[gm](t) =
(c− 1 + it)

m
Γ(

c− 1 + it

m
), t ∈ R.
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Let us now come back to the collection of important properties of the Mellin
transform. For c ∈ Ξh the inversion formula of the Mellin transform is given by

h(x) =
1

2π

∫ ∞

−∞
x−c−itMc[h](t)dt, for x > 0, (2.2)

whenever Ξh is not a vertical line (c.f. [13]) or alternatively if the function
t �→ Mc[h](t) is square integrable over R (c.f. [3]). Considering Illustration 2.1
we see that the assumption on Ξh not being a vertical line is rather weak. It is
fulfilled for almost all functions in the upcoming theory. However, in all the other
cases we make use of the second assumption, that Mc[h] is square integrable,
without further reference.

It can be shown that
∫ ∞
0

|h(x)|2x2c−1dx < ∞ for c ∈ R implies that c ∈ Ξh

and also that
∫ ∞
0

|h(x)|2x2c−1dx = (2π)−1
∫ ∞
−∞ |Mc[h](t)|2dt. This result com-

bined with the Mellin inversion formula implies an isometry in the following
way. For c ∈ R define the weight function ωc(x) := x2c−1, x ∈ R, and the
corresponding weighted norm by ‖h‖2ωc

:=
∫ ∞
0

|h(x)|2ωc(x)dx for a measurable
function. Denote by L2

R+
(ωc) the set of all measurable functions with finite

‖ . ‖ωc -norm and by 〈h1, h2〉ωc :=
∫ ∞
0

h1(x)h2(x)ωc(x)dx for h1, h2 ∈ L
2
R+

(ωc)

the corresponding weighted scalar product. Similarly, define L
2
R := {h : R →

C measurable : ‖h‖2
R
:=

∫ ∞
−∞ h(t)h(t)dt < ∞}. Now, following [3] both opera-

tors Mc : L
2
R+

(ωc) → L
2
R and

M−1
c : L2

R → L
2
R+

(ωc), h �→ (x �→ M−1
c [h](x) := (2π)−1

∫ ∞

−∞
x−c−ith(t)dt)

(2.3)

are isomorphism. We first construct an estimator for f given an i.i.d. sample
X1, . . . , Xn, that is the direct case, and afterwards we construct an estimator
based on the i.i.d. sample Y1, . . . , Yn, which constitutes the censored case.

2.2. Case of direct observation

In this paragraph we define the estimator of f ∈ L
2
R+

(ωc) given the direct
observations X1, . . . , Xn by using the Mellin transform and spectral cut-off
regularised inverse. Since f ∈ L

2
R+

(ωc) the Mellin transform Mc[f ] is well-

defined and a natural unbiased estimator of Mc[f ][t] for each t ∈ R is given

by M̂c(t) := n−1
∑n

j=1 X
c−1+it
j . It is worth pointing out that this estimator

is bounded in t ∈ R by |M̂c(t)| ≤ |M̂c(0)| which is finite almost surely. Thus

1[−k,k]M̂c ∈ L
2
R
for all k ∈ R+ which allows us to apply the operator in Eq. 2.3

to define

f̂k(x) := M−1
c [1[−k,k]M̂c](x) =

1

2π

∫ k

−k

x−c−itM̂c(t)dt, for x ∈ R+, (2.4)
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as an unbiased estimator of fk := M−1
c [1[−k,k]Mc[f ]]. Additionally, we see that

‖f − fk‖2ωc
= π−1

∫ ∞
k

|Mc[f ](t)|2dt tends to zero for k going to infinity, that is
fk approximates f in the weighted L

2
R+

sense.

Furthermore, we have ‖f̂k‖2ωc
= (2π)−1

∫ k

−k
|M̂c(t)|2dt. By application

of Fubini-Tonelli theorem, we deduce that E
n
f (‖f̂k‖2ωc

) < ∞ if and only if

E
1
f (X

2(c−1)) < ∞. We state the following proposition which implies the con-
sistency of the estimator for a suitable choice of the cut-off parameter k ∈ R+.

Proposition 2.1. Assume that f ∈ L2
R+

(ωc) and that σ2
c := Ef (X

2(c−1)) < ∞.

Then, for all k ∈ R
+ we have

E
n
f (‖f − f̂k‖2ωc

) ≤ ‖f − fk‖2ωc
+ π−1σ2

ckn
−1.

By choosing k = kn such that n−1kn → 0 and kn → ∞, f̂kn is a consistent
estimator of f .

The proof of Proposition 2.1 can be found in B. Let us comment the condition
E
1
f (X

2(c−1)) < ∞. Note that, if one would like to consider the case c = 1/2, that

is ωc = 1, it is necessary to assume a finite first moment of X−1. Considering
the examples of Illustration 2.1 we see that the assumption Ef (X

−1) < ∞ holds
not true for (i) and for (ii) and (iv) if k ≤ 1.

On the other hand, a less restrictive situation would be to consider the case of
c = 1 which needs no additional moment condition on f (respectively on g) since
in this case σ2

c = 1 holds automatically. Note that in this case ω(x) := ω1(x) = x
for x ∈ R+ is the corresponding weight function. Furthermore, when estimating
a density without a compact support assumption, intervals far away from zero
are often of special interest. A choice of the model parameter c > 1/2 could
model this and may allow us to capture more interesting characteristics of the
density f like being heavy-tailed or compactly supported.

In the next part we define an estimator of f based on the censored observa-
tion Y1, . . . , Yn. Since Y = XU , in the multiplicative measurement error model
we would need to assume that both X and U have a finite −1-moment to con-
sider the unweighted norm. Especially the latter scenario would exclude several
interesting examples, for instance the multiplicative censoring model where U
is uniformly distributed on [0, 1].

2.3. Case of censored observation

Coming back to the original model of multiplicative censored observations the
key property which makes the Mellin transform useful for multiplicative decon-
volution is that for two functions h1, h2 ∈ L

1,loc
R+

with c ∈ Ξh1 ∩ Ξh2 ,

Mc[h1 ∗ h2](t) = Mc[h1](t) · Mc[h2](t) for t ∈ R. (2.5)

We will refer to it from now on as the convolution theorem. In the context
of deconvolution a similar property adressing the convolution and its Fourier
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transform is frequently used to construct deconvolution estimators. Since f and
g are both densities we have 1 ∈ Ξf ∩ Ξg which implies that for all t ∈ R,
M1[fY ](t) = M1[f ](t)M1[g](t). More generally assuming that c ∈ Ξf ∩ Ξg

implies that for t ∈ R,Mc[fY ](t) = Mc[f ](t)Mc[g](t).
Under the mild assumption that Mc[g](t) �= 0 for all t ∈ R, which we do

in the upcoming theory without further reference, we see that for all t ∈ R

holds Mc[f ](t) = Mc[fY ](t)/Mc[g](t) which allows us to express the functions
(fk)k∈R+ in the following way

fk(x) =
1

2π

∫ k

−k

x−c−itMc[f ](t)dt =
1

2π

∫ k

−k

x−c−itMc[fY ](t)

Mc[g](t)
dt

for k, x ∈ R+. Similar to the direct case we define our estimator by replacing

Mc[fY ](t) with its empirical counterpart M̂c(t) = 1
n

∑n
j=1 Y

c−1+it
j to define

the estimator

f̂k(x) :=
1

2π

∫ k

−k

x−c−it M̂c(t)

Mc[g](t)
dt for x, k ∈ R

+. (2.6)

Here and subsequently we assume that the error density g belongs to a function
class G0,c ⊂ L

2
R+(ωc), which ensures that the estimator is well-defined, where

we set

G0,c := {g ∈ L
2
R+(ωc) : ∀t ∈ R : Mc[g](t) �= 0, ∀k ∈ R+ :

1[−k,k]

Mc[g]
∈ L

2
R
}. (2.7)

Note that Mc[f̂k](t) = 1[−k,k](t)
M̂(t)

Mc[g](t)
by definition of f̂k, and hence the

estimators defined in Eq. 2.6 and Eq. 2.4 coincide when setting Mc[g](t) = 1
for t ∈ R. The proof of the next proposition is very similar to the proof of
Proposition 2.1 and thus omitted.

Proposition 2.2. Assume that f ∈ L
2
R+

(ωc), g ∈ G0,c and σ2
c := Ef (Y

2(c−1)) <
∞. Then for all k ∈ N we have

E
n
fY (‖f − f̂k‖2ωc

) ≤ ‖f − fk‖2ωc
+

σ2
c

2πn

∫ k

−k

|Mc[g](t)|−2dt.

By choosing k = kn such that n−1
∫ kn

−kn
|Mc[g](t)|−2dt → 0 and kn → ∞, f̂kn

is a consistent estimator of f .

From now on we will restrict ourselves to the case of a model parameter
c = 1, since in that case σ2

1 = 1 which simplifies the presentation of the upcom-
ing theory. Nevertheless we want to stress out that the theory extends straight
forward for arbitrary model parameters c ∈ R. Further let us use the abbrevia-
tion ω := ω1.

Let us now have a closer look at the second summand in Proposition 2.2
which bounds the variance term of the estimator. In fact, the growth of the
second summand in k ∈ R

+ is determined by the decay of the Mellin transform
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of the error density g. In analogy to the usual deconvolution setting (compare
[11]) and to the work of [5] we define the function class G1.γ ⊂ G0,1 of smooth
error densities with decay γ ∈ R+ through

G1,γ := {g ∈ G0,1 :∃c, C ∈ R
+ : c|t|−γ ≤ |M1[g](t)| ≤ C|t|−γas |t| → ∞}. (2.8)

Remark 2.1. For the family of Beta distributions (gb)b∈N and the family of
Scaled Log-Gamma distributions (g(μ,a,λ))(μ,a,λ)∈R×R+×R+

from Illustration 2.1
we see that both gb ∈ G1,b for any k ∈ N and gμ,a,λ ∈ G1,a for any μ ∈ R, a ∈
R, λ ∈ R+. By application of the Stirling formula (compare [5]) for the examples
(ii) and (iv) we see that the Mellin transform has exponential decay. This implies
that these families do not belong to G1,γ for any choice γ > 0.

Now g ∈ G1,γ implies that
∫ k

−k
|M1[g](t)|−2dt ≤ Cgk

2γ+1 where Cg > 0 is a
positive constant. This consideration and the result of Proposition 2.2 directly
imply the following corollary whose proof is thus omitted.

Corollary 2.1. Assume that f ∈ L
2
R+

(ω) and that g ∈ G1,γ . Then for all k ∈ N

we have

E
n
fY (‖f − f̂k‖2ω) ≤ ‖f − fk‖2ω + Cg(2πn)

−1k2γ+1

where Cg is a constant only dependent on g. By choosing kn such that kn → ∞
and n−1k2γ+1

n → 0, f̂kn is a consistent estimator of f .

Under the assumptions of Corollary 2.1 it is natural to restrict the set of
suitable parameters k to Kn := �1,Kn� with Kn := �n1/(2γ+1)� and to choose
kn :∈ argmin{‖f−fk‖2ω+Cg(2πn)

−1k2γ+1 : k ∈ Kn}. Unfortunately, this choice
is not feasible since it depends on the unknown density f itself. We note that the
bias ‖f − fk‖2ω = ‖f‖2ω − ‖fk‖2ω behaves like −‖fk‖2ω. Exchanging −‖fk‖2ω with

its empirical counterpart −‖f̂k‖2ω we define a fully data-driven model selection

k̂ by

k̂ ∈ argmin{−‖f̂k‖2ω + pen(k) : k ∈ Kn} where pen(k) := χk2γ+1n−1 (2.9)

for χ > 0. The following theorem shows that this procedure is adaptive up to a
negligeable term.

Theorem 2.1. Assume that f ∈ L
2
R+

(ω), g ∈ G1,γ and that ‖ωfY ‖∞ :=

supy>0 |yfY (y)| < ∞. Then for χ > 12Cgπ
−1

E
n
fY (‖f − f̂k̂‖

2
ω) ≤ 4 inf

k∈Kn

(
‖f − fk‖2ω + pen(k)

)
+ C(‖ωfY ‖∞, g)n−1

where C(‖ωfY ‖∞, g) > 0 is a constant depending on ‖ωfY ‖∞ and g.

The proof of Theorem 2.1 is postponed to B. The assumption that ‖ωfY ‖∞ <
∞ is rather weak. In fact, since 1 ∈ Ξf ∩ Ξg we are able to write for all y ∈ R+

|yfY (y)| = |y 1

2π

∫ ∞

−∞
y−1−itM1[f ](t)M1[g](t)dt| ≤ ‖f‖ω‖g‖ω < ∞.



Density estimation under mulitplicative measurement errors 3559

The last assertion establishes an oracle inequality assuming a smooth error
density. For a super smooth error density with exponentially decay of its Mellin
transform (see [5]) a result similar to Theorem 2.1 can be derived from B.4
in the appendix provided the upper bound Kn and the penalty terms pen(k),
k ∈ �1,Kn� are choosen accordingly. However, we omit the details, since the
minimax theory presented in the next chapter does not cover a super smooth
error density.

3. Minimax theory

In this section we develop the minimax theory for the proposed estimator in
section 2. Over the Mellin-Sobolev spaces we derive an upper and lower bound
for the mean weighted integrated squared error, which are equal up to a mul-
tiplicative constant, showing that our estimator is minimax-optimal over these
spaces.

A natural condition which allows a more sophisticated study on the bias, is
to assume that the Mellin-transform decays with a polynomial rate, that is for
s ≥ 0,

f ∈ W
s := {h ∈ L

2
R+

: |h|2s :=

∫ ∞

−∞
|M1[h](t)|2(1 + t2)sdt < ∞}. (3.1)

The definition of these spaces strongly resembles to the frequently considered
Fourier-Sobolev spaces which are defined asW s := {H ∈ L

2
R
:
∫ ∞
−∞ |F [H](t)|2(1+

t2)sdt < ∞} for s ≥ 0 where F [H] denotes the usual Fourier-Plancherel-
transform. If additionally H ∈ L

1(R) we can express F [H] explicitly through
F [H](t) :=

∫ ∞
−∞ H(x) exp(−ixt)dx for any t ∈ R. In analogy we refer Ws as

Mellin-Sobolev space.
But not just the general motivation seems to be similar. In fact there is a

strong connection between the Mellin-Sobolev spaces and Fourier-Sobolev spaces
we will use to characterize this function space through regularity assumptions
which we exploit in the following paragraph.

3.1. Comparison between Mellin-Sobolev and Fourier-Sobolev spaces

For h ∈ L
2
R+

(ω) we have M1[h] = M0[ωh] = F [(ωh) ◦ϕ] with ϕ : R → R+, x �→
exp(−x). Setting H := (ωh)◦ϕ we see that the conditions h ∈ W

s and H ∈ W s

are equivalent. Therefore, it does not seem to be a suprise that it is possible to
characterise the Mellin-Sobolev spaces via analytical properties as done in the
case of the Fourier-Sobolev spaces. This is stated in the following proposition
while its proof is postponed to the appendix.

Proposition 3.1. Let s ∈ N. Then f ∈ W
s if and only if f is (s−1)-times con-

tinuously differentiable where f (s−1) is locally absolutely continuous with deriva-
tive f (s) and ωjf (j) ∈ L

2
R+

(ω) for all j ∈ �0, s�.
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If a positive random variable R has a density h, then the real-valued random
variable T = log(R) admits a density fT (y) = H(−y) = (ωh)◦ϕ(−y) for y ∈ R.
Again, we observe the strong connection between the Mellin transform of h and
the Fourier transform of H. This has the following interesting implication for
the multiplicative measurement error model.

Remark 3.1. As already mentioned the application of the logarithm to the
random variable Y , Z := log(Y ) = log(X) + log(U) =: V + ε, where V and ε
are independent, can be used to transfer the model to a regular deconvolution
setting. This technique was used for instance by [9]. Given an estimator f̂V
of fV it is possible to derive an estimator of f through f̂ := ω−1f̂V ◦ log. In
fact, one can show that ‖f̂V − fV ‖2R = ‖f̂ − f‖2ω. This change of risk illustrates
the difficulties which arise when using this technique to consider the global risk.
Furthermore, in the deconvolution approach via a Fourier transformation one
usually assumes that the densities fV , fε ∈ L

2
R
which again corresponds to the

fact that f, g ∈ L
2
R+

(ω) using the considerations above.

3.2. Regularity assumptions

Let us define for s ≥ 0 and the ellipsoids W
s(L) := {h ∈ W

s : |h|2s ≤ L} for
any L ≥ 0 which correspond to the Mellin-Sobolev spaces defined in Eq. 3.1.
We see that for any f ∈ W

s(L) we have
∫
[−k,k]c

|M1[f ](t)|2dt ≤ Lk−2s and

‖f‖2ω = (2π)−1
∫ ∞
−∞ |M1[f ](t)|2dt ≤ L(2π)−1. We denote the subset of densities

by

D
s,L
R+

:= {f ∈ W
s(L) : f is a density}. (3.2)

Again, assuming g ∈ G1,γ implies that
∫ k

−k
|M1[g](t)|−2dt ≤ Cgk

2γ+1 where
Cg > 0 is a constant only dependent on the error density g. These considerations
imply the following theorem whose proof is omitted.

Theorem 3.1. Assume that g ∈ G1,γ . Then for ko := n1/(2s+2γ+1),

sup
f∈D

s,L
R+

E
n
fY (‖f − f̂ko‖2ω) ≤ C(g, L, s)n−2s/(2s+2γ+1).

As mentioned before, for γ > 1/2, we have ‖ωfY ‖∞ ≤ ‖f‖ω‖g‖ω. Thus, we
can state the following corollary which is a direct consequence of Theorem 2.1
and Theorem 3.1.

Corollary 3.1. Assume that g ∈ G1,γ for γ > 1/2. Then for χ > 12Cgπ
−1,

sup
f∈D

s,L
R+

E
n
fY (‖f − f̂k̂‖

2
ω) ≤ C(g, L, s)n−2s/(2s+2γ+1),

where χ is defined in Eq. 2.9.
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Remark 3.2. For gb(x) = b(1 − x)b−11(0,1)(x) with b ∈ N, x > 0 and c > 0

its Mellin transform is given by Mc[gb](t) =
∏b

j=1
j

c−1+j+it and satisfies g ∈
G1,b. In fact this covers the model considered by [4] as a generalisation of the
multiplicative censoring where we consider a uniform distributed error density,
that is b = 1. Again, setting γ = 0 covers the case of direct observations, getting
a rate of n−2s/(2s+1) over the ellipsoid.

To prove that the rate of Theorem 3.1 is minimax-optimal over the ellipsoids
under certain assumptions on g we finish this section by stating a lower bound
result. We want to emphasize that up to now we had no constraints on the
support of g. To prove the lower bound we will need to assume that g has a
bounded support. For the sake of simplicity we will assume that g has a support
in [0, 1] and define the function class G′

1,γ ⊂ G1,γ through

G
′
1,γ := {g ∈ G1,γ :∀x > 1 : g(x) = 0 and

∃c, C ∈ R
+ : c|t|−γ ≤ |M1/2[g](t)| ≤ C|t|−γ as |t| → ∞}.

Theorem 3.2. Let s, γ ∈ N, assume that g ∈ G′
1,γ . Then there exist constants

cg, Ls,g, ns,γ > 0 such that for all L ≥ Ls,g, n ≥ ns,γ and for any estimator f̂
of f based on an i.i.d. sample Y1, . . . , Yn,

sup
f∈D

s,L
R+

E
n
fY (‖f − f̂‖2ω) ≥ cgn

−2s/(2s+2γ+1).

We want to emphasize that the error densities (gb)b∈N, with gb(x) = b(1 −
x)b−11(0,1), x ∈ R+, lies in G

′
1,b. Thus, in this situation our estimation strategy

is minimax-optimal. The proof of the lower bound can be extended to the case
of directly observed X1, . . . , Xn or for different weight functions ωc, c ∈ R

+.

Remark 3.3. In the work of [5] one can find a similar lower bound result.
The authors considered in their work the analysis of the pointwise risk while we
are studying the global risk. Additionally their regularity assumptions are more
adpated to the pointwise risk while ours are natural in context of global density
estimation. Our assumptions seem also to be similar but still different from
the work of [5] which makes a comparison of the results difficult. Nevertheless
both lower bound results show the same rate which is typical in the context of
nonparametric inverse problems.

4. Numerical study

Let us illustrate the performance of the estimator f̂k̂ defined in Eq. 2.6 and
Eq. 2.9 in the cases U ∼ U[0,1], U ∼ U(0.5,1.5) and U ∼ Beta(1,2). For the
density g of an uniform distribution on [0.5, 1.5] we get that M1[g](t) = (1 +
it)−1(1.51+it − 0.51+it), t ∈ R, which corresponds to the case g ∈ G1,1. We
consider the densities
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Fig 1. Considering the estimators f̂
k̂

(top) and f̃ (bottom) are depict for 50 Monte-Carlo
simulations with sample size n = 1000 in the case 1 (left), 2 (middle) and 3 (right) with
direct observations. The true density f is given by the red curve while the dark blue curve is
the point-wise empirical median of the 50 estimates.

1. Gamma Distribution: f(x) = x4

4! exp(−x),

2. Gamma Mixture: f(x) = 0.4 · 3.22x exp(−3.2x) + 0.6 · 6.816x15

15! exp(−6.8x),
3. Beta Distribution: f(x) = 1

560 (0.5x)
3(1− 0.5x)41[0,1](0.5x) and

4. Weibull Distribution: f(x) = 2x exp(−x2).

By minimising an integrated weighted squared error over a family of histogram
densities with randomly drawn partitions and weights we select χ = 1.2, χ = 0.8
and χ = 0.01 for the cases γ = 0, γ = 1 and γ = 2, respectively, where χ is the
penalty constant, see Eq. 2.9.

In the direct case we compare the estimator f̂k̂ with the data-driven density

estimator f̃ from the work of [6] which is based on the adaptive aggregation of
projection estimators with respect to the Laguerre basis.

4.1. Comment

Since the estimator f̂k̂ is built to minimize the weighted global risk, it seems

natural that the estimator f̂k̂ behaves worse in the region close to zero then the

estimator f̃ which is built to minimize the unweighted global risk. This effect
is observable in Figure 1. Furthermore, the developed minimax theory suggests
that the cases of U ∼ U[0,1] and U ∼ U[0.5,1.5] are of similiar complexity which
is reflected in the plots of Figure 2. For the case U ∼ β(1, 2), and thus g ∈ G1,2,
both theory and simulation imply that the recovering of the density f based on
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Fig 2. Considering the estimator f̂
k̂

and a sample size n = 2000 the adaptive estimators
are depicted for 50 Monte-Carlo simulations with U ∼ U[0,s] (left), U ∼ U[1/2,3/2] (middle)
and U ∼ β(1, 2) (right) in the cases 1 (first row), 4 (second row) and 3 (third row). The
true density f is given by the red curve while the dark blue curve is the point-wise empirical
median of the 50 estimates.

the noise sample Y1, . . . , Yn leads to a more difficult inverse problem than in the
other cases.

Appendix A: Preliminaries

A.1. Properties of the Mellin transform

By assuming that h ∈ L
1,loc
R+

is a at least b-time differentiable function h, where

h(b) denotes its b-th derivative, b ∈ N, and that c−b ∈ Ξh and c+a ∈ Ξh, a ∈ N,
we get that

Mc[x
ah](t) = Mc+a[h](t) respec. Mc[h

(b)](t) = (−1)b
Γ(c+ it)

Γ(c− b+ it)
Mc−b[h](t)

(A.1)
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Combining both results in Eq. A.1 we get that Mc[xh
(1)](t) = (−c−it)Mc[h](t)

if c + 1 ∈ Ξh and h differentiable. Further for h1, h2 ∈ L
2
R+

with c ∈ Ξh1 and

1 − c ∈ Ξh2 we get that
∫ ∞
0

h1(x)h2(x)dx = 1
2π

∫ ∞
−∞ Mc[h1](t)M1−c[h2](t)dt.

Combining this and Eq. A.1 we conclude that for h1, h2 ∈ L2(ωc) it holds
〈h1, h2〉ωc = 1

2π

∫ ∞
−∞ Mc[h1](t)Mc[h2](t)dt.

Lemma A.1. (Talagrand’s inequality) Let X1, . . . , Xn be independent Z-valued
random variables and let ν̄h = n−1

∑n
i=1 [νh(Xi)− E (νh(Xi))] for νh belonging

to a countable class {νh, h ∈ H} of measurable functions. Then,

E(sup
h∈H

|νh|2 − 6Ψ2)+ ≤ C

[
τ

n
exp

(
−nΨ2

6τ

)
+

ψ2

n2
exp

(
−KnΨ

ψ

)]
(A.2)

with numerical constants K = (
√
2− 1)/(21

√
2) and C > 0 and where

sup
h∈H

sup
z∈Z

|νh(z)| ≤ ψ, E(sup
h∈H

|ν̄h|) ≤ Ψ, sup
h∈H

1

n

n∑
i=1

Var(νh(Xi)) ≤ τ.

Remark A.1. Keeping the bound Eq. A.2 in mind, let us specify particular
choices K, in fact K ≥ 1

100 . The next bound is now an immediate consequence,

E(sup
h∈H

|νh|2 − 6Ψ2)+ ≤ C

(
τ

n
exp

(
−nΨ2

6τ

)
+

ψ2

n2
exp

(
−nΨ

100ψ

))
(A.3)

In the sequel we will make use of the slightly simplified bounds Eq. A.3 rather
than Eq. A.2.

Appendix B: Proofs of Section 2

Proof of Proposition 2.1. Since Mc[f − fk](t) = 0 for |t| ≤ k we get that 〈f −
fk, fk − f̂k〉ωc = 1

2π

∫ k

−k
Mc[f − fk](t)Mc[fk − f̂k](t)dt = 0 and thus ‖f −

f̂k‖2ωc
= ‖f − fk‖2ωc

+ ‖fk − f̂k‖2ωc
.

Finally we see ‖f̂k−fk‖2ωc
= 1

2π

∫ k

−k
|Mc[f ](t)−M̂c(t)|2dt and E

n
f (|Mc[f ](t)−

M̂c(t)|2) = Var(M̂c(t)) ≤ 1
nE

1
f (|Xc−1+it

1 |2) = σ2
cn

−1. Now by using Fubini we

get En
f (‖f̂k − fk‖2ωc

) ≤ σ2
cπ

−1kn−1.

Proof of Proposition 3.1. The main strategy of this proofs relies on the well-
known fact that

W s={H∈L
2
R
: H weakly differentiable up to the order s,H(i)∈L

2
R
, i∈�0, s�}

for s ∈ N and the already discussed connection between the Mellin transform
and the Fourier transform. Further we want to stress out that for a function
H ∈ L

2
Ω,Ω ⊂ R open, being weakly differentiable corresponds to being locally

absolutely continuous on Ω, that is h is absolutely continuous on all compact
intervals [a, b] ⊂ Ω, a < b ∈ Ω.
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Let us start by assuming f ∈ W
s then F := (ωf) ◦ ϕ ∈ W s which means

that F is s-times weakly differentiable with F (i) ∈ L
2
R
for i ∈ �0, s�. Thus we

get that F is a s − 1-times continously differentiable function, more precisely
there exists a representant of the equivalence class of F such that it is s − 1-
times continuously differentiable. Now since f = ω−1F (ϕ−1) we can deduce
that f itself is s−1-times continuously differentiable. Let us define the operator
T : C1(R+) → C0(R+), f �→ (ωf)(1), T 0 := Id denote the identity and T j =
T ◦T j−1 for j ∈ N. Since T [ωjf (j)] = (j+1)ωjf (j)+ωj+1f (j+1) for j ∈ �0, s− 1�

we conclude T j [f ] =
∑j

i=0 bi,j ω
if (i), bi,j ≥ 1. Now we can use the following

Lemma to deduce that ‖T j [f ]‖2ω = ‖(ωT j [f ]) ◦ ϕ‖2
R
= ‖F (j)‖2

R
< ∞.

Lemma B.1. For h ∈ Ck(R+) and all j ∈ �0, k�, it holds (ωT j [h]) ◦ ϕ =
(−1)j(ϕh(ϕ))(j).

From this follows directly that ωjf (j) ∈ L
2
R+

(ω) for j ∈ �0, s�. As the next step

we show that f (s−1) is locally absolutely continuous. To do so, we see first for
j ∈ �0, s� we have that T j [f ] ∈ W

1. Now using the following lemma implies that
ωs−1f (s−1) is absolutely continuous as linear combination of {T j [f ] : j ∈ �0, s�}.

Lemma B.2. Let h ∈ W
1. Then h is a locally absolutely continuous function

with derivative h′ : R+ → R and h, ωh′ ∈ L
2
R+

(ω).

Let now δ denote the derivative of ωs−1f (s−1). Then by Lemma B.2 we see
that ωδ ∈ L2

R+
(ω). Defining now f (s) := ω−s+1δ − (s− 1)ω−1f (s−1) ∈ L1

loc(R+)

we get for any a, b ∈ R+, a < b,
∫ b

a
f (s)(x)dx = f (s−1)(b) − f (s−1)(a) using the

integration by part rule for absolutely continuous function (see [8]). Finally we
have that ωsf (s) = δω − (s− 1)ωs−1f (s−1) ∈ L

2
R+

(ω).
Let us now show the other direction, indeed let us assume that f is s−1-times

continuously differentiable, f (s−1) is locally absolutely continuous with deriva-
tive f (s) and ωjf (j) ∈ L

2
R+

(ω) for j ∈ �0, s�. Thus for T j [f ] =
∑j

i=0 ci,jω
if (i) ∈

L
2
R+

(ω) with j ∈ �0, s− 1� we have that ω(T j [f ])(1) = T j+1[f ] − T j [f ] ∈
L
2
R+

(ω). We can conclude that T j [f ] ∈ W
1 for j ∈ �0, s− 1� applying the

following lemma.

Lemma B.3. Let h : R+ → R be locally absolutely continous function with
derivative h′ : R+ → R and h, ωh′ ∈ L

2
R+

(ω). Then h ∈ W
1.

Now setting δ = (s − 1)ωs−2f (s−1) + ωs−1f (s) ∈ L
1
loc(R+) we have that∫ b

a
δ(x)dx = bs−1f (s−1)(b)−as−1f (s−1)(a) and ωδ ∈ L2

R+
(ω). Thus again apply-

ing Lemma B.3 on ωsf (s) again shows that ωsf (s) ∈ W
1 and thus T s−1[f ] ∈ W

1.
Now we use that M1[T s−1](t) = (−1)s−1F [F (s−1)](t) = (−it)s−1F [F ](t) =
(−it)s−1M1[f ](t) which implies that f ∈ W

s.

Proof of Lemma B.1. For j = 0 the claim is trivially correct. Assume that the
claim hold for j ∈ �1, k� then

(ωT j+1[f ]) ◦ ϕ = (ωT j [f + ωf (1)]) ◦ ϕ = (−1)j−1(ϕf(ϕ) + ϕ2f (1)(ϕ))(j)
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and thus (ϕf(ϕ))(1) = −ϕf(ϕ)− ϕ2f (1)(ϕ) implies the claim.

Proof of Lemma B.2. Since h ∈ W
1 we have that H = (ωh) ◦ ϕ lies in the

Sobolev space of order 1. In equal H is locally absolutely continuous with
derivative H ′ and H,H ′ ∈ L

2
R
. From this we can conclude that h is locally

absolutely continuous. Indeed for h′ := −ω−2(H ′ + H) ◦ ϕ−1 ∈ L1
loc(R+) and

a, b ∈ R+, a < b holds

∫ b

a

−x−2H ′(ϕ−1)(x)dx =

∫ ϕ−1(b)

ϕ−1(a)

exp(x)H ′(x)dx

= h(b)− h(a) +

∫ b

a

x−2H(ϕ−1)(x)dx

applying the integration by part rule for absolutely continuous function. Further
we have that ‖ωh′‖ω = ‖ω−1(H ′ +H) ◦ ϕ−1‖ω ≤ ‖H ′‖R + ‖H‖R < ∞.

Proof of Lemma B.3. Since h ∈ L2
R+

(ω) we have for H := (ωh)◦ϕ that ‖H‖R =

‖h‖ω < ∞. Further H is locally absolutely continuous with derivative −ϕh(ϕ)−
ϕ2h′(ϕ) since for a, b ∈ R with a < b holds

∫ b

a

−ϕ2(x)h′(ϕ(x))dx =

∫ ϕ(b)

ϕ(a)

xh′(x)dx = [ϕh ◦ ϕ]ba −
∫ ϕ(b)

ϕ(a)

h(x)dx.

Now since ‖ϕ2h′(ϕ)‖R = ‖ωf ′‖ω < ∞ we deduce that H is in the Sobolev
space of order 1 and thus (1+ t2)1/2M1[h] = (1+ t2)1/2F [H] ∈ L

2(C) and thus
h ∈ W

1.

Proof of Theorem 2.1. Let us define the nested subspaces (Sk)k∈R+ by Sk :=
{h ∈ L

2
R+

(ω) : ∀|t| ≥ k : M1[h](t) = 0}. For any h ∈ Sk we consider the
empirical contrast

γn(h) := ‖h‖2ω − 2
1

2π

∫ ∞

−∞
M̂(t)

M1[h](−t)

M1[g](t)
dt = ‖h‖2ω − 2n−1

n∑
j=1

νh(Yj)

with νh(Yj) :=
1
2π

∫ ∞
−∞ Y it

j
M1[h](−t)
M1[g](t)

dt. One can easily see that f̂k=argmin{γn(h) :
h ∈ Sk} with γn(f̂k) = −‖f̂k‖2ω. For h ∈ Sk define the empirical process
ν̄h := n−1

∑n
j=1 νh(Yj)− 〈h, f〉ω. Then we have that for h1, h2 ∈ Sk that

γn(h1)− γn(h2) = ‖h1 − f‖2ω − ‖h2 − f‖2ω − 2ν̄h1−h2 . (B.1)

Now since γn(f̂k) ≤ γn(fk) and by the definition of k̂ we have that γn(f̂k̂) −
pen(k̂) ≤ γn(f̂k) − pen(k) ≤ γn(fk) − pen(k) for any k ∈ Kn. Now using Eq.
B.1 we get that

‖f − f̂k̂‖
2
ω ≤ ‖f − fk‖2ω + 2ν̄f̂

k̂
−fk

+ pen(k)− pen(k̂).
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First we note that Sk1 ⊆ Sk2 for k1 ≤ k2. Let us now denote by a∨b := max(a, b)
and define for all k ∈ Kn the unit balls Bk := {h ∈ Sk : ‖h‖ω ≤ 1}. Next we

deduce from 2ab ≤ a2 + b2 that 2ν̄f̂
k̂
−fk

≤ 4−1‖f̂k̂ − fk‖2ω + 4 suph∈B
k̂∨k

ν̄2h.

Further we see that 4−1‖f̂k̂ − fk‖2ω ≤ 2−1(‖f̂k̂ − f‖2ω + ‖f − fk‖2ω). Putting all
this together and define

p(k̂ ∨ k) := 6(2πn)−1Δg(k̂ ∨ k) where Δg(k) :=

∫ k

−k

|M1[g](t)|−2dt (B.2)

we get

‖f − f̂k̂‖
2
ω ≤ 3‖f − fk‖2ω + 8

(
sup

h∈B
k̂∨k

ν̄2h − p(k ∨ k̂)
)
+
+ 8p(k̂ ∨ k)

+ 2pen(k)− 2pen(k̂)

Assuming now that χ ≥ 12Cgπ
−1 we get that 4p(k̂ ∨ k) ≤ pen(k) + pen(k̂) and

thus

‖f − f̂k̂‖
2
ω ≤ 4

(
‖f − fk‖2ω + pen(k)

)
+ 8 max

k′∈Kn

(
sup

h∈Bk′
ν̄2h − p(k′)

)
+

We will use the following lemma which we will be proven afterwards.

Lemma B.4. Assuming that ‖ωfY ‖∞ < ∞ and that for all k ∈ Kn the function
Gk : R → R, t �→ 1[−k,k](t)|M1[g](t)|−2 is bounded we have

E
n
fY

(
sup
h∈Bk

ν̄2h − p(k)
)
+
≤ C

n

(
‖Gk‖∞‖ωfY ‖∞ exp(− Δg(k)

12π‖ωfY ‖∞‖Gk‖∞
)

+
Δg(k)

(2π)2n
exp(−

√
n

50
)

)
,

where Δg is defined in Eq. B.2.

Now since g ∈ G1,γ we have that Δg(k) ≥ cgk
2γ+1 and for all t ∈ R

holds |Gk(t)| ≤ Cgk
2γ thus we have that the first summand is bounded by

Cgk
2γ‖ωfY ‖∞ exp(− cgk

12π‖ωfY ‖∞Cg
) which is summable over N. For the second

summand we use that n−1Δg(k) ≤ Cgn
−1k2γ+1 ≤ Cg and thus bounded in N.

We can therefore deduce that

E
n
fY ( max

k′∈Kn

(
sup

h∈Bk′
ν̄2h − p(k′)

)
+
) ≤

∑
k∈Kn

E
n
fY (

(
sup

h∈Bk′
ν̄2h − p(k′)

)
+
)

≤ C(‖ωfY ‖∞, g)n−1

applying the Lemma. We get that

E
n
fY (‖f − f̂k̂‖

2
ω) ≤ 4

(
‖f − fk‖2ω + pen(k)

)
+ C(‖ωfY ‖∞, g)n−1.

Since this inequality holds for all k ∈ Kn this implies the claim.
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Proof of Lemma B.4. We will use the Talagrand inequality Eq. A.3 to show the
claim. We want to emphasize that we are able to apply the Talagrand inequality
on the sets Bk since Bk has a dense countable subset and due to continuity
arguments. To do so we start to determine the constant Ψ2. We have for any
h ∈ Bk that ν̄2h = 〈h, f̂k − fk〉2ω ≤ ‖h‖2ω‖f̂k − fk‖2ω. Since ‖h‖ω ≤ 1 we get

E
n
fY ( sup

h∈Bk

ν̄2h) ≤ E
n
fY (‖f̂k − fk‖2ω) ≤ (2nπ)−1Δg(k) =: Ψ2.

Thus 6Ψ2 = p(k). Next we consider ψ. Let y > 0 and h ∈ Bk then using the

Cauchy Schwartz inequality we get |νh(y)|2 = (2π)−2|
∫ k

−k
yitM1[h](−t)

M1[g](t)
dt|2 ≤

(2π)−1
∫ k

−k
|M1[g](t)|−2dt ≤ (2π)−1Δg(k) =: ψ2 since |yit| = 1 for all t ∈ R.

Next we consider τ . For h ∈ Bk we conclude Var(νh(Y1)) ≤ E
n
fY

(νh(Y1)
2) ≤

‖ωfY ‖∞
∫ ∞
0

y−1νh(y)
2dt = ‖ωfY ‖∞‖νh‖2ω0

with νh(y) =
1
2π

∫ k

−k
yitM1[h](−t)

M1[g](t)
dt

for y > 0. Thus

‖νh‖2ω0
=

1

2π

∫ k

−k

∣∣∣∣M1[h](t)

M1[g](t)

∣∣∣∣2 dt ≤ ‖Gk‖∞
2π

∫ ∞

−∞
|M1[h](t)|2dt

where 1
2π

∫ ∞
−∞ |M1[h](t)|2dt = ‖h‖2ω ≤ 1. Thus we set τ = ‖ωfY ‖∞‖Gk‖∞.

Hence we have that nΨ2

6τ =
Δg(k)

12π‖ωfY ‖∞‖Gk‖∞
and nΨ

ψ =
√
n. We deduce

E
n
fY

(
sup
h∈Bk

ν̄2h − p(k)
)
+
≤ C

n

(
‖Gk‖∞‖ωfY ‖∞ exp(− Δg(k)

12π‖ωfY ‖∞‖Gk‖∞
)

+
Δg(k)

(2π)2n
exp(−

√
n

50
)

)
.

Appendix C: Proofs of Section 3

Proof of Theorem 3.2. First we outline here the main steps of the proof. We
will construct a family of functions in D

s,L
R+

by a perturbation of the density

fo : R+ → R+ with small bumps, such that their L
2
R+

(ω)-distance and the
Kullback-Leibler divergence of their induced distributions can be bounded from
below and above, respectively. The claim follows then by applying Theorem 2.5
in [14]. We use the following construction, which we present first.

Denote by C∞
c (R) the set of all smooth functions with compact support in

R and let ψ ∈ C∞
c (R) be a function with support in [0, 1] and

∫ 1

0
ψ(x)dx = 0.

For each K ∈ N (to be selected below) and k ∈ �0,K� we define the bump-
functions ψk,K(x) := ψ(xK − K − k), x ∈ R. and define for j ∈ N0 the finite
constant Cj,∞ := max(‖ψ(l)‖∞, l ∈ �0, j�). Let us further define the operator
S : C∞

c (R) → C∞
c (R) with S[f ](x) = xf (1)(x) for all x ∈ R and define S1 := S

and Sn := S ◦ Sn−1 for n ∈ N, n ≥ 2. Now, for j ∈ N, we define the function
ψk,K,j(x) := Sj [ψk,K ](x) =

∑j
i=1 ci,jx

iKiψ(i)(xK − K − k) for x ∈ R+ and

ci,j ≥ 1 and let cj :=
∑j

i=1 ci,j
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For a bump-amplitude δ > 0, γ ∈ N and a vector θ = (θ1, . . . , θK) ∈ {0, 1}K
we define

fθ(x) = fo(x) + δK−s−γ
K−1∑
k=0

θk+1ψk,K,γ(x) where fo(x) := exp(−x). (C.1)

Until now, we did not give a sufficient condition to ensure that our constructed
functions {fθ : θ ∈ {0, 1}K} are in fact densities. This condition is given by the
following lemma.

Lemma C.1. Let 0 < δ < δo(ψ, γ) := exp(−2)2−γ(Cγ,∞cγ)
−1. Then for all

θ ∈ {0, 1}K , fθ is a density.

Further one can show that these densities all lie inside the ellipsoids Ds,L
R+

for
L big enough. This is captured in the following lemma.

Lemma C.2. Let s ∈ N. Then, there is Ls,γ,δ > 0 such that fo and any fθ as

in Eq. C.1 with θ ∈ {0, 1}K , K ∈ N, belong to D
s,Ls,γ,δ

R+
.

For sake of simplicity we denote for a function ϕ ∈ L
2
R+

the multiplicative

convolution with g by ϕ̃ := [ϕ ∗ g]. Futher we see that for y2 ≥ y1 > 0 holds

f̃o(y1) =

∫ ∞

0

g(x)x−1 exp(−y1/x)dx ≥
∫ ∞

0

g(x)x−1 exp(−y2/x)dx = f̃o(y2)

and thus f̃o is monotone decreasing. Further we have that f̃o(2) > 0 since
otherwise g = 0 almost everywhere. Exploiting Varshamov-Gilbert’s lemma (see
[14]) in Lemma C.3 we show further that there is M ∈ N with M ≥ 2K/8

and a subset {θ(0), . . . ,θ(M)} of {0, 1}K with θ(0) = (0, . . . , 0) such that for all
j, l ∈ �0,M�, j �= l the L2

R+
(ω)-distance and the Kullback-Leibler divergence are

bounded for K ≥ Ko(γ, ψ).

Lemma C.3. Let K ≥ Ko(ψ, γ)∨8. Then there exists a subset {θ(0), . . . ,θ(M)}
of {0, 1}K with θ(0) = (0, . . . , 0) such that M ≥ 2K/8 and for all j, l ∈ �0,M�,

with j �= l holds ‖fθ(j) − fθ(l)‖2ω ≥ ‖ψ(γ)‖2δ2

16 K−2s and further KL(f̃θ(j) , f̃θ(0)) ≤
C1(g)‖ψ‖2

f̃o(2) log(2)
δ2 log(M)K−2s−2γ−1 where KL is the Kullback-Leibler-divergence.

Selecting K = �n1/(2s+2γ+1)�, it follows

1

M

M∑
j=1

KL((f̃θ(j))⊗n, (f̃θ(0))⊗n) =
n

M

M∑
j=1

KL(f̃θ(j) , f̃θ(0)) ≤ C
(2)
ψ,δ,g,γ,fo

log(M)

where Cψ,δ,g,γ,fo < 1/8 for all if δ ≤ δ1(ψ, g, γ, fo) and M ≥ 2 for n ≥ ns,γ :=
82s+1∨Ko(γ, ψ)

2s+2γ+1. Thereby, we can use Theorem 2.5 of [14], which in turn

for any estimator f̂ of f implies

sup
f∈D

s,L
R+

P
(
‖f̂ − f‖2ω≥

C
(1)
ψ,δ,γ

2
n− 2s

2s+2γ+1
)
≥

√
M

1 +
√
M

(
1− 1/4−

√
1

4 log(M)

)
≥0.07.
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Note that the constant C
(1)
ψ,δ,γ does only depend on ψ, γ and δ, hence it is in-

dependent of the parameters s, L and n. The claim of Theorem 3.2 follows by
using Markov’s inequality, which completes the proof.

Proofs of the lemmata

Proof of Lemma C.1. For any h ∈ C∞
c (R) we can state that

∫ ∞
−∞ S[h](x)dx =

[xh(x)]∞−∞ −
∫ ∞
−∞ h(x)dx = −

∫ ∞
−∞ h(x)dx and therefore

∫ ∞
−∞ Sj [h](x)dx =

(−1)j
∫ ∞
−∞ h(x)dx for j ∈ N. Thus

∫ ∞
−∞ ψk,K,γ(x)dx = (−1)γ

∫ ∞
−∞ ψk,K(x)dx =

0 which implies that for any δ > 0 and θ ∈ {0, 1}K we have
∫ ∞
0

fθ(x)dx = 1.
Now due to the construction Eq. C.1 of the functions ψk,K we easily see that

the function ψk,K has support on [1 + k/K, 1 + (k + 1)/K] which lead to ψk,K

and ψl,K having disjoint supports if k �= l. Here, we want to emphasize that
supp(S[h]) ⊆ supp(h) for all h ∈ C∞

c (R). Which implies that ψk,K,γ and ψl,K,γ

have disjoint supports if k �= l, too. For x ∈ [1, 2]c we have fθ(x) = exp(−x) ≥ 0.
Now let us consider the case x ∈ [1, 2]. In fact there is ko ∈ �0,K� such that
x ∈ [1 + ko/K, 1 + (ko + 1)/K] and hence

fθ(x) = fo(x) + θko+1δK
−s−γψko,K,γ(x) ≥ exp(−2)− δ2γCγ,∞cγ

since ‖ψk,K,j‖∞ ≤ 2jCj,∞cjK
j for any k ∈ �0,K� and j ∈ N where cj :=∑j

i=1 ci,j . Now choosing δ ≤ δo(ψ, γ) = exp(−2)2−γ(Cγ,∞cγ)
−1 ensures fθ(x) ≥

0 for all x ∈ R+.

Proof of Lemma C.2. Our proof starts with the observation that for all t ∈ R

we have M1[fo](t) = Γ(1 + it). Now by applying the Stirling formula (see also
[5]) we get |Γ(1 + it)| ∼ |t|1/2 exp(−π/2|t|), |t| ≥ 2, thus for every s ∈ N there
exists Ls such that |fo|2s ≤ L for all L ≥ Ls.

Next we consider |fo−fθ|s. Let us therefore define first ΨK :=
∑K−1

k=0 θk+1ψk,K

and ΨK,j := Sj [ΨK ] for an j ∈ N. Then we have |fo−fθ|2s = δ2K−2s−2γ |ΨK,γ |2s
where | . |s is defined in Eq. 3.1. Now since for any j ∈ N, it holds that
supp(ΨK,j) ⊂ [1, 2], ‖ΨK,j‖∞ < ∞ we have that (0,∞) is a subset of the strip of
analyticity of ΨK,j . By application of Eq. A.1 we deduce that |M1[ΨK,s+γ ](t)|2 =
(1 + t2)s|M1[ΨK,γ ](t)|2 and thus

|ΨK,γ |2s =

∫ ∞

−∞
|M1[ΨK,s+γ ](t)|2dt = 2π

∫ ∞

0

x|ΨK,s+γ(x)|2dx

by the Parseval formula. Since ψk,K have disjoint support for different values

of k we follow that |Ψk,γ |2s = 2π
∑K−1

k=0 θ2k+1

∫ ∞
0

x|Sγ+s[ψk,K ](x)|2dx. Applying
the Jensen inequality and the fact that supp(ψk,K) ⊂ [1, 2] leads to

|Ψk,γ |2s ≤ 2π2γ+s−1
K−1∑
k=0

γ+s∑
j=1

c2j,γ+s

∫ 2

1

x2j+1K2jψ(j)(xK −K − k)2dx

≤ 2πK2(γ+s)2γ+s
K−1∑
k=0

γ+s∑
j=1

c2j,γ+s4
jC2

ψ,s,γK
−1 ≤ C(γ,s)K

2(γ+s)



Density estimation under mulitplicative measurement errors 3571

Thus |fo − fθ|2s ≤ C(s,γ,δ) and |fθ|2s ≤ 2(|fo − fθ|2s + |fo|2s) ≤ 2(C(s,γ,δ) +Ls) =:
Ls,γ,δ.

Proof of Lemma C.3. Using that the functions (ψk,K,γ)k∈�0,K� with different
index k have disjoint supports we get

‖fθ − fθ′‖2ω = δ2K−2s−2γ‖
K−1∑
k=0

(θk+1 − θ′k+1)ψk,K,γ‖2ω

= δ2K−2s−2γρ(θ,θ′)‖ψ0,K,γ‖2ω

with ρ(θ,θ′) :=
∑K−1

j=0 1{θj+1=θ′
j+1} the Hamming distance. Now the first claim

follows by showing that by ‖ψ0,K,γ‖2ω ≥ K2γ−1‖ψ(γ)‖2

2 for K big enough. To do

so we observe that ‖ψ0,K,γ‖2ω =
∑

i,j∈�1,γ� cj,γci,γ
∫ ∞
0

xj+i+1ψ
(j)
0,K(x)ψ

(i)
0,K(x)dx

and define Σ := ‖ψ0,K,γ‖2ω −
∫ ∞
0

(xγψ
(γ)
0,K(x))2xdx

‖ψ0,K,γ‖2ω = Σ+

∫ ∞

0

(xγψ
(γ)
0,K(x))2xdx ≥ Σ+K2γ−1‖ψ(γ)‖2 ≥ K2γ−1‖ψ(γ)‖2

2
(C.2)

as soon as |Σ| ≤ K2γ−1‖ψ(γ)‖2

2 . This is obviously true as soon as K ≥ Ko(γ, ψ)

and thus ‖fθ − fθ′‖2ω ≥ δ2‖ψ(γ)‖2

2 K−2s−1ρ(θ,θ′) for K ≥ Ko(ψ, γ).
Now we use the Varshamov-Gilbert Lemma (see [14]) which states that for

K ≥ 8 there existes a subset {θ(0), . . . ,θ(M)} of {0, 1}K with θ(0) = (0, . . . , 0)
such that ρ(θ(j),θ(k)) ≥ K/8 for all j, k ∈ �0,M�, j �= k and M ≥ 2K/8.

Applying this leads to ‖fθ(j) − fθ(l)‖2ω ≥ ‖ψ(γ)‖2δ2

16 K−2s.

For the second part we have fo = fθ(0) and by using KL(f̃θ, f̃o) ≤ χ2(f̃θ, f̃o) :=∫
R+

(f̃θ(x)− f̃o(x))
2/f̃o(x)dx it is sufficient to bound the χ-squared divergence.

We notice that f̃θ − f̃o has support in [0, 2] since fθ − fo has support in

[1, 2] and g has support in [0, 1] In fact for y > 2 holds f̃θ(y) − f̃o(y) =∫ ∞
y

(fθ − fo)(x)x
−1g(y/x)dx = 0. Denote further ΨK,γ :=

∑K−1
k=0 θk+1ψk,K,γ =

Sγ [
∑K−1

k=0 θk+1ψk,K ] =: Sγ [ΨK ]. Now by using the compact support property
and a single substitution we get

χ2(f̃θ, f̃o) ≤ f̃o(2)
−1‖f̃θ − f̃o‖2 = f̃o(2)

−1δ2K−2s−2γ‖Ψ̃K,γ‖2.

Let us now consider ‖Ψ̃K,γ‖2. In the first step we see by application of the

Parseval that ‖Ψ̃K,γ‖2 = 1
2π

∫ ∞
−∞ |M1/2[Ψ̃K,y](t)|2dt. Now for t ∈ R, we see

by using the convolution theorem for Mellin transforms that M1/2[Ψ̃K,γ ](t) =
M1/2[g](t)·M1/2[Sγ [ΨK ]](t). AgainM1/2[Sγ [ΨK ]](t) = (1/2+it)γM1/2[ΨK ](t).
Together with assumption [G1’] we get

‖Ψ̃K,γ‖2 ≤ C1(g)

2π

∫ ∞

−∞
|M1/2[ΨK ](t)|2dt = C1(g)‖ΨK‖2 ≤ C1(g)‖ψ‖2.
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Since M ≥ 2K we have thus KL(f̃θ(j) , f̃θ(0)) ≤ C1(g)‖ψ‖2

f̃o(2) log(2)
δ2 log(M)K−2s−2γ−1.
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Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks].
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