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Abstract: For a given function f on a multivariate domain, the level sets,
given by {x : f(x) = c} for different values of c, provide important geo-
metrical insights about the underlying function of interest. The distance on
level sets of two functions may be measured by the Hausdorff metric or a
metric based on the Lebesgue measure of a discrepancy, both of which can
be linked with the L∞-distance on the underlying functions. In a Bayesian
framework, we derive posterior contraction rates and optimal sized credible
sets with assured frequentist coverage for level sets in some nonparametric
settings by extending some univariate L∞-posterior contraction rates to the
corresponding multivariate settings. For the multivariate Gaussian white
noise model, adaptive Hausdorff and Lebesgue contraction rates for levels
sets of the signal function and its mixed order partial derivatives are derived
using a wavelet series prior on the function. Assuming a known smoothness
level of the signal function, an optimal sized credible region for a level set
with assured frequentist coverage is derived based on a multidimensional
trigonometric series prior. For the nonparametric regression problem, adap-
tive rates for level sets of the function and its mixed partial derivatives are
obtained using a multidimensional wavelet series prior. When the smooth-
ness level is given, optimal sized credible regions with assured frequentist
coverage are obtained using a finite random series prior based on tensor
products of B-splines. We also derive Hausdorff and Lebesgue contraction
rates of a multivariate density function under a known smoothness setting.

Keywords and phrases: Level sets, posterior contraction, credible region,
coverage.
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1. Introduction

For a given constant c, the c-level set for a smooth function f : Rd → R is
defined as the set {x ∈ R

d : f(x) = c}. In the literature, by level sets, some
authors mean the sets {x ∈ R

d : f(x) ≥ c}. To avoid a possible confusion, it
would perhaps be appropriate to term the sets {x ∈ R

d : f(x) = c} as level
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curves when d = 2, but owing to the fact that in higher dimensions, these are
surfaces and hypersurfaces, we shall use the term “level set” for {x ∈ R

d :
f(x) = c}. Estimation of level sets is helpful in understanding the geometry of
the function surface, in the problems like clustering (Cuevas et al. [18], Rinaldo
and Wasserman [40]), support estimation of the density function (Cuevas and
Fraiman [17], Biau et al. [5]) and binary classification (Mammen and Tsybakov
[33]).

The most common approach to the estimation of level sets is the so-called
“plug-in” approach, when, in computing a level set, the argument f is replaced
by some nonparametric estimate f̂ . Under some suitable metrics, convergence
rates for density level set estimates by the plug-in method were studied in Tsy-
bakov [46], and later in Báıllo et al. [1], Cadre [7], Singh and Nowak [43] and
Rigollet and Vert [39]. Asymptotic normality of some measure of the symmetric
difference between the level set and its plug-in estimator was studied in Ma-
son and Polonik [34]. Cavalier [12] studied nonparametric regression level sets
and Cuevas et al. [19] studied level sets of a general smooth function. Besides
the plug-in approach to estimation, a direct approach called “excess mass ap-
proach” was proposed and studied in Polonik [36] and Polonik and Wang [37] for
density and regression functions respectively. More recent papers studying sta-
tistical inference for level sets include Jankowski and Stanberry [28], Mammen
and Polonik [32] and Chen et al. [13]. The constructions of confidence regions
proposed in the first two papers both relied on the estimates of the sup-norm
distance between f and f̂ , while the third paper made use of the estimate of
variation in the Hausdorff metric directly. Inferential problems of similar types
have also been studied in econometrics literature where the objects of interests
are identified as sets Chernozhukov et al. [14, 15].

All the papers from the literature mentioned above followed the frequentist
approach and the inference procedures about level sets mainly rely on the boot-
strap procedure. To the best of our knowledge, Gayraud and Rousseau [20] is
the only paper on level set estimation using the Bayesian approach, where the
authors studied the contraction rate for a level set {f = c} in density estima-
tion with respect to the Lebesgue distance, that is, the Lebesgue measure of
the symmetric difference of {f ≥ c} with its true value {f0 ≥ c}. The present
paper has two primary goals. The first is to study contraction rates for the
level set {f = c} of a function f of interest in terms of both Hausdorff and
Lebesgue distance in several nonparametric settings such as for the signal func-
tion or its mixed partial derivatives in a multivariate signal with a Gaussian
white noise model, for the multivariate regression function or a mixed partial
derivative of it in a nonparametric regression setting, and for the density func-
tion in a multivariate density estimation problem, and check if such rates can be
automatically adapted to the smoothness of the underlying function. Second, to
validate Bayesian credible regions for level sets from the frequentist perspective
by obtaining adequate frequentist coverage of such a region while maintaining
its optimal size. The primary technique is to link the rates and the sizes of
the credible regions respectively to the L∞-contraction rate of the underlying
function and a posterior quantile of the L∞-distance between the function of
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interest and its Bayes estimate.
The general theory of posterior contraction rates in Bayesian nonparametric

models was developed in Ghosal et al. [23] and Ghosal and van der Vaart [21],
respectively for independent and identically distributed (i.i.d.) observations and
general observations. In this general theory, the existence of tests of exponen-
tially decaying errors plays a fundamental role. Shen and Wasserman [42] also
studied the posterior contraction rates for i.i.d. observations but under some-
what stronger conditions. For a thorough account of the development of the
theory of posterior contraction, see the recent monograph Ghosal and van der
Vaart [22]. These works primarily focus on consistency and contraction rates
in the Hellinger metric, or metrics on the underlying parameters which can be
related to the Hellinger (or average root-squared-Hellinger distance in case of
non-i.i.d. observations) relatively easily.

A challenge with our goals is that the contraction rate in terms of the L∞-
distance is harder to obtain using the general theory of posterior contraction,
because certain exponentially powerful tests as required by the theory can ex-
ist on much smaller portions of the parameter space, and the role of the prior
becomes a lot more important. The resulting rates may turn out to be subop-
timal for some commonly used natural priors. This led to the investigation of
optimal rates through more direct analyses of the properties of the posterior
distribution. For the one-dimensional signal with Gaussian white noise model,
Giné and Nickl [24] obtained the optimal rate using conjugacy with Gaussian
priors on wavelet coefficients, while Hoffmann et al. [27] obtained adaptive L∞-
contraction rates using a spike-and-slab prior on these coefficients. Castillo [9]
introduced a method based on a Bernstein-von Mises theorem to study sup-norm
contraction rates and this method leads to minimax contraction rates in (uni-
variate) density estimation with a wavelet series prior on log-density, and the
signal with Gaussian white noise model using non-conjugate priors. Yoo and
Ghosal [48] established optimal L∞-rates for the nonparametric multivariate
regression function and its mixed partial derivative using tensor products of B-
splines prior. Yoo et al. [50] obtained adaptive posterior L∞-contraction rates in
the same setup using a spike-and-slab prior. Shen and Ghosal [41] studied both
L2-and L∞-rates for density and its derivatives and obtained minimax rate for
the L2-distance, but suboptimal for the L∞-distance. Castillo and Nickl [10] ob-
tained exact asymptotic L∞-coverage of an optimal-sized Bayesian credible set
in the signal with a Gaussian white noise model through a Bernstein-von Mises
theorem in a larger space. For the multivariate regression problem, Yoo and
Ghosal [48] showed that a suitably inflated Bayesian credible L∞-ball around
the posterior mean has high frequentist coverage and the optimal size. A more
recent paper Castillo and van der Pas [11] derived optimal L∞-rates for the
univariate hazard rate function. Nickl and Ray [35] studied d-dimensional dif-
fusions and obtained the optimal L∞-rates for the drift vector field when d ≤ 4
and sub-optimal L∞-rates for d ≥ 5.

In this paper, we address the questions of posterior contraction and coverage
of credible sets for level sets of functions appearing in nonparametric model-
ing. We address these problems by linking the posterior contraction rates and
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credible sets for level sets with those on the underlying function in terms of the
L∞-distance. More specifically, three nonparametric models are considered —
signal with Gaussian white noise, nonparametric Gaussian regression, and mul-
tivariate smooth density on d-dimensional hypercube [0, 1]d. For the first and
the third setup, we slightly extend known L∞-contraction results of respectively
Hoffmann et al. [27] and Castillo [9] to the higher dimensional settings. Unfor-
tunately, we find that the approach of Castillo [9] does not seem to give the
optimal L∞-rate for a multivariate density function, although it does improve
upon the rate using a finite random series prior based on tensor products of
B-splines; see Proposition 6.2 of Shen and Ghosal [41]. For the nonparametric
Gaussian regression problem, the L∞-posterior contraction results on the func-
tion and its mixed partial derivatives are directly usable from Yoo et al. [50].
The L∞-contraction rates for the signal with Gaussian white noise and non-
parametric Gaussian regression also automatically adapt to the smoothness of
the underlying function, leading to adaptive posterior contraction rates for the
level sets.

The paper is organized as follows. In the next section, we present notations,
preliminaries, and a brief tutorial on wavelets on the domain [0, 1]d. In Section 3,
we present results on posterior contraction rates for level sets for all three mod-
els. The coverage of credible regions is addressed in Section 4. Computational
algorithm and simulation results are presented in Section 5. The proofs and
other related results are given in Section 6. Unless otherwise stated, throughout
the paper it is implicitly assumed that d ≥ 2.

2. Preliminaries

2.1. Notations and definitions

Let N = {1, 2, .., }, N0 = {0, 1, 2, 3, . . .} and Z be the set of integers. Given two
real sequences an and bn, an = O(bn) or an � bn means that an/bn is bounded,
while an = o(bn) or an � bn means that an/bn → 0. Also an � bn means
that both an = O(bn) and bn = O(an). For a sequence of random elements Zn,
Zn = Op(an) means that P(|Zn| ≤ Cnan) → 1 for every Cn → ∞.

Consider f : U 	→ R defined on some bounded set U ⊂ R
d. The L∞-norm

(sup-norm) is denoted by ‖f‖∞ = supx∈U |f(x)|. The L2-norm (with respect to
Lebesgue measure) is denoted by ‖ · ‖2 with the associated inner product 〈·, ·〉.
Any integration without specification of the underlying measure is implicitly
taken with respect to the Lebesgue measure. For g : U 	→ R1 on some bounded
set U ⊂ R

d, let ∇g be the gradient of g, which is a d × 1 vector of functions.
For a d-dimensional multi-index r = (r1, . . . , rd) ∈ N

d
0, let Dr be the partial

derivative operator ∂|r|/∂xr1
1 · · · ∂xrd

d where |r| =
∑d

l=1 rl.
The Hölder Space Hα([0, 1]d) of order α > 0 consists of functions f : [0, 1]d 	→

R such that ‖f‖α,∞ < ∞, where ‖ · ‖α,∞ is the Hölder norm

‖f‖α,∞ = max
r:|r|≤�α�

sup
x

|Drf(x)|+ max
r:|r|=�α�

sup
x,y:x �=y

|Drf(x)−Drf(y)|
‖x− y‖α−�α� ,
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where supremum is taken over the support of f and �α� is the largest integer
strictly smaller than α.

Given two setsA andB in a Euclidean Space, let d(A|B) := supx∈A infy∈B ‖x−
y‖. If A = {x}, write d(x|B) for d({x}|B) := inf{‖x−y‖ : y ∈ B}. The Hausdorff
distance between A and B is defined as

Haus(A,B) = max{d(A|B), d(B|A)}. (1)

2.2. Level sets

Let f : Rd 	→ R and consider some value c that belongs to the range of f . Then
the level set at c is given by

Lc := Lc(f) = {x : f(x) = c}. (2)

We shall assume the following conditions.

(A1) There exist ε > 0 and δ1 > 0, such that for any c̃ ∈ [c − ε, c + ε], and x
satisfying |f(x)− c̃| ≤ δ1, it holds that d(x|{f = c̃}) ≤ A1|f(x)− c̃|ν1 for
some A1 > 0, ν1 > 0.

Assumption (A1) precludes functions arbitrarily flat around the level c. In par-
ticular, the condition implies that Lc does not include any stationary points
of the function f (i.e., points at which ∇f equals zero) or any flat part of f
at the level c. Hence points of local extrema are excluded. To see this, con-
sider tn = c + εn, for some small εn > 0 such that εn < δ1. Clearly, for
x ∈ Lc, |f(x) − tn| = εn < δ1, thus d(x|{f = tn}) ≤ A1|f(x) − tn|ν1 , giv-
ing inf{‖x − xn‖ : f(xn) = tn} ≤ A1ε

ν1
n . Therefore, there exists some xn such

that f(xn) = tn and ‖x−xn‖ ≤ A1ε
ν1
n . Hence there exists some sequence xn → x

and f(xn) > c. Similarly, it is straightforward to see that there also exists some
sequence xn → x and f(xn) < c.

The following lemma gives a sufficient condition for (A1).

Lemma 2.1. If there exists some ε1 > 0 and c0 > 0 such that inf{‖∇f(x)‖ :
|f(x)− c| ≤ ε1} > c0, then Condition (A1) hold with ν1 = 1.

This lemma essentially ensures that the set {x : f(x) = c} is a lower-
dimensional manifold. When d = 2, the level set becomes a curve and could
be called a “level curve”. The following two lemmas are slight generalizations
of Theorem 1 and Theorem 2 of Cuevas et al. [19].

Lemma 2.2. Let f be a continuous function satisfying Condition (A1). Then
there exists a δ > 0 such that if g is another function with ‖f − g‖∞ < δ, then

Haus(Lc(f),Lc(g)) ≤ C1‖f − g‖ν1
∞, (3)

for some C1, which may be taken as 6A1.
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The order in the bound above is sharp in the situation where the level set is a
regular curve (ν1 = 1). To see this, let f and g respectively be two-dimensional
centered normal densities with covariance matrix identity and (1 + δ)-times
identity. Then for a given c, the level sets for both f and g are circles whose
radii differ by the order of δ as δ → 0. Hence their Hausdorff distance is of the
order of δ. Now, as both f and g are radial functions, their L∞-distance can be
seen to be also O(δ), as f(0) − g(0) is of the order of δ and the maximum of
g − f is also easily seen to be of the order of δ. Thus for small ‖f − g‖∞, the
inequality may not be improved except for the constant. This implies that the
optimal rate for L∞-estimation is also the optimal rate for level set estimation
in the Hausdorff metric in the present situation. The conclusion remains valid
even if the domain is restricted to a disc with a sufficiently large radius.

We also consider another metric given by the Lebesgue measure of symmetric
difference between the regions enclosed by the level sets, namely, λ

(
{f1 ≥ c} �

{f2 ≥ c}
)
, where λ stands for the Lebesgue measure. We shall call this the

Lebesgue metric and denote it by Leb(Lc(f1),Lc(f2)). The following assumption
will be needed to study distances in terms of the Lebesgue metric, where ν2 plays
a role similar to ν1 in Assumption (A1).

(A1′) For all sufficiently small ε > 0, we have λ{c− ε < f < c+ ε} ≤ A2ε
ν2 for

some A2 > 0, ν2 > 0.

Lemma 2.3. Let f be a continuous function satisfying (A1′) and 1 ≤ p < ∞.
Then there exists δ > 0 such that ‖f − g‖∞ < δ for a function g implies that

Leb
(
Lc(f),Lc(g)

)
≤ C2‖f − g‖ν2

∞, (4)

for some constant C2, which may be taken as A2.

Note that the bivariate normal density function satisfies (A1′) with ν2 = 1,
and in this regular case, it can be argued similarly as above that the inequality
(4) is sharp.

2.3. Wavelets on [0, 1]d

There is a huge literature on both theory and applications of wavelets; see Härdle
et al. [26], Giné and Nickl [25] and the references therein. Suppose that φ, ψ
are the scaling function and wavelet of a Daubechies wavelet basis of L2(R).
For j ∈ N0, k ∈ Z, let φk = φ(· − k), ψk = ψ(· − k), φj,k = 2j/2φk(2

j ·) and
ψj,k = 2j/2ψk(2

j ·). A wavelet basis on [0, 1]d (called CDV-wavelet basis, named
after Cohen, Daubechies and Vial) can be constructed from φ, ψ starting from
some sufficiently large fixed resolution level J0; see Cohen et al. [16]. We write
this basis as

{φk, ψj,k′ : 0 ≤ k ≤ 2J0 − 1, 0 ≤ k′ ≤ 2j − 1, j ≥ J0}.

Let K(j) = {0, . . . , 2j − 1}d and I is the set of sequence i = (i1, . . . , id) of zeros
and ones excluding i = {0, . . . , 0}. Both φ and ψ can be constructed to be of
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sufficiently high regularity, say being q-times (q > α) continuously differentiable
with their derivatives up to q-th order uniformly bounded. A wavelet series for
f ∈ L2([0, 1]d) can be written as

f =
∑

k∈K(J0)

〈f,Φk〉Φk +

∞∑
j=J0

∑
i∈I,k∈K(j)

〈
f,Ψi

j,k

〉
Ψi

j,k,

where

Φk(x) := ΦJ0,k(x) = φJ0,k1(x1) · · ·φJ0,kd
(xd),

Ψi
j,k(x) := ψi1

j,k1
(x1) · · ·ψid

j,kd
(xd),

ψ0
j,k(·) := φj,k(·) and ψ1

j,k(·) := ψj,k(·). It should be pointed out that the sum-
mation over i ∈ I may be omitted throughout the proof with the understanding
that |I| ≤ 2d and thus inclusion or exclusion of this summation does not af-
fect the asymptotic analysis. Therefore, up to renumbering indices, it is more
convenient to write

f =

∞∑
j=0

∑
k∈K(j)

〈f,Ψj,k〉Ψj,k =
∑

(j,k)∈Λ

〈f,Ψj,k〉Ψj,k,

where the level j = 0 corresponds to the father wavelet, Λ := {(j, k) : j ∈
N0, k ∈ K(j)} and |K(j)| = O(2jd).

In the proof, we shall use the following properties of this wavelet basis.

(i)
∥∥∑

k∈K(j) |DrΨj,k|
∥∥
∞ � 2j(d/2+|r|).

(ii) The wavelets bases characterize the so-called Besov Space Bα
∞,∞([0, 1]d)

with α < q, in that for any f in the Besov Spaces Bα
∞,∞([0, 1]d),

‖f‖∞,∞,α := sup
j∈N0,k∈K(j)

2j(α+d/2)|〈f,Ψj,k〉| < ∞.

In fact, Bα
∞,∞([0, 1]d) coincides with Hα([0, 1]d) when α > 0 is non-integer

and that Hα([0, 1]d) ⊂ Bα
∞,∞([0, 1]d) when α is an integer.

(iii) Ψj,k has support Sj,k with area (or volume) at most 2−jd, and ‖Ψj,k‖∞ �
2jd/2,

∫
|Ψj,k| � 2−jd/2.

(iv) For fixed level j, given a fixed Ψj,k with its support Sj,k, the number of
wavelets of the level j′ < j with support intersecting Sj,k is bounded by a
universal constant (independent of j, j′, k); the number of wavelets of the
level j′ > j with support intersecting Sj,k is bounded by 2(j

′−j)d times a
universal constant.

3. Posterior contraction rates for level sets

Given a prior Π on the parameters describing f , let Π(·|Dn) denote the posterior
distribution, where n is the sample size, Dn are the observations, and EΠ(·|Dn)
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is the expectation under the law Π(·|Dn). When the context of the prior is clear,
we may drop the superscript Π in EΠ(·|Dn). If the observations Dn follow (the
n-fold product of) the true law P0, let E0 denote the expectation under the true
law. We denote the true function (signal function, regression function or density
function) by f0.

3.1. Signal with Gaussian white noise on [0, 1]d

Consider the multivariate white noise model which is defined through the stochas-
tic differential equation dYn(t) = f(t)dt+n−1/2dW (t) for t ∈ [0, 1]d, where dW
is defined through a multivariate stochastic integral with respect to independent
standard Brownian motions (W1(t1), . . . ,Wd(td)) and that∫

g(t)dW (t) ∼ N(0, ‖g‖2) for any g ∈ L2([0, 1]d).

With above choice of the basis, the equivalent sequence space model is given
by

Yj,k = θj,k +
1√
n
εj,k, k ∈ {0, . . . , 2j − 1}d, j ≥ 0,

where the parameters are given by θj,k := 〈f,Ψj,k〉 and εj,k are all i.i.d. N(0,1).
As in Hoffmann et al. [27], we put a spike-and-slab prior on θj,k. Let Jn be a
deterministic increasing function of n to be defined in the following theorem,
θj,k’s drawn independently as

θj,k ∼
{
(1− wj)δ0 + wjg(·), if j ≤ Jn,

δ0, if j > Jn;

here δ0 is the point mass at zero and g is a bounded density function of R which
satisfies

inf
x∈[−L0,L0]

g(x) > 0, (5)

for some suitable L0 > 0.
Let f0 stand for the true signal function and let P0 be the true distribution

of the observed signal. A multivariate version of Theorem 3.1 of Hoffmann et al.
[27] implies the following theorem.

Theorem 3.1. Consider a spike and slab prior defined above, where 2Jn � n1/d

and for some constants s > 0, τ > 1/2, n−s ≤ wj ≤ min{2−jd(1+τ), 1/2}. For
every α > 0, L0 − 1 ≥ M > 0, Kn → ∞, for any f0 with ‖f0‖α,∞ ≤ M ,

(i) if f0 satisfies Assumption (A1), then

Π
(
Haus(Lc(f),Lc(f0)) > Kn

(
n/ log n

)−ν1α/(d+2α)∣∣Y )
P0−−→ 0;



Bayesian analysis of level sets 2655

(ii) if f0 satisfies Assumption (A1′), then

Π
(
Leb

(
Lc(f),Lc(f0)

)
> Kn

(
n/logn

)−ν2α/(d+2α)∣∣Y )
P0−−→ 0.

Remark 3.1. The corresponding rate for the level sets of the derivatives of the
function Drf is given by (n/ log n)νl(|r|−α)/(d+2α) where |r| < α, l = 1, 2, for
the case (i) and (ii) respectively.

The rate above is the optimal L∞-rate for α-smooth functions in d-dimension.
In view of the sharpness of (3) when ν1 = 1 (or (4) when ν2 = 1) discussed ear-
lier, this rate is also optimal for estimating a level set in terms of the Hausdorff
metric and Lebesgue metric. Since the prior does not depend on the smooth-
ness level α of the underlying true function, the posterior contraction rate is
adaptive.

3.2. Nonparametric Gaussian regression

Consider the Gaussian nonparametric regression problem with observations

(Yi, Xi), where Yi = f(Xi) + εi, εi
i.i.d.∼ N(0, σ2), i = 1, . . . , n, and the covari-

ates take values in [0, 1]d. We write Y = (Y1, . . . , Yn)
T , X = (XT

1 , . . . , X
T
n )

T ,
F = (f(X1), . . . , f(Xn))

T and ε = (ε1, . . . , εn)
T , so that Y = F + ε.

Our study allows for both fixed and random designs. For the fixed design
case, X is considered fixed and each Yi given Xi is independently distributed.
For the random design case, each Xi is further assumed to be independent and
identically distributed (i.i.d.). If the covariates are random, they are assumed
to follow the uniform distribution on [0, 1]d. If the covariates are deterministic,
let Gn stand for the empirical distribution function of X1, . . . , Xn. We assume
that

sup
x∈[0,1]d

|Gn(x)− U(x)| = O(n−1), (6)

where U stands for the cumulative distribution function of the uniform distri-
bution on [0, 1]d. More generally, if the relation holds with U replaced by a
cumulative distribution function G having a positive and continuous density,
then the case can be reduced to (6) by a transformation on x, but then the
interpretation of the regression function will change too. However, the level sets
are not affected by a transformation of x, so we can assume that the covariates
are uniformly distributed.

As in Yoo et al. [50], the priors on θj,k = 〈f,Ψj,k〉 and σ2 are mutually
independent with each other. Specifically, θj,k’s are drawn independently as

θj,k =

⎧⎪⎨
⎪⎩
g(·), if j = 0,

(1− wj)δ0 + wjg(·), if 0 < j ≤ Jn,

δ0, if j > Jn;

here, the density function g also satisfies Condition (5). The prior for σ is taken
to be some positive and continuous density on (0,∞).
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Assume that the true error distribution is sub-Gaussian with mean zero and
variance σ2

0 . In view of Theorem 4.2 of Yoo et al. [50], the following theorem
and remark readily follow.

Theorem 3.2. Consider a spike-and-slab prior defined above, where 2Jn �
(n/ log n)1/(2d) and n−s ≤ wj ≤ min{2−jd(1+τ), 1/2} for some constants s >
0, τ > 1/2. For every α > d/2, L0 − 1/2 ≥ M > 0, Kn → ∞, for any f0 with
‖f0‖α,∞ ≤ M ,

(i) if f0 satisfies Assumption (A1), then

Π
(
Haus(Lc(f),Lc(f0)) > Kn

(
n/ logn

)−ν1α/(d+2α)∣∣Dn

)
P0−−→ 0;

(ii) if f0 satisfies Assumption (A1′), then

Π
(
Leb

(
Lc(f),Lc(f0)

)
> Kn

(
n/logn

)−ν2α/(d+2α)∣∣Dn

)
P0−−→ 0.

Remark 3.2. The corresponding rate for the level sets of the derivatives of the
function Drf is given by (n/ log n)νl(|r|−α)/(d+2α) where |r| < α, l = 1, 2, for
the case (i) and (ii) respectively.

As the prior is free of the smoothness level α, the posterior of the level
set of the regression function contracts adaptively at the optimal rate
(n/ log n)−α/(2α+d) for the L∞-metric, which is also the optimal rate for level
sets in the regular situation in view of the sharpness of (3) and (4).

3.3. Density estimation

Suppose we have Xi
i.i.d.∼ P0, whose density function f0 is supported on [0, 1]d.

Following Castillo [9], we put a prior through an exponentiation of a wavelet
prior, generalized to d-dimension. More specifically, let f(x) = exp{T (x)−c(T )},
where

T (x) =

Jn∑
j=0

∑
k∈K(j)

σj,kαj,kΨj,k, c(T ) = log

∫ 1

0

exp{T (x)}dx,

and αj,k are drawn independently from some fixed density ϕ if j ≤ Jn and
are set to 0 if j > Jn. There are two types of density functions for ϕ under
consideration. The first is the log-Lipschitz case, that is, log(ϕ) is a Lipschitz
function. For this class, we assume that

σj,k ≡ σj ≥ 2−j(α+d/2). (7)

The second type is to take ϕ to be the standard normal density function. In
this case, we assume that for some r such that 0 < r < α− d/4,

σj,k ≡ σj = 2−j(r+d/2). (8)
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Theorem 3.3. Suppose a positive density function f0 ∈ Hα([0, 1]d) for some
α > d > 1. Using the priors described above with 2Jn � (n/ logn)1/(2α+d). For
any Kn → ∞,

(i) if f0 satisfies Assumption (A1), then

Π
(
Haus(Lc(f),Lc(f0)) > Knε

ν1
n

∣∣∣Dn

)
P0−−→ 0;

(ii) if f0 satisfies Assumption (A1′), then

Π
(
Leb

(
Lc(f),Lc(f0)

)
> Knε

ν2
n

∣∣∣Dn

)
P0−−→ 0,

where εn = (n/ log n)−(α−(d/2)+α/(α+1))/(2α+d).

As the prior relies on the knowledge of the smoothness level α, the above rate
is not adaptive. It is useful to point out also, the suboptimal rate arises from
the suboptimal L∞-rate obtained for the multivariate density function when
d > 1; see the discussion following the proof of Propositions 6.2. It is also useful
to compare the obtained rate with those obtained by Gayraud and Rousseau
[20] and Polonik [36]. The former used the weaker Lebesgue measure distance
and concluded that for d = 2, the rate is max{n−α/(3α+3), n−1/4}, which is
always weaker than the rate in Theorem 3.3 for smoothness α ≥ 2. The later
paper used different conditions which include a metric entropy condition for
the underlying class of candidate sets, and a different metric. But when the
true density is bounded and bounded away from zero, the metric behaves like
the Lebesgue measure metric. Under a comparable situation which involves at
least the existence of a gradient, the rate is at the best n−1/3, which is always
weaker than ours for smoothness α ≥ 3. Thus even though our obtained rate
for density is weaker than the anticipated optimal rate (n/ logn)−α/(2α+2), we
improve upon the available results when the function is at least moderately
smooth. Unlike ours, their rates are capped and do not improve with smoothness.
Further, our rate is also with respect to the Hausdorff distance, which is typically
stronger than the Lebesgue measure metric in a bounded domain, if measured
from a curve with bounded length (that is, not too wiggly).

4. Optimal credible regions with assured coverage

In this section, we provide credible regions for level sets with sufficient coverage
for the signal with a Gaussian white noise model using the trigonometric series
prior, and the Gaussian nonparametric regression using B-splines series priors
assuming that the targeted smoothness level of the true function is known. The
issue of adaptive size and coverage is a lot more complex. It is known that even
for a one-dimensional signal in a white noise model with the L2-distance, it is
impossible to obtain coverage with adaptive size sets by any method, Bayesian or
not; see for instance Li [30], Baraud [2], Cai and Low [8]. Size of a credible region
can adapt to the underlying complexity only if certain parts of the parameter
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space are removed from consideration by using restrictions like “self-similarity”,
“polished tail” or “excessive bias restriction”; see Szabó et al. [45], Belitser
and Nurushev [4], Belitser [3], Sniekers and van der Vaart [44] and Ray [38] for
results on adaptive Bayesian coverage in certain conjugacy settings with the size
measured by L2-type distances. At present, it is unclear whether L∞-adaptive
credible sets are possible to obtain, and if possible, which part of the parameter
space is to be removed to maintain coverage with adaptive L∞-size, as the
notion of a bias-variance decomposition for the L2-setting is not easily extended
to the L∞-setting. Thus we study coverage of credible sets only under the known
smoothness setting for the signal with a Gaussian white noise model and the
nonparametric Gaussian regression model using conjugate priors, respectively
based on multivariate trigonometric series and tensor products of B-splines. The
conjugacy allows certain explicit calculations necessary for lower-bounding the
size of the posterior spread, which is the key to obtaining frequentist coverage.
The approach will induce credible regions for the level sets from those on the
function constructed using posterior quantiles of the L∞-spread of the function
around its center. The approach is similar to that of Yoo and Ghosal [49] and
Li and Ghosal [31] respectively for the mode and the filaments of the regression
function.

4.1. Signal with Gaussian white noise model

We start with the Gaussian white noise model. Let L̃ be the induced level set
of f̃ , where f̃ is the posterior mean function. For some 0 < γ < 1/2, let Rn,γ

denotes the (1− γ)-quantile of the posterior distribution of ‖f − f̃‖∞. Let

Cγ := {f : ‖f − f̃‖∞ ≤ ρRn,γ}, (9)

where ρ is some positive constant sufficiently large. The following theorem pro-
vides a credible region with sufficiently high frequentist coverage in the signal
with Gaussian white noise model using trigonometric series prior.

Let {ei : i = 1, 2, . . . , } be an orthonormal basis of L2([0, 1]d). Then the
equivalent sequence space model is Yi = θi + n−1/2εi, Yi :=

∫
ei(t)dY (t), θi :=

〈ei, f〉 =
∫
ei(t)f(t)dt and εi

i.i.d.∼ N(0, 1), i = 1, 2, . . ..
To obtain the coverage of credible regions, conjugacy will be essential. The

prior will be based on conjugate normal distributions on the coefficients of an
orthogonal basis expansion. While tensor products of CDV wavelets can again be
used, we illustrate the results using the basis of tensor products of trigonometric
functions. The details of the proofs for the posterior contractions rates for these
two priors are different.

For j = (j1, . . . , jd) ∈ {0, 1, . . .}d and x ∈ [0, 1]d, we denote the trigonometric
basis functions by

φj,k(x) =

d∏
l=1

√
2[(1− kl) cos(2πjlxl) + kl sin(2πjlxl)],
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where k ∈ K(j) := {k ∈ {0, 1}d : kl = 0 when jl = 0, l = 1, . . . , d}. The
collection of {φj,k : (j, k) ∈ {0, 1, . . . , }d × K(j)} forms a basis for L2([0, 1]d).
Expand the function f0 in the wavelet series as

f0(x) =

∞∑
j1

· · ·
∞∑
jd

∑
k∈K(j)

φj,kθ0,j,k,

for some collection of coefficients {θ0,j,k : j ∈ {0, 1, . . .}d and k ∈ K(j)}. For
the sake of brevity, we may suppress the ranges of the indices of summation
and just write the expansion as f =

∑
j

∑
k φj,kθj,k. The equivalent sequence

model is Yj,k = θj,k+n−1/2εj,k. If the prior is that θj,k
ind∼ N(0, μj), the posterior

distribution of θj,k is Gaussian with mean θ̃j,k = nμjYj,k/(nμj+1) and variance
μj/(nμj + 1).

While the posterior contraction rate and the convergence of the Bayes esti-
mator can be obtained as before, we only present results on uncertainty quantifi-
cation. The theorem below holds for d = 2 or 3. We do not prove it for d > 3 as
the terms quickly become very cumbersome and the argument becomes tedious.
However, by inspecting the proofs, we conjecture that it holds also for d > 3.

Theorem 4.1. Suppose d = 2 or 3. Let μj =
∏d

l=1 μjl , where μjl = j
−(1+2α/d)
l if

jl �= 0 but μjl = 1 if jl = 0. Assume that the true signal f0 satisfies the condition
(A1) and its Fourier coefficients {θ0,j,k : j ∈ {0, 1, . . .}d and k ∈ K(j)} satisfy
the smoothness condition

∞∑
j1=0

· · ·
∞∑

jd=0

∑
k∈K(j)

sup
s1,...,sd≥0∑d

l=1 sl=α

d∏
l=1

jsll |θ0,j,k| ≤ L, (10)

for some positive constant L and α > d. Then the following assertions hold:

(i) for the credible set Cγ = {Lc(f) : f ∈ Cγ} for Lc, with Cγ as defined in
(9), both the credibility and its coverage probability for Lc(f0) tend to 1;

(ii) for the credible set C̄γ := {Lc : Haus(Lc, L̃c) ≤ C1ρ
ν1Rν1

n,γ} where C1 is as

in (3), we have that Π(Cγ ⊂ C̄γ |Dn) → 1 in P0-probability;
(iii) diamHaus(Cγ) = OP0(n

−ν1α/(2α+d)(log n)ν1d/2).

If f0 satisfies (A1′), then

(iv) For the credible set C̃γ := {Lc(f) : Leb
(
Lc(f),Lc(f̃)

)
≤ C2ρ

ν2Rν2
n,γ}, both

the credibility and its coverage tend to one, where C2 is as in (4);
(v) diamLeb(C̃γ) = OP0(n

−ν2α/(2α+d)(log n)ν2d/2).

Remark 4.1. Note that the smoothness condition (10) is stronger than con-
ditions imposed commonly on Fourier coefficients to quantify their decay using
square summability. This becomes necessary as such conditions characterize
only L2-Sobolev-type smoothness, not Hölder-type. The condition (10) implies
L∞-type-bounds and is slightly stronger than a typical Hölder condition.
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Remark 4.2. We note that the size of the credible region matches with the
optimal rate up to a logarithmic factor in the regular situations.

Remark 4.3. An alternative use of a posterior distribution in Bayesian analysis
is to quantify the uncertainty that the level set will be contained in C′

γ = {x :

|f̃(x)− c| < ρRn,γ}. This is attractive because of its simplicity, as the set is just
a band in R

d instead of a subset of the space of curves on R
d. To examine its

credibility, note that

Π(Lc ⊂ C′
γ |Dn) = Π(f : {x : f(x) = c} ⊂ {x : |f̃(x)− c| < ρRn,γ}|Dn)

= Π(f : {|f̃(x)− f(x)| < ρRn,γ , ∀x : f(x) = c}|Dn)

≥ Π(f : ‖f̃ − f‖∞ < ρRn,γ |Dn), (11)

which tends to one by the proof of Theorem 4.1. Similarly,

P0(Lc(f0) ⊂ C′
γ) ≥ P0(‖f̃ − f0‖∞ < ρRn,γ) → 1. (12)

Also observe that if the gradient is nonzero throughout on the level curve,
then the spread of the band is of the order

ρRn,γ = OP0(n
−α/(2α+d)(logn)d/2).

The advantage of this set C′
γ is that the posterior mean and Rn,γ can be

obtained from posterior sampling. If one computes the set {x : |f̃(x) − c| <
ρRn,γ} numerically, it will serve as a confidence set. Here, instead of relying on
bootstrap to get the quantiles, the cut-off Rn,γ is obtained from the posterior.
This credible set has to be interpreted as a possible region of controlled size
that contains the true level set.

4.2. Nonparametric Gaussian regression

For credible sets with coverage in the Gaussian nonparametric regression prob-
lem, we shall use B-splines functions. Choose a fixed order q and a sequence
of knots 0 = t0 < · · · < tN+1 = 1. Denote the B-spline functions of order
q by Bi and form the tensor products Bi1(x1) · · ·Bid(xd). Let bJ1,...,Jd

(x) =

(Bj1,...,jd(x) =
∏d

k=1 Bjk(xk) : 1 ≤ jk ≤ Jk)
T to be a column vector of tensor

product of B-splines functions; here Nk denotes the number of interior points
and Jk = qk+Nk denotes the number of basis functions used for each coordinate.
If desired, Nk, qk and the knot locations tk,0, . . . , tk,Nk+1 can be chosen differ-
ently for different k. Let δk,� = tk,�+1 − tk,�. We assume the quasi-uniformity
of the knots, in that max{δk,� : 0 ≤ � ≤ Nk}/min{δk,� : 0 ≤ � ≤ Nk} ≤ C for
some C > 0. To ensure quality of the approximation, we fix qk > α, and let
Nk = Nk(n) and Jk = Jk(n) := Nk(n) + qk.

As in Yoo and Ghosal [48], we put a prior on the regression function through
the representation f = bT θ, θ|σ2 ∼ N(θ0, σ

2Λ0), where c1I ≤ Λ0 ≤ c2I, for some
constants 0 < c1 ≤ c2 < ∞ and I is the

∏
Jk ×

∏
Jk identity matrix. Using B
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to denote (bJ1,...,Jd
(X1), . . . , bJ1,...,Jd

(Xn))
T , the model becomes Y |(X, θ, σ2) ∼

N(Bθ, σ2In). It follows then

θ|(Dn, σ
2) ∼ N

(
(Λ−1

0 +BTB)−1(BTY + Λ−1
0 θ0), σ

2(BTB + Λ−1
0 )−1

)
.

Writing

b
(r)
J (x) =

( ∂r1

∂xr1
1

Bj1,q1(x1) · · ·
∂rd

∂xrd
d

Bjd,qd(xd) : 1 ≤ jk ≤ Jk, k = 1, . . . , d
)T

,

(13)
the posterior distribution for f and its partial derivatives are obtained as

Π(Drf |Dn, σ
2) ∼ GP(ArY + Crθ0, σ

2Σr), (14)

where Ar(x) = b
(r)
J (x)

T
(BTB+Λ−1

0 )−1BT , Cr(x) = b
(r)
J (x)

T
(BTB+Λ−1

0 )−1Λ−1
0

and Σr(x, y) = b
(r)
J (x)

T
(BTB + Λ−1

0 )−1b
(r)
J (y) and GP denotes a Gaussian

process. To handle σ2, we can either put a conjugate inverse-gamma prior
σ2 ∼ IG(a/2, b/2) with shape parameter a/2 > 2 and rate parameter b/2 > 0 or
plug-in an estimate for σ2. The theoretical study is similar in both cases, using
the consistency of the marginal maximum likelihood estimator of σ, so for the
ease of exposition, we consider the second approach only. The plug-in posterior
is given by

Π(Drf |Dn, σ
2)|σ2=σ̂2

n
∼ GP(ArY + Crθ0, σ̂

2
nΣr), (15)

where σ̂2
n = n−1(Y −Bθ0)

T (BΛ0B
T + In)

−1(Y −Bθ0).
We assume that Yi = f0(Xi)+ εi, where εi are i.i.d. sub-Gaussian with mean

0 and variance σ2
0 for i = 1, . . . , n. Notice that under P0, x 	→ Ar(x)ε/σ0 is a

mean zero process with a sub-Gaussian tail. As in the adaptive case, the result
below extends to both fixed and random design, except that Condition (6) can

be replaced by supx |Gn(x) − G(x)| = o(
∏d

k=1 J
−1
k ), where G can be taken as

the uniform distribution for the fixed design, the sampling distribution of Xi

for the random design.
The following result shows the coverage of a Bayesian credible set.

Theorem 4.2. If f0 satisfy Assumption (A1), Jk � (n/ logn)1/(2α+d), k =
1, . . . , d, then with Cγ := {f : ‖f − f̃‖∞ ≤ ρRn,γ}, for some ρ > 0 sufficiently
large, the following assertions hold:

(i) the credibility of Cγ := {Lc(f) : f ∈ Cγ} and its coverage probability for
Lc(f0) both tend to 1;

(ii) Π(Cγ ⊂ C̄γ |Dn) → 1 in P0-probability, where C̄γ := {Lc : Haus(Lc, L̃) ≤
C1ρ

ν1Rν1
n,γ} and C1 is as in (3),;

(iii) diamHaus(Cγ) = OP0((n/ log n)
−ν1α/(2α+d)).

If f0 satisfies Assumption (A1′), then

(iv) the credibility and coverage of C̃γ :={Lc(f) :Leb
(
Lc(f),Lc(f̃)

)
≤C2ρ

ν2Rν2
n,γ}

both tend to one, where C2 is as in (4);
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(v) diamLeb(C̃γ) = OP0((n/ log n)
−ν2α/(2α+d)).

Remark 4.4. Both Remark 4.2 and Remark 4.3 for the Gaussian white noise
model also hold for nonparametric regression. Furthermore, the same method
can be used to construct credible region for Lc(D

rf) by replacing f by Drf in
the Theorem 4.2.

5. Computation and simulations

5.1. Algorithm

We give a description of the two generic algorithms we use for finding level sets.

Algorithm 1 (Fixed Point Algorithm). Set ε > 0, τ > 0, ā > 0 and select
a collection of starting points {x1, ..., xn}, compute f(xi) and keep only those

points xi for which f(xi) > τ . Now for each xi, let x
(1)
i = xi; iterate through

the following steps from t = 1:

(1) evaluate ∇f(x
(t)
i );

(2) compute (f(x
(t)
i )− c)∇f(x

(t)
i );

(3) update x
(t+1)
i = −ā(f(x

(t)
i )− c)∇f(x

(t)
i ) + x

(t)
i ;

(4) stop if ‖x(t+1)
i − x

(t)
i ‖ < ε or ‖∇f(x

(t+1)
i )‖ < ε.

The second algorithm is based on the idea of simulated annealing and poste-
rior sampling from the unnormalized density exp[−(f(x)− c)2/ā], where ā is a
small positive tuning parameter.

Algorithm 2 (Simulated-annealing Based Algorithm). Set τ > 0, some small
positive ā and burn-in time B > 0 sufficiently large. Select a collection of starting
points {x1, ..., xn}, compute f(xi) and keep only those points for which f(xi) >

τ . Now for each xi, let x
(1)
i = xi; iterate the following step from t = 1, . . . , B:

• Update x
(t+1)
i ← x

(t)
i by a slice sampler that gives rise to the invariant

distribution whose density is proportional to exp{−(f(x)− c)2/ā}.

At last, collect all points {x(B+1)
i } .

5.2. Simulation results

We work with the nonparametric Gaussian regression setting. In the simulation,
we consider the following function

f(x1, x2) = 1 +

(
g
(√

x2
1 + x2

2

))1+cos2(tan−1(x2/x1))

,

where g is the normal density function with mean 0.5 and standard deviation
0.3. We generate i.i.d. data Xi uniformly on [0, 1] × [0, 1] and i.i.d. εi from



Bayesian analysis of level sets 2663

Fig 1. The function f and its level curves.

the normal distribution with mean 0 and standard deviation 0.1 and then set
Yi = f(Xi,1, Xi,2) + εi, i = 1, . . . , n. The level set of interest is {x : f(x) = 2.1}.
The true level set consists of two circles, as given in Figure 1.

The sample size is 2000. We use fifth-order B-splines functions, that is q1 =
q2 = 5. One can choose the pair (J1, J2) by their posterior mode by maximizing
(in the logarithmic scale)

logΠ(J1, J2|Dn, σ̂
2) = −2n log σ̂ − log(det(BΛ0B

T ) + In) + const.

We give the results using a simulated-annealing based algorithm. We choose
τ = 0.5 and ā = 10−5. The tuning parameters J1 and J2 are both chosen 9
throughout the pilot experiments.

We also experimented with different choices of J1 and J2. Figure 2 shows that
the posterior mean under different smoothing levels. When J1 = J2 = 7, just
slightly smaller than the 9, it can be seen that the posterior mean completely
fails to approximate the inner circle. The approximation seems quite reasonable
with a larger J .

Figure 3 gives uncertainty quantification for two cases J1 = J2 = 7 and J2 =
J2 = 9. We choose γ = 0.1 and ρ = 1.2. This choice of ρ should give sufficiently
large credibility but not too high. This can be done by some pilot simulation
using the posterior samples. To evaluate the (1−γ)-quantile Rn,γ , we first draw

200 posterior samples of θ to compute their posterior mean θ̃. We compute
‖bJ1,J2(x)

T (θ− θ̃)‖∞ by searching on a crude grid and pick the maximum point
on the grid. Then starting from this maximum point, we apply the gradient
ascent method to check if nearby points can achieve greater (absolute) value.
We keep the largest value as the supremum. The (1−γ)-empirical quantile over
all these suprema gives our estimate of Rn,γ . Finally, we draw 100 posterior
level sets (level sets induced from the posterior samples of f) and keep those
that fall in the set Cγ . The curves of different colors correspond to these level
sets. It is obvious that undersmoothing tends to deliver better and more robust
coverage.

Now we assess the credibility and coverage performance over 100 iterations.
Some experimentation suggests that the choice ρ = 1.2 works well, giving 97.13%
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Fig 2. Nonparametric regression. Effects of the smoothing parameters J1 and J2. The orange
circle is the truth, the blue curve is estimated level curve induced by the posterior mean.
Top left: J1 = J2 = 7; top right: J1 = J2 = 9; bottom left: J1 = J2 = 11; bottom right:
J1 = J2 = 15.

credibility averaging over all iterations. To evaluate the coverage performance,
we compute the Hausdorff distance between the truth L∗

c and L̃c. Simulation
shows that L∗

c belongs to C̄γ respectively 88%, 90%, 94%, 96%, 98% time when
C takes values respectively 0.21, 0.22, 0.23, 0.24, 0.25. Inspecting the proof of
Lemma 2.1, the constantA1 may be estimated as 1/ inf{‖∇f̃(x)‖ : x ∈ {f̃ = c}}.
When we compute with C1 = 6A1 in this way, the frequentist coverage turns
out to be 100%, as the theory predicts.

6. Proofs

Proof of Lemma 2.1. Let x be such that |f(x)−c̃| < δ1, where we take c̃ between
c − ε and c + ε. Consider ỹ to be the projection of x onto {f = c̃} (just take
one if not unique). We assume x �= ỹ (otherwise the bound is trivially true).
Therefore ỹ ∈ {f = c̃} and d(x|{f = c̃}) = ‖ỹ − x‖. Since the gradient ∇f(ỹ)
is normal to the level curve {f = c̃} at ỹ and x lies on the normal line, it holds
that x = ỹ + t̃∇f(ỹ) for some t̃ �= 0. Without loss of generality, take δ1 to be a
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Fig 3. Nonparametric regression. Uncertainty Quantification: the orange circle is the truth,
while the remaining colored curves are the level sets (from the posterior samples) that belong
to Cγ . Left: J1 = J2 = 7. Right: J1 = J2 = 9.

small value. By Taylor’s expansion,∣∣f(x)− f(ỹ)
∣∣ = ∣∣(x− ỹ)T∇f(ỹ) + o(‖x− ỹ‖)

∣∣ = ‖x− ỹ‖
∥∥∇f(ỹ) + o(1)

∥∥.
Therefore, ‖x− ỹ‖ < A|f(x)−f(ỹ)| for some A, because ‖∇f(ỹ)‖ > c0 > 0.

Proof of Theorem 3.1. The proof follows from the L∞-contraction rate for a
multivariate Gaussian white noise model derived in Proposition 6.1 below in
conjugation with (3) and (4).

Proposition 6.1. Consider the spike-and-slab priors defined in Section 3.1,
where 2Jn � n1/d and for some constants s > 0, τ > 1/2, n−s ≤ wj ≤
min{2−jd(1+τ), 1/2}. Then for every α > 0, r such that |r| < α, L0−1 ≥ M > 0,
Kn → ∞, we have that

sup
f0:‖f0‖α,∞≤M

Π
(
‖Drf −Drf0‖∞ > Kn

(
n/ logn

)(|r|−α)/(d+2α)∣∣Y )
P0−−→ 0.

Proof. We only sketch the proof. Let S = {(j, k) : θj,k �= 0}, θ0,j,k = 〈f0,Ψj,k〉,
and

Jn(γ) = {(j, k) : |θ0,j,k| > γ
√
(log n)/n}, γ > 0.

Consider the following events

E1 = { sup
(j,k)∈Jn(γ)

|θj,k − θ0,j,k| ≤ γ̄
√
logn/n},

E2 = {Sc ∩ Jn(γ̄) = ∅},
E3 = {S ∩ J c

n(γ) = ∅},

for some γ̄ sufficiently large and γ sufficiently small. Assume for now that
E0[Π(Ec

1 ∩ E2 ∩ E3|Y )] → 0, E0[Π(Ec
2|Y )] → 0 and E0[Π(Ec

3|Y )] → 0. Then
it suffices to show that

E0[Π({‖f − f‖∞ > εn,r,α} ∩ E2 ∩ E3|Y )] → 0,
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where εn,r,α := (logn/n)(α−|r|)/(2α+d). In view that E0[Π(Ec
1∩E2∩E3|Y )] → 0,

then it suffices to show that on the events E1∩E2∩E3, ‖Drf−Drf‖∞ ≤ εn,r,α.
To this goal, one can find some suitable choice of Jn(α) � (n/ logn)1/(2α+d) such
that

Jn(γ) ⊂ J̄n(α) := {(j, k) : j ≤ Jn(α), k ∈ K(j)}.
Note that

‖Drf −Drf0‖∞ ≤
∥∥∥ ∑

(j,k)∈Λ

|θj,k − θ0,j,k||DrΨj,k|
∥∥∥
∞

≤
∑
j∈N

max
k∈K(j)

|θj,k − θ0,j,k|
∑

k∈K(j)

∥∥DrΨk,j

∥∥
≤

∑
j∈N

max
k∈K(j)

2(|r|+d/2)j |θj,k − θ0,j,k|.

The sum-of-max over (j, k) can be taken over three different regions J̄n(α)∩
Jn(γ), J̄n(α)∩ (Jn(γ))

c and (J̄n(α))
c. On the first region, since Jn(γ) ⊂ J̄n(α)

and Jn(α) < Jn, it can be bounded on E1 as(
max

(j,k)∈Jn(γ)
|θj,k − θ0,j,k|

) ∑
j≤Jn

2(|r|+d/2)j �
√

(logn)/n× 2Jn(|r|+d/2) � εn,r,α.

On the second region, since |θ0,j,k| < γ
√
(log n)/n, and on E3, θj,k = 0, to-

gether implying that 2(|r|+d/2)j |θj,k−θ0,j,k| is bounded by 2(|r|+d/2)j
√
(log n)/n

up to some multiplicative constant. The sum-of-max over this region is again
upper bounded by εn,r,α. On the third region, on E3, noting that θj,k = 0, the
term can be dominated by∑

j>Jn(α)

max
k∈K(j)

2(|r|+d/2)j |θ0,j,k| �
∑

j>Jn(α)

2(|r|+d/2)j2−j(α+d/2) � 2Jn(|r|−α),

which is further bounded by εn,r,α.
Finally it can be shown by following the proof of Lemma 1 of Hoffmann

et al. [27] that indeed E0[Π(Ec
2|Y )] → 0, E0[Π(Ec

3|Y )] → 0 and E0[Π(Ec
1 ∩E2 ∩

E3|Y )] → 0, noting that the dimension d does not alter most of the argument.

Proof of Theorem 3.3. The proof follows from L∞-contraction rate for multi-
variate density model derived in Proposition 6.2 below in conjugation with (3)
and (4).

Proposition 6.2. Given a positive density function f0 ∈ Hα([0, 1]d) for some
α > d > 1; assume that the Gaussian prior under the condition (8) or the log-
Lipschitz prior under the condition (7). Then for 2Jn � (n/ log n)1/(2α+d) and
any Kn → ∞, we have

Π
(
‖f − f0‖∞ > Kn(n/ log n)

−(α−d/2+α/(α+1))/(2α+d)
)

P0−−→ 0.
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Proof. The proof mainly follows the argument in Castillo [9]. For clarity, we
sketch the main ideas of the proof, and present the key results that contribute
to the final rates for the multivariate case (d > 1). We only provide proofs for
key steps and those lemmas that are illustrative of the subtleties for the case
d > 1, whereas other proofs are referred to the original paper.

Given two density functions, f1 and f2, let h(f1, f2) denote their Hellinger
distance. Some key intermediate results can be shown to hold (the Lemma 4
and 8 of Castillo [9]), that is, for any Kn → ∞,

Π
(
h(f, f0) > Knεn,α|Dn

)
P0−−→ 0,

Π
(
‖f − f0‖2 > Knεn,α|Dn

)
P0−−→ 0,

Π
(
‖f − f0‖∞ > Knζn,α|Dn

)
P0−−→ 0,

where εn,α := (log n)η1 n−α/(2α+d) for η1 = α/(2α+d) and the intermediate L∞-
rate ζn,α = 2Jnd/2εn,α = n−(2α−d)/(2(2α+d))(log n)η2 for η2 = (2α − d)/(2(2α +
2)). Let Dn be a measurable set given by

Dn := {f : h(f, f0) ≤ εn,α, ‖f − f0‖2 ≤ εn,α, ‖f − f0‖∞ ≤ ζn,α}.

Denote by ΠDn the normalization of Π toDn, that is dΠ
Dn =1DndΠ(·)/Π(Dn).

Therefore,

E0Π(Dn|Dn) = 1 + o(1). (16)

Let g0 = log f0 and g = log f = T − c(T ). Since ‖f − f0‖∞ = ‖eg0(eg−g0 −
1)‖∞ � ‖g − g0‖∞ using the bound |ex − 1| � |x| for bounded x and the fact
that f0 is bounded, it suffices to bound ‖g − g0‖∞. By Markov’s inequality, for
any Kn → ∞ and cn > 0,

E0

(
Π(g : ‖g − g0‖∞ > cn|Dn)

)
≤c−1

n E0

(
EΠDn

(‖g − g0‖∞|Dn)Π(Dn|Dn)
)

+ o(1). (17)

We then bound

EΠDn
(‖g − g0‖∞|Dn) ≤

∫
‖gJn − g0‖∞dΠDn(f |Dn)

+

∫
‖gJc

n‖dΠDn(f |Dn) + ‖gJ
c
n

0 ‖∞, (18)

where gJn is the L2-projection of g up to level Jn. The second term is 0 by the
definition of T , and the constant function is orthogonal to higher level wavelets.
For the third term, let g0,j,k denote the wavelet coefficient of g0, we bound

‖gJ
c
n

0 ‖∞ =
∥∥∥ ∑

j>Jn

∑
k∈K(j)

g0,j,kΨj,k

∥∥∥
∞
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≤
∑
j>Jn

[
max

k
|g0,j,k|

∥∥∥∑
k

|Ψj,k|
∥∥∥
∞

]

≤
∑
j>Jn

2−j(α+d/2)2jd/2,

which is bounded by 2−Jnα � εn,α = (n/ log n)−α/(2α+d).
To estimate the first term on the right side of (18), we introduce a few

more notations. Let the log-likelihood be denoted by �n(f) =
∑n

i=1 log f(Xi),
Wn(f) = n−1/2

∑n
i=1(f(Xi)− P0f), where P0 denotes integration with respect

to the density f0. Let ζj,k := Ψj,k/f0 and let Aj,k denote the L2-projection of
ζj,k up to the level j (j ≤ Jn), that is,

Aj,k ≡
∑
λ≤Jn

∑
u∈K(j)

〈ζj,k,Ψλ,u〉Ψλ,u.

Consider

ΓJn := gJn
0 +

1√
n

∑
j≤Jn

∑
k∈K(j)

Wn(Aj,k)Ψj,k.

Now∫
‖gJn − g0‖∞dΠDn(f |Dn) ≤

∫
‖gJn − ΓJn‖∞dΠDn(f |Dn) + ‖ΓJn − gJn

0 ‖∞.

By Lemma 6.4 and Lemma 6.7, the second term on the right hand side of the
above expression can be bounded by εn,α, so we shall focus on the first term.
Note that

‖gJn − ΓJn‖∞ = ‖
∑
j≤Jn

∑
k∈K(j)

〈
gJn − ΓJn ,Ψj,k

〉
Ψj,k‖∞

≤
∑
j≤Jn

max
k∈K(j)

∣∣ 〈gJn − ΓJn ,Ψj,k

〉 ∣∣∥∥∥ ∑
k∈K(j)

|Ψj,k|
∥∥∥
∞

� 1√
n

∑
j≤Jn

2jd/2 max
k

√
n
∣∣∣gj,k − g0,j,k − 1√

n
Wn(Aj,k)

∣∣∣.
Therefore, for any t > 0, using Jensen’s inequality and e|x| ≤ ex + e−x, the

term EΠDn
(‖gJn − ΓJn‖∞|Dn) can be bounded by

1

t
EΠDn

{
t
1√
n

∑
j≤Jn

2jd/2 max
k

√
n
∣∣gj,k − g0,j,k − 1√

n
Wn(Aj,k)

∣∣∣∣∣Dn

}

=
1

t

1√
n

∑
j≤Jn

2jd/2EΠDn
{
log

(
e
maxk t

√
n
∣∣gj,k−g0,j,k− 1√

n
Wn(Aj,k)

)∣∣∣∣∣Dn

}

≤ 1√
n

∑
j≤Jn

2jd/2
1

t
log

{
EΠDn (

e
maxk t

√
n
∣∣gj,k−g0,j,k− 1√

n
Wn(Aj,k)

∣∣Dn

)}
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≤ 1√
n

∑
j≤Jn

2jd/2
{1

t
log

(∑
k

Mj,k(t)
)}

+
1√
n

∑
j≤Jn

2jd/2
{1

t
log

(∑
k

Mj,k(−t)
)}

,

where Mj,k(t) := e−tWn(Aj,k)EΠDn
[et

√
n(gj,k−g0,j,k)|Dn]. Note that

g − g0 =
f − f0
f0

+ ρ(
f − f0
f0

),

where ρ(x) := log(1 + x) − x. As argued in p. 2074 of Castillo [9], gj,k − g0,j,k
can be written as

gj,k − g0,j,k = 〈f − f0, ζj,k −Aj,k〉+ 〈f − f0,Aj,k〉+
∫

ρ
(f − f0

f0

)
Ψj,k.

Hence Mj,k(t) is given by

e−tWn(Aj,k)EΠDn
[
et

√
n〈f−f0,ζj,k−Aj,k〉et

√
n〈f−f0,Aj,k〉et

√
n(

∫
ρ(

f−f0
f0

)Ψj,k)
∣∣∣Dn

]
.

Note that, since |ρ(x)| ≤ x2 for x small, and ‖f − f0‖∞ � ζn,α and by the
assumption α > d, on Dn,

√
n
∣∣∣ ∫ ρ

(f − f0
f0

)
Ψj,k

∣∣∣ �
√
n‖Ψj,k‖∞

∫ (f − f0
f0

)2

�
√
n2jd/2‖f − f0‖22

�
√
n2jd/2ε2n,α. (19)

By Lemma 6.5, maximizing the upper bound (by choosing j = �Jnα/(α+1)�)
on Dn,

√
n| 〈f − f0, ζj,k −Aj,k〉 | �

√
n2−Jnα/(α+1)‖f − f0‖2

�
√
n2−Jnα/(α+1)εn,α. (20)

In view of the bounds in the above two displays, and by Lemma 6.4 and
Lemma 6.6 (setting γn = Aj,k), we have, for any t > 0,

EΠDn
(‖gJn − ΓJn‖∞|Dn)

� 1√
n

∑
j≤Jn

2jd/2
1

t
log

(∑
k

eCt2
∫
e�n(ft)−�n(f0)dΠDn(f)∫
e�n(f)−�n(f0)dΠDn(f)

)
(21)

+
1√
n

∑
j≤Jn

2jd/2(
√
n2jd/2ε2n,α) (22)

+
1√
n

∑
j≤Jn

2jd/2(
√
n2−Jnα/(α+1)εn,α). (23)

The second term (22) on the right hand side of above expression is bounded
by ρn,2 := (n/ log n)(d−2α)/(2α+d)(logn)2η1 , and hence ρn,2 � εn,α as long as
α > d.
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A simplification shows that the third term (23) is bounded by

ρn,1 = (n/ logn)−(α−d/2+α/(α+1))/(2α+d).

As will be clear later, this term turns out to be the dominating factor for
rates in the multivariate case (d > 1).

All that remains is to bound the first term (21) on the right hand side of
above expression. One can write the ratio inside the parentheses as∫

1Dn(f)e�n(ft)−�n(f0)dΠ(f)

Π(Dn|Dn)
∫
e�n(f)−�n(f0)dΠ(f)

. (24)

Recall that f = exp(T (x) − c(T )), where T =
∑

λ≤Jn

∑
u θλ,uΨλ,u, θλ,u :=

σλ,uαλ,u, and

ft = exp
{
T − t√

n
Aj,k − c(T − tAj,k√

n
)
}
.

Let T̃ := T − tn−1/2Aj,k =
∑

λ≤Jn

∑
u(θλ,u − tn−1/2 〈Aj,k,Ψλ,u〉)Ψλ,u. The

prior on f effectively is the prior on the coefficients θ = {θλ,u} and therefore
the numerator of (24) is the integration over the law of θ, whose density is
denoted by pθ. We then proceed to apply change of variables in this integration,
by changing θλ,u → θ∗λ,u := θλ,u− tn−1/2 〈Aj,k,Ψλ,u〉. Therefore, the numerator
can be written as∫

1D′
n
(fθ∗)e�n(fθ∗ )−�n(f0)

[ ∏
λ≤Jn,u∈K(λ)

ϕ(θλ,u/σλ)

ϕ
(

θλ,u−t〈Aj,k,Ψλ,u〉/
√
n

σλ

)]pθ(θ∗)d(θ∗),
for some suitably transformed set D′

n. By Lemma 6.8, for the Gaussian prior
case, the term in the square bracket is bounded by exp{C|t| + Ct2} for some
constant C > 0. Therefore, (24) can be bounded by exp{C|t|+Ct2}/Π(Dn|Dn).
Now the term on the right hand side of (21) can be bounded as

1√
n

∑
j≤Jn

2jd/2
1

t
log

(∑
k

eC|t|+Ct2Π(Dn|Dn)
−1

)

≤ 1√
n

∑
j≤Jn

2jd/2
1

t
log

(
2jdeC|t|+Ct2

)
+

1√
n

∑
j≤Jn

2jd/2
1

t
log

1

Π(Dn|Dn)
,

which, by setting t =
√
j, can be further bounded by εn,α+εn,α log(1/Π(Dn|Dn)).

Combining all the above results, we obtain

EΠDn
(‖gJn − ΓJn‖∞|Dn) � εn,α + εn,α log(1/Π(Dn|Dn)) + ρn,1 + ρn,2.

We choose cn = Knε
∗
n,α, where Kn → ∞ is a given sequence, and ε∗n,α :=

max(εn,α, ρn,1, ρn,2) in (17). By (16), we obtain

E0

(
Π(g : ‖g − g0‖∞ > Knε

∗
n,α|Dn)

)
→ 0.

By the assumption α > d > 1, ρn,2 � εn,α � ρn,1, thus ε
∗
n,α = ρn,1, complet-

ing the proof for the Gaussian prior.
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Remark 6.1. For d = 1, the optimal rate εn,α := (n/ logn)−α/(2α+d) was
obtained. For d > 1, only a suboptimal rate ρn,1 can be obtained, which may be
due to some possibly crude bounds used in Lemma 6.5. It is not immediately
clear whether the limitation is due to the techniques of the proof or due to the
specification of the prior.

Note also that ρn,1 � ζn,α, and therefore, ρn,1 is an improvement over the
intermediate L∞-rate ζn,α. In fact, when d = 1, α > 1, ρn,1 � εn,α, which
recovers the univariate result in Castillo [9], i.e., ε∗n,α = εn,α. A similar argument
goes through for the log-Lipschitz prior. For the most practically interesting case
for level sets d = 2, the suboptimality disappears with increasing smoothness as
α → ∞.

There are two directions that are worth of exploring in the future. One is
to obtain improved results for lower smoothness situation possibly α > d/2.
Another one is to obtain optima sup-norm rates for d > 1. There are some
very recent results in these directions in other related nonparametric estimation
problems; see for instance Castillo and van der Pas [11] for survival analysis and
Nickl and Ray [35] for diffusions. The first paper deals with univariate functions,
and its technique may be used to obtain results for lower smoothness situation.
The second paper develops some techniques which makes it possible to obtain
optimal sup-norm rates for d ≤ 4 in the multidimensional diffusion problems. It
remains an open problem if similar techniques can be used for improving rates
in the multivariate density estimation.

Lemma 6.3. Suppose that f0 ∈ Hα([0, 1]d) for some α > 1, and is bounded
away from 0 and ∞. Let ζj,k = Ψj,k/f0. Then for k ∈ K(j), u ∈ K(λ), it holds
that

| 〈ζj,k,Ψλ,u〉 | �
{
2(λ−j)d/2, if j ≥ λ,

2(j−λ)(α+d/2), if j < λ.

Proof. If j ≥ λ, then

| 〈ζj,k,Ψλ,u〉 | ≤
∫ ∣∣∣Ψj,kΨλ,u

f0

∣∣∣ �
∫ ∣∣Ψj,kΨλ,u

∣∣ ≤ ‖Ψλ,u‖∞
∫

|Ψj,k| � 2(λ−j)d/2,

where the last step is due to the property (iii) of the wavelets bases. When
j < λ, a symmetric bound can be obtained, but a better bound is possible. To
see this,

| 〈ζj,k,Ψλ,u〉 | ≤ 2−λ(α+d/2) max
u∈K(λ)

2λ(α+d/2)| 〈ζj,k,Ψλ,u〉 |

≤ 2−λ(α+d/2)‖ζj,k‖∞,∞,α

� 2(j−λ)(α+d/2),

in view of Lemma 5 of Castillo [9] which implies that ζj,k ∈ Bα
∞,∞([0, 1]d) with

norm ‖ζj,k‖∞,∞,α � 2j(α+d/2).
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Lemma 6.4. Let f0 be a density function bounded away from 0 and ∞ and let
P0 stand for the integration with respect to the density f0. Then for any j ≤ Jn
and k ∈ K(j), we have

‖Aj,k‖∞ � 2Jnd/2, ‖Aj,k‖2 = O(1), ‖P0Aj,k‖∞ = O(1).

Proof. These bounds are not explicitly stated in Castillo [9] but yet are needed
for the conditions of Lemma 6.6 and 6.7. We give a proof here for completeness.
Write

Aj,k =
∑
λ≤Jn

∑
u∈K(λ)

〈ζj,k,Ψλ,u〉Ψλ,u

=
∑
λ≤j

∑
u∈K(λ)

〈ζj,k,Ψλ,u〉Ψλ,u +
∑

j<λ≤Jn

∑
u∈K(λ)

〈ζj,k,Ψλ,u〉Ψλ,u.

When λ ≤ j, for any fixed λ, a fixed number of {Ψλ,u} have support in-
tersecting with the support of ζj,k. By Lemma (6.3), | 〈ζj,k,Ψλ,u〉 | � 1, and
the property (iii) of the wavelets, the first term on the right hand side can be
bounded as∥∥∑

λ≤j

∑
u∈K(λ)

〈ζj,k,Ψλ,u〉Ψλ,u

∥∥
∞ �

∑
λ≤j

‖Ψλ,u‖∞ ≤
∑
λ≤j

2λd/2 � 2Jnd/2.

Since λ > j, by Lemma (6.3) again, the second term can be bounded as∥∥ ∑
j<λ≤Jn

∑
u∈K(λ)

〈ζj,k,Ψλ,u〉Ψλ,u

∥∥
∞�

∑
j<λ≤Jn

max
u∈K(λ)

| 〈ζj,k,Ψλ,u〉 |
∥∥ ∑

u∈K(λ)

|Ψλ,u|
∥∥
∞

�
∑

j<λ≤Jn

2(j−λ)(α+d/2)2λd/2,

which is bounded by a constant multiple of 2jd/2 ≤ 2Jnd/2. Similarly,

‖Aj,k‖22 =
∑
λ≤Jn

∑
u∈K(λ)

| 〈ζj,k,Ψλ,u〉 |2

=
∑
λ≤j

∑
u∈K(λ)

| 〈ζj,k,Ψλ,u〉 |2 +
∑

j<λ≤Jn

∑
u∈K(λ)

| 〈ζj,k,Ψλ,u〉 |2.

The first term on the right-hand side is bounded by
∑

λ≤j 2
(λ−j)d, which is

O(1). The second term is bounded by
∑

j<λ≤Jn
2(j−λ)2α � 2−2α = O(1).

For the last statement,

P0Aj,k =
∑
λ≤Jn

∑
u∈K(λ)

〈ζj,k,Ψλ,u〉P0Ψλ,u

=
∑
λ≤j

∑
u∈K(λ)

〈ζj,k,Ψλ,u〉P0Ψλ,u +
∑

j<λ≤Jn

∑
u∈K(λ)

〈ζj,k,Ψλ,u〉P0Ψλ,u.

Note that P0Ψλ,u �
∫
|Ψλ,u| � 2−λd/2, by similar argument, we can obtain

‖P0Aj,k‖∞ = O(1).
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Lemma 6.5. Let f0 ∈ Hα([0, 1]d) for some α > 1, and be bounded away from
0 and ∞. Then for any j ≤ Jn and k ∈ K(j), any density f bounded away from
0 and ∞, the following holds

‖Aj,k − ζj,k‖∞ � 2j(α+d/2)2−αJn ,∣∣∣∣∣
∫
[0,1]d

(Aj,k − ζj,k)(f − f0)

∣∣∣∣∣ � (2(j−Jn)α ∧ 2−j)‖f − f0‖2.

Proof. To show the first statement, write

‖Aj,k − ζj,k‖∞ =
∥∥∥ ∑

λ>Jn

∑
u∈K(λ)

〈ζj,k,Ψλ,u〉Ψλ,u

∥∥∥
∞

≤
∑
λ>Jn

max
u∈K(λ)

| 〈ζj,k,Ψλ,u〉 |
∥∥∥ ∑

u∈K(λ)

|Ψλ,u|
∥∥∥
∞

�
∑
λ>Jn

2(j−λ)(α+d/2)2λd/2

�2j(α+d/2)2−αJn ,

where the third line follows from Lemma 6.3 and the property (i) of the wavelets.
To show the second statement, recall first the support of Ψj,k is denoted by

Sj,k whose volume vol(Sj,k) � 2−jd (since along each coordinate, the length
of support is of order 2−j). For any fixed j, k, Aj,k − ζj,k is a linear combi-
nation of high frequency wavelets (λ > Jn ≥ j). Observe first that for any
λ > Jn, and admissible u, each coordinate of Ψλ,u has a support of length of
order vol(Sλ,u)

1/d, which is smaller than that of each coordinate of ζj,k (whose
length is of the order of vol(Sj,k)

1/d), that is, vol(Sλ,u)
1/d � R × vol(Sj,k)

1/d

for some constant R. Therefore, along each coordinate, supports of all Ψλ,u’s
which intersect with that of ζj,k along the same coordinate are contained in an
interval of length at most (2R + 1)vol(Sj,k)

1/d. Hence, the supports of Ψλ,u’s
which intersect with the support of ζj,k are contained in a hyper-rectangle of
volume at most (2R+1)dvol(Sj,k). This implies that the volume of the support
of ζj,k −Aj,k is bounded by a constant multiple of vol(Sj,k).

Let Δj,k denote the support of ζj,k −Aj,k. Now bounding Aj,k − ζj,k by its
supremum and applying Cauchy-Schwarz inequality,∣∣∣∣∣

∫
[0,1]d

(Aj,k − ζj,k)(f − f0)1Δj,k

∣∣∣∣∣ �‖Aj,k − ζj,k‖∞
√
vol(Δj,k)‖f − f0‖2

�2j(α+d/2)2−αJn2−jd/2‖f − f0‖2
=2(j−Jn)α‖f − f0‖2.

To obtain the bound for the other side, let Dj,k := Ψj,k/[f̄0]j,k, where
[f̄0]j,k := (vol(Sj,k))

−1
∫
Sj,k

f0, which is bounded below from 0 (by the assump-

tion on f0). Since j ≤ Jn, by the property of L2-projection, ‖ζj,k − Aj,k‖2 ≤
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‖ζj,k −Dj,k‖2. Since Dj,k has the same support as that of Ψj,k,

‖ζj,k −Aj,k‖22 ≤
∫

1Sj,k
(Dj,k − ζj,k)

2 ≤ ‖Dj,k − ζj,k‖2∞vol(Sj,k).

To bound the sup-norm,

‖Dj,k − ζj,k‖∞ �‖Ψj,k(f0 − [f̄0]j,k)‖∞
≤‖Ψj,k‖∞

(
sup

x∈Sj,k

|f0(x)− [f̄0]j,k|
)

=‖Ψj,k‖∞
(

sup
x∈Sj,k

∣∣∣ ∫
Sj,k

f0(x)

vol(Sj,k)
du− 1

vol(Sj,k)

∫
Sj,k

f0(u)du
∣∣∣)

≤‖Ψj,k‖∞
1

vol(Sj,k)

(
sup

x∈Sj,k

∫
Sj,k

∣∣f0(x)− f0(u)
∣∣du)

�‖Ψj,k‖∞
1

vol(Sj,k)

(
sup

x∈Sj,k

∫
Sj,k

‖x− u‖du
)

�‖Ψj,k‖∞
1

vol(Sj,k)

(
vol(Sj,k)vol(Sj,k)

1/d
)

�2jd/22−j ,

where the fifth line holds because f0 ∈ Hα([0, 1]d) with α > 1; and in the
second from the last line above, the first factor in the parentheses vol(Sj,k) is
due to the volume from the support and the second factor vol(Sj,k)

1/d is due to
the maximum length of support along each coordinate (or the diameter of the
support). Combing the above results,∣∣∣∣∣

∫
[0,1]d

(Aj,k − ζj,k)(f − f0)

∣∣∣∣∣ � ‖ζj,k −Aj,k‖2‖f − f0‖2 � 2−j‖f − f0‖2.

Lemma 6.6. Let f0 be a density function bounded away from 0 and ∞. Let
an be a sequence of real numbers with na2n > 1, any n ≥ 1. Let {Πn} be a
collection of priors on densities restricted to the set {f : h(f, f0) ≤ an}. Let
{γn} be an arbitrary sequence in L∞([0, 1]d). Set γ̃n := γn − P0γn, where P0

denotes integration with respect to the density f0. Suppose that for some m > 0
and all n > 1,

P0γ̃
2
n ≤ m, ‖γ̃n‖∞ ≤ (4an log(n+ 1))−1.

Then there exists C > 0 depending on m and ‖f0‖∞ only such that for any
n ≥ 1 and any |t| ≤ logn,

EΠ(et
√
n〈f−f0,γn〉|Dn) ≤ exp{Ct2 + tWn(γn)}

∫
e�n(ft)−�n(f0)dΠn(f)∫
e�n(f)−�n(f0)dΠn(f)

, (25)

where ft is defined through the expression

log ft = log f − t
γ̃n√
n
− c(log f − tγ̃n√

n
).
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In particular, the result holds for γn = Aj,k for any j such that 2j ≤ 2Jn �
(n/ log n)1/(2α+d).

Proof. See the proof of Lemma 3 of Castillo [9].

Lemma 6.7. Suppose that f0 is bounded away from 0 and ∞. Let g0 = log f0.
For Aj,k any element of L∞([0, 1]d) such that there exists constants c1, c2, for
any j, k ∈ K(j) with 2j ≤ 2Jn � (n/ logn)1/(2α+d), any n sufficiently large,

‖Aj,k‖∞ ≤ c1
√

n/ logn, ‖Aj,k‖2 ≤ c2.

Then for any n sufficiently large,

E0‖ΓJn − gJn
0 ‖∞ � εn,α.

Proof. See the proof of Lemma 7 of Castillo [9], with some necessary adaption
using the properties of tensor product wavelet basis.

Lemma 6.8. For θ = {θλ,u : λ ≤ Jn, u ∈ K(j)} such that fθ ∈ Dn, where
fθ = exp(T (x)− c(T )), T =

∑
λ≤Jn

∑
u θλ,uΨλ,u, and 2Jn � (n/ logn)1/(2α+d).

For the Gaussian prior under the condition (8), the following holds for some
constant C > 0

∏
λ≤Jn,u∈K(λ)

ϕ(θλ,u/σλ)

ϕ
(

θλ,u−t〈Aj,k,Ψλ,u〉/
√
n

σλ

) ≤ exp{C|t|+ Ct2}.

For the log-Lipschitz prior under the condition (7), the upper bound is eC|t|

for some C > 0.

Proof. See the argument in pages 2078–2080 of Castillo [9], with some necessary
adaption using the properties of tensor product wavelet basis and Lemma 6.3.

The following result, needed to prove Theorem 4.1, is also of independent
interest.

Proposition 6.9. In the setup of Theorem 4.1, the following assertions hold,
for d = 2, 3 :

(a) E(‖f − f̃‖∞|Dn) � n−α/(2α+d)(logn)d/2;
(b) E0‖f̃ − E0f̃‖∞ � n−α/(2α+d)(logn)d/2;
(c) ‖E0f̃ − f0‖∞ � n−α/(2α+d),

and hence the posterior for f contracts at f0 at the rate n−α/(2α+d)(logn)d/2

with respect to the supremum distance.

Proof. To avoid the complication of notation, we first demonstrate the proof for
the case d = 2 and then sketch the proof for the dominating terms for the case
d = 3 after that.

Let Z=(f − f̃) =
∑

j

∑
k φj,k(θj,k − θ̃j,k). The posterior distribution of Z

given the data is a centered Gaussian process that does not depend on Dn. To
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ease the notation, we may just use E to denote the expectation with respect to
the posterior distribution, i.e, we write E(‖Z‖∞) for E(‖Z‖∞|Dn). Hence (a) is
the same as showing E(‖Z‖∞) � n−α/(2α+2) logn.

Proof for d = 2:
Note that E(Z2(x)) =

∑
j

∑
k μj/(nμj +1)φ2

j,k(x). By the uniform bounded-

ness of the basis functions, EZ2(x) is bounded by

1

n
+

∞∑
j1=1

1

n+ jα+1
1

+

∞∑
j2=1

1

n+ jα+1
2

+

∞∑
j1=1

∞∑
j2=1

1

n+ (j1j2)α+1
.

Let nα = n1/(α+1). The second term can be bounded by

nα∑
j1=1

1

n
+

∞∑
j1>nα

j
−(1+α)
2 � n−α/(1+α).

The third term can be bounded in a similar way. For the fourth term, we
split in two cases — one is where j1j2 ≤ nα and the other j1j2 > nα. For the
first case, ∑

j1j2≤nα

1

n+ (j1j2)α+1
� 1

n
#{(j1, j2) : j1j2 ≤ nα, j1, j2 ∈ N}.

For any fixed j1 so that 1 ≤ j1 ≤ nα, the number of j2 such that j2 ≤
nα/j1 is bounded by nα/j1. Therefore, n

−1#{(j1, j2) : j1j2 ≤ nα, j1, j2 ∈ N} ≤
n−1nα

∑nα

j1=1 j1
−1 � n−α/(1+α) logn. For the second case, we can have two

scenarios: (i) when j1 ≥ nα, j2 ≥ 1,

∑
j1j2>nα

1

n+ (j1j2)α+1
�

∞∑
j1≥nα

j
−(1+α)
1

∞∑
j2=1

j
−(1+α)
2 = n−α/(1+α),

while for (ii) j1 < nα, j2 ≥ nα/j1,

nα∑
j1=1

∞∑
j2>nα/j1

1

(j1j2)1+α
=

nα∑
j1=1

j
−(1+α)
1

∞∑
j2>nα/j1

j
−(1+α)
2

=

nα∑
j1=1

j
−(1+α)
1

(nα

j1

)−α

= n−α/(1+α)
nα∑

j1=1

j−1
1 ,

and hence is O(n−α/(1+α) logn). Thus ‖EZ2(·)‖∞ � n−α/(1+α) logn.
We next show that E|Z(x)−Z(y)|2 is bounded by some power of n multiplied

by ‖x− y‖2. Note that

E|Z(x)− Z(y)|2 =

∞∑
j1=0

∞∑
j2=0

∑
k∈K(j)

1

n+ (μj1μj2)
−1

∣∣∣φj1,j2,k(x)− φj1,j2,k(y)
∣∣∣2.



Bayesian analysis of level sets 2677

Clearly, when j1 = j2 = 0, the summand is bounded by n−1. Consider the
summation over j1 = 0, j2 ∈ N. Using the fact that |φ0,j2,k(x) − φ0,j2,k(y)| �
|x2 − y2|2j22 , the summation is bounded by

∞∑
j2=1

1

n+ j1+α
2

|φ0,j2,k(x)− φ0,j2,k(y)|2 �
∞∑

j2=1

j22
n+ j1+α

2

|x2 − y2|2 � n(2−α)/(1+α),

because

∞∑
j2=1

j22
n+ j1+α

2

�
( nα∑

j2=1

j22
n
+

∞∑
j2>nα

j22
j1+α
2

)
�

(
n(2−α)/(1+α)+n2−α

α

)
� n(2−α)/(1+α).

Notice that for the second inequality above to hold, α is required to be
greater than 2. A bound of the same order can be obtained by the summation
over j1 ∈ N, j2 = 0. Consider the summation over j1, j2 ∈ N. Using the bound
|
∏n

i=1 ai −
∏n

i=1 bi| ≤
∑n

i=1 |ai − bi| for |ai|, |bi| ≤ 1, we have that

∣∣∣φj1,k1(x1)φj2,k2(x2)− φj1,k1(y1)φj2,k2(y2)
∣∣∣ = 2

2∑
i=1

∣∣∣ 1√
2
φji,ki(xi)−

1√
2
φji,ki(yi)

∣∣∣
�

2∑
i=1

ji|xi − yi|.

Therefore,

|φj1,j2,k(x)− φj1,j2,k(y)|2 �
( 2∑

i=1

ji|xi − yi|
)2

≤ (j21 + j22)‖x− y‖2

by the Cauchy-Schwarz inequality. Hence

∞∑
j1=1

∞∑
j2=1

∑
k

1

n+ (μj1μj2)
−1

|φj1,j2,k(x)− φj1,j2,k(y)|2

� ‖x− y‖2
∞∑

j1=1

∞∑
j2=1

j21 + j22
n+ (j1j2)1+α

.

As before, we consider the two cases for the summation. One is the summation
over j1j2 ≤ nα and the other is over j1j2 > nα. For the first case,

∑
j1j2≤nα

j21 + j22
n+ (j1j2)α+1

≤ 1

n

∑
j1j2≤nα

(j21 + j22) ≤
1

n

nα∑
j1

∑
j2<(nα/j1)

(j21 + j22).

By a straightforward calculation, it is bounded by n(2−α)/(1+α). For the
second case, we again consider two scenarios (i) j1 ≥ nα, j2 ≥ 1 and (ii)
j2 < nα, j2 ≥ nα/j1. Proceeding similarly as before, we can get the bound
n(2−α)/(1+α). In summary, we obtain that

E|Z(x)− Z(y)|2 � n(2−α)/(1+α)‖x− y‖2.
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Now, by Lemma A.11 of Yoo and Ghosal [48] with δn = n−p for p > 0
sufficiently large, we obtain E‖Z‖2∞ � logn × ‖E(Z2(·))‖∞. By the bound
n−α/(1+α) logn for ‖E(Z2(·))‖∞ obtained earlier in the proof, these imply

E‖Z‖∞ � n−α/(2α+2) logn.

To prove (b), let V = f̃ −E0f̃ . Consider a mean-zero Gaussian process given
by

V =

∞∑
j1=0

∞∑
j2=0

∑
k∈K(j)

√
nεj,k

n+ (μj1j2)
−1

φj,k.

Following the same sequence of argument used for Z is used, we can establish
that

‖E0(V
2(·))‖∞ � n−α/(1+α) logn, (26)

E0|V (x)− V (y)|2 � n(2−α)/(1+α)‖x− y‖2.

Therefore, E0‖V ‖∞ � n−α/(2α+2) logn.
To prove (c), note that

E0(f̃)− f0 =

∞∑
j1=0

∞∑
j2=0

∑
k∈K(j)

( n

n+ μ−1
j2

− 1
)
φj,kθ0,j,k.

The summand of j1 = j2 = 0 is bounded by n−1. Considering the summation
over j1 = 0, j2 ∈ N,∥∥∥ ∞∑

j2≥1

∑
k∈K(j)

( n

n+ μ−1
j

− 1
)
φj,kθ0,j,k

∥∥∥
∞

�
∥∥∥ nα∑

j2≥1

∑
k∈K(0,j2)

( j1+α
2

n+ j1+α
2

)
φj,kθ0,j,k

∥∥∥
∞

+
∥∥∥ ∞∑

j2>nα

∑
k∈K(0,j2)

( n

n+ j1+α
2

− 1
)
φj,kθ0,j,k

∥∥∥
∞
,

where the first term on the right hand side can be bounded as

∥∥∥ nα∑
j2≥1

∑
k∈K(0,j2)

(j2/n)j
α
2 φj,kθ0,j,k

∥∥∥
∞

≤ (nα/n)

nα∑
j2≥1

∑
k∈K(0,j2)

jα2 |θ0,j,k|
∥∥φj,k

∥∥
∞,

which is bounded by a constant multiple of nα/n = n−α/(1+α) by the uniform
boundedness of the basis functions and the assumption on the smoothness of
f0 (take i1 = 0, i2 = α). Since for j2 > nα,

∑
j2>nα

∑
k∈K(0,j2)

|θ0,j,k| � n−α
α ,

the second term of the right hand side of above display can be bounded as∑
j2>nα

∑
k∈K(0,j2)

|θ0,j,k| � n−α
α = n−α/(α+1). Therefore∥∥∥ ∑

j2≥1

∑
k∈K(0,j2)

( n

n+ μ−1
j2

− 1
)
φj,kθ0,j,k

∥∥∥
∞

� n−α/(α+1).
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Finally, consider the sum over j1, j2 ∈ N. We consider two scenarios (i)
j1j2 > nα = n1/(α+1) and (ii) j1j2 ≤ nα. For the first scenario, by the uni-
form boundedness of basis functions and the assumption on the smoothness of

f0 (taking s1 = s2 = α/2), it holds that
∑

j1j2>nα

∑
k∈K(j) |θ0,j,k| � n

−α/2
α . It

is easy to see that∥∥∥∥ ∑
j1j2>nα

∑
k∈K(j)

( n

n+ μ−1
j

− 1
)
φj,kθ0,j,k

∥∥∥∥
∞

is of the order n
−α/2
α = n−α/(2(1+α)). In the second scenario, we bound the term

as ∥∥∥ ∑
j1j2≤nα

∑
k∈K(j)

(j1j2)
1+α/2

n+ (j1j2)1+α
(j1j2)

α/2φj,kθ0,j,k

∥∥∥
∞

� n
1+α/2
α

n

∥∥∥ ∑
j1j2≤nα

∑
k∈K(j)

(j1j2)
α/2φj,kθ0,j,k

∥∥∥
∞
,

which is of the order n−α/(2+2α) by the uniform boundedness of basis functions
and the assumption on the smoothness of f0. In summary, ‖E0f̃ − f0‖∞ �
n−α/(2+2α) as claimed. This completes our proof for the case d = 2.

Proof for d = 3:
Now we have that EZ2(x) is bounded by

1

n
+

∞∑
j1=1

1

n+ j
1+2α/3
1

+
∞∑

j2=1

1

n+ j
1+2α/3
2

+
∞∑

j3=1

1

n+ j
1+2α/3
3

+

∞∑
j1=1

∞∑
j2=1

1

n+ (j1j2)1+2α/3
++

∞∑
j2=1

∞∑
j3=1

1

n+ (j2j3)1+2α/3

+

∞∑
j1=1

∞∑
j3=1

1

n+ (j1j3)1+2α/3
+

∞∑
j1=1

∞∑
j2=1

∞∑
j3=1

1

n+ (j1j2j3)1+2α/3
.

We bound the dominating term
∑∞

j1=1

∑∞
j2=1

∑∞
j3=1[n+ (j1j2j3)

1+2α/3]−1.

Other terms can be bounded similarly. Let nα = n3/(2α+3). We consider two
cases.

The first case is j1j2j3 ≤ nα. The upper bound is given by

1

n

∑
j1j2j3≤nα

1 � 1

n
(log n)2nα,

by the so-called Piltz divisor problem (Bordellès [6]). Therefore it is bounded
by n−2α/(2α+3)(logn)2.

The second case is j1j2j3 > nα. Due to symmetry of the indices, we only need
to consider the three sub-cases: (i) j1 > nα, j2 ≥ 1, j3 ≥ 1, (ii) j1 < nα, j2 >
nα/j1, j3 ≥ 1, (iii) j1 < nα, j1j2 < nα/j1, j3 > nα/j1j2.
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For (i):

∑
j1>nα

∑
j2=1

∑
j3=1

1

(j1j2j3)1+2α/3
�

∑
j1>nα

1

j
1+2α/3
1

,

which can be bounded by (nα)
−2α/3 = n−2α/(2α+3).

For (ii):
∑

j1<nα

∑
j2>nα/j1

∑
j3=1(j1j2j3)

−(1+2α/3) can be bounded as

∑
j1<nα

∑
j2>nα/j1

1

(j1j2)1+2α/3
=

∑
j1<nα

j
−(1+2α/3)
1

∑
j2>nα/j1

j
−(1+2α/3)
2

�
∑

j1<nα

j
−(1+2α/3)
1

(nα

j1

)−2α/3

,

which can be bounded by (nα)
−2α/3

∑nα

j1=1 j
−1
1 � (logn)n−2α/(2α+3)

For (iii):
∑

j1<nα

∑
j2<nα/j1

∑
j3>nα/j1j2

(j1j2j3)
−(1+2α/3) can be bounded as

∑
j1<nα

j
−(1+2α/3)
1

∑
j2<nα/j1

j
−(1+2α/3)
2

∑
j3>nα/j1j2

j
−(1+2α/3)
3

� n−2α/3
α

∑
j1<nα

j−1
1

∑
j2<nα/j1

j−1
2

< n−2α/3
α

∑
j1<nα

j−1
1

∑
j2<nα

j−1
2

� n−2α/3
α (logn)2,

which is n−2α/(2α+3)(logn)2.
Combining the assertions above, ‖EZ2(·)‖∞ � n−2α/(2α+3)(logn)2.
We next turn to show that E|Z(x)− Z(y)|2 is bounded by some power of n

multiplied by ‖x − y‖2. We can split the term as in the d = 2 case and shall
demonstrate here bounding the dominating term

∞∑
j1=1

∞∑
j2=1

∞∑
j3=1

j21 + j22 + j23
n+ (j1j2j3)1+2α/3

.

The first case to consider is when j1j2j3 ≤ nα. The above term can be
bounded as

1

n

∑
j1j2j3≤nα

(j21 + j22 + j23) =
1

n

∑
j1j2≤nα

∑
j3<nα/j1j2

(j21 + j22 + j23)

� 1

n

∑
j1≤nα

∑
j2≤nα/j1

(j21 + j22 +
( nα

j1j2

)2

)

� 1

n

∑
j1≤nα

(
j21 +

(nα

j1

)3

+ nαj1

)
,
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which can be bounded by a constant multiple of n3
α/n.

The second case to consider is when j1j2j3 > nα. Again we only need to
consider the three sub-cases: (i) j1 > nα, j2 ≥ 1, j3 ≥ 1, (ii) j1 < nα, j2 >
nα/j1, j3 ≥ 1, (iii) j1 < nα, j1j2 < nα/j1, j3 > nα/j1j2.

For (i): Since α > d is assumed,
∑

j2=1 j
1−2α/d
2 = O(1). We can bound

∞∑
j1>nα

∞∑
j2=1

∞∑
j3=1

j21 + j22 + j23
n+ (j1j2j3)1+2α/3

�
∑

j1>nα

j
1−2α/d
1 +

∑
j1>nα

j
−(1+2α/d)
1

� n2−2α/d
α .

For (ii): we can bound

∑
j1<nα

∞∑
j2>nα/j1

∞∑
j3=1

j21 + j22 + j23
n+ (j1j2j3)1+2α/3

�
∑

j1<nα

∞∑
j2>nα/j1

∞∑
j3=1

j21
n+ (j1j2j3)1+2α/3

+
∑

j1<nα

∞∑
j2>nα/j1

∞∑
j3=1

j22
n+ (j1j2j3)1+2α/3

+
∑

j1<nα

∞∑
j2>nα/j1

∞∑
j3=1

j23
n+ (j1j2j3)1+2α/3

.

The first term on the right hand side can be bounded as

∑
j1<nα

∞∑
j2>nα/j1

j
1−2α/3
1 j

−(1+2α/3)
2 �

nα∑
j1=1

j
1−2α/3
1

(nα

j1

)−2α/3

,

which is bounded by n
−2α/3
α

∑nα

j1=1 j1 � n
2−2α/3
α . Similarly, we can show the

second and the third term are bounded by n
2−2α/3
α , with details omitted.

For (iii): as in the case (ii), we bound three terms and shall show for bounding
the first one, while the remaining two terms have similar bounds but of smaller
order:

∑
j1<nα

∑
j2<nα/j1

∑
j3>nα/j1j2

j21
n+ (j1j2j3)1+2α/3

�
∑

j1<nα

j
−( 2α

3 −1)
1

∑
j2<nα/j1

j
−( 2α

3 +1)
2

∑
j3>nα/j1j2

j
−(1+ 2α

3 )
3

� n−2α/3
α

∑
j1<nα

j1
∑

j2<nα/j1

j−1
2

� n−2α/3
α

∑
j1<nα

j1
∑

j2<nα

j−1
2 ,
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� n2−2α/3
α logn,

which is bounded by n9/(2α+3). Therefore, by the same argument to that for
the case d = 2, now E‖Z‖∞ � ((logn)‖EZ2(·)‖∞)1/2, which is bounded by a
constant multiple of (logn)3/2n−α/(2α+3) when d = 3.

By a similar argument used for bounding Z, we can prove that, for the
case d = 3, ‖E0(V

2(·))‖∞ � (log n)2n−2α/(3+2α) and also E0(V (x) − V (y))2 �
(logn)2n(6−2α)/(2α+3)‖x− y‖2. Therefore, E0‖V ‖∞ � (log n)3/2n−α/(2α+3).

Finally, we bound ‖E0f̃ − f0‖∞. It turns out the dominating term is given
by the following∑

j1=1

∑
j2=1

∑
j3=1

( n

n+ (j1j2j3)1+2α/3
− 1

)
φj,kθ0,j,k.

This term is bounded by

∑
j1j2j3≤nα

( (j1j2j3)
1+2α/3

n+ (j1j2j3)1+2α/3

)
φj,kθ0,j,k

+
∑

j1j2j3>nα

( n

n+ (j1j2j3)1+2α/3
− 1

)
φj,kθ0,j,k.

By assumption
∑

j1

∑
j2

∑
j3
(j1j2j3)

α/3|θ0,j,k| � L and the uniform bound-
edness of the basis functions, the first term on the right hand side of the above
expression is bounded by

n
1+α/3
α

n

∣∣∣∑
j1

∑
j2

∑
j3

(j1j2j3)
α/3|θ0,j,k|

∣∣∣ � n−α/(2α+3).

Noting by the same assumption, n
α/3
α

∑
j1j2j3>nα

(j1j2j3)
α/3|θ0,j,k| � L. Hence,

the second term is bounded by∥∥∥ ∑
j1j2j3>nα

|φj,k||θ0,j,k|
∥∥∥
∞

� n−α/3
α = n−α/(2α+3).

Therefore, ‖E0f̃ − f0‖∞ � n−α/(2α+3).

Proof of Theorem 4.1. We show the proof for d = 2 and sketch the proof for
d = 3 after that. As in the proof of Proposition 6.9, let Z = (f − f̃). The
proof of this theorem consists of two parts. In Part (1) we show that E‖Z‖∞ �
(logn)n−α/(2(1+α)). In Part (2) we prove the stated assertions.

Proof for d = 2:
Proof of Part (1): Let 1 ≤ l1, l2, l

′
1, l

′
2 ≤ nτ

α for some 0 < τ < 1, where
nα = n1/(1+α) and (l1, l2) �= (l′1, l

′
2). Without loss of generality, we take l1 > l′1.

Consider

E

(∣∣∣Z( l1
nα

,
l2
nα

)
− Z

( l′1
nα

,
l′2
nα

)∣∣∣2)
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=

∞∑
j1=0

∞∑
j2=0

∑
k∈K(j)

1

n+ (μj1μj2)
−1

∣∣∣φj1,j2,k

( l1
nα

,
l2
nα

)
− φj1,j2,k

( l′1
nα

,
l′2
nα

)∣∣∣2.
It is clearly lower bounded by

∑
j1j2≤nα

1

n+ (j1j2)1+α

∣∣∣∣4 sin
(
2πl1j1
nα

)
sin

(
2πl2j2
nα

)
− 4 sin

(
2πl′1j1
nα

)
sin

(
2πl′2j2
nα

)∣∣∣∣2 .
(27)

Fix j1 such that 1 ≤ j1 ≤ nα/2, thus j2 ≤ nα/j1. Since sin(2πj1l1/nα) = 0 if
and only if 2j1l1/nα = m for some m ∈ Z. Let

J1 := {j1 : 1 ≤ j1 ≤ nα/2,
j1
nα

�= m

2l1
,m ∈ {1, 2, . . . , �l1�}}.

Note that sin(x) = b
a sin(y), a �= 0 if and only if x = (−1)m sin−1( ba sin(y)) +

mπ for some m ∈ Z. Let a = sin(2πj1l1/nα), b = sin(2πj1l
′
1/nα). Fix j1 ∈ J1 so

that a �= 0. Pick some ε > 0 arbitrarily small. Note that∣∣∣∣a sin(2πl2j2nα

)
− b sin

(2πl′2j2
nα

)∣∣∣∣ > ε (28)

whenever the following inequality hold:∣∣∣∣2πj2 l2
nα

− (−1)m sin−1
( b

a
sin

(
2πj2

l′2
nα

))
−mπ

∣∣∣∣ > δ for some m ∈ Z, (29)

for some small positive constant δ. Let s := j2/nα ∈ (0, 1/j1], as j2 ≤ nα/j1.
The expression (28) holds when s is outside the neighborhood of the zeros of

2πsl2 = (−1)m sin−1
(

b
a sin

(
2πsl′2

))
−mπ for an integer m. Since s ∈ (0, 1/j1],

l2, l
′
2 are fixed, there are at most finitely many such zeros. Thus when s is not

in a set which is a union of finitely many arbitrary small intervals, (28) holds.
Note that the set is not changing with nα for fixed l1, l

′
1, l2, l

′
2. The complement

set has positive Lebesgue measure. Therefore, for any j1 ∈ J1, the fraction of
{j2 : 1 ≤ j2 ≤ nα/j1} such that (28) holds is bounded away from zero. Hence
the expression in (27) is at least a constant multiple of

1

2n

∑
j1∈J1

∑
j2≤nα/j1

1 � ε2

2n

∑
j1∈J1

nα/j1 � nα

n

∑
j1∈J1

1

j1
.

Note also that
∑

j1∈J1
1/j1 =

∑nα/2
j1=1 1/j1 −

∑
j1∈J c

1
1/j1. To bound the sec-

ond term

∑
j1∈J c

1

1

j1
≤

�l1�∑
m=1

2l1
mnα

≤ 2l1
nα

( nτ
α∑

m=1

1

m

)
�

nτ
α∑

m=1

1

m
.

Therefore,
∑

j1∈J1
1/j1 ≥

∑nα/2
j1=1 1/j1 −

∑nτ
α

m=1 1/m � logn. Summarizing,

the expression in (27) is at least a multiple of (logn)n−α/(1+α).
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Let Ul1,l2 =
√
2c−1/2(logn)−1/2nα/(2(1+α))Z(l1/nα, l2/nα). Then

E(Ul1,l2 − Ul′1,l
′
2
)2 ≥ 2 = E(Vl1,l2 − Vl′1,l

′
2
)2,

where Vl1,l2 are i.i.d. standard normal random variables. Note that, for a se-
quence of i.i.d normal random variables W1, . . . ,Wn ∼ N(0, σ2), for some uni-
versal constants C1 and C2 > 0,

C1σ
√

logn ≤ E max
1≤j≤n

Wj ≤ E max
1≤j≤n

|Wj | ≤ C2σ
√

logn;

see (3.14) of Ledoux and Talagrand [29]. Now by Slepian’s lemma (cf. Corollary
3.14 of Ledoux and Talagrand [29] or Proposition A.2.6 of Van der Vaart and
Wellner [47])

E(max
l1,l2

Ul1,l2) � E(max
l1,l2

Vl1,l2) �
√
log(n2

α) �
√

logn.

Since E(maxl1,l2 Z(l1/nα, l2/nα)) � (logn)1/2n−α/(2(1+α))E(maxl1,l2 Ul1,l2), we
obtain

E‖Z‖∞ ≥ E
(
max
l1,l2

Z
( l1
nα

,
l2
nα

))
� n−α/(2(1+α)) logn.

Proof of Part (2): Note that since for 0 < γ < 1/2, Rn,γ is greater than
the posterior median of ‖Z‖∞. By the estimate (26) and Borell’s inequality (cf.
Proposition A.2.1 of Van der Vaart and Wellner [47]), the posterior mean of
‖Z‖∞ and the posterior median of ‖Z‖∞ are of the same order. As (1 − γ)-
quantile of ‖Z‖∞ is larger than its median, by Part (1), it follows that

Rn,γ � E‖Z‖∞ � n−α/(2(1+α)) log n.

Let εn = n−α/(2(1+α)) logn. By Borell’s inequality (see Proposition A.2.1 of
Van der Vaart and Wellner [47]),

Π(Lc /∈ Cγ |Dn) = Π(f /∈ Cγ |Dn)

= P(‖Z‖∞ − E‖Z‖∞ > ρRn,γ − E‖Z‖∞)

≤ exp[−C2ε2n/cn],

where cn = ‖EZ2(·)‖∞ is bounded by (logn)n−α/(1+α) in view of (26), and C
is a constant, whose positivity can be ensured if ρ is chosen sufficiently large.
Therefore, the above posterior probability tends to zero.

Finally,

P0(Lc(f0) ∈ Cγ) = P0(‖f̃ − f0‖∞ ≤ ρRn,γ)

= P0(‖E0f̃ − f0 + f̃ − E0f̃‖∞ ≤ ρRn,γ) → 1,

by the Parts (b) and (c) of Proposition 6.9, establishing the coverage of Cγ .
Observe that Cγ ⊂ C̄γ , because any Lc ∈ Cγ is induced by some f such that

‖f − f̃‖∞ ≤ ρRn,γ . In view of Part (a) of Proposition 6.9, by the third assertion
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of Proposition A.2.1 of Van der Vaart and Wellner [47], Rn,γ is bounded by√
8E(‖Z‖2∞|Dn) log(2/γ), which is of the order n−α/(2(1+α)) log n. By Lemma

2.2, it then establishes the claim about the size of the credible set.
Proof for d = 3:
The key step is to prove that E‖Z‖∞ � n−α/(2α+3)(logn)3/2. The rest of the

proof follows similarly. In order to lower bound E‖Z‖∞, let 1 ≤ l1, l2, l3, l
′
1, l

′
2, l

′
3 ≤

nτ
α for some 0 < τ < 1, where nα = n3/(3+2α) and (l1, l2, l3) �= (l′1, l

′
2, l

′
3). Note

that

E

(∣∣∣Z( l1
nα

,
l2
nα

,
l3
nα

)
− Z

( l′1
nα

,
l′2
nα

,
l′3
nα

)∣∣∣2)

is lower bounded by

∑
j1j2j3≤nα

1

n+ (j1j2j3)1+2α/3

∣∣∣8 sin(2πl1j1
nα

)
sin

(2πl2j2
nα

)
sin

(2πl3j3
nα

)

− 8 sin
(2πl′1j1

nα

)
sin

(2πl′2j2
nα

)
sin

(2πl′3j3
nα

)∣∣∣2.
(30)

Choose j1 < nτ̄
α, j2 < nα/j1, j3 < nα/j1j2, where 0 < τ̄ < 1. Let

J1 := {j1 : 1 ≤ j1 ≤ nα,
j1
nα

�= m

2l1
,m ∈ {1, 2, . . . , �2l1�}},

J2(j1) := {j2 : 1 ≤ j2 ≤ nα

j1
,
j2
nα

�= m

2l1
,m ∈ {1, 2, . . . , �2l2/j1�}}.

Let a = sin(2πj1l1/nα) sin(2πj2l2/nα), b = sin(2πj1l
′
1/nα) sin(2πj2l

′
2/nα). Fix

j1 ∈ J1, j2 ∈ J2(j1) so that a �= 0. Pick some ε > 0 arbitrarily small. Note that∣∣∣∣a sin(2πl3j3nα

)
− b sin

(2πl′3j3
nα

)∣∣∣∣ > ε, (31)

whenever the following inequality hold:∣∣∣∣2πj3 l3
nα

− (−1)m sin−1
( b

a
sin

(
2πj3

l′3
nα

))
−mπ

∣∣∣∣ > δ for some m ∈ Z, (32)

for some small positive constant δ. Let s := j3/nα ∈ (0, 1/(j1j2)], as j3 ≤
nα/(j1j2). Arguing as in the case d = 2, for any j1 ∈ J1 and j2 ∈ J2(j1),
the fraction of {j3 : 1 ≤ j3 ≤ nα/j1j2} such that (31) holds is bounded
away from zero. Therefore, the expression in (30) is at least a constant mul-
tiple of ε2nα/(2n)

∑
j1J1

∑
j2∈J2(j1)

1/(j1j2). Note also that
∑

j2∈J2(j1)
1/j2 =∑nα/j1

j2=1 1/j2 −
∑

j2∈J c
2 (j1)

1/j2 where the second term can be bounded as

∑
j2∈J c

2 (j1)

1

j2
≤ 2l2

nα

( nτ
α/j1∑
m=1

1

m

)
�

nτ
α/j1∑
m=1

1

m
.
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Therefore,
∑

j2∈J c
2 (j1)

1/j2 �
∑nα/j1

j2=nτ
α/j1

1/j2 � log(nα/j1) � logn. Similarly,∑
j1J1

1/j1 � logn. Combining above results, (30) � n−2α/(2α+3)(logn)2. By

the arguments used for d = 2, we have E‖Z‖∞ � n−α/(2α+3)(logn)3/2.

Proof of Theorem 4.2. We take Jk � J∗
n = (n/ log n)1/(2α+d), k = 1, . . . , d. For

0 < γ < 1/2, by argument in the proof of Theorem of 5.3 of Yoo and Ghosal
[48], one can establish that

Rn,γ � E
(
‖f − f̃‖∞|Dn, σ

2
)
�

√
log n

n
(J∗

n)
d/2 = (logn/n)α/(2α+d)

in probability.
Recall that from (15), Π(f |Dn, σ̂

2) ∼ GP(f̃ , σ̂2Σ). Arguing as in the proof of
Theorem 4.1,

Π(Lc /∈ Cγ |Dn, σ̂
2) ≤ exp[−C2R2

n,γ/cn],

where cn = supx var((f − f̃)(x)|Dn, σ̂
2) is bounded by a constant multiple of

sup
x

Σ(x, x) � sup
x

‖b(x)‖2‖(BTB + Λ−1
0 )−1‖(2,2) � (J∗

n)
d/n.

Therefore, the above posterior probability is bounded by e−c logn for some c > 0,
and hence tends to zero. In addition,

P0(Lc(f0) ∈ Cγ) = P0(‖f̃ − f0‖∞ ≤ ρRn,γ) → 1,

by the third assertion of Theorem 5.3 of Yoo and Ghosal [48] establishing the
coverage of Cγ . To see Cγ ⊂ C̄γ , as in the last theorem, note that any Lc ∈ Cγ
is induced by some f such that ‖f − f̃‖∞ ≤ ρRn,γ . In view of Lemma 2.2 and
Theorem 4.4 of Yoo and Ghosal [48] and its proof, the assertion about the size
of the credible region immediately follows.
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[26] Wolfgang Härdle, Gerard Kerkyacharian, Dominique Picard, and Alexander
Tsybakov. Wavelets, Approximation, and Statistical Applications, volume
129. Springer Science & Business Media, 2012. MR1618204

[27] Marc Hoffmann, Judith Rousseau, and Johannes Schmidt-Hieber. On adap-
tive posterior concentration rates. The Annals of Statistics, 43(5):2259–
2295, 2015. MR3396985

[28] Hanna Jankowski and Larissa Stanberry. Confidence regions in level set es-
timation. http://www.math.yorku.ca/~hkj/Research/level.pdf, 2012.

[29] Michel Ledoux and Michel Talagrand. Probability in Banach Spaces:
isoperimetry and processes. Springer Science & Business Media, 2013.
MR2814399

[30] Ker-Chau Li. Honest confidence regions for nonparametric regression. The
Annals of Statistics, 17(3):1001–1008, 1989. MR1015135

[31] Wei Li and Subhashis Ghosal. Posterior contraction and credible sets for fil-
aments of regression functions. Electronic Journal of Statistics, 14(1):1707–
1743, 2020. MR4083733

[32] Enno Mammen and Wolfgang Polonik. Confidence regions for level sets.
Journal of Multivariate Analysis, 122:202–214, 2013. MR3189318

[33] Enno Mammen and Alexandre B Tsybakov. Smooth discrimination analy-
sis. The Annals of Statistics, 27(6):1808–1829, 1999. MR1765618

[34] David M Mason and Wolfgang Polonik. Asymptotic normality of plug-in
level set estimates. The Annals of Applied Probability, 19(3):1108–1142,
2009. MR2537201

[35] Richard Nickl and Kolyan Ray. Nonparametric statistical inference for
drift vector fields of multi-dimensional diffusions. The Annals of Statistics,
48(3):1383–1408, 2020. MR4124327

[36] Wolfgang Polonik. Measuring mass concentrations and estimating den-
sity contour clusters-an excess mass approach. The Annals of Statistics,
23(3):855–881, 1995. MR1345204

[37] Wolfgang Polonik and Zailong Wang. Estimation of regression contour
clusters—an application of the excess mass approach to regression. Journal
of Multivariate Analysis, 94(2):227–249, 2005. MR2167913

[38] Kolyan Ray. Adaptive Bernstein–von Mises theorems in Gaussian white
noise. The Annals of Statistics, 45(6):2511–2536, 2017. MR3737900

[39] Philippe Rigollet and Régis Vert. Optimal rates for plug-in estimators of
density level sets. Bernoulli, 15(4):1154–1178, 2009. MR2597587

[40] Alessandro Rinaldo and Larry Wasserman. Generalized density clustering.
The Annals of Statistics, 38(5):2678–2722, 2010. MR2722453

https://www.ams.org/mathscinet-getitem?mr=1790007
https://www.ams.org/mathscinet-getitem?mr=3012395
https://www.ams.org/mathscinet-getitem?mr=3588285
https://www.ams.org/mathscinet-getitem?mr=1618204
https://www.ams.org/mathscinet-getitem?mr=3396985
http://www.math.yorku.ca/~hkj/Research/level.pdf
https://www.ams.org/mathscinet-getitem?mr=2814399
https://www.ams.org/mathscinet-getitem?mr=1015135
https://www.ams.org/mathscinet-getitem?mr=4083733
https://www.ams.org/mathscinet-getitem?mr=3189318
https://www.ams.org/mathscinet-getitem?mr=1765618
https://www.ams.org/mathscinet-getitem?mr=2537201
https://www.ams.org/mathscinet-getitem?mr=4124327
https://www.ams.org/mathscinet-getitem?mr=1345204
https://www.ams.org/mathscinet-getitem?mr=2167913
https://www.ams.org/mathscinet-getitem?mr=3737900
https://www.ams.org/mathscinet-getitem?mr=2597587
https://www.ams.org/mathscinet-getitem?mr=2722453


Bayesian analysis of level sets 2689

[41] Weining Shen and Subhashis Ghosal. Posterior contraction rates of density
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