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Abstract: In this paper we consider a fully nonparametric additive regres-
sion model for responses and predictors of various natures. This includes the
case of Hilbertian and incomplete (like censored or missing) responses, and
continuous, nominal discrete and ordinal discrete predictors. We propose a
backfitting technique that estimates this additive model, and establish the
existence of the estimator and the convergence of the associated backfitting
algorithm under minimal conditions. We also develop a general asymptotic
theory for the estimator such as the rates of convergence and asymptotic
distribution. We verify the practical performance of the proposed estima-
tor in a simulation study. We also apply the method to various real data
sets, including those for a density-valued response regressed on a mixture
of continuous and nominal discrete predictors, for a compositional response
regressed on a mixture of continuous and ordinal discrete predictors, and
for a censored scalar response regressed on a mixture of continuous and
nominal discrete predictors.

MSC2020 subject classifications: Primary 62G08; secondary 62G20.
Keywords and phrases: Additive model, smooth backfitting, Hilbertian
response, incomplete response, mixed predictor.

Received July 2020.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1474
2 Methodology for general predictors . . . . . . . . . . . . . . . . . . . . 1477

2.1 Some examples of Hilbert spaces and vector operations . . . . . . 1477
2.2 General setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1479
2.3 General Bochner SBF estimation . . . . . . . . . . . . . . . . . . 1480
2.4 General Bochner SBF algorithm . . . . . . . . . . . . . . . . . . 1483

∗Research of Jeong Min Jeon and Ingrid Van Keilegom was supported by the European
Research Council (2016-2021, Horizon 2020/ERC grant agreement No. 694409). Resrach of
Byeong U. Park was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIP) (No. 2019R1A2C3007355).

1473

https://imstat.org/journals-and-publications/electronic-journal-of-statistics/
https://doi.org/10.1214/21-EJS1823
mailto:jeongmin.jeon@kuleuven.be
mailto:ingrid.vankeilegom@kuleuven.be
mailto:bupark@stats.snu.ac.kr
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


1474 J. M. Jeon et al.

2.5 gB-SBF for Euclidean and functional responses . . . . . . . . . . 1484
3 Theory for general predictors . . . . . . . . . . . . . . . . . . . . . . . 1484

3.1 Minimal conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 1485
3.2 Existence of gB-SBF estimators . . . . . . . . . . . . . . . . . . . 1485
3.3 Convergence of gB-SBF algorithm . . . . . . . . . . . . . . . . . 1486

4 Theory for mixed predictors . . . . . . . . . . . . . . . . . . . . . . . . 1488
4.1 Estimation of marginal densities and regression maps . . . . . . . 1488
4.2 Existence and algorithm convergence . . . . . . . . . . . . . . . . 1491
4.3 Rates of convergence . . . . . . . . . . . . . . . . . . . . . . . . . 1493
4.4 Asymptotic distribution . . . . . . . . . . . . . . . . . . . . . . . 1495

5 Numerical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1497
5.1 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . 1497
5.2 Real data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 1500

5.2.1 Density-valued response . . . . . . . . . . . . . . . . . . . 1500
5.2.2 Compositional response . . . . . . . . . . . . . . . . . . . 1503
5.2.3 Missing scalar response . . . . . . . . . . . . . . . . . . . 1505
5.2.4 Randomly right-censored scalar response . . . . . . . . . . 1506

6 Conclusion and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 1508
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1509

A.1 Case of no continuous predictor . . . . . . . . . . . . . . . . . . . 1509
A.2 gB-SBF equation and algorithm for mixed predictors . . . . . . . 1511
A.3 Implementation and smoothing parameter selection . . . . . . . . 1513
A.4 Closedness of SH(p̂) . . . . . . . . . . . . . . . . . . . . . . . . . 1516
A.5 Some lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1519
A.6 Proofs for Section 3 . . . . . . . . . . . . . . . . . . . . . . . . . 1525

A.6.1 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . 1525
A.6.2 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . 1527
A.6.3 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . 1527

A.7 Terminologies and proofs for Section 4 . . . . . . . . . . . . . . . 1529
A.7.1 Terminologies for Section 4.4 . . . . . . . . . . . . . . . . 1529
A.7.2 Proof of Corollary 3 . . . . . . . . . . . . . . . . . . . . . 1532
A.7.3 Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . 1533
A.7.4 Proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . 1541
A.7.5 Proof of Lemma 4 . . . . . . . . . . . . . . . . . . . . . . 1543

A.8 Proof of Theorem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . 1545
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1545
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1546

1. Introduction

Data objects that are not Euclidean are now abundant in real world problems
so that their analysis becomes one of the important tasks in modern statistics.
As part of such task, this paper provides a general structured nonparamet-
ric regression technique for Hilbert-space-valued (Hilbertian) responses coupled
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with various types of predictors. We consider Hilbert space since it is an impor-
tant class of data spaces equipped with vector operations and an inner product
structure that are vital to most regression tools. It covers a very wide scope
of data types such as Euclidean, functional, density-valued and compositional
data, etc. Functional data means that each data object itself, corresponding to
each subject, is a function. This type of data arises from every corner of our
lives [35]. Density-valued data is a kind of functional data, but each data ob-
ject is a nonnegative function that integrates to one on its domain. Examples
include population age distributions in cities [14], the distributions of voxel-to-
voxel correlation in fMRI signals [33, 34] and the distributions of metabolite
level in the groups of new born babies [37]. Compositional data has Euclidean
vectors as data objects whose entries are positive and sum to one. Examples are
the proportions of votes earned by candidates in an election, the proportions
of races/religions in cities/countries and the proportions of chemical materials
constituting bodies/air/sea-water/soil [32, 9]. For formal definitions of such data
objects, see Section 2.1.

There have been a few attempts of dealing with Hilbertian responses. A
broad review on regression for functional responses may be found in [42]. Other
works include a parametric technique for compositional responses [38], the one
for density-valued responses [37], and Nadaraya-Watson smoothing [10] and k-
nearest neighbor estimation [21] for Hilbertian responses. The latter two works
are about nonparametric regression but based on full-dimensional (i.e., unstruc-
tured) modeling, so that their approaches suffer from the curse of dimensionality
when the number of predictors increases. Recently, nonparametric additive re-
gression has been developed for Hilbertian responses [15]. Additive modeling
is known to be an efficient way of avoiding the dimensionality problem. All
these works on nonparametric regression do not cover discrete predictors, how-
ever. There has been no nonparametric method dealing with density-valued or
compositional responses, in particular, together with discrete predictors.

In real world regression problems, discrete predictors are abundant. In many
cases it is how to model the effects of discrete predictors, rather than continuous
predictors, that determines overall prediction performance. In nonparametric
regression, it is the usual practice to assume that the effects of discrete predic-
tors are linear, thus incorporate them into a partially linear [e.g., 36, 45] or a
varying coefficient model [e.g., 13, 19, 20]. The usual approach certainly lacks
flexibility since it cannot accommodate nonlinear effects, which may result in
poor practical performance as illustrated in Section 5. A systematic nonpara-
metric approach to identifying possibly nonlinear effects of discrete predictors
on Hilbertian responses, does not exist yet, to the knowledge of the authors. The
problem remains unexplored despite of its importance in real world problems.

The aim of the current paper is to develop a nonparametric additive regres-
sion approach for general Hilbertian responses that also enhances flexibility in
modeling the effects of various types of predictors. Our approach sets both the
effects of continuous and those of discrete predictors ‘fully nonparametric’. The
predictors in our model can be general objects including nominal and ordinal
discrete variables as well as continuous ones. Hence, our coverage includes the
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case where only continuous predictors are considered [15]. In addition, we allow
for incompletely observed responses. Here, by ‘incomplete’, we mean ‘censored’
or ‘missing’. In particular, our setup covers the case of missing data with gen-
eral Hilbertian responses. It means that we can deal with missing functional
responses, missing density responses, missing compositional responses and so
on, and as such it generalizes many current advances in the analysis of missing
data.

To introduce our model, let H denote a separable Hilbert space and Y be a
possibly incompletely observed H-valued random element. Let W = (X,U,V)
be mixed predictors taking values in an appropriate space W , where X =
(X1, . . . , Xdx) is a vector of real-valued continuous predictors,U = (U1, . . . , Udu)
is a vector of nominal discrete predictors, and V = (V1, . . . , Vdv ) is a vector
of discrete predictors for which each Vj takes values in a metric space with
finite cardinality. Here, some dx, du or dv are allowed to be zero as long as
dx + du + dv ≥ 2. Let ε be a H-valued error such that E(ε|X,U,V) = 0, where
0 is a zero vector in H, and the conditional expectation is defined in terms of
Bochner integral [6]. We consider the following additive model.

Y = m0 ⊕
dx⊕
j=1

mx,j(Xj)⊕
du⊕
j=1

mu,j(Uj)⊕
dv⊕
j=1

mv,j(Vj)⊕ ε, (1.1)

where ⊕ is a vector addition on H, m0 is an unknown constant in H, and
mx,j ,mu,j and mv,j are unknown H-valued component maps. The definitions
of zero vector 0 and vector addition ⊕ are different for different Hilbert spaces,
see Section 2.1. To the best of our knowledge, this model is the first fully non-
parametric version of the standard linear model.

For the estimation of the component maps in (1.1), we develop a new smooth
backfitting (SBF) technique. The original idea of SBF was developed for scalar
responses and continuous predictors [25]. In comparison with other structured
nonparametric methods such as marginal integration [22] and ordinary backfit-
ting [31], the SBF technique was proved to have practical advantages [29] as
well as theoretical superiority in various structured nonparametric models [e.g.,
26, 23, 46, 18, 12]. All the aforementioned works are for completely observed
real-valued responses regressed on continuous predictors only.

In our theoretical developments, we first prove the existence of the SBF esti-
mator and the convergence of the associated SBF algorithm, in a very general
setup where predictors take values in arbitrary σ-finite measure spaces. The gen-
eral treatment allows not only the three types of predictors in the model (1.1)
but also other predictors such as functional and manifold-valued predictors. The
SBF algorithm, which evaluates the SBF estimator, requires the estimation of
the marginal densities and the marginal regression maps of the predictors. In
the existing SBF literature, these are confined to kernel-based estimators. In our
theory for the existence of the estimator and the convergence of the algorithm,
they are not restricted to this type. Instead, we formulate high-level conditions
that are minimally required for the estimators of the marginal densities and
marginal regression maps. The conditions allow parametric or nonparametric es-
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timators which may not be kernel-based but could be spline- or wavelet-based.
Hence, our theory opens the possibility of developing non-kernel-based SBF
techniques. Also, the minimal conditions do not ask for the data being identi-
cally distributed or independent. Thus, the theory even allows dependent data
such as sequential/spatial data. We believe that this new framework makes an
important contribution to various future studies, including those on non-kernel-
based SBF methods for various structured nonparametric regression models.

Second, we derive the rates of convergence and the asymptotic distribution
of the estimator for the model (1.1). The theoretical developments here are
based on kernel weighting schemes for the estimation of the marginal densities
and the marginal regression maps. They are much more complex than in [15].
The latter work considers only continuous predictors and completely observed
responses, and thus all stochastic terms from the asymptotic expansion of their
estimator are based on kernels of the same type and bandwidths of the same size.
This enables one to apply a unified and relatively simple approach to deriving
the theoretical results. In our case, however, there are many more stochastic
terms of different natures that arise from different kernel weighting schemes for
different types of predictors with smoothing parameters of different rates, and
they involve errors due to incompleteness in the response variables. In addition,
the component maps for the discrete predictors are not differentiable, so that the
techniques dealing with such terms are quite different from those for continuous
predictors. Thus, various and sophisticated technical tools are required in our
new setting, see the technical details contained in the Appendix A.7.

In Section 2 we describe our methodology in the above general framework.
In Section 3 we obtain minimal conditions on the estimators of the marginal
densities and regression maps under which we prove the existence of the SBF
estimator and the convergence of the SBF algorithm in the general framework.
In Section 4 we then specialize these results to the model (1.1), and investigate
further the asymptotic properties of the corresponding SBF estimator. We treat
in Section A.1 the case where there is no continuous predictor. In Section 5 we
demonstrate the numerical superiority of our method and its usefulness in real
problems. Auxiliary theoretical results and all proofs are in the Appendix.

2. Methodology for general predictors

2.1. Some examples of Hilbert spaces and vector operations

We give three examples of separable Hilbert spaces. These spaces and Euclidean
spaces are the spaces we consider for the response variable Y in our numerical
study.

(i) L2 space. Let S be a Borel subset of Rk. Consider the space of square
integrable functions defined on S. For this space the zero vector 0 is the iden-
tically zero function, and for a scalar c ∈ R and for two functions f = f(·) and
g = g(·), the vector addition f ⊕ g and scalar multiplication c � f are defined
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by f ⊕ g = f(·) + g(·) and c� f = c · f(·). The inner product and norm are

〈f ,g〉 =
∫
S

f(s) · g(s) ds, ‖f‖ =

(∫
S

f(s)2 ds

)1/2

.

(ii) The space of density functions. Consider the space of probability density
functions f supported on a Borel subset S of Rk with finite Lebesgue measure
such that

∫
S
(log f(s))2 ds < ∞. For this space, the zero vector 0 is the constant

density f0(·) ≡ (Lebk(S))
−1, where Lebk denotes the k-dimensional Lebesgue

measure. For a scalar c ∈ R and for two densities f = f(·) and g = g(·), the
vector addition f ⊕ g and scalar multiplication c� f are defined by

f ⊕ g =
f(·) · g(·)∫

S
f(s) · g(s) ds , c� f =

(f(·))c∫
S
(f(s))c ds

.

The inner product and norm are

〈f ,g〉 = 1

2Lebk(S)

∫
S2

log

(
f(s)

f(s′)

)
log

(
g(s)

g(s′)

)
ds ds′,

‖f‖ =

(
1

2Lebk(S)

∫
S2

[
log

(
f(s)

f(s′)

)]2
ds ds′

)1/2

.

The space with the inner product forms an infinite-dimensional separable Hilbert
space, as proved by [39].

(iii) The space of compositional vectors. Consider the space

Sk =

⎧⎨
⎩(a1, · · · , ak) ∈ (0, 1)k :

k∑
j=1

aj = 1

⎫⎬
⎭ .

For this space, the zero vector 0 is the compositional vector (1/k, . . . , 1/k) of
equalized components. For a scalar c ∈ R and two compositional vectors a,b ∈
Sk, the vector addition a⊕ b and scalar multiplication c� a are defined by

a⊕ b =

(
a1 · b1

a1 · b1 + · · ·+ ak · bk
, . . . ,

ak · bk
a1 · b1 + · · ·+ ak · bk

)
,

c� a =

(
ac1

ac1 + · · ·+ ack
, . . . ,

ack
ac1 + · · ·+ ack

)
.

The inner product and norm are

〈a,b〉 = 1

2k

k∑
j=1

k∑
l=1

log(aj/al) log(bj/bl),

‖a‖ =

(
1

2k

k∑
j=1

k∑
l=1

[
log(aj/al)

]2)1/2

.

It is known that Sk with the inner product forms a (k− 1)-dimensional Hilbert
space.
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2.2. General setting

Here, we consider abstract predictors taking values in general σ-finite measure
spaces. We take this route, rather than starting with the specific types of predic-
tors in the model (1.1), for simpler but better exposition of the main idea and
also for demonstrating the broad scope of application in terms of the types of
predictors we may cover. In technical terms, the general treatment is not direct
from the existing literature, however, but actually requires thorough investiga-
tion of the way how the SBF idea works.

We let (Zj ,Aj , νj), for 1 ≤ j ≤ d, be σ-finite measure spaces. We define

(Z,A , ν) = (
∏d

j=1 Zj ,
⊗d

j=1 Aj ,
⊗d

j=1 νj), where
⊗d

j=1 Aj and
⊗d

j=1 νj are
the product σ-field and product measure, respectively. We let Z = (Z1, . . . , Zd)
be a Z-valued predictor and ε be a H-valued error satisfying E(ε|Z) = 0 and
E(‖ε‖2) < ∞, where ‖·‖ denotes a norm of H. We consider the following general
additive model:

Y = m0 ⊕
d⊕

j=1

mj(Zj)⊕ ε, (2.1)

where Y is a H-valued response, m0 is a constant in H and mj : Zj → H are
measurable maps such that

E(‖mj(Zj)‖2) < ∞, 1 ≤ j ≤ d. (2.2)

We let PZ−1 denote the distribution of Z defined by PZ−1(A) = P (Z ∈ A) for
A ∈ A . Likewise, we define PZ−1

j (Aj) = P (Zj ∈ Aj) for Aj ∈ Aj . We assume

that PZ−1 is absolutely continuous with respect to ν. We write dPZ−1/dν =
p,
∫
Z−jk

p(z)dν−jk(z−jk) = pjk(zj , zk) and
∫
Z−j

p(z)dν−j(z−j) = pj(zj) for 1 ≤
j �= k ≤ d, where (Z−jk,A−jk, ν−jk) and (Z−j ,A−j , ν−j) are the respective
product measure spaces resulting from omitting the (j, k)th and the jth measure
spaces in (Z,A , ν), and z−jk and z−j are the respective vectors resulting from
omitting (zj , zk) and zj in z = (z1, . . . , zd).

To take into account various situations where Y is not completely observed,
we consider a ‘synthetic’ or ‘surrogate’ response that replaces Y. Such a syn-
thetic response can be obtained by some mean-preserving transformation of
‘observed’ Y, which may involve the observed predictor Z. For instance, sup-
pose that Y is subject to missingness. Let R = 0 if Y is missing, and R = 1
otherwise. Then, under the Hilbertian MAR (missing at random) condition,
R ⊥ Y|Z, it holds that

E((1/π(Z))�Y∗|Z) = E(Y|Z),

where π(Z) = P (R = 1|Z), � denotes a scalar multiplication on H, and Y∗ =
Y if R = 1 and Y∗ = 0 otherwise. In this case, we may take ψ(Z,Y∗) :=
(1/π(Z))�Y∗ as a surrogate of Y. Another example arises in randomly right-
censored regression where Y is a real-valued survival time subject to censoring,
see Example 2 in Section 4.
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In case Y is not completely observed, we assume that there exists a com-
pletely observable variable Y∗ ∈ H and a H-valued transformation ψ satisfying

E(ψ(Z,Y∗)|Z) = E(Y|Z). (2.3)

The equation (2.3) may be used to estimate the additive model based on the
observed values of ψ(Z,Y∗). However, the transformation ψ usually contains
unknown parameters or functions. In the missingness example discussed above,
the conditional probability π is unknown. In the censoring example as well,
the corresponding ψ involves the distribution function of the censoring variable
that is unknown, see Example 2. In such cases, we need to estimate ψ. We study
the effect of the error in the estimation of ψ on the estimation of the additive
model (1.1), see Section 4. Below, we describe our method and theory in terms
of ψ(Z,Y∗) and its estimator. In the case of completely observed Y, one may

simply set ψ(Z,Y∗) = ψ̂(Z,Y∗) = Y.

2.3. General Bochner SBF estimation

For the estimation of the model (2.1) we first define some relevant spaces of
H-valued measurable maps. For any measure space (S,Σ, λ), we define

L2((S,Σ, λ),H) =
{
f : S → H : f is measurable and

∫
S

‖f(s)‖2dλ(s) < ∞
}
.

We note that the measure spaces on which the component mapsmj and the sum

map
⊕d

j=1 mj in (2.1) are defined, correspond to (S,Σ, λ) = (Zj ,Aj , PZ−1
j ) and

(S,Σ, λ) = (Z,A , PZ−1), respectively.
For the identifiability of the component maps mj in (2.1), we put the con-

straints E(mj(Zj)) = 0 for all 1 ≤ j ≤ d, which entails m0 = E(Y). We
note that these constraints can be written in Bochner integrals. The notion of
Bochner integral generalizes that of the conventional Lebesgue integral to maps
taking values in Hilbert or more generally in Banach spaces. By Propositions
2.1 and 2.2 in [15], the expected values E(mj(Zj)) and also the conditional ex-
pected values E(mk(Zk)|Zj = zj) for k �= j may be written in Bochner integrals
as

E(mj(Zj)) =

∫
Zj

mj(zj)� pj(zj)dνj(zj),

E(mk(Zk)|Zj = zj) =

∫
Zk

mk(zk)�
pjk(zj , zk)

pj(zj)
dνk(zk).

(2.4)

Here and below, we often write h�c for the scalar multiplication c�h of h ∈ H

and c ∈ R. The representations at (2.4) are valid if (2.2) and the following
assumptions on pj and pjk hold.

Condition (P). For all 1 ≤ j �= k ≤ d and zj ∈ Zj , pj(zj) > 0,∫
Zk

p2jk(zj , zk)

pk(zk)
dνk(zk) < ∞ and

∫
Zk

∫
Zj

p2jk(zj , zk)

pj(zj)pk(zk)
dνj(zj)dνk(zk) < ∞.
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From the first part at (2.4), the constraints on mj are equivalent to

∫
Zj

mj(zj)� pj(zj)dνj(zj) = 0, 1 ≤ j ≤ d. (2.5)

We assume E(‖ψ(Z,Y∗)‖2) < ∞ and define

μ(z) = E(ψ(Z,Y∗)|Z = z), μj(zj) = E(ψ(Z,Y∗)|Zj = zj). (2.6)

Here, the marginal regression map μj is not equal to the component map mj .
The model (2.1) with the constraints (2.5) and the representations of the con-
ditional expectations at (2.4) entail that, under the assumptions (2.2) and (P),

mj(zj) = μj(zj)�m0 �
⊕
k �=j

∫
Zk

mk(zk)�
pjk(zj , zk)

pj(zj)
dνk(zk), (2.7)

for all zj ∈ Zj and 1 ≤ j ≤ d, where � is defined by h1 � h2 = h1 ⊕ (−1� h2)
for h1,h2 ∈ H. Our method of estimating the component maps mj , which we
detail below, is based on the above system of Bochner integral equations. In
fact, we estimate the unknown quantities μj(zj),m0, pj(zj) and pjk(zj , zk) in
the system of equations (2.7) to obtain our estimators of the component maps.
For this, we consider general estimators of μj , m0, pj and pjk that have no
specific forms.

We let p̂ be any nonnegative estimator of p satisfying

∫
Z
p̂(z)dν(z) = 1. (2.8)

An example of p̂ specialized for the predictors in (1.1) is given in Section 4.2.
For 1 ≤ j �= k ≤ d, we define

p̂jk(zj , zk) =

∫
Z−jk

p̂(z)dν−jk(z−jk), p̂j(zj) =

∫
Z−j

p̂(z)dν−j(z−j). (2.9)

Define a probability measure P̂Z−1 on A by P̂Z−1(A) =
∫
A
p̂(z)dν(z). We also

let μ̂ be any estimator of μ, as defined at (2.6), satisfying

μ̂ ∈ L1((Z,A , P̂Z−1),H),∫
Zj

∥∥∥∥
∫
Z−j

μ̂(z)� p̂(z)dν−j(z−j)

∥∥∥∥
2

p̂j(zj)
−1dνj(zj) < ∞, 1 ≤ j ≤ d.

(2.10)

μ̂ is a temporary estimator that induces our regression estimator, and it can
be a full-dimensional estimator that does not take into account the additive
structure of the model (2.1), such as the one considered in Section 4.2.
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For the estimation of μj , we note that∫
Z−j

μ(z)� p(z)dν−j(z−j)

=

∫
Z−j

E(ψ(W,Y∗)|Z = z)� p(z)dν−j(z−j)

= E(E(ψ(W,Y∗)|Z)|Zj = zj)� pj(zj)

= E(ψ(W,Y∗)|Zj = zj)� pj(zj).

(2.11)

Motivated by (2.11), we estimate μj = E(ψ(W,Y∗)|Zj = ·) by

μ̂j(zj) =

∫
Z−j

μ̂(z)� (p̂(z)/p̂j(zj))dν−j(z−j) (2.12)

whenever the integral exists, and we set μ̂j(zj) = 0 otherwise. We note that the
integral on the right hand side of (2.12) exists for almost everywhere zj in the
measure νj under the first condition at (2.10). Furthermore,

μ̂j ∈ L2((Zj ,Aj , P̂Z−1
j ),H)

under the second condition at (2.10), where P̂Z−1
j is the probability measure

on Aj defined by P̂Z−1
j (Aj) =

∫
Aj

p̂j(zj)dνj(zj). The square integrability of

μ̂j is required in our theoretical developments, such as at (3.4) in Section 3,
for example. For the unknown Hilbertian constant m0 = E(Y) = E(μ(Z)) =∫
Z μ(z) � p(z)dν(z), we choose m̂0 =

∫
Z μ̂(z) � p̂(z)dν(z). Then, by (2.12) it

holds that ∫
Zj

μ̂j(zj)� p̂j(xj)dνj(zj) = m̂0, 1 ≤ j ≤ d. (2.13)

Now, we define our estimator of μ = m0 ⊕
⊕d

j=1 mj by

μ̂+ = m̂0 ⊕
d⊕

j=1

m̂j , (2.14)

where (m̂1, . . . , m̂d) ∈
∏d

j=1 L
2((Zj ,Aj , P̂Z−1

j ),H) is a solution of the system
of Bochner integral equations

m̂j(zj) = μ̂j(zj)� m̂0 �
⊕
k �=j

∫
Zk

m̂k(zk)�
p̂jk(zj , zk)

p̂j(zj)
dνk(zk),

1 ≤ j ≤ d.

(2.15)

We note that (2.15) is an estimating equation obtained by substituting μ̂j , m̂0,
p̂j and p̂jk for μj , m0, pj and pjk in (2.7). In Section 3, we show that the
Bochner integrals in (2.15) are well-defined and the system of equations has
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a unique solution μ̂+ under weak conditions. We also demonstrate that each
component m̂j of μ̂+ is uniquely determined as an estimator of mj under some
condition and the constraints∫

Zj

m̂j(zj)� p̂j(zj)dνj(zj) = 0, 1 ≤ j ≤ d. (2.16)

We note that (2.16) is an empirical version of (2.5). We call (2.15) the general
Bochner smooth backfitting (gB-SBF) system of equations. We also call μ̂+ and
(m̂1, . . . , m̂d) the gB-SBF estimators of μ and (m1, . . . ,md), respectively.

2.4. General Bochner SBF algorithm

The gB-SBF estimators have no closed form. Hence, to evaluate the estimators,
we need an iteration scheme. For an initial estimator in the iteration scheme, we

take (m̂
[0]
1 , . . . , m̂

[0]
d ) satisfying (m̂

[0]
1 , . . . , m̂

[0]
d ) ∈

∏d
j=1 L

2((Zj ,Aj , P̂Z−1
j ),H)

and the constraints (2.16) for m̂j = m̂
[0]
j . An immediate choice is (m̂

[0]
j , . . . , m̂

[0]
j )

≡ (0, . . . ,0), which obviously satisfies the constraints. Another option is to take

m̂
[0]
j = μ̂j − m̂0, which also satisfies the constraints because of (2.13). Put

μ̂
[0]
+ = m̂0 ⊕

⊕d
j=1 m̂

[0]
j . For subsequent updates we apply the gB-SBF system

of equations sequentially from j = 1 to j = d. A step-by-step procedure is
described below, which we call the gB-SBF algorithm. For r ≥ 0, 1 ≤ j ≤ d and

a given set of m̂
[r]
1 , . . . , m̂

[r]
d , define

μ̂
[r]
+j(zj) =

⊕
k≤j−1

∫
Zk

m̂
[r]
k (zk)�

p̂jk(zj , zk)

p̂j(zj)
dνk(zk), 2 ≤ j ≤ d,

μ̂
[r]
j+(zj) =

⊕
k≥j+1

∫
Zk

m̂
[r]
k (zk)�

p̂jk(zj , zk)

p̂j(zj)
dνk(zk), 1 ≤ j ≤ d− 1,

(2.17)

with μ̂
[r]
+1 ≡ 0 ≡ μ̂

[r]
d+ for all r ≥ 0.

gB-SBF algorithm.

Initialization: Choose an initial estimate (m̂
[0]
1 , . . . , m̂

[0]
d ).

Iteration: For r ≥ 1,

(i) compute m̂
[r]
j for j = 1, . . . , d according to

m̂
[r]
j (zj) = μ̂j(zj)� m̂0 � μ̂

[r]
+j(zj)� μ̂

[r−1]
j+ (zj);

(ii) compute μ̂
[r]
+ = m̂0 ⊕

⊕d
j=1 m̂

[r]
j .

Ending: Stop the iteration if
∫
Z ‖μ̂[r]

+ (z) � μ̂
[r−1]
+ (z)‖2p̂(z)dν(z) is suffi-

ciently small.
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The Bochner integrals at (2.17) are well-defined under the condition (S2)

to be given in Section 3.1. Indeed, we may prove that (m̂
[r]
1 , . . . , m̂

[r]
d ) be-

longs to
∏d

j=1 L
2((Zj ,Aj , P̂Z−1

j ),H). In addition, all the subsequent updates

(m̂
[r]
1 , . . . , m̂

[r]
d ) for r ≥ 1 satisfy the constraints (2.16) for m̂j = m̂

[r]
j . In

Section 3.3, we discuss the convergence of μ̂
[r]
+ to μ̂+ and (m̂

[r]
1 , . . . , m̂

[r]
d ) to

(m̂1, . . . , m̂d) as r → ∞.

2.5. gB-SBF for Euclidean and functional responses

The Euclidean and L2 spaces are two common types of Hilbert spaces. The
cases with compositional and density responses introduced in Section 2.1 may
be treated within these spaces by executing some transformations, see the
Appendix A.3. For H = R

D with D ≥ 1, the component and marginal re-
gression maps m̂j and μ̂j are R

D-valued functions. For instance, m̂j(·) =

(m̂j1(·), . . . , m̂jD(·))�, where m̂jl for 1 ≤ l ≤ D are real-valued functions. Then,
writing m̂0 = (m̂01, . . . , m̂0D)� ∈ R

D, the gB-SBF equations at (2.15) reduce to(
m̂j1(zj)

...
m̂jD(zj)

)
=

(
μ̂j1(zj)

...
μ̂jD(zj)

)
−
(

m̂01

...
m̂0D

)
−
∑
k �=j

∫
Zk

(
m̂k1(zk)

...
m̂kD(zk)

)

× p̂jk(zj , zk)

p̂j(zj)
dνk(zk).

(2.18)

Now, in case H is L2(S), the space of square integrable real-valued functions
defined on S ⊂ R

D for some D ≥ 1, we may write m̂j(zj) = m̂j(zj , ·), where
m̂j : Zj × S → R. Likewise, μ̂j(zj) = μ̂j(zj , ·) with μ̂j : Zj × S → R. Write
m̂0 = m̂0(·) : S → R. Then, we may write the gB-SBF equations at (2.15) as

m̂j(zj , s) = μ̂j(zj , s)− m̂0(s)−
∑
k �=j

∫
Zk

m̂k(zk, s)

× p̂jk(zj , zk)

p̂j(zj)
dνk(zk), s ∈ S.

(2.19)

The gB-SBF systems of equations at (2.18) and (2.19) can be implemented by
the gB-SBF algorithm described in Section 2.4 with the specializations of the
operations ⊕ and �.

3. Theory for general predictors

In this section, we prove the existence of the gB-SBF estimators and the con-
vergence of the gB-SBF algorithm in various modes. These are basic properties
we need to establish before we study other statistical properties of the gB-
SBF method. For other backfitting-based methods [e.g., 3, 31, 30, 43], fairly
strong conditions are imposed to guarantee the corresponding existence and



Additive regression for variables of various natures 1485

convergence results. Even the initial SBF work for scalar responses [25] assumes
somewhat strong conditions to get such properties. We demonstrate the basic
properties under much weaker conditions, by deep investigation of the SBF tech-
nique. Except for Theorem 3 and Corollary 1 in Section 3.3, the conditions are
imposed on datasets rather than on the data generating model, and thus the
corresponding theoretical results are non-asymptotic and valid for datasets sat-
isfying the conditions. The data-specific results are more useful to practitioners
since it is direct and feasible to check the data-specific conditions with a dataset
at hand.

3.1. Minimal conditions

The system of Bochner integral equations at (2.15) involves the estimators μ̂j ,
m̂0, p̂j and p̂jk, all of which are determined by the estimators of the joint density
p and regression map μ. We state a set of weak conditions for general estimators
p̂ and μ̂, under which we prove the existence of the gB-SBF estimators and the
convergence of the gB-SBF algorithm. The formulation of the conditions in this
general framework, which boils down to those as given below, is non-trivial since
it requires careful investigation of all the steps of the way how the SBF technique
works theoretically.

Condition (S1). The estimators p̂ and μ̂ satisfy (2.8) and (2.10).

Condition (S2). For all 1 ≤ j �= k ≤ d and zj ∈ Zj , p̂j(zj) > 0,

∫
Zk

p̂2jk(zj , zk)

p̂k(zk)
dνk(zk) < ∞ and

∫
Zk

∫
Zj

p̂2jk(zj , zk)

p̂j(zj)p̂k(zk)
dνj(zj)dνk(zk) < ∞.

Note that the condition (S2) is an empirical version of the condition (P). In
Section 4.2, we specialize the conditions for the specific estimators we consider
in the case of mixed predictors.

3.2. Existence of gB-SBF estimators

In this subsection, we prove the existence and the uniqueness of the gB-SBF
estimators. Let SH(p̂) be the ‘sum-space’ such that

SH(p̂) :=

⎧⎨
⎩

d⊕
j=1

fj : fj ∈ L2((Zj ,Aj , P̂Z−1
j ),H), 1 ≤ j ≤ d

⎫⎬
⎭

⊂ L2((Z,A , P̂Z−1),H),

(3.1)

which is the space in which we seek the solution μ̂+ = m̂0⊕
⊕d

j=1 m̂j of (2.15).
To give a key idea for the proof of the existence of the solution, consider the
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functional F : L2((Z,A , PZ−1),H) → R defined by

F (f) = E(‖ψ(Z,Y∗)� f(Z)‖2)

=

∫
Z
‖f(z)‖2p(z)dν(z)− 2

∫
Z
〈f(z),μ(z)〉p(z)dν(z)

+

∫
Z
E(‖ψ(Z,Y∗)‖2|Z = z)p(z)dν(z).

(3.2)

The true regression map μ = m0 ⊕
⊕d

j=1 mj is the minimizer of (3.2). By The-

orem 5.3.19 in [4], μ satisfies DF (μ)(g) = 0 for all g ∈ L2((Z,A , PZ−1),H),
provided that the Gâteaux derivative DF (μ) : L2((Z,A , PZ−1),H) → R of F
at μ exists. In this case, one may verify that DF (μ)(·) ≡ 0 induces (2.7), which
is a population version of (2.15).

Based on the above observation, we formulate the existence of the gB-SBF
estimators satisfying (2.15) as the existence of a minimizer of the objective
functional F̂ : SH(p̂) → R defined by

F̂ (f) = ‖f‖22,n − 2

∫
Z
〈f(z), μ̂(z)〉 p̂(z)dν(z). (3.3)

We note that F̂ is an empirical version of F with the last integral at (3.2), which
is irrelevant in the minimization, being omitted. The functional F̂ is well-defined
on SH(p̂) since, for all f =

⊕d
j=1 fj ∈ SH(p̂), it holds that

|F̂ (f)| ≤‖f‖22,n + 2

d∑
j=1

‖fj‖2,n

(∫
Zj

‖μ̂j(zj)‖2p̂j(zj)dνj(zj)
)1/2

< ∞ (3.4)

by (S1), where μ̂j is defined at (2.12). Formally, we prove the following theorem.

Theorem 1. Assume the conditions (S1) and (S2). Then, there exists a solution

μ̂+ = m̂0⊕
⊕d

j=1 m̂j with m̂j ∈ L2((Zj ,Aj , P̂Z−1
j ),H) satisfying the system of

equations at (2.15), and the solution is unique up to measure zero with respect to
P̂Z−1. Furthermore, each component m̂j is uniquely determined up to measure
zero with respect to νj under the constraints (2.16), provided that p̂ > 0 on Z.

3.3. Convergence of gB-SBF algorithm

Here, we present the convergence of μ̂
[r]
+ = m̂0⊕

⊕d
j=1 m̂

[r]
j and (m̂

[r]
1 , . . . , m̂

[r]
d )

in various modes. We have the following non-asymptotic result for the conver-

gence of μ̂
[r]
+ to μ̂+.

Theorem 2. Assume that the conditions (S1) and (S2) hold. Then,∫
Z
‖μ̂+(z)� μ̂

[r]
+ (z)‖2p̂(z)dν(z) ≤ ĉ∗ · γ̂r for all r ≥ 0,
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where ĉ∗ > 0 is a constant that does not depend on r but only on p̂, μ̂ and the

initial estimator (m̂
[0]
j : 1 ≤ j ≤ d), and γ̂ ∈ (0, 1) is a constant that does not

depend on r but only on p̂.

The above theorem establishes that μ̂
[r]
+ converges to μ̂+ at a geometric speed.

The next theorem is an asymptotic version of Theorem 2, which deals with the

convergence of the individual components m̂
[r]
j to their respective targets m̂j .

For this, we introduce the following high-level conditions.

Condition (A). The condition (2.8) and the first one at (2.10) hold with prob-
ability tending to one. Also, there exists a constant C > 0 such that

lim
n→∞

P
(
max
1≤j≤d

sup
zj∈Zj

p̂j(zj)
−1 < C

)
= 1,

lim
n→∞

P
(

max
1≤j �=k≤d

sup
zj∈Zj ,zk∈Zk

p̂jk(zj , zk) < C
)
= 1,

lim
n→∞

P
(
max
1≤j≤d

sup
zj∈Zj

‖μ̂j(zj)‖ < C
)
= 1,

lim
n→∞

P
(
max
1≤j≤d

∫
Zj

‖m̂[0]
j (zj)‖2dνj(zj) < C

)
= 1,

(3.5)

and the one- and two-dimensional density estimators satisfy

max
1≤j≤d

∫
Zj

(p̂j(zj)− pj(zj))
2 dνj(zj) = op(1),

max
1≤j �=k≤d

∫
Zj×Zk

(p̂jk(zj , zk)− pjk(zj , zk))
2 dνj ⊗ νk(zj , zk) = op(1).

(3.6)

We note that the last condition at (3.5) for initial component estimators m̂
[0]
j

is not restrictive. It is satisfied by the choice (m̂
[0]
1 , . . . , m̂

[0]
d ) ≡ (0, . . . ,0), for

example. Others at (3.5) are mild conditions on the estimators of the marginal
densities and regression maps. The conditions at (3.6) are some L2-consistency
conditions on the marginal density estimators.

Theorem 3. Assume that p is bounded away from zero and infinity on Z and
that νj are finite measures for all 1 ≤ j ≤ d. Then, under the condition (A),
there exist constants c∗∗ > 0 and γ ∈ (0, 1) such that

lim
n→∞

P
(
max
1≤j≤d

∫
Zj

‖m̂j(zj)� m̂
[r]
j (zj)‖2pj(zj)dνj(zj) ≤ c∗∗ · γr for all r ≥ 0

)
= 1.

Theorem 3 is about the L2-convergence of m̂
[r]
j with a geometric rate. From

the theorem we may deduce an almost everywhere convergence of m̂
[r]
j , which

is also of interest. Indeed, Theorem 3 implies that

∞∑
r=1

∫
Zj

‖m̂j(zj)� m̂
[r]
j (zj)‖2pj(zj)dνj(zj) < ∞
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with probability tending to one. This entails that, with probability tending to

one,
∑∞

r=1 ‖m̂j(zj)� m̂
[r]
j (zj)‖2pj(zj) < ∞ a.e. with respect to νj , which gives

the following corollary.

Corollary 1. Assume that the conditions in Theorem 3. Let Ej denote the set

of zj in Zj such that m̂
[r]
j (zj) → m̂j(zj) as r → ∞. Then, for all 1 ≤ j ≤ d, it

holds that lim
n→∞

P (νj(Zj) = νj(Ej)) = 1.

4. Theory for mixed predictors

This section deals with the specification of the general results in Section 3 to
the model (1.1) with dx, du, dv ≥ 1. The cases of du = 0 or dv = 0 follow
immediately with trivial modification. The case of dx = 0 is treated in Section
A.1. We consider Xj taking values in [0, 1] for 1 ≤ j ≤ dx, Uj with values in
a finite set Uj for 1 ≤ j ≤ du, and Vj with values in a metric space Vj with
finite cardinality for 1 ≤ j ≤ dv. The latter general setting allows Vj to be an
ordinal discrete predictor or a continuous predictor on a fixed design. We let
W = (X,U,V) so that W takes the role of Z in the model (2.1). The product

space Z for Z in (2.1) corresponds to W = [0, 1]dx ×
∏du

j=1 Uj ×
∏dv

j=1 Vj and the

product measure ν in (2.1) is specialized to
⊗dx

j=1 Leb⊗
⊗du

j=1 Cu,j⊗
⊗dv

j=1 Cv,j ,
where Leb is the Lebesgue measure on R, Cu,j is the counting measure on Uj

and Cv,j is the counting measure on Vj . We continue to use p to denote the

joint density of W with respect to
⊗dx

j=1 Leb⊗
⊗du

j=1 Cu,j ⊗
⊗dv

j=1 Cv,j , and use
μ to denote the regression map E(ψ(W,Y∗)|W = ·) in the same spirit as in
(2.6), where ψ(W,Y∗) is a synthetic response that satisfies (2.3) for Z = W
and E(‖ψ(W,Y∗)‖2) < ∞. In Section 4.2, we exemplify ψ(W,Y∗).

The marginalization of p along the coordinates that are of interest in W
defines the densities ofXj , Uj , Vj , (Xj , Xk), (Uj , Uk), (Vj , Vk), (Xj , Uk), (Xj , Vk)
and (Uj , Vk). We denote them, respectively, by px,j , pu,j , pv,j , pxx,jk, puu,jk,
pvv,jk, pxu,jk, pxv,jk and puv,jk. We denote the marginal regression maps, which
correspond to μj in (2.6), by μx,j(xj) = E(ψ(W,Y∗)|Xj = xj), μu,j(uj) =
E(ψ(W,Y∗)|Uj = uj) and μv,j(vj) = E(ψ(W,Y∗)|Vj = vj). Below we discuss
the estimation of these marginal densities and regression maps.

4.1. Estimation of marginal densities and regression maps

To estimate the joint density p and regression map μ, we use kernel-based
estimators. For this, we introduce a kernel weighting scheme for each of the
three types of predictors. First, for smoothing across on [0, 1] where Xj takes
values, letKh(t) = K(t/h)/h, where h > 0 is a bandwidth andK : R → [0,∞) is
a baseline kernel function. Throughout this paper, we assume thatK vanishes on

R \ [−1, 1] and satisfies
∫ 1
−1

K(t)dt = 1. Define a normalized kernel Kh(x, x
′) by

Kh(x, x
′) =

Kh(x− x′)∫ 1
0
Kh(t− x′)dt

(4.1)
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whenever
∫ 1
0
Kh(t− x′)dt > 0, and we set Kh(x, x

′) = 0 otherwise. This kernel
has been used in the SBF literature [e.g., 25]. We note that it has the normal-
ization property

∫ 1

0

Kh(x, x
′)dx = 1 for all x′ ∈ [0, 1]. (4.2)

Now, for smoothing across Uj we take a discrete kernel Lλj : Uj × Uj → [0, 1]
defined by

Lλj (uj , u
′
j) = (1− λj)I(uj = u′

j) + (λj/(cj − 1))I(uj �= u′
j),

where λj ∈ [0, 1] is a smoothing parameter and cj is the cardinality of Uj . This
kernel was introduced by [1]. We note that Lλj has the normalization property

∑
uj∈Uj

Lλj (uj , u
′
j) = 1 for all u′

j ∈ Uj . (4.3)

Next, for smoothing across Vj with a metric δj we define a new metric-based
discrete kernel Wsj : Vj × Vj → [0, 1] by

Wsj (vj , v
′
j) =

(
1−

∑
v′′
j ∈Vj :v′′

j �=v′
j

s
δj(v

′′
j ,v′

j)

j

)
I(vj = v′j) + s

δj(vj ,v
′
j)

j I(vj �= v′j),

where 0 ≤ sj < 1 is a smoothing parameter that is sufficiently small so that
0 ≤ Wsj (vj , v

′
j) ≤ 1 for all vj , v

′
j ∈ Vj . Basically, this kernel gives more weights

when v′j gets closer to vj in the metric δj . It also has the normalization property

∑
vj∈Vj

Wsj (vj , v
′
j) = 1 for all v′j ∈ Vj . (4.4)

Now, suppose that we have n observations {(Wi,Y
∗
i ) : 1 ≤ i ≤ n} which

are not necessarily i.i.d. Writing w = (x,u,v) for vectors x ∈ [0, 1]dx , u ∈∏du

j=1 Uj and v ∈
∏dv

j=1 Vj , we let κi(w) =
∏dx

j=1 Khj (xj , Xij)·
∏du

j=1 Lλj (uj , Uij)·∏dv

j=1 Wsj (vj , Vij). We estimate p by p̂(w) = n−1
∑n

i=1 κi(w) and μ by

μ̂(w) =

⎧⎨
⎩(n · p̂(w))−1 �

n⊕
i=1

(κi(w)� ψ̂(Wi,Y
∗
i )), if p̂(w) > 0

0, otherwise
(4.5)

for an appropriate estimator ψ̂ of ψ. We show that these p̂ and μ̂ satisfy the
non-asymptotic condition (S1). Because of the normalization properties (4.2),
(4.3) and (4.4), p̂ clearly satisfies (2.8). Also, the full-dimensional estimator μ̂
satisfies (2.10). To see this, for a vector x ∈ [0, 1]dx let x−j denote the (dx − 1)-
vector resulting from omitting the jth entry of x and likewise define u−j and
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v−j for u ∈
∏du

j=1 Uj and v ∈
∏dv

j=1 Vj , respectively. The first condition at (2.10)
is satisfied since∫

[0,1]dx

∑
u∈
∏d

j=1 Uj

∑
v∈
∏dv

j=1 Vj

‖μ̂(w)‖p̂(w)dx ≤ n−1
n∑

i=1

‖ψ̂(Wi,Y
∗
i )‖ < ∞.

For the second condition, we note that

∫ 1

0

∥∥∥∥ ⊕
u∈
∏du

j=1 Uj

⊕
v∈
∏dv

j=1 Vj

∫
[0,1]dx−1

μ̂(w)� p̂(w)dx−j

∥∥∥∥
2

p̂x,j(xj)
−1dxj

=

∫ 1

0

∥∥∥∥n−1
n⊕

i=1

Khj (xj , Xij)� ψ̂(Wi,Y
∗
i )

∥∥∥∥
2

p̂x,j(xj)
−1dxj

≤ max
1≤i≤n

‖ψ̂(Wi,Y
∗
i )‖2 < ∞

and the same bound applies to the other integrals involved in the second con-
dition.

Moreover, we may get estimators of the marginal densities and regression
maps by integrating p̂ and μ̂ over appropriate domains as in (2.9) and (2.12).
In particular, from the normalization properties (4.2), (4.3) and (4.4) we get

p̂x,j(xj) = n−1
n∑

i=1

Khj (xj , Xij) (4.6)

and similarly p̂u,j(uj) and p̂v,j(vj) simply by substituting the discrete kernel
weights Lλj (uj , Uij) and Wsj (vj , Vij), respectively, for Khj (xj , Xij). We also
obtain the two dimensional density estimator

p̂xx,jk(xj , xk) = n−1
n∑

i=1

Khj (xj , Xij)Khk
(xk, Xik) (4.7)

when dx ≥ 2 by integrating p̂ over (xl : l �= j, k) ∈ [0, 1]dx−2, and likewise p̂uu,jk,
p̂vv,jk, p̂xu,jk, p̂xv,jk and p̂uv,jk. Similarly, using the normalization properties
(4.2), (4.3) and (4.4) again, we get the following estimators of the marginal
regression maps.

μ̂x,j(xj) = (n · p̂x,j(xj))
−1 �

n⊕
i=1

Khj (xj , Xij)� ψ̂(Wi,Y
∗
i ),

μ̂u,j(uj) = (n · p̂u,j(uj))
−1 �

n⊕
i=1

Lλj (uj , Uij)� ψ̂(Wi,Y
∗
i ),

μ̂v,j(vj) = (n · p̂v,j(vj))−1 �
n⊕

i=1

Wsj (vj , Vij)� ψ̂(Wi,Y
∗
i ).
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4.2. Existence and algorithm convergence

Here, we apply the general results in Theorems 1–3 and Corollary 1 in Section 3
to the model (1.1). In the gB-SBF system of equations (2.15), we consider the
cases d = dx + du + dv and

μ̂j = μ̂x,j , 1 ≤ j ≤ dx; μ̂dx+j = μ̂u,j , 1 ≤ j ≤ du;

μ̂dx+du+j = μ̂v,j , 1 ≤ j ≤ dv.

Likewise, we enumerate the collection of p̂x,j , p̂u,j and p̂v,j into p̂1, . . . , p̂dx+du+dv

and that of the two-dimensional density estimators p̂xx,jk, . . . , p̂uv,jk as well in
an obvious manner. We let (m̂x,1, . . . , m̂x,dx ; m̂u,1, . . . , m̂u,du ; m̂v,1, . . . , m̂v,dv )
be the solution of the resulting gB-SBF system of equations with m̂0 = n−1 �⊕n

i=1 ψ̂(Wi,Y
∗
i ). We let m̂

[r]
x,j , m̂

[r]
u,j and m̂

[r]
v,j be the rth updates in the re-

sulting gB-SBF algorithm corresponding to m̂x,j , m̂u,j and m̂v,j , respectively.
For more concrete description of the resulting gB-SBF system of equations and
algorithm, we refer to the Appendix A.2. We also write

μ̂+(w) = m̂0 ⊕
dx⊕
j=1

m̂x,j(xj)⊕
du⊕
j=1

m̂u,j(uj)⊕
dv⊕
j=1

m̂v,j(vj),

μ̂
[r]
+ (w) = m̂0 ⊕

dx⊕
j=1

m̂
[r]
x,j(xj)⊕

du⊕
j=1

m̂
[r]
u,j(uj)⊕

dv⊕
j=1

m̂
[r]
v,j(vj)

(4.8)

as in Section 2. As we verified in the previous subsection, the full-dimensional
kernel estimators p̂ and μ̂ satisfy the condition (S1). Below, we give a set of
sufficient conditions on the smoothing parameters, the baseline kernel K and
a dataset under which the non-asymptotic condition (S2), tailored for the case
of mixed predictors, are valid. The sufficient conditions are actually minimal in
the sense that they are required even for one-dimensional regression smoothing
across [0, 1], Uj and Vj to be well-posed.

Condition (S∗).

(S1∗) a := max1≤j≤dx max
{
X(1),j , 1−X(n),j ,max1≤i≤n−1(X(i+1),j −X(i),j)/2

}
/
hj < 1, where (X(i),j : 1 ≤ i ≤ n) is the order statistics of (Xij : 1 ≤ i ≤

n).
(S2∗) K is bounded and inft∈[−a,a] K(t) > 0, where a is the constant in (S1∗).
(S3∗) For each 1 ≤ j ≤ du and uj ∈ Uj , there exists an observation Uij such

that Uij = uj and λj < 1.
(S4∗) For each 1 ≤ j ≤ dv and vj ∈ Vj, there exists an observation Vij such that

Vij = vj and
∑

v′
j∈Vj ,v′

j �=vj
s
δj(v

′
j ,vj)

j < 1.

We note that the conditions (S1∗) and (S2∗) imply that infxj∈[0,1] p̂x,j(xj) > 0
for all 1 ≤ j ≤ dx. The conditions (S3∗) and (S4∗) imply, respectively, that
p̂u,j(uj) > 0 for all uj ∈ Uj and 1 ≤ j ≤ du and that p̂v,j(vj) > 0 for all vj ∈ Vj
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and 1 ≤ j ≤ dv. With these observations, one can show that the condition
(S∗) implies the condition (S2). Then, the following non-asymptotic result is
immediate.

Corollary 2. Assume the condition (S∗). Then, the corresponding versions of

Theorems 1 and 2 hold for m̂x,j , m̂u,j, m̂v,j , μ̂+ and μ̂
[r]
+ .

Now, we present the corresponding versions of Theorem 3 and Corollary 1.
Recall that we do not impose the assumption of i.i.d. data for Theorem 3 and
Corollary 1, but state the results with the higher-level condition (A). Here, we
focus on the case where we have n i.i.d. observations {(Wi,Y

∗
i ) : 1 ≤ i ≤ n},

to present a set of sufficient conditions that imply the condition (A). Finding
sufficient conditions for non-i.i.d. data is more challenging, particulary in Hilbert
spaces, but may be solved using the techniques in [6], for example. The sufficient
conditions under the i.i.d. assumption are given below.

Condition (B).

(B1) E(‖ψ(W,Y∗)‖α) < ∞ for some α > 2, and E(‖ψ(W,Y∗)‖2|Xj = ·) are
bounded on [0, 1] for all 1 ≤ j ≤ dx.

(B2) The joint density p is bounded away from zero and infinity on W. For
all j, k, uk and vk, pxu,jk(·, uk) and pxv,jk(·, vk) are continuous on [0, 1].
When dx ≥ 2, pxx,jk are continuous on [0, 1]2.

(B3) K is Lipschitz continuous and
∫ 0
−1

K(t)dt ∧
∫ 1
0
K(t)dt > 0.

(B4) For all j, it holds that hj , λj , sj = o(1) and infn n
cjhj > 0 for some

cj < (α− 2)/α, where α is the constant in (B1). Also, logn/(nh1) = o(1)
when dx = 1, and logn/(nhjhk) = o(1) when dx ≥ 2.

(B5) P
(
max1≤i≤n ‖ψ̂(Wi,Y

∗
i )�ψ(Wi,Y

∗
i )‖ < M

)
→ 1 for some constant

M > 0.

We note that the conditions (B2)-(B4) are standard in the kernel smoothing
theory. The condition on hj in (B4) allows the optimal bandwidth rate hj �
n−1/5 if α in (B1) is larger than 5/2. When Y is completely observed, we

take ψ̂(W,Y∗) = ψ(W,Y∗) = Y, in which case (B1) reduces to a standard
condition in the kernel smoothing theory, and (B5) is automatically satisfied.
Below after the statement of a corollary, we give two other examples where the
conditions (B1) and (B5) are satisfied.

Corollary 3. Assume the condition (B) and the version of the last condition
at (3.5) corresponding to the mixed predictor case. Then, the corresponding ver-

sions of Theorem 3 and Corollary 1 hold for m̂x,j , m̂u,j , m̂v,j and m̂
[r]
x,j , m̂

[r]
u,j,

m̂
[r]
v,j .

Example 1. (Missing data). Suppose that Y is subject to missing. Let R be the
indicator defined by R = I(Y is not missing). In this case, we observe Y∗ = Y
if R = 1 and Y∗ = 0 otherwise. Suppose that the Hilbertian MAR condition R ⊥
Y|W holds. For the unbiased transformation ψ, we take the inverse probability
weighting map defined by ψ(w,h) = (1/π(w)) � h, where π(w) = P (R =
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1|W = w). Then, ψ satisfies (B1), provided that E(‖Y‖α) < ∞ for some α > 2,
E(‖Y‖2|Xj = ·) are bounded on [0, 1] for all 1 ≤ j ≤ dx, and infw π(w) > 0.

For the validity of (B5) we note that max1≤i≤n ‖ψ̂(Wi,Y
∗
i ) � ψ(Wi,Y

∗
i )‖ ≤

max1≤i≤n(|1/π̂(Wi) − 1/π(Wi)| · ‖Yi‖), where ψ̂(w,h) = (1/π̂(w)) � h and
π̂ is an estimator of π. For the estimation of π, suppose that the predictors in
V are real-valued and one applies logistic linear regression. Let βj denote the

regression coefficients in the logistic linear regression and β̂j be their estimators.
Then, under either of the assumptions: (i) Y is a bounded random element and

|β̂j − βj | = op(1) for all j; (ii) E(‖Y‖α) < ∞ for some α > 2 and |β̂j − βj | =
Op(n

−1/2) for all j, we get max1≤i≤n(|1/π̂(Wi) − 1/π(Wi)| · ‖Yi‖) = op(1),

which gives (B5). We note that both assumptions on β̂j in (i) and (ii) are
standard results in logistic linear regression.

Example 2. (Censored data). Let Y ≡ Y ∈ (0, τ) for τ < ∞ be a survival
time subject to random censoring. Let C > 0 be the random censoring time with
distribution function G satisfying G(τ) < 1, Y ⊥ C and P (Y ≤ C|W, Y ) =
P (Y ≤ C|Y ). These conditions on C are commonly adopted in the literature
on censored regression. Let T = Y ∧ C denote the observed time and Δ =
I(Y ≤ C) denote the censoring indicator. In this case, we observe the random
vector Y∗ ≡ Y ∗ = (T,Δ) instead of Y and C. Let ψ ≡ ψ be the unbiased
transformation ψ(W, Y ∗) = Δ · T/(1 − G(T )) proposed by [16]. In this case,
ψ does not depend on W and ψ clearly satisfies (B1). Also, (B5) holds for

ψ̂(W, Y ∗) = Δ · T/(1 − Ĝ(T )), where Ĝ is the Kaplan-Meier estimator of G.
To see the latter, we note that

max
1≤i≤n

|ψ̂(Wi, Y
∗
i )− ψ(Wi, Y

∗
i )| ≤

τ

(1−G(τ))(1− Ĝ(τ))
· sup
t≤τ

|Ĝ(t)−G(t)|.

The standard theory in survival analysis [41] gives supt≤τ |Ĝ(t)−G(t)| = op(1),
from which (B5) follows.

4.3. Rates of convergence

In this subsection, we demonstrate that the gB-SBF estimator does not have
the dimensionality problem by showing that it achieves the optimal univariate
error rate. Let ε+ = ψ(W,Y∗)�Y⊕ε, where ε is the error term at (1.1). Here
and in Section 4.4, we assume that {(Wi,Y

∗
i ) : 1 ≤ i ≤ n} are i.i.d. To obtain

the rates of convergence, we make use of the following assumptions.

Condition (C).

(C1) (i) E(‖ε+‖α) < ∞ for some α > 5/2 and (ii) E(‖ε+‖2|Xj = ·) are bounded
on [0, 1] for all 1 ≤ j ≤ dx.

(C2) The component maps mx,j for 1 ≤ j ≤ dx are twice continuously Fréchet
differentiable on [0, 1].

(C3) The condition on p in (B2) holds. In addition, for all j, k, uk and vk,
pxu,jk(·, uk) and pxv,jk(·, vk) are C1 on [0, 1]. When dx ≥ 2, pxx,jk are C1

on [0, 1]2.
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(C4) The condition (B3) holds. In addition,
∫ 1
−1

tK(t)dt = 0.

(C5) For all j, it holds that hj � n−1/5 and λj , sj = o(1).

When Y is completely observed so that ψ(W,Y∗) = Y, the condition (C1)
reduces to the one with ε+ being replaced by ε. The latter is a standard condi-
tion in the kernel smoothing theory. Even when Y is incompletely observed as
in Examples 1 and 2, (C1) is easily satisfied in the examples. (C2) is a natural
extension of the usual condition for real-valued component maps (H = R) to the
current Hilbertian case. (C3)–(C5) are standard conditions in the kernel smooth-

ing theory. Define s∗ = max{sδ
∗
j

j : 1 ≤ j ≤ dv} where δ∗j = min{δj(vj , v′j) :
vj , v

′
j ∈ Vj , vj �= v′j}, the minimum nonzero distance in Vj , and λ∗ = max{λj :

1 ≤ j ≤ du}. Let max1≤i≤n ‖ψ̂(Wi,Y
∗
i )�ψ(Wi,Y

∗
i )‖ = Op(an) hold for some

sequence an. Let Ij = [2hj , 1− 2hj ]. We note that Khj (x, x
′) = Khj (x− x′) for

(x, x′) ∈ Ij × [0, 1] and that
∫ 1
0
Khj (x, x

′)dx′ =
∫ 1
−1

K(t)dt = 1 for x ∈ Ij .

Theorem 4. Assume the condition (C). Then, the followings hold for all j.

(i) (Pointwise convergence)

‖m̂x,j(xj)�mx,j(xj)‖ = Op(n
−2/5 + λ∗ + s∗ + an) for xj ∈ Ij ,

‖m̂x,j(xj)�mx,j(xj)‖ = Op(n
−1/5 + λ∗ + s∗ + an) for xj ∈ [0, 1] \ Ij .

(ii) (L2 convergence)∫
Ij

‖m̂x,j(xj)�mx,j(xj)‖2px,j(xj)dxj = Op(n
−4/5 + λ2

∗ + s2∗ + a2n),∫ 1

0

‖m̂x,j(xj)�mx,j(xj)‖2px,j(xj)dxj = Op(n
−3/5 + λ2

∗ + s2∗ + a2n).

(iii) (Uniform convergence)

sup
xj∈Ij

‖m̂x,j(xj)�mx,j(xj)‖ = Op(n
−2/5
√

logn+ λ∗ + s∗ + an),

sup
xj∈[0,1]

‖m̂x,j(xj)�mx,j(xj)‖ = Op(n
−1/5 + λ∗ + s∗ + an),

max
uj

‖m̂u,j(uj)�mu,j(uj)‖ = Op(n
−2/5 + λ∗ + s∗ + an),

max
vj

‖m̂v,j(vj)�mv,j(vj)‖ = Op(n
−2/5 + λ∗ + s∗ + an).

Remark 1. We give some remarks on the magnitude of λ∗, s∗ and an. One
can show that the Nadaraya-Watson-type full-dimensional estimator based on
the observations of Ui,Vi and completely observed Yi, defined by

μ̃U,V(u,v) =

⎛
⎝ n∑

i=1

du∏
j=1

Lλj (uj , Uij) ·
dv∏
k=1

Wsk(vk, Vik)

⎞
⎠

−1

�
n⊕

i=1

⎛
⎝ du∏

j=1

Lλj (uj , Uij) ·
dv∏
k=1

Wsk(vk, Vik)

⎞
⎠�Yi,

(4.9)
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achieves the optimal error rate when λ∗ = O(n−1/2) and s∗ = O(n−1/2). Hence,
it makes sense to assume that λ∗ = O(n−Cλ) for some Cλ ≥ 2/5 and s∗ =
O(n−Cs) for some Cs ≥ 2/5. When Y is completely observed, the term an does
not appear in the rates in Theroem 4. In the missing data setting (Example 1),
we get an = n−c for some c > 2/5 when E(‖Y‖α) < ∞ for some α > 10 and

|β̂j−βj | = Op(n
−1/2) for all j. In the censored data setting (Example 2), we have

an = n−1/2
√
logn when G is continuous, since the Kaplan-Meier estimator Ĝ

satisfies supt≤τ |Ĝ(t) −G(t)| = Op(n
−1/2

√
logn), as proved by [24]. Therefore,

an = o(n−2/5) under these mild conditions.

Theorem 4 together with Remark 1 demonstrates that the gB-SBF estimator
may achieve the optimal univariate rates of convergence even though there are
multiple predictors. This is an important property in nonparametric inference,
which is not shared by estimators based on full-dimensional approaches. The
result is particularly notable since it shows the dimension-free convergence rates
in the general data setting.

4.4. Asymptotic distribution

In this subsection, we present the asymptotic joint distribution of the gB-SBF
estimator. For this, we make further assumptions. Let {el : 1 ≤ l ≤ L} denote
an orthonormal basis of H. Our theory covers both L < ∞ and L = ∞.

Condition (D).

(D1) For the constant α in (C1)-(i) and for all l, l′, uk, vk and 1 ≤ j ≤
dx, the functions E(‖ε+‖α|Xj = ·), E(〈ε+, el〉〈ε+, el′〉|Xj = ·, Uk = uk),
E(〈ε+, el〉〈ε+, el′〉|Xj = ·, Vk = vk) and E(〈ε+, el〉〈ε+, el′〉|Xj = ·, Xk = ·)
are bounded on their respective domains, and E(〈ε+, el〉〈ε+, el′〉|Xj = ·)
are continuous on [0, 1].

(D2) For all 1 ≤ j ≤ dx, ∂p(w)/∂xj exist and are bounded on W.

(D3) For all j, n1/5hj → αj, n
2/5λj → βj and n2/5s

δ∗j
j → γj for some constants

αj > 0, βj ≥ 0 and γj ≥ 0. Also, max1≤i≤n ‖ψ̂(Wi,Y
∗
i )�ψ(Wi,Y

∗
i )‖ =

op(n
−2/5).

The conditions on λj and sj in (D3) are satisfied with the sizes of the smooth-

ing parameters discussed in Remark 1. The condition on ψ̂ is also valid under
the mild conditions given there. The remaining ones in (D) are weak regular-
ity conditions. To state the theorem we need to introduce more terminologies.
For a twice Fréchet differentiable f : [0, 1] → H, we let Df : [0, 1] → L(R,H)
denote its first Fréchet derivative, where L(B1,B2) for two Banach spaces B1

and B2 denotes the space of bounded linear operators that map B1 to B2.
The first derivative Df(x) : R → H at x ∈ [0, 1] in our setting is defined by
Df(x)(s) = s�Df(x)(1), where Df(x)(1) satisfies

lim
ε→0

|ε|−1 ·
∥∥f(x+ ε)� f(x)�

(
ε�Df(x)(1)

)∥∥ = 0.
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Let D2f : [0, 1] → L
(
R,L(R,H)

)
denote the second Fréchet derivative of f . The

second derivative D2f(x) at x ∈ [0, 1], now as a map from R to L(R,H) or
as a map from R

2 to H, is defined by D2f(x)(s, t) = t � D2f(x)(s, 1), where
D2f(x)(s, 1) satisfies

lim
ε→0

|ε|−1 ·
∥∥Df(x+ ε)(s)�Df(x)(s)�

(
ε�D2f(x)(s, 1)

)∥∥ = 0.

Define cj(xj) =
1
2

∫ 1
−1

t2K(t)dt�D2mx,j(xj)(1, 1) andΘj(xj) = α2
j�cj(xj)⊕

Δx,j(xj), where αj are the constants in (D3) and Δx,j together with Δu,j and
Δv,j are defined in the Appendix A.7.1. They constitute the asymptotic bias of
the joint distribution of the estimated component maps, as is demonstrated in
Theorem 5 below. In fact, re-enumerating

(Δx,1, . . . ,Δx,dx ;Δu,1, . . . ,Δu,du ;Δv,1, . . . ,Δv,dv )

as (Δ1, . . . ,Δdx+du+dv ), the (dx+du+dv)-tuple is nothing else than the solution
of a system of equations

Δj(zj) = Δ̃j(zj)�
dx+du+dv⊕

k �=j

∫
Zk

Δk(zk)�
pjk(zj , zk)

pj(zj)
dνk(zk),

1 ≤ j ≤ dx + du + dv.

Note that the similarity between the above system of equations and the one at
(2.7). Here,

(Δ̃x,1, . . . , Δ̃x,dx ; Δ̃u,1, . . . , Δ̃u,du ; Δ̃v,1, . . . , Δ̃v,dv )

with Δ̃x,j , Δ̃u,j and Δ̃v,j being defined in the Appendix A.7.1 is re-enumerated

as (Δ̃1, . . . , Δ̃dx+du+dv ). Also, Zj are [0, 1], Uj or Vj depending on the position
of j in the re-enumeration, pj and pjk are the marginal and 2-dimensional joint
densities of the corresponding predictors in the re-enumeration and νj are the as-
sociated Lebesgue or counting measures. The terms Θj arise from an expansion
of the kernel weighted averages of mx,j(Xij)�mx,j(xj), mu,j(Uij)�mu,j(uj)
and mv,j(Vij)�mv,j(vj), see the Appendix A.7.4 for details.

The asymptotic variance comes from the stochastic part of the marginal
regression estimators μ̂x,j . For this, let ε+ ⊗ ε+ : H → H be the operator
defined by (ε+⊗ ε+)(h) = 〈ε+,h〉� ε+ and let Cj,xj : H → H be the covariance
operator defined by

Cj,xj (h) = α−1
j px,j(xj)

−1

∫ 1

−1

K2(t)dt · E((ε+ ⊗ ε+)(h)|Xj = xj). (4.10)

Let G(0, Cj,xj ) denote a H-valued Gaussian random element with mean 0 and
covariance operator Cj,xj . It is a random element such that 〈G(0, Cj,xj ),h〉 is
normally distributed with mean 0 and variance 〈Cj,xj (h),h〉 for all h ∈ H. When
H = R, it reduces to a normal random variable.
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We let L̂x,u,v denote the joint distribution of (n2/5 � (m̂x,j(xj)�mx,j(xj)) :
1 ≤ j ≤ dx), (n

2/5�(m̂u,j(uj)�mu,j(uj)) : 1 ≤ j ≤ du) and (n2/5�(m̂v,j(vj)�
mv,j(vj)) : 1 ≤ j ≤ dv). Similarly, we write Lx,u,v for the joint distribution of
(Θj(xj) ⊕ G(0, Cj,xj ) : 1 ≤ j ≤ dx), (Δu,j(uj) : 1 ≤ j ≤ du) and (Δv,j(vj) :
1 ≤ j ≤ dv).

Theorem 5. Assume the conditions (C1)-(i),(C2)-(C4) and (D). Then, the

following results hold: (i) The joint distribution L̂x,u,v converges weakly to Lx,u,v

for a.e. fixed x ∈ (0, 1)dx with respect to
⊗dx

j=1 Leb and for all u ∈
∏du

j=1 Uj and

v ∈
∏dv

j=1 Vj; (ii) For μ̂+(w) defined at (4.8),

n2/5 � (μ̂+(w)� μ(w))

d−→
dx⊕
j=1

Θj(xj)⊕
du⊕
j=1

Δu,j(uj)⊕
dv⊕
j=1

Δv,j(vj)⊕G

(
0,

dx∑
j=1

Cj,xj

)
.

Let m̂ora
x,j be the oracle estimator of mx,j obtained by using the knowledge of

all other component maps. Then, the asymptotic distribution for m̂ora
x,j is given

by

n2/5 � (m̂ora
x,j (xj)�mx,j(xj))

d−→ α2
j � (δx,j(xj)⊕ cj(xj))⊕G(0, Cj,xj ),

where δx,j =
(
dpx,j(xj)/dxj · px,j(xj)

−1 ·
∫ 1
−1

t2K(t)dt
)
� Dmx,j(xj)(1). This

means that m̂x,j and m̂ora
x,j have the same asymptotic covariance operator, but

differ in their asymptotic biases, so that the gB-SBF estimator achieves a ‘semi-
oracle property’. The difference of the asymptotic biases is (α2

j � δx,j(xj)) �
Δx,j(xj) =: βj(xj) and it holds that E(βj(Xj)) =

∫ 1
0
βj(xj)� px,j(xj)dxj = 0

by (A.33) in the Appendix.

5. Numerical properties

In this section we report the results of simulation studies and real data ap-
plications. Details on the practical implementation of the gB-SBF algorithm
including smoothing parameter selection can be found in the Appendix A.3.

5.1. Simulation study

In the first simulation study, we compared our gB-SBF method with the SBF
method based on partially linear additive models [SBF-PLAM, 45]. Since the
latter model can only deal with completely observed scalar responses, we con-
sidered the case ψ(W,Y∗) = Y , where Y is a scalar response. Partially lin-
ear (additive) models are widely used when responses are real-valued and both
continuous-type and discrete-type predictors are present. Hence, the comparison
we made here is a meaningful check of how our new class of methods works in
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comparison with the existing class of methods. In the simulation, we estimated
the following additive model:

Y = mx,1(X1) +mx,2(X2) +mu,1(U1) +mu,2(U2) +mv,1(V1) +mv,2(V2) + ε,

whereX1 andX2 are independent uniform [0, 1] random variables, U1 and U2 are
nominal discrete random variables taking values in {1, 2} and {1, 2, 3}, respec-
tively, V1 and V2 are ordinal discrete random variables taking values in {1, 2, 3, 4}
and {0, 0.25, 0.75, 1.5, 2.5}, respectively, and ε is a N(0, 0.52) random variable.
We tookmx,1(X1) = sin(2πX1),mx,2(X2) = cos(2πX2),mu,1(U1) = −3·I(U1 =
1)+ 3 · I(U1 = 2), mu,2(U2) = −5 · I(U2 = 1)+ 0 · I(U2 = 2)+ 5 · I(U2 = 3). For
mv,1 and mv,2, we considered the two cases:

mv,1(V1) = 2V1, mv,2(V2) = −2V2, (Linear)

mv,1(V1) = 2(V1 − 2.5)2, mv,2(V2) = − exp(V2)/2. (Nonlinear)

We note that the SBF-PLAM technique is designed for the case where mv,1 and
mv,2 are linear, while the gB-SBF method is for general component maps.

For the generation of U1, U2, V1 and V2, we considered two scenarios. To
describe them, let Mk(q1, . . . , qk) denote a k-variate multinomial distribution
with sampling probabilities qj ≥ 0 such that q1 + · · · + qk = 1. In both of the
following scenarios, U1, U2, V1 and V2 are mutually independent.

(a) (U,V) depending on X:

U1|X ∼ M2(1− (X2
1 +X2

2 )/2, (X
2
1 +X2

2 )/2);

U2|X ∼ M3(sin(X1π/2)/2, cos(X2π/2)/2,

1− sin(X1π/2)/2− cos(X2π/2)/2);

V1|X ∼ M4(X1/2, 1/2−X1/2, X2/2, 1/2−X2/2);

V2|X ∼ M5(2X1/5, 2/5− 2X1/5, 2X2/5, 2/5− 2X2/5, 1/5).

(b) (U,V) independent of X: U1, U2, V1 and V2 are from Mk(q1, . . . , qk) for
k = 2, 3, 4 and 5, respectively with q1 = · · · = qk = 1/k.

We note that the SBF-PLAM technique gains some efficiency, in comparison
with the partially linear approach (without additive modeling for the effect of
X), only when E(Uj |X) �= E(Uj) or E(Vj |X) �= E(Vj) for some j, which is
violated in the scenario (b).

We generated a training sample of size n and a test sample of size N = 100
for M = 500 times. We computed the gB-SBF estimator based on the gB-SBF
algorithm. We compared the gB-SBF and the SBF-PLAM via the mean squared
prediction error defined by

MSPE = M−1
M∑

m=1

N−1
N∑
i=1

(Y
test(m)
i − Ŷ

test(m)
i )2, (5.1)
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Table 1

The values of the ratio MSPE(SBF-PLAM)/MSPE(gB-SBF).

Scenario
Linear Nonlinear

n (a) (b) (a) (b)
100 1.58 1.65 14.78 16.98
200 1.19 1.21 15.24 17.46
400 1.04 1.05 15.39 17.86

where Y
test(m)
i is the ith response in the mth test sample and Ŷ

test(m)
i is the

prediction of Y
test(m)
i based on themth training sample. Table 1 gives the MSPE

ratios of the gB-SBF relative to those of the SBF-PLAM.

The table indicates that the prediction based on the gB-SBF estimator per-
forms better than the one based on the SBF-PLAM estimator, even when mv,1

and mv,2 are linear. Our interpretation for this is that the SBF-PLAM pro-
cedure, after estimating the parametric and nonparametric parts based on a
profiling method, does not update the estimators further, which might have de-
graded its performance. We think that the inferior performance might be also
the case with other methods based on one-step update. On the contrary, our
gB-SBF method operates an iterative algorithm, as described in (A.3) in the
Supplement, until convergence. In the nonlinear case, there is a large gap in
MSPE between the SBF-PLAM and the gB-SBF methods and the gap grows
further as n increases. The results suggest that the gB-SBF procedure is a pow-
erful option.

In the second simulation study, we considered a functional response that is
observed at discrete time points with noise. We generated discrete points Tik

uniformly on [0, 1] for 1 ≤ k ≤ Ni and 1 ≤ i ≤ n, where Ni are uniform random
integers between 25 and 60. We took n = 100, 200 and 400. We considered the
case where dx = du = dv = 1 and generated X, U and V uniformly from [0, 1],
{1, 2} and {−1/2, 0, 1}, respectively. We set ms(s) ≡ ms(s)(·) for s = x, u, v by

mx(x)(t) = log(x+ t+ 1)− f1(t),

mu(u)(t) = sin(2πt) · I(u = 1) + cos(2πt) · I(u = 2)− f2(t),

mv(v)(t) = exp(vt)− f3(t)

for t ∈ [0, 1], where f1, f2 and f3 are some functions that make the component
maps satisfy the constraints (2.5). We then generated Yi(Tik) according to the
additive model,

Yi(Tik) = mx(Xi1)(Tik) +mu(Ui1)(Tik) +mv(Vi1)(Tik) + (Tik − 0.5)εi + δi,

where εi are i.i.d. standard normal random variables and δi are i.i.d. random
noises from N(0, 0.12). We obtained Yi = Yi(·) by smoothing the observations
{Yi(Tik) : 1 ≤ k ≤ Ni} for each 1 ≤ i ≤ n. At this pre-smoothing stage, we used
the kernel-weighting approach with the standard Gaussian kernel and band-
widths chosen by the leave-one-out cross-validation. Based on this generation
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Table 2

The values of IMSE, ISB and IV, multiplied by 102.

mx(·) mu(·) mv(·)
n IMSE ISB IV IMSE ISB IV IMSE ISB IV
100 0.37 0.04 0.33 0.41 0.07 0.34 0.39 0.02 0.37
200 0.19 0.03 0.16 0.22 0.05 0.17 0.20 0.01 0.19
400 0.10 0.01 0.09 0.12 0.05 0.07 0.10 0.00 0.10

process, we obtained R = 100 pseudo samples {(Y (r)
i (·), X(r)

i , U
(r)
i , V

(r)
i ) : 1 ≤

i ≤ n}, 1 ≤ r ≤ 100.
The measures of performance we chose are integrated mean squared error

(IMSE), integrated squared bias (ISB) and integrated variance (IV), defined by

IMSE = R−1
R∑

r=1

∫ ∫ 1

0

(
ms(s)(t)− m̂(r)

s (s)(t)
)2
dt ps(s)dνs(s) = ISB + IV,

ISB =

∫ ∫ 1

0

(
ms(s)(t)−R−1

R∑
r=1

m̂(r)
s (s)(t)

)2

dt ps(s)dνs(s),

IV = R−1
R∑

r=1

∫ ∫ 1

0

(
R−1

R∑
r=1

m̂(r)
s (s)(t)− m̂(r)

s (s)(t)

)2

dt ps(s)dνs(s)

for s = x, u, v, where m̂
(r)
s is the estimate of ms based on the rth pseudo

sample and νs is either the Lebesgue measure Leb or the counting measure
depending on s. Table 2 shows the result of the estimation performance. The
table demonstrates that the values of IMSE, ISB and IV are decreasing as the
sample size increases. This indicates that our method after a pre-smoothing
procedure works quite well even in the case of discretely and nosily observed
functional responses.

5.2. Real data analysis

In this subsection we analyse four datasets. They are the cases of density-valued
response, compositional response, missing scalar response and randomly right-
censored scalar response.

5.2.1. Density-valued response

Dose-response data contains several dose of drugs and their effects on a response
variable. Dose-response data analysis is important in finding an appropriate
dose. In this analysis, we analyzed cytotoxicity experiments data on the pedi-
atric cancer Ewing sarcoma obtained from the R package ‘braidrm’ by combining
‘es1data’, ‘es8data’ and ‘ew8data’ there. The data contains several toxicity lev-
els of several drug types. For each drug type (U1) and log(toxicity level) (X1),
multiple (ranging from 32 to 112) log-transformed CellTiter-Glo intensity of
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Fig 1. Plot of densities Yi(·) for 1 ≤ i ≤ 72.

the tumor are obtained from Ewing sarcoma tumor cells. In the usual exper-
imental data analysis, such multiple observations at each treatment (X1, U1)
are aggregated into its sample mean or other statistic. However, such aggrega-
tion causes huge loss of information. The multiple log-transformed CellTiter-
Glo intensity at each (X1, U1) can be understood as a random sample from its
conditional distribution given (X1, U1). Hence, based on the random sample,
we estimated the conditional density of the log(intensity) by a kernel density
estimator, and treated it as a density response Y ≡ Y (·). This procedure corre-
sponds to the pre-smoothing in the usual functional data analysis, and similar
procedures are adopted in the literature on density-valued data. With the pro-
cedure, we obtained the dataset {(Yi(·), X1i, U1i) : 1 ≤ i ≤ n}, where n = 72 is
the number of combinations of (X1, U1). Figure 1 shows the plot of the densities
Yi(·).

Estimating E(Y (·)|X1, U1) is very important since we can estimate the condi-
tional distributions of outcomes given new values of (X1, U1) without conducting
new time-consuming and expensive experiments. Clearly, estimating the condi-
tional distributions of outcomes gives much more information than estimating
the conditional means of outcomes. We believe that this approach will provide
a useful tool in experimental data analysis. The same idea can be also applied
to various data analysis such as predicting the distribution of survival times
at each treatment, distribution of sales at each sale condition, distribution of
income/housing price at each national tax condition and distribution of out-
puts/defect rates of an item at each process condition in a factory.

We note that our method is the unique nonparametric method for density-
valued responses and mixed predictors. To see how the discrete predictor U1

helps in predicting Y (·), we compared the prediction performance of our esti-
mator with those of the Nadaraya-Watson [10] and the k-nearest neighbor [21]
estimators for Hilbertian responses. For the latter two nonparametric estimators,
we used only the continuous predictor X1. The measure of performance was the
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Fig 2. Estimated component maps for ‘toxicity level’ (left) and ‘drug types’ (right).

leave-one-observation-out average squared prediction error (ASPE) defined by

ASPE = n−1
n∑

i=1

‖Yi(·)− Ŷ
(−i)
i (·)‖2,

where Ŷ
(−i)
i (·) is the prediction of Yi(·) based on the sample without the ith

observation. Here, for two density functions f(·) and g(·) supported on a Borel
set S ⊂ R,

‖f(·)� g(·)‖2 =
1

2Leb(S)

∫
S2

(
log

(
f(s)

f(s′)

)
− log

(
g(s)

g(s′)

))2

ds ds′.

We found that the value of ASPE was 23.29 for our estimator, 41.67 for the
Nadaraya-Watson estimator and 36.61 for the k-nearest neighbor estimator.
This reveals that the discrete predictor and the additive structure may improve
substantially the prediction accuracy.

Figure 2 shows the estimated component maps m̂x,1 and m̂u,1. The defini-
tions of 0,⊕ and � used to obtain m̂x,1 and m̂u,1 for this case can be found in
Section 2.1. We note that, in Figure 2, each line or bar along the log(intensity)
at each log(toxicity level) or drug type represents a density. The first plot in-
dicates that, as the toxicity level decreases, the density of the log(intensity) is
gradually skewed to the left, while the density tends to be right-skewed as the
toxicity level increases. This shows that strong toxicity level tends to kill more
tumor cells. It also demonstrates that the toxicity level around x1 = −12 has a
similar effect on the intensity of the tumor to those at higher levels (x1 > −12),
and thus indicates that the level x1 = −12 is a right dosage for such effect. The
second plot says that, as the drug type moves from ‘Temozolomide’ to ‘BMN
673’, the density is gradually skewed to the right. This reveals that ‘BMN 673’
is the most effective drug for the tumor.
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5.2.2. Compositional response

It is a general belief that a political election is determined by population char-
acteristics and underlying political orientation. Recently, [15] analyzed the 2017
Korea presidential election data to see the effects of these factors. In that study,
however, the effect of underlying political orientation, which is believed to be
one of the most important factors, could not be analyzed, because the earlier
method can only deal with continuous predictors. In fact, there have been no
nonparametric regression method for compositional responses and mixed pre-
dictors. This motivated us to analyze the data with the gB-SBF method.

The original dataset analyzed in [15] contains the election result and pop-
ulation characteristics for 250 electoral districts in Korea. For each electoral
district as the subject unit we have the proportion of votes earned by five can-
didates, people’s average age (X1), people’s average years of education (X2),
average housing price (X3) and people’s average paid national health insurance
premium (X4). The variablesX3 andX4 are measures of richness. Since the elec-
tion was mainly focused on who would be elected among the candidates from
the three major parties representing progressive, conservative and middle party,
we considered the three-dimensional compositional vector Y = (Y1, Y2, Y3) as a
response with Y1+Y2+Y3 ≡ 1, where Y1, Y2 and Y3 are the proportions of votes
earned by the progressive, conservative and middle party, respectively, divided
by the sum of the three proportions.

To incorporate the effect of the underlying political orientation, we added
three discrete predictors V1, V2 and V3 representing the number of congress mem-
bers from the progressive, conservative and middle party, respectively, elected
from the 2016 Korea parliamentary election. We excluded two electoral districts
since there was a mismatch between the 2017 presidential and the 2016 parlia-
ment elections. We also removed two other cases, one with V1 = 4 and the other
with V2 = 3 since those values are not well supported by the data. This resulted
in a total of n = 246 observations with all Vj in the range {0, 1, 2}, which we
actually used in our study.

To assess the prediction performance, we divided the 246 observations into 10
partitions Sk, 1 ≤ k ≤ 10, with each partition having 24 or 25 observations, and
then computed the 10-fold average squared prediction error (ASPE) defined by

ASPE = 10−1
10∑
k=1

|Sk|−1
∑
i∈Sk

‖Yi � Ŷ
(−Sk)
i ‖2,

where |Sk| is the number of observations in Sk and Ŷ
(−Sk)
i is the predic-

tion of Yi based on the sample without the observations in Sk. Here, for
two compositional vectors a = (a1, a2, a3) and b = (b1, b2, b3), ‖a � b‖2 =

(2× 3)−1
∑3

j=1

∑3
k=1(log(aj/ak)− log(bj/bk))

2.
To see how the discrete predictors (V1–V3) help in predicting Y, we compared

the ASPE of our method that was based on the seven predictors of mixed types
(X1–X4 and V1–V3), with the B-SBF estimator [15] that was based on the four
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Fig 3. Component maps estimated by the gB-SBF method: continuous predictors.

continuous predictors. To see the effect of the additive structure, we also included
in the comparison the full-dimensional Nadaraya-Watson-type estimator [27],
which was also based on the four continuous predictors. We note that there exists
no non-parametric or semi-parametric competitor designed for compositional
responses with mixed predictors. We found that the values of ASPE was 0.31
for the gB-SBF, 0.82 for the B-SBF estimator and 0.99 for the full-dimensional
Nadaraya-Watson-type estimator. This reveals that the discrete predictors and
the additive structure are helpful in predicting Y, confirming the general belief
that political orientation is an important factor in election results.

Figures 3 and 4 depict the component maps estimated by the proposed
method. The top-left component map in Figure 3 demonstrates clearly that
older people are politically more conservative. Overall, richness drives people
to conservatism, as indicated in the two component maps at the bottom, al-
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Fig 4. Component maps estimated by the gB-SBF method: discrete predictors.

though the strength is much lower than age. As for education level, whose effect
is shown in the top-right map, people get more conservative as they are more
educated until reaching a level of medium-high and then it is reversed from
that level to the highest. The esimated component maps in Figure 4 suggest
that larger number in the parliament does not always lead to higher proportion
of votes. This indicates that there is some non-monotone relationship between
V = (V1, V2, V3) and Y, contrary to general expectation, which one would not
detect with the other methods.

5.2.3. Missing scalar response

We analyzed the ‘ACTG175’ data in the R package ‘speff2trial’ (Version 1.0.4).
This dataset contains the treatment history of 2,139 patients infected by HIV
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type I. The prognosis of the treatment depends on factors, known at the begin-
ning of the treatment, such as the CD4 T cell count at baseline (X1), hemophilia
(yes or no, U1), history of intravenous drug use (yes or no, U2), race (white or
non-white, U3), type of treatment (zidovudine only or others, U4), Karnofsky
score ({70, 80, 90, 100}, V1) and antiretroviral history stratification ({1, 2, 3},
V2). Here, higher V1 means healthier. For the values of antiretroviral history
stratification, V2 = 1 means no prior antiretroviral therapy, V2 = 2 a prior an-
tiretroviral therapy but for a period less than or equal to 52 weeks, and V2 = 3
means a prior antiretroviral therapy for a period more than 52 weeks. We took,
as a response variable Y , the CD4 T cell count observed at 96 ± 5 weeks af-
ter the observation of X1. The response variable has 797 missing observations
caused by the health condition of patients and/or the cease of the treatment.

We applied the gB-SBF method with the correction for missingness detailed
in Example 1 (gB-SBF-correct), and also to the dataset consisting of non-missing
observations only (gB-SBF-non-missing). There were 9 observations with V1

taking the value 70 in the dataset, among which 7 had missing responses. We
deleted them from the dataset, so that we could apply a 10-fold cross-validation
to the remaining dataset of size 2,130 to compute the prediction error

ASPE = 10−1
10∑
k=1

n−1
k

∑
i∈Sk, Yi is observed

(Yi − Ŷ
(−Sk)
i )2,

where Sk, 1 ≤ k ≤ 10, are partitions each of which is of size 213, nk is the

number of non-missing observations in Sk and Ŷ
(−Sk)
i is the prediction of Yi

based on the ‘gB-SBF-correct’ or the ‘gB-SBF-non-missing’ applied to the ob-
servations not in Sk. The ASPE was 14,683 for the ‘gB-SBF-correct’ while it
was 16,383 for the ‘gB-SBF-non-missing’. This suggests that our correction for
missing observations improves the prediction performance.

Figure 5 depicts the estimated component function of the predictor X1 based
on the ‘gB-SBF-correct’. It demonstrates that those having more CD4 T cells at
baseline do not necessarily have more CD4 T cell count at 96 ± 5 weeks. For the
estimated component functions of the discrete predictors (U1–U4 and V1–V2),
we got m̂U1(no) = 1.02, m̂U1(yes) = −0.09, m̂U2(no) = −4.79, m̂U2(yes) = 0.72,
m̂U3(white) = 3.54, m̂U3(non-white) = −6.40, m̂U4(zidovudine only) = −36.32,
m̂U4(others) = 13.30, m̂V1(80) = −47.37, m̂V1(90) = −6.16, m̂V1(100) = 9.27,
m̂V2(1) = 24.65, m̂V2(2) = −6.31 and m̂V2(3) = −20.81. The results suggest
that no hemophilia, using an intravenous drug, being white, getting a treatment
other than zidovudine, having higher Karnofsky score and/or getting shorter
prior antiretroviral therapy, improve the prognosis.

5.2.4. Randomly right-censored scalar response

We next considered the “BMT” data in the R package “KMsurv”. In this
dataset, there are 137 patients who received a bone marrow transplant as a
treatment for their acute leukemia. The prognosis of the transplant depends
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Fig 5. Estimated component function for ‘CD4 T cell count at baseline’ based on the gB-
SBF-correct method.

on some risk factors known at the time of transplantation, such as patient and
donor’s age and gender. To focus on the effects of age and gender, we considered
four predictors: patient’s age (X1), donor’s age (X2), patient’s gender (U1) and
donor’s gender (U2), to predict survival time. The survival times of 56 patients
were censored, so the censoring proportion is about 40%.

We applied to the dataset the gB-SBF method and the SBF method based
on varying-coefficient models [44]. The latter models take the form of linear
models but the coefficients are functions of continuous predictors. Also, different
coefficients should be functions of different continuous predictors. Hence, when
there are not enough continuous predictors compared to the number of discrete
predictors, it is not possible to apply the latter approach. For this data, there
are only two models that the latter approach can deal with:

Y = m1(X1)U1 +m2(X2)U2 + ε, (VCM 1)

Y = m1(X1)U2 +m2(X2)U1 + ε, (VCM 2)

where Y is the survival time as described in Example 2 in Section 4.2. We
compared the prediction performance based on the average squared prediction
error (ASPE) defined by

ASPE = n−1
1

∑
i:Yi is uncensored

(Yi − Ŷ
(−i)
i )2,

where n1 = 81 is the number of uncensored observations and Ŷ
(−i)
i is the pre-

diction of Yi based on the sample without the ith uncensored observation. We

used the unbiased transformation given in Example 2 to obtain Ŷ
(−i)
i . We also

considered regression without the unbiased transformation, which ignores the
censoring information.

The results are presented in Table 3. We find that the methods with the
unbiased transformation are more predictive than those without it. The re-
sults also indicate that the proposed new class of methods, based on the fully
nonparametric modeling for both continuous and discrete predictors, works bet-
ter than the existing class of methods based on the varying-coefficient models.
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Table 3

Prediction results for the “BMT” data.

Methods ASPE with transformation ASPE without transformation
gB-SBF 143552 396573
VCM 1 195266 377007
VCM 2 194146 424525

Fig 6. Estimated component functions for ‘patient’s age’ (left) and ‘donor’s age’ (right) based
on the gB-SBF method.

Figure 6 depicts the estimated component functions for the two continuous
predictors based on the proposed method. As for the discrete predictors, we
found m̂u,1(Female) = 18.35, m̂u,1(Male) = −17.39, m̂u,2(Female) = 73.07 and
m̂u,2(Male) = −58.13. This suggests that, if the patient or the donor is younger
or female, then the patient survives longer. In particular, donor’s age and gender
are more significant factors than patient’s age and gender. We remark that, as
demonstrated in this application, the gB-SBF method gives easier interpreta-
tion than the methods based on varying-coefficient models, since we may assess
the effects of the predictors separately.

6. Conclusion and discussion

In this paper, we propose and study a new class of methods for mixed pre-
dictors, which is the first fully nonparametric version of the standard linear
model. Our framework covers the cases of (in)completely observed Hilbertian
responses, such as Euclidean, functional, density-valued and compositional re-
sponses, with various types of predictors. Our unified approach based on the
novel idea of backfitting the discrete predictors as well as the continuous predic-
tors possesses many advantages over the existing approaches. Also, it is a unique
nonparametric method for certain types of responses such as density-valued and
compositional responses. The proposed method is supported by a complete the-
ory, and its superiority and a wide spectrum of applications are illustrated via
extensive numerical experiments.

In particular, for the existence of the proposed estimators and the conver-
gence of the algorithm materializing them, our theory is developed in full gen-
erality under minimal conditions. The conditions are data-specific and are valid
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in most cases, which is of great significance and importance to practitioners.
The general theory includes non-asymptotic results, works for predictors taking
values in general σ-finite measure spaces and for general estimators of the main
ingredients of the SBF methodology, such as the densities of the predictors and
the marginal regression maps, and even allows dependent data. We think that
the general theory and method we develop here casts a long shadow to future
study on the subject areas.

Our coverage of compositional responses does not include those with zero en-
tries since spaces that contain such compositional vectors do not form a Hilbert
space. For such compositional data with zero entries, one may apply the para-
metric approach in [38], for example. For density-valued responses with contin-
uous predictors, [11] considered an additive model but on the transformed con-
ditional Fréchet mean via log-quantile and log-hazard transformations studied
in [33]. It is different from our additive model that assumes additivity directly
on the conditional mean based on the ‘Aitchison’ geometry given in Section
2.1. The target in [11] is to estimate the conditional Fréchet mean minimizing
the expected Wasserstein distance from Y, while our target is to estimate the
conditional mean minimizing E(‖Y � ·‖2) with the Aitchison norm ‖ · ‖.

Appendix

Here, we first present the results for the case of no continuous predictor. Then,
we provide some additional details in the methodology and its implementation,
followed by additional theoretical results and all technical proofs.

A.1. Case of no continuous predictor

Recall that the results in Section 4 are valid as long as dx ≥ 1 and dx+du+dv ≥
2, even in the cases where du or dv equals zero, with trivial modification. Here
we complement Section 4 by adding some results for the case where there is no
continuous predictor. In the latter case the rates of convergence are different
from the case dx ≥ 1, so that it is of theoretical interest. It is also important
in practice since we encounter many occasions where we only have discrete
predictors. For brevity we state the results here for the case du, dv ≥ 1. However,
the results hold as long as du + dv ≥ 2, even if du or dv is zero, which is clearly
seen with trivial modification.

In the case where dx = 0, the corresponding additive model is

Y = m0 ⊕
du⊕
j=1

mu,j(Uj)⊕
dv⊕
j=1

mv,j(Vj)⊕ ε, (A.1)

where E(mu,j(Uj)) = E(mv,j(Vj)) = 0 for all j and E(ε|U,V) = 0. The

new definitions of m̂0, m̂u,j , m̂v,j , m̂
[r]
u,j and m̂

[r]
v,j are immediate by omitting
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∏dx

j=1 Khj (xj , Xij) in the definition of κi(w) in Section 4. In this case, we put

μ̂+ = μ̂U,V and μ̂
[r]
+ = μ̂

[r]
U,V, where

μ̂U,V(u,v) = m̂0 ⊕
du⊕
j=1

m̂u,j(uj)⊕
dv⊕
j=1

m̂v,j(vj),

μ̂
[r]
U,V(u,v) = m̂0 ⊕

du⊕
j=1

m̂
[r]
u,j(uj)⊕

dv⊕
j=1

m̂
[r]
v,j(vj).

(A.2)

We first note that the corresponding versions of Theorems 1 and 2 hold under
the conditions (S3∗) and (S4∗). For these, we do not need i.i.d. data. However,
for the corresponding versions of Theorem 3 and Corollary 1 and for Theorem 6
below, we assume that {(Wi,Y

∗
i ) : 1 ≤ i ≤ n} are i.i.d. for brevity.

Let puv be the joint density of (U,V) with respect to
⊗du

j=1 Cu,j⊗
⊗dv

j=1 Cv,j ,
where Cu,j and Cv,j are the counting measures on Uj and Vj , respectively.

Condition (B∗).

(B1∗) The joint density puv is strictly positive on
∏du

j=1 Uj ×
∏dv

j=1 Vj.
(B2∗) The smoothing parameters satisfy λj , sj = o(1) for all j.

(B3∗) P
(
n−1
∑n

i=1 ‖ψ̂(Wi,Y
∗
i )�ψ(Wi,Y

∗
i )‖ < M

)
→ 1 for some constant

M > 0.

We note that (B3∗) is weaker than the condition (B5), and under the condi-
tion (B∗) the corresponding versions of Theorem 3 and Corollary 1 hold. The
next theorem shows that the discrete gB-SBF estimator for the model (A.1)
may also achieve the univariate error rate.

Theorem 6. Let n−1
∑n

i=1 ‖ψ̂(Wi,Y
∗
i )�ψ(Wi,Y

∗
i )‖ = Op(bn) hold for some

sequence bn. Assume the conditions (B1∗) and (B2∗). Then, for all j it holds
that

max
uj

‖m̂u,j(uj)�mu,j(uj)‖ = Op(n
−1/2 + λ∗ + s∗ + bn),

max
vj

‖m̂v,j(vj)�mv,j(vj)‖ = Op(n
−1/2 + λ∗ + s∗ + bn).

In a simulation study we present below, we compared the discrete gB-SBF
estimator μ̂U,V defined at (A.2) with the full-dimensional discrete kernel es-
timator μ̃U,V defined as in (4.9). Since μ̃U,V is model-free, our focus in this
comparison was then to see how μ̂U,V and μ̃U,V perform in non-additive sce-
narios or in higher-dimension as well as in additive and lower-dimensional set-
tings.

We considered two scenarios, one for a 4-dimensional and the other for a
6-dimensional predictor:

Y = mu,1(U1) +mu,2(U2) +mv,1(V1) +mv,2(V2) + ρ · mu,2(U2) ·mv,2(V2)

mu,1(U1) ·mv,2(V2)
+ ε;
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Table 4

The values of the ratio MSPE(μ̃U,V)/MSPE(μ̂U,V).

Additive Non-Additive
n Dimension (du + dv) ρ = 0 ρ = 0.25 ρ = 0.5 ρ = 0.75 ρ = 1
100 4 4.01 3.10 1.87 1.17 0.81

6 26.30 5.02 2.09 1.43 1.16
200 4 2.10 1.60 0.97 0.60 0.40

6 15.02 2.94 1.27 0.93 0.80
400 4 1.37 1.05 0.62 0.36 0.24

6 8.57 1.73 0.82 0.65 0.57

Y = mu,1(U1) +mu,2(U2) +mv,1(V1) +mv,2(V2) +mv,3(V3) +mv,4(V4)

+ ρ · mu,2(U2) ·mv,2(V2) ·mv,4(V4)

mu,1(U1) ·mv,1(V1) ·mv,3(V3)
+ ε.

Here, mu,1 and mu,2 are the same as those in the first simulation, and mv,1 and
mv,2 are the functions in the linear case. The predictors U1, U2, V1 and V2 are the
same as those in (b) and ε is again a N(0, 0.52) random variable. The additional
ordinal discrete predictors V3 and V4 have the same distributions as V1 and
V2, and mv,3 and mv,4 are the same as mv,1 and mv,2 in the nonlinear case in
the first simulation. We note that ρ controls the departure from additivity. We
took ρ = 0, 0.25, 0.5, 0.75 and 1 in both scenarios. We considered (5.1) as a
measure of performance with the same n,N and M as in the first simulation.
Table 4 shows the results. It shows that the performance of μ̃U,V gets worse as
du + dv increases. This indicates that, when the true model departs moderately
from additive or the number of discrete predictors is large, the discrete gB-SBF
estimator can be a better option than the full-dimensional estimator.

A.2. gB-SBF equation and algorithm for mixed predictors

Here, we articulate the gB-SBF system of equations at (2.15) and its algorithm
in Section 2.4 for the model (1.1). For succinct presentation, we first introduce
some terminologies. Let m̂tup

x,+j denote the (j − 1)-tuple of component maps
obtained by taking the first (j − 1) components up to m̂x,j−1 from

m̂tup ≡ (m̂x,1, . . . , m̂x,dx ; m̂u,1, . . . , m̂u,du ; m̂v,1, . . . , m̂v,dv ),

and m̂tup
x,j+ the tuple consisting of those from m̂x,j+1 to m̂v,dv . Similarly, let

m̂tup
u,+j = (m̂x,1, . . . , m̂u,j−1) denote the (dx + j − 1)-tuple and let m̂tup

u,j+ =

(m̂u,j+1, . . . , m̂v,dv ). Also, let m̂tup
v,+j = (m̂x,1, . . . , m̂v,j−1) be the (dx + du +

j− 1)-tuple and m̂tup
v,j+ = (m̂v,j+1, . . . , m̂v,dv ). For 1 ≤ j ≤ dx, define μ̂x,+j(·; ·)

and μ̂x,j+(·; ·) by

μ̂x,+j(xj ; m̂
tup
x,+j) =

⊕
k≤j−1

∫ 1

0

m̂x,k(xk)�
p̂xx,jk(xj , xk)

p̂x,j(xj)
dxk,
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μ̂x,j+(xj ; m̂
tup
x,j+) =

( ⊕
k≥j+1

∫ 1

0

m̂x,k(xk)�
p̂xx,jk(xj , xk)

p̂x,j(xj)
dxk

)

⊕
( du⊕

k=1

⊕
uk∈Uk

m̂u,k(uk)�
p̂xu,jk(xj , uk)

p̂x,j(xj)

)

⊕
( dv⊕

k=1

⊕
vk∈Vk

m̂v,k(vk)�
p̂xv,jk(xj , vk)

p̂x,j(xj)

)
.

Likewise, define μ̂t,+j(·; ·) and μ̂t,j+(·; ·) for t = u and v. For example,

μ̂u,+j(uj ; m̂
tup
u,+j) =

( dx⊕
k=1

∫ 1

0

m̂x,k(xk)�
p̂ux,jk(uj , xk)

p̂u,j(uj)
dxk

)

⊕
( ⊕

k≤j−1

⊕
uk∈Uk

m̂u,k(uk)�
p̂uu,jk(uj , uk)

p̂u,j(uj)

)
,

μ̂u,j+(uj ; m̂
tup
u,j+) =

( ⊕
k≥j+1

⊕
uk∈Uk

m̂u,k(uk)�
p̂uu,jk(uj , uk)

p̂u,j(uj)

)

⊕
( dv⊕

k=1

⊕
vk∈Vk

m̂v,k(vk)�
p̂uv,jk(uj , vk)

p̂u,j(uj)

)
.

Then, the system of equations defining m̂tup is given by

m̂x,j(xj) = μ̂x,j(xj)� m̂0 � μ̂x,+j(xj ; m̂
tup
x,+j)� μ̂x,j+(xj ; m̂

tup
x,j+), 1 ≤ j ≤ dx,

m̂u,j(uj) = μ̂u,j(uj)� m̂0 � μ̂u,+j(uj ; m̂
tup
u,+j)� μ̂u,j+(uj ; m̂

tup
u,j+), 1 ≤ j ≤ du,

m̂v,j(vj) = μ̂v,j(vj)� m̂0 � μ̂v,+j(vj ; m̂
tup
v,+j)� μ̂v,j+(vj ; m̂

tup
v,j+), 1 ≤ j ≤ dv.

The constraints corresponding to (2.16) are

∫ 1

0

m̂x,j(xj)� p̂x,j(xj)dxj = 0, 1 ≤ j ≤ dx,⊕
uj∈Uj

m̂u,j(uj)� p̂u,j(uj) = 0, 1 ≤ j ≤ du,

⊕
vj∈Vj

m̂v,j(vj)� p̂v,j(vj) = 0, 1 ≤ j ≤ dv.

Next, to express the gB-SBF algorithm, we let m̂
tup,[r]
t,+j and m̂

tup,[r]
t,j+ for t = x, u

and v denote the versions of m̂tup
t,+j and m̂tup

t,j+, respectively, taken from the tuple

of the rth updates (m̂
[r]
x,1, . . . , m̂

[r]
x,dx

; m̂
[r]
u,1, . . . , m̂

[r]
u,du

; m̂
[r]
v,1, . . . , m̂

[r]
v,dv

). Then
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the gB-SBF algorithm for the case of mixed predictors is then given by

m̂
[r]
x,j(xj) = μ̂x,j(xj)� m̂0 � μ̂x,+j(xj ; m̂

tup,[r]
x,+j )� μ̂x,j+(xj ; m̂

tup,[r−1]
x,j+ ),

1 ≤ j ≤ dx,

m̂
[r]
u,j(uj) = μ̂u,j(uj)� m̂0 � μ̂u,+j(uj ; m̂

tup,[r]
u,+j )� μ̂u,j+(uj ; m̂

tup,[r−1]
u,j+ ),

1 ≤ j ≤ du,

m̂
[r]
v,j(vj) = μ̂v,j(vj)� m̂0 � μ̂v,+j(vj ; m̂

tup,[r]
v,+j )� μ̂v,j+(vj ; m̂

tup,[r−1]
v,j+ ),

1 ≤ j ≤ dv.

(A.3)

A.3. Implementation and smoothing parameter selection

We may not evaluate the integrals in (A.3) with the usual numerical integration
techniques since Bochner integrals are defined in an abstract way. To imple-
ment the gB-SBF algorithm, we adopt the following idea: for any measure space
(S,Σ, λ) and for any integrable function f : S → R it holds that

(Bochner)

∫
S

f(s)� b dλ(s) = (Lebesgue)

∫
S

f(s)dλ(s)� b, (A.4)

where b is a constant in a Banach space. Because of this, it turns out that
the original gB-SBF algorithm at (A.3) based on Bochner integrals may be
implemented through a simple iteration scheme based on Lebesgue integrals.
Specifically, suppose that we take

m̂
[0]
x,j(xj) = n−1 �

n⊕
i=1

w
[0]
x,ij(xj)� ψ̂(Wi,Y

∗
i ),

m̂
[0]
u,j(uj) = n−1 �

n⊕
i=1

w
[0]
u,ij(uj)� ψ̂(Wi,Y

∗
i ),

m̂
[0]
v,j(vj) = n−1 �

n⊕
i=1

w
[0]
v,ij(vj)� ψ̂(Wi,Y

∗
i ),

(A.5)

with initial weight functions w
[0]
t,ij for t = x, u and v that satisfy∫ 1

0

w
[0]
x,ij(xj)p̂x,j(xj)dxj =

∑
uj

w
[0]
u,ij(uj)p̂u,j(uj)

=
∑
vj

w
[0]
v,ij(vj)p̂v,j(vj) = 0,

(A.6)

and
∫ 1
0
(w

[0]
x,ij(xj))

2p̂x,j(xj)dxj < ∞. The constraints (A.6) are not restrictive

since we may set all initial weights w
[0]
t,ij ≡ 0. Define

w
[r]
x,ij(xj) =

Khj (xj , Xij)

p̂x,j(xj)
− 1− μ̂x,+j(xj ;w

tup,[r]
x,i,+j )− μ̂x,j+(xj ;w

tup,[r−1]
x,i,j+ ),
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w
[r]
u,ij(uj) =

Lλj (uj , Uij)

p̂u,j(uj)
− 1− μ̂u,+j(uj ;w

tup,[r]
u,i,+j )− μ̂u,j+(uj ;w

tup,[r−1]
u,i,j+ ),

w
[r]
v,ij(vj) =

Wsj (vj , Vij)

p̂v,j(vj)
− 1− μ̂v,+j(vj ;w

tup,[r]
v,i,+j )− μ̂v,j+(vj ;w

tup,[r−1]
v,i,j+ ),

where w
tup,[r]
t,i,+j and w

tup,[r]
t,i,j+ for t = x, u and v are defined as m̂

tup,[r]
t,+j and m̂

tup,[r]
t,j+

in Section A.2, respectively, from the (dx + du + dv)-tuples (w
[r]
x,i1, . . . , w

[r]
v,idv

)
for each 1 ≤ i ≤ n, and μ̂t,+j and μ̂t,j+ as μ̂t,+j and μ̂t,j+ with ⊕ and � being
replaced by + and ×, respectively. Then, by making use of (A.4) we may verify

m̂
[r]
x,j(xj) = n−1 �

n⊕
i=1

w
[r]
x,ij(xj)� ψ̂(Wi,Y

∗
i ), 1 ≤ j ≤ dx,

m̂
[r]
u,j(uj) = n−1 �

n⊕
i=1

w
[r]
u,ij(uj)� ψ̂(Wi,Y

∗
i ), 1 ≤ j ≤ du,

m̂
[r]
v,j(vj) = n−1 �

n⊕
i=1

w
[r]
v,ij(vj)� ψ̂(Wi,Y

∗
i ), 1 ≤ j ≤ dv.

(A.7)

In the case where H is a space of compositional vectors or density functions,
the ⊕ and � operations in (A.4) and (A.6) may be performed by the usual
Euclidean addition + and scalar multiplication × via centered log-ratio (clr)
transformations. In case H = Sk for some k ∈ N, the transformation clr : Sk →
R

k and its inverse clr−1 are given by

clr((a1, . . . , ak)) =

⎛
⎝log a1 − 1

k

k∑
j=1

log aj , . . . , log ak −
1

k

k∑
j=1

log aj

⎞
⎠

clr−1((c1, . . . , ck)) =

(
exp(c1)∑k
j=1 exp(cj)

, . . . ,
exp(ck)∑k
j=1 exp(cj)

)
.

In case H = B2(S), the space of density functions f(·) supported on a Borel
subset S of R

k with finite Lebesgue measure for some k ∈ N and satisfying∫
S
(log f(s))2 ds < ∞, the transformation clr : B2(S) → L2(S) and its inverse

clr−1 are given by

clr(f(·)) = log f(·)− 1

Lebk(S)

∫
S

log f(s)ds

clr−1(g(·)) = exp(g(·))∫
S
exp(g(s))ds

.

In both cases, m̂
[r]
t,j(tj) for t = x, u, v and r ≥ 0 can be computed by

clr−1

(
n−1

n∑
i=1

w
[r]
t,ij(tj) · clr

(
ψ̂(Wi,Y

∗
i )
))

.
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In our numerical studies in Section 5, we used the Epanechnikov kernel
K(t) = (3/4)(1− t2)I(|t| < 1). We chose the initial weights as follows:

w
[0]
x,ij(xj) =

Khj (xj , Xij)

p̂x,j(xj)
− 1,

w
[0]
u,ij(uj) =

Lλj (uj , Uij)

p̂u,j(uj)
− 1,

w
[0]
v,ij(vj) =

Wsj (vj , Vij)

p̂v,j(vj)
− 1,

so that they are square integrable and satisfy (A.6). Instead of applying the
stopping criteria described in the gB-SBF algorithm in Section 2.4, we simply
stopped the iteration when the following criteria were all met:

max
1≤j≤dx

∫ 1

0

‖m̂[r]
x,j(xj)� m̂

[r−1]
x,j (xj)‖2p̂x,j(xj)dxj < 10−4,

max
1≤j≤du

∑
uj

‖m̂[r]
u,j(uj)� m̂

[r−1]
u,j (uj)‖2p̂u,j(uj) < 10−4,

max
1≤j≤dv

∑
vj

‖m̂[r]
v,j(vj)� m̂

[r−1]
v,j (vj)‖2p̂v,j(vj) < 10−4.

(A.8)

Now, we discuss the selection of the smoothing parameters hj , λj and sj .
We note that a full-dimensional grid search is not feasible when the number
of predictors, dx + du + dv, is large. We propose a selection rule, named as
“CSS”(Coordinate-wise Smoothing-parameter Selection). The same idea was
employed in [15]. Let CV(h1, . . . , sdv ) denote a cross-validatory criterion for the
tuple of smoothing parameters (h1, . . . , sdv ).

CSS algorithm. Take grids Gt =
∏dt

j=1{gt,j,1, . . . , gt,j,Lt,j} for t = x, u and v

with Lt,j ∈ N. Choose initial smoothing parameters h
(0)
1 , . . . , h

(0)
dx

, λ
(0)
1 , . . . , λ

(0)
du

,

s
(0)
1 , . . . , s

(0)
dv

from the respective grids. For l = 1, 2, . . ., find

h
(l)
j = argmin

gj∈{gx,j,1,...,gx,j,Lx,j
}
CV(h

(l)
1 , . . . , h

(l)
j−1, gj , h

(l−1)
j+1 , . . . , s

(l−1)
dv

), 1 ≤ j ≤ dx,

λ
(l)
j = argmin

gj∈{gu,j,1,...,gu,j,Lu,j
}
CV(h

(l)
1 , . . . , λ

(l)
j−1, gj , λ

(l−1)
j+1 , . . . , s

(l−1)
dv

), 1 ≤ j ≤ du,

s
(t)
j = argmin

gj∈{gv,j,1,...,gv,j,Lv,j
}
CV(h

(l)
1 , . . . , s

(l)
j−1, gj , s

(l−1)
j+1 , . . . , s

(l−1)
dv

), 1 ≤ j ≤ dv.

Repeat the procedure until (h
(l)
1 , . . . , s

(l)
dv
) = (h

(l−1)
1 , . . . , s

(l−1)
dv

).

We note that the CSS algorithm always ends in finite steps since the grid size
is finite. Also, the selected vector of smoothing parameters achieves a coordinate-
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wise minimum. In our numerical study, we used a 10-fold cross-validation. For
the gB-SBF and for the methods of [45] and of [44], we chose Gx =

∏dx

j=1{aj +
0.01 × k : k = 0, . . . , 100} for some small values aj that satisfy (S1∗). We also
took the bandwidth grid {a+0.01×k : k = 0, . . . , 100} for some small a > 0 for
the methods of [10] and of [27], and took the nearest neighbor grid {1, . . . , 50}
for the method of [21]. We chose Gu =

∏du

j=1{0.02 × k : k = 0, . . . , 50} and

Gv =
∏dv

j=1{bj/50 × k : k = 0, . . . , 50}, which we used for the gB-SBF method
to fit the model (A.1) as well as (1.1), where bj ∈ [0, 1] are some small values

satisfying
∑

v′
j∈Vj :v′

j �=vj
b
δj(vj ,v

′
j)

j ≤ 1 for all vj .

A.4. Closedness of SH(p̂)

In this subsection, we prove the closedness of SH(p̂) defined at (3.1). The proof is
largely based on the projection theory of Hilbert spaces. The materials covered
here is used in the proofs of other theoretical results. Recall the definition of the
probability measure P̂Z−1 introduced immediately below (2.9). Define an inner
product 〈·, ·〉2,n of L2((Z,A , P̂Z−1),H) by

〈f ,g〉2,n =

∫
Z
〈f(z),g(z)〉dP̂Z−1(z) =

∫
Z
〈f(z),g(z)〉p̂(z)dν(z),

where 〈·, ·〉 is an inner product of H. Then, the L2((Z,A , P̂Z−1),H) with the
inner product 〈·, ·〉2,n is a Hilbert space.

The closedness of SH(p̂) is essential for the proof of the existence of the gB-
SBF estimators, since it is a part of a sufficient condition for the existence of
a minimizer of the objective functional F̂ defined in Section 3.2, see Lemma
4 in [5]. The closedness is also important for the convergence of the gB-SBF
algorithm. To see why, define the linear operators π̂j : L2((Z,A , P̂Z−1),H) →
L2((Zj ,Aj , P̂Z−1

j ),H) by

π̂j(f)(zj) =

∫
Z−j

f(z)� (p̂(z)/p̂j(zj))dν−j(z−j), f ∈ L2((Z,A , P̂Z−1),H)

whenever the integral exists, and put π̂j(f)(zj) = 0 otherwise. The following
proposition shows that π̂j are projection operators.

Proposition 1. If p̂j(zj) > 0 for all zj ∈ Zj, then π̂j is a projection operator.

Proof. For f ∈ L2((Z,A , P̂Z−1),H), define

Dj(f) = {zj ∈ Zj :

∫
Z−j

‖f(z)‖p̂(z)dν−j(z−j) < ∞}.

We note that νj(Zj \ Dj(f)) = 0. Then, for fj ∈ L2((Zj ,Aj , P̂Z−1
j ),H), it
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holds that

〈f � π̂j(f), fj〉2,n

=

∫
Z

〈
f(z)�

∫
Z−j

f(z)� p̂(z)

p̂j(zj)
dν−j(z−j), fj(zj)

〉
p̂(z)dν(z)

=

∫
Zj

∫
Z−j

〈(
f(z)�

∫
Z−j

f(z)� p̂(z)

p̂j(zj)
dν−j(z−j)

)
� p̂(z), fj(zj)

〉
dν−j(z−j)dνj(zj)

=

∫
Zj

〈∫
Z−j

(
f(z)�

∫
Z−j

f(z)� p̂(z)

p̂j(zj)
dν−j(z−j)

)
� p̂(z)dν−j(z−j), fj(zj)

〉
dνj(zj)

= 0.

This shows that π̂j is a projection operator.

Now, define a linear operator T̂ : SH(p̂) → SH(p̂) by

T̂ = (I − π̂d) ◦ · · · ◦ (I − π̂1), (A.9)

where I is the identity operator. We note that T̂ is an alternating projection
operator. According to the projection theory (Lemma S.7 in [15]), the closedness
of SH(p̂) implies that T̂ is a contraction, i.e.,

‖T̂‖L(SH(p̂)) := sup{‖T̂ (g)‖2,n : g ∈ SH(p̂), ‖g‖2,n = 1} < 1, (A.10)

where ‖·‖2,n is the norm induced by 〈·, ·〉2,n. The property ‖T̂‖L(SH(p̂)) < 1 is es-
sential for the convergence of the gB-SBF algorithm since the constant γ̂ in The-
orem 2 is in fact ‖T̂‖2L(SH(p̂)), see the proof of Theorem 2 given in Section A.6.2.

Proving the closedness of SH(p̂) requires an advanced theory of functional
analysis. To describe this, let π̂j |L2((Zk,Ak, P̂Z−1

k ),H) denote the operator

π̂j restricted to L2((Zk,Ak, P̂Z−1
k ),H) for k �= j. When H = R, Zj = [0, 1]

and νj are the Lebesgue measure for all 1 ≤ j ≤ d, the common approach in
the existing SBF literature to establishing the closeness of SH(p̂) is to prove
that π̂j |L2((Zk,Ak, P̂Z−1

k ),H) for all 1 ≤ j �= k ≤ d are compact operators

(e.g. [25]). Indeed, if π̂j are projection operators and π̂j |L2((Zk,Ak, P̂Z−1
k ),H)

are compact, then SH(p̂) is closed by Theorem 8.1 in [7]. Unfortunately, the
restricted projection operators are not compact for infinite-dimensional H, as
we demonstrate it below.

Proposition 2. Under the condition (S2), π̂j |L2((Zk,Ak, P̂Z−1
k ),H) are com-

pact if and only if H is finite-dimensional.

Proof. Let L(H) denote the space of all bounded and linear operators from H to
itself. Then, under the condition (S2), π̂j |L2((Zk,Ak, P̂Z−1

k ),H) is an integral

operator with the kernel k̂jk : Z × Z → L(H) defined by k̂jk(z, z
∗)(h) =

h�(p̂jk(zj , z
∗
k)/(p̂j(zj)p̂k(z

∗
k))). This with Theorem 3.1 and Theorem 3.2 in [15]

gives the proposition.
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To prove that SH(p̂) is closed, we use Proposition 1 and Lemma S.7 in [15], the
latter of which tells that the closedness of SH(p̂) is equivalent to the conclusion
of the next proposition.

Proposition 3. Under the condition (S2), there exists a constant ĉ > 0 such
that, for all f ∈ SH(p̂), there exists a tuple (fj : 1 ≤ j ≤ d) with fj ∈
L2((Zj ,Aj , P̂Z−1

j ),H) for all 1 ≤ j ≤ d satisfying
⊕d

j=1 fj = f a.e. with respect

to P̂Z−1 and
∑d

j=1 ‖fj‖22,n ≤ ĉ · ‖f‖22,n.

Proof. We note that Proposition 3 in specialization to finite-dimensional H fol-
lows from Theorem 8.1 in [7], Lemma S.7 in [15] and Proposition 2. Now, sup-
pose that H is infinite-dimensional, and let {ek}∞k=1 be an orthonormal basis
of H. For a given f ∈ SH(p̂), it holds that f(z) =

⊕∞
k=1〈f(z), ek〉 � ek and

‖f(z)‖2 =
∑∞

k=1〈f(z), ek〉2 for all z ∈ Z. Thus, we have

‖f‖22,n =

∫
Z

∞∑
k=1

〈f(z), ek〉2p̂(z)dν(z) =
∞∑
k=1

‖〈f(·), ek〉‖22,n,

where with slight abuse of the notation for ‖ · ‖2,n, we write

‖g‖22,n =

∫
Z
|g(z)|2p̂(z)dν(z)

for real-valued maps g ∈ L2((Z,A , P̂Z−1),R) as well. Proposition 3 in spe-
cialization to H = R implies that there exists a constant ĉ > 0 such that, for
any g ∈ SR(p̂), there exist gj ∈ L2((Zj ,Aj , P̂Z−1

j ),R) for 1 ≤ j ≤ d satis-

fying g =
∑d

j=1 gj a.e. with respect to P̂Z−1 and
∑d

j=1 ‖gj‖22,n ≤ ĉ · ‖g‖22,n.
Since 〈f(·), ek〉 ∈ SR(p̂) for all k ≥ 1, there exist fkj ∈ L2((Zj ,Aj , P̂Z−1

j ),R)

for 1 ≤ j ≤ d satisfying 〈f(·), ek〉 =
∑d

j=1 fkj a.e. with respect to P̂Z−1 and∑d
j=1 ‖fkj‖22,n ≤ ĉ · ‖〈f(·), ek〉‖22,n. Thus, it holds that

d∑
j=1

∞∑
k=1

‖fkj‖22,n ≤ ĉ ·
∞∑
k=1

‖〈f(·), ek〉‖22,n = ĉ · ‖f‖22,n < ∞. (A.11)

Now, (A.11) implies that, for each 1 ≤ j ≤ d, the sequence {
⊕N

k=1 fkj(·) �
ek}N≥1 is Cauchy in L2((Zj ,Aj , P̂Z−1

j ),H) since

∥∥∥ N⊕
k=m+1

fkj(·)� ek

∥∥∥2
2,n

=

∫
Z

N∑
k=m+1

‖fkj(z)� ek‖2p̂(z)dν(z)

=

N∑
k=m+1

‖fkj‖22,n

→ 0
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as N > m → ∞. Denote the limit of the Cauchy sequence by fj . Then, there

exists a subsequence {
⊕Njl

k=1 fkj(·)�ek}l≥1 of {
⊕N

k=1 fkj(·)�ek}N≥1 such that

lim
l→∞

Njl⊕
k=1

fkj(z)� ek = fj(z) a.e. with respect to P̂Z−1.

Then, it holds that

d∑
j=1

‖fj‖22,n =

d∑
j=1

∫
Z

(
lim
l→∞

Njl∑
k=1

f2
kj(z)

)
p̂(z)dν(z) =

d∑
j=1

∞∑
k=1

‖fkj‖22,n ≤ ĉ‖f‖22,n,

where the inequality follows from (A.11). Moreover, we get

d⊕
j=1

fj(z) =

∞⊕
k=1

( d∑
j=1

〈 lim
l→∞

Njl⊕
i=1

fij(z)� ei, ek〉
)
� ek

=
∞⊕
k=1

( d∑
j=1

lim
l→∞

〈
Njl⊕
i=1

fij(z)� ei, ek〉
)
� ek

=

∞⊕
k=1

( d∑
j=1

fkj(z)
)
� ek

=

∞⊕
k=1

〈f(z), ek〉 � ek = f(z)

a.e. with respect to P̂Z−1. This completes the proof.

The following proposition now follows from Proposition 3.

Proposition 4. If the condition (S2) holds, then SH(p̂) is a closed subspace of
L2((Z,A , P̂Z−1),H) and ‖T̂‖L(SH(p̂)) < 1.

A.5. Some lemmas

For the below lemma, we write PZ−1
−j for the distribution of Z−j and write

pZ−j for the density of Z−j with respect to ν−j . The lemma is used to prove
Theorems 3, 4 and 5.

Lemma 1. Assume that there is a constant c > 0 such that p(z) ≥ c · pj(zj) ·
pZ−j (z−j) for all 1 ≤ j ≤ d and z ∈ Z. Let fj : Zj → H be measurable maps

for 1 ≤ j ≤ d. If
⊕d

j=1 fj(zj) = 0 a.e. with respect to PZ−1, then fj(zj) = cj

a.e. with respect to PZ−1
j for all 1 ≤ j ≤ d, where cj ∈ H are some constants

satisfying
⊕d

j=1 cj = 0.
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Proof. We only show that f1(z1) = c1 a.e. with respect to PZ−1
1 , since for

j ≥ 2 we may simply exchange the roles of 1 and j. We claim that, if p(z) ≥
c · p1(z1) · pZ−1(z−1) for all z ∈ Z, then

PZ−1
1 ⊗ PZ−1

−1 � PZ−1. (A.12)

Let N ∈ A be a PZ−1-null set. Then,

0 = PZ−1(N) ≥ c

∫
Z
1N (z)p1(z1)pZ−1(z−1)dν(z) = c · PZ−1

1 ⊗ PZ−1
−1(N) ≥ 0.

This proves (A.12). Let E = {z ∈ Z : f1(z1) = −1 �
⊕d

k=2 fk(zk)}. We note
that

1E(z)� f1(z1) = (−1E(z))�
d⊕

k=2

fk(zk), z ∈ Z.

For D ∈ B(H), we may prove that

(1E � f1)
−1(D) =

{
(A×Z−1) ∩ E, if 0 /∈ D,

(A×Z−1) ∪ Ec, if 0 ∈ D,

(
(−1E)�

d⊕
k=2

fk

)−1

(D) =

{
(Z1 ×B) ∩ E, if 0 /∈ D,

(Z1 ×B) ∪ Ec, if 0 ∈ D,

for some A ∈ A1 and B ∈ A−1.

First, consider the case 0 /∈ D. In this case,

(A×Z−1) ∩ E = (Z1 ×B) ∩ E

= ((A×Z−1) ∩ E) ∩ ((Z1 ×B) ∩ E)

= (A×B) ∩ E.

(A.13)

Since f1(z1) = −1�
⊕d

k=2 fk(zk) a.e. with respect to PZ−1, we get PZ−1(E) = 1.
Then, (A.12) implies that

PZ−1
1 ⊗ PZ−1

−1(E) = 1. (A.14)

From (A.13) and (A.14), it follows that

PZ−1
1 (A) = PZ−1

1 ⊗ PZ−1
−1(A×Z−1)

= PZ−1
1 ⊗ PZ−1

−1((A×Z−1) ∩ E)

= PZ−1
1 ⊗ PZ−1

−1((A×B) ∩ E)

= PZ−1
1 ⊗ PZ−1

−1(A×B)

= PZ−1
1 (A)PZ−1

−1(B),

(A.15)
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PZ−1
−1(B) = PZ−1

1 ⊗ PZ−1
−1(Z1 ×B)

= PZ−1
1 ⊗ PZ−1

−1((Z1 ×B) ∩ E)

= PZ−1
1 ⊗ PZ−1

−1((A×B) ∩ E)

= PZ−1
1 ⊗ PZ−1

−1(A×B)

= PZ−1
1 (A)PZ−1

−1(B).

(A.16)

From (A.15) and (A.16), we have PZ−1
1 (A) = 0 or 1. When 0 ∈ D, a similar

argument shows that PZ−1
1 (A) = 0 or 1. Thus, PZ−1

1 (f−1
1 (D)) = 0 or 1 for

any D ∈ B(H). For a measure PZ−1
1 f−1

1 on B(H) defined by PZ−1
1 f−1

1 (D) =
PZ−1

1 (f−1
1 (D)), it holds that PZ−1

1 f−1
1 (H) = 1. Also, if PZ−1

1 f−1
1 (D) = 1,

then PZ−1
1 f−1

1 (Dc) = 0 for any D ∈ B(H). Hence, H is an atom of the
measure PZ−1

1 f−1
1 . Therefore, there exists a singleton {c1} ∈ B(H) such that

PZ−1
1 f−1

1 ({c1}) > 0 by Lemma 10.17 in [2]. Since PZ−1
1 (f−1

1 ({c1})) must be 0
or 1, PZ−1

1 (f−1
1 ({c1})) = 1. This completes the proof.

Lemma 2. Assume the conditions (B1) and (B3), and that p is bounded on its

support, infn n
c1
∏dx

j=1 hj > 0 for some c1 < (α−2)/α and infn n
c2 min1≤j≤dx hj

> 0 for some c2 ∈ R. Then for Sn(w) := n−1 �
⊕n

i=1 κi(w) � ψ(Wi,Y
∗
i ), it

holds that

sup
w

‖Sn(w)� E(Sn(w))‖ = Op

⎛
⎜⎝
⎛
⎝n

dx∏
j=1

hj

⎞
⎠

−1/2

·
√
log n

⎞
⎟⎠ .

Proof. Take δ ∈ (0, (α/2 − c1α/2 − 1)/α). This choice is possible since c1 <
(α− 2)/α. Define

ηni(w) = ψ(Wi,Y
∗
i )� I

(
‖ψ(Wi,Y

∗
i )‖ ≤ n1/2−δ

dx∏
j=1

h
1/2
j

)
κi(w)

� E

⎛
⎝ψ(Wi,Y

∗
i )� I

(
‖ψ(Wi,Y

∗
i )‖ ≤ n1/2−δ

dx∏
j=1

h
1/2
j

)
κi(w)

⎞
⎠ .

By techniques of kernel smoothing theory (e.g. Theorem 2 in [28]), we get that,
for sufficiently large γ > 0,

sup
w

∥∥∥∥∥n−1 �
n⊕

i=1

(κi(w)�ψ(Wi,Y
∗
i ))� E (κi(w)�ψ(Wi,Y

∗
i ))

∥∥∥∥∥
= sup

x∈Idx (n−γ),u∈
∏du

j=1 Uj ,v∈
∏dv

j=1 Vj

∥∥∥n−1 �
n⊕

i=1

ηni(w)
∥∥∥+ op

(
n−1/2

dx∏
j=1

h
1/2
j

)

where Idx(n−γ) =
∏dx

j=1{0, n−γ , · · · , [nγ ] ·n−γ , 1}. Thus, it suffices to show that

lim
C→∞

lim sup
n→∞

ndx·γ · P
(∥∥∥n−1 �

n⊕
i=1

ηni(w)
∥∥∥ > C

√
logn

n
∏dx

j=1 hj

)
= 0 (A.17)
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for all w ∈ [0, 1]dx ×
∏du

j=1 Uj ×
∏dv

j=1 Vj . We note that E(ηni(w)) = 0 and

‖ηni(w)‖ ≤ 2n1/2−δ
dx∏
j=1

h
−1/2
j

(
sup

t∈[−1,1]

K(t)

)dx

,

n−1
n∑

i=1

E(‖ηni(w)‖2) ≤ c ·
( dx∏

j=1

hj

)−1

for some constant c > 0. By applying Corollary 2.2 in [6], we get that, for
sufficiently large n,

P

(∥∥∥n−1 �
n⊕

i=1

ηni(w)
∥∥∥ > C

√
logn

n
∏dx

j=1 hj

)

≤ 2 exp

(
− 3C2nδ logn

6cnδ + 4C
√
logn(supt∈[−1,1] K(t))dx

)

≤ 2n−C2/(4c).

This implies (A.17).

For the next lemma, we define

μ̂A
x,j(xj) = (np̂x,j(xj))

−1 �
n⊕

i=1

Khj (xj , Xij)� εi+,

μ̂A
u,j(uj) = (np̂u,j(uj))

−1 �
n⊕

i=1

Lλj (uj , Uij)� εi+,

μ̂A
v,j(vj) = (np̂v,j(vj))

−1 �
n⊕

i=1

Wsj (vj , Vij)� εi+,

where εi+ is the ith observation of ε+ defined at the beginning of Section 4.3.
Recall the definition of Cj,xj given at (4.10). The following lemma is used to
prove Theorem 5.

Lemma 3. Fix x ∈ (0, 1)dx ,u ∈
∏du

j=1 Uj and v ∈
∏dv

j=1 Vj. Assume that the
conditions on hj , λj and sj in (D3) hold, that K is bounded, that E(‖ε+‖α) < ∞
for some α > 2 and that, for all uk, vk and 1 ≤ j ≤ dx, (a) E(‖ε+‖α|Xj = ·),
E(〈ε+, el〉 · 〈ε+, el′〉 |Xj = ·, Uk = uk) and E(〈ε+, el〉 · 〈ε+, el′〉 |Xj = ·, Vk =
vk) are bounded on a respective neighborhood of xj, E(〈ε+, el〉 · 〈ε+, el′〉 |Xj =
·, Xk = ·) and pxx,jk are bounded on a respective neighborhood of (xj , xk), and
E(〈ε+, el〉 · 〈ε+, el′〉 |Xj = ·) for all l and l′, are continuous on a common
neighborhood of xj ; (b) px,j is continuous on a neighborhood of xj and px,j(xj) >
0. Then,

n2/5 � (μ̂A
x,1(x1), . . . , μ̂

A
x,dx

(xdx), μ̂
A
u,1(u1), . . . , μ̂

A
v,dv

(vdv ))



Additive regression for variables of various natures 1523

d→ (G(0, C1,x1), . . . ,G(0, Cdx,xdx
),0, . . . ,0).

Moreover, G(0, C1,x1), . . . ,G(0, Cdx,xdx
) are independent.

Proof. We first note that any fixed x ∈ (0, 1)dx lies in
∏dx

j=1[2hj , 1 − 2hj ] for

sufficiently large n, so that we may assume x ∈
∏dx

j=1[2hj , 1− 2hj ]. We denote

dx+du+dv by d and let Hd be the space of tuples (hj : 1 ≤ j ≤ d) with hj ∈ H.
Let ‖ · ‖Hd and 〈·, ·〉Hd denote the norm and inner product of Hd, respectively,
defined in the standard way. Let ejl = (0, . . . ,0, el,0, . . . ,0) ∈ H

d, where el is
placed at the jth entry. Then, (ejl : 1 ≤ j ≤ d, l ≥ 1) forms an orthonormal
basis of Hd. Define

ηni(w) =

(
n2/5Kh1(x1 −Xi1)

np1(x1)
� εi+, · · · ,

n2/5Khd
(xd −Xid)

npd(xd)
� εi+,

n2/5Lλ1(u1, Ui1)

npu,1(u1)
� εi+, · · · ,

n2/5Wsdv
(vdv , Vidv )

npv,dv (vdv )
� εi+

)
∈ H

d.

Note that E(〈ηni(w), ejl〉Hd) = 0 and E(‖ηni(w)‖2
Hd) < ∞. For Sn(w) =⊕n

i=1 ηni(w) and 1 ≤ j, k ≤ dx, it holds that

E (〈Sn(w), ejl〉Hd · 〈Sn(w), ekm〉Hd) → aj,lm(xj)1(j = k),

where

aj,lm(xj) = α−1
j px,j(xj)

−1

∫ 1

−1

K2(t)dt · E(〈ε+, el〉 · 〈ε+, em〉 |Xj = xj)

with αj being the constants in the condition (D3). Also, if dx + 1 ≤ j ≤ d or
dx + 1 ≤ k ≤ d, then

E (〈Sn(w), ejl〉Hd · 〈Sn(w), ekm〉Hd) → 0.

We also get

lim
n→∞

d∑
j=1

∑
l

E (〈Sn(w), ejl〉Hd · 〈Sn(w), ejl〉Hd)

=

dx∑
j=1

α−1
j

1

px,j(xj)

∫ 1

−1

K2(t)dt · E( ‖ε+‖2 |Xj = xj).

In addition, for 0 < δ ≤ α− 2,

n∑
i=1

E
(∥∥ηni(w)

∥∥2+δ

Hd

)

≤ n−(1+3δ)/5d1+δ/2 E

(
‖ε+‖2+δ

{ dx∑
j=1

(
1

px,j(xj)hj

)2+δ

K2+δ

(
xj −Xj

hj

)
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+

dx+du∑
j=dx+1

(
1

pu,j(uj)

)2+δ

+

d∑
j=dx+du+1

(
1

pv,j(vj)

)2+δ })

= o(1).

Therefore, by applying Theorem 1.1 in [17] for infinite-dimensional H and Propo-
sition S.2 in [15] for finite-dimensional H, we obtain

Sn(w)
d→ G(0, Cw),

where Cw : Hd → H
d is a covariance operator such that

〈Cw(h), ejl〉Hd =

⎧⎨
⎩
∑
m
〈hj , em〉 · aj,lm(xj) 1 ≤ j ≤ dx, l ≥ 1

0 dx + 1 ≤ j ≤ d, l ≥ 1
(A.18)

for all h = (h1, . . . ,hd) ∈ H
d. Since p̂t,j(tj)

−1 − pt,j(tj)
−1 = op(1) for all

t = x, u, v and j, we get(
n2/5 � μ̂A

x,1(x1), . . . , n
2/5 � μ̂A

x,dx
(xdx),

n2/5 � μ̂A
u,1(u1), . . . , n

2/5 � μ̂A
v,dv

(vdv )
)

d→ G(0, Cw).

(A.19)

Let Pj denote the projection operator that maps (h1, . . . ,hd) ∈ H
d to hj . Then,

its adjoint P ∗
j : H → H

d is given by P ∗
j (g) = (0, . . . ,0,g,0, · · · ,0) where g

is placed at the jth entry. We note that the conclusions of Propositions 4.9–
4.10 in [40] also hold for H-valued Gaussian random elements. This implies
Pj(G(0, Cw)) = G(0, Pj ◦ Cw ◦ P ∗

j ). Now, for g ∈ H and 1 ≤ j ≤ dx,

〈Pj ◦ Cw ◦ P ∗
j (g), el〉 = 〈Cw(0, . . . ,0,g,0, . . . ,0), P ∗

j (el)〉Hd

= 〈Cw(0, . . . ,0,g,0, . . . ,0), ejl〉Hd

=
∑
m

〈g, em〉 · aj,lm(xj),

where the last equality follows from (A.18). This proves Pj ◦ Cw ◦ P ∗
j = Cj,xj

for 1 ≤ j ≤ dx, which coupled with (A.19) implies

Pj

(
n2/5 � μ̂A

x,1(x1), . . . , n
2/5 � μ̂A

x,dx
(xdx),

n2/5 � μ̂A
u,1(u1), . . . , n

2/5 � μ̂A
v,dv

(vdv )
)

d→ Pj(G(0, Cw)) = G(0, Cj,xj ).

On the other hand, for g ∈ H and dx + 1 ≤ j ≤ d,

〈Pj ◦ Cw ◦ P ∗
j (g), el〉 = 0.

This proves Pj(G(0, Cw)) = 0 for dx + 1 ≤ j ≤ d. The independence of
G(0, Cj,xj ) for different 1 ≤ j ≤ dx follows from Theorem 4.2 in [15].



Additive regression for variables of various natures 1525

A.6. Proofs for Section 3

A.6.1. Proof of Theorem 1

First, we show that F̂ is a strictly convex and continuous functional satisfying
F̂ (f) → ∞ as ‖f‖2,n → ∞. This together with Lemma 4 in [5] and Proposition 4

implies that there exists a minimizer of F̂ in SH(p̂). Note that the strict convexity
is trivial. For the continuity, we note that

|F̂ (f)− F̂ (fk)| ≤ ‖f � fk‖2,n(‖f � fk‖2,n + 2‖f‖2,n + 2
√
d ·

√
ĉ · M̂),

where ĉ and M̂ are defined in (A.21). For the divergence, we note that

F̂ (f) ≥ ‖f‖22,n
(
1− 2

√
d ·

√
ĉ · M̂

‖f‖2,n

)
.

Next, we prove that F̂ is Gâteaux differentiable. For f ∈ SH(p̂), defineDF̂ (f) :
SH(p̂) → R by

DF̂ (f)(g) = lim
δ→0

F̂ (f ⊕ δg)− F̂ (f)

δ

= −2

∫
Z

〈
g(z), f(z)� μ̂(z)

〉
p̂(z)dν(z).

(A.20)

It is clear that DF̂ (f) is a linear operator. Also, DF̂ (f) is a bounded operator
under the conditions (S1) and (S2) since

|DF̂ (f)(g)| ≤ 2
(
‖f‖2,n +

√
d ·

√
ĉ · M̂

)
‖g‖2,n, (A.21)

where ĉ is the constant in Proposition 3 and M̂ = max1≤j≤d ‖μ̂j‖22,n < ∞. The
inequality (A.21) may be proved by applying the Hölder inequality and consid-

ering a decomposition
⊕d

j=1 gj of g with gj ∈ L2((Zj ,Aj , P̂Z−1
j ),H) such that∑d

j=1 ‖gj‖22,n ≤ ĉ‖g‖22,n whose existence is guaranteed by Proposition 3. Hence,

DF̂ (f) is the Gâteaux derivative of F̂ at f . Thus, F̂ is Gâteaux differentiable.

Now, f̂ ∈ SH(p̂) being a minimizer of F̂ is equivalent to DF̂ (f̂)(g) = 0 for
all g ∈ SH(p̂) by Theorem 5.3.19 in [4]. With the specification of g ∈ SH(p̂) in

DF̂ (f̂)(g) = 0 to gj ∈ L2((Zj ,Aj , P̂Z−1
j ),H) for each 1 ≤ j ≤ d, the equation

implies that ∫
Z−j

(f̂(z)� μ̂(z))� p̂(z)dν−j(z−j) = 0 (A.22)

a.e. with respect to νj , for all 1 ≤ j ≤ d.

Let f̂ = f̂0⊕
⊕d

j=1 f̂j be a decomposition of f̂ with f̂j ∈ L2((Zj ,Aj , P̂Z−1
j ),H)

such that
∫
Zj

f̂j(zj)� p̂j(zj)dνj(zj) = 0 for all 1 ≤ j ≤ d. Plugging the decom-

position into the left hand side of (A.22) and using (2.9), we see that f̂0 = m̂0
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and (f̂j : 1 ≤ j ≤ d) satisfies

f̂j(zj) = μ̂j(zj)� m̂0 �
⊕
k �=j

∫
Zk

f̂k(zk)�
p̂jk(zj , zk)

p̂j(zj)
dνk(zk) (A.23)

a.e. with respect to νj , for all 1 ≤ j ≤ d. We define the right hand side of (A.23)

by m̂j(zj) for all zj ∈ Zj . Then, (m̂j : 1 ≤ j ≤ d) ∈
∏d

j=1 L
2((Zj ,Aj , P̂Z−1

j ),H)
and it satisfies (2.15) and (2.16).

For the uniqueness of μ̂+, suppose that there exists another solution (m̂�
j :

1 ≤ j ≤ d) in
∏d

j=1 L
2((Zj ,Aj , P̂Z−1

j ),H) of (2.15). Recall the definition of T̂
given at (A.9) and define

m̃ = μ̂d � m̂0 ⊕ (I − π̂d)(μ̂d−1)⊕ · · · ⊕ (I − π̂d) ◦ · · · ◦ (I − π̂2)(μ̂1)

∈ SH(p̂).
(A.24)

Since π̂j(m̂⊕) = μ̂j � m̂0 for all 1 ≤ j ≤ d from (2.15), we get

m̂⊕ = (I − π̂j)(m̂⊕)⊕ (μ̂j � m̂0), 1 ≤ j ≤ d. (A.25)

Applying (A.25) from j = d to j = 1 successively gives

m̂⊕ = (I − π̂d)(m̂⊕)⊕ (μ̂d � m̂0)

= (I − π̂d) ((I − π̂d−1)(m̂⊕)⊕ (μ̂d−1 � m̂0))⊕ (μ̂d � m̂0)

= (I − π̂d) ◦ (I − π̂d−1)(m̂⊕)⊕ (I − π̂d)(μ̂d−1)⊕ (μ̂d � m̂0)

· · ·
= T̂ (m̂⊕)⊕ m̃.

(A.26)

Similarly, for m̂�
⊕ =

⊕d
j=1 m̂

�
j , we have

m̂�
⊕ = T̂ (m̂�

⊕)⊕ m̃.

Since m̂⊕ � m̂�
⊕ = T̂ (m̂⊕ � m̂�

⊕) and ‖T̂‖L(SH(p̂)) < 1 by Proposition 4, we

conclude that m̂⊕ = m̂�
⊕ a.e. with respect to P̂Z−1. This proves the first part

of the theorem.

For the proof of the second part, suppose that
⊕d

j=1 ĝj(zj) = 0 a.e. with

respect to P̂Z−1 with ĝj satisfying (2.16). Since p̂ > 0 on Z by the assumption,

this implies
⊕d

j=1 ĝj(zj) = 0 a.e. with respect to ν, so that, for any map ηj ∈
L2((Zj ,Aj , P̂Z−1

j ),H), we get

〈 d⊕
k=1

ĝk(zk)� p̂Z−j (z−j), ηj(zj)
〉
= 0 a.e. with respect to ν. (A.27)
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Because of the marginalization property
∫
Z−jk

p̂Z−j (z−j)dν−jk(z−jk) = p̂k(zk)

and the constraints (2.16), the equation (A.27) implies that

0 =

d∑
k=1

∫
Z

〈
ĝk(zk)� p̂Z−j (z−j), ηj(zj)

〉
dν(z)

=

d∑
k �=j

∫
Zj

〈∫
Zk

ĝk(zk)� p̂k(zk)dνk(zk), ηj(zj)
〉
dνj(zj)

+

∫
Zj

〈ĝj(zj), ηj(zj)〉dνj(zj)

=

∫
Zj

〈ĝj(zj), ηj(zj)〉dνj(zj)

for all ηj ∈ L2((Zj ,Aj , P̂Z−1
j ),H). This implies ĝj(zj) = 0 a.e. with respect to

νj . This proves the second part of the theorem.

A.6.2. Proof of Theorem 2

Let m̂⊕ =
⊕d

j=1 m̂j and m̂
[r]
⊕ =

⊕d
j=1 m̂

[r]
j for r ≥ 0. From (A.26), we have

m̂⊕ = T̂ (m̂⊕) ⊕ m̃, where m̃ is defined at (A.24). One may similarly prove

that m̂
[r]
⊕ = T̂ (m̂

[r−1]
⊕ ) ⊕ m̃ from the gB-SBF algorithm in Section 2.4. Since

‖T̂‖L(SH(p̂)) < 1 by Proposition 4, it holds that m̂
[∞]
⊕ :=

⊕∞
k=0 T̂

k(m̃) exists in

SH(p̂), m̂
[∞]
⊕ = T̂ (m̂

[∞]
⊕ ) ⊕ m̃ a.e. with respect to P̂Z−1 and thus m̂

[∞]
⊕ = m̂⊕

a.e. with respect to P̂Z−1. This entails

‖m̂[r]
⊕ � m̂⊕‖2,n ≤

‖T̂‖rL(SH(p̂))

1− ‖T̂‖L(SH(p̂))

(
‖m̂[0]

⊕ ‖2,n + ‖m̃‖2,n
)
. (A.28)

The inequality (A.28) gives the theorem with the choices ĉ∗ =
(
‖m̂[0]

⊕ ‖2,n +

‖m̃‖2,n
)2
/(1− ‖T̂‖L(SH(p̂)))

2 and γ̂ = ‖T̂‖2L(SH(p̂)).

A.6.3. Proof of Theorem 3

Let E1 denote the event where (2.8) and the first property at (2.10) hold. For a
given constant C > 0, let E2(C) denote the event where

max
1≤j≤d

sup
zj∈Zj

p̂j(zj)
−1 ≤ C, max

1≤j �=k≤d
sup

zj∈Zj ,zk∈Zk

p̂jk(zj , zk) ≤ C,

max
1≤j≤d

sup
zj∈Zj

‖μ̂j(zj)‖ ≤ C, max
1≤j≤d

∫
Zj

‖m̂[0]
j (zj)‖2dνj(zj) < C.
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Also, for a given δ > 0, let E3(δ) denote the event where

max
1≤j≤d

∫
Zj

(p̂j(zj)− pj(zj))
2

pj(zj)
dνj(zj) ≤ δ,

max
1≤j �=k≤d

∫
Zj×Zk

(
p̂jk(zj , zk)

p̂j(zj)
− pjk(zj , zk)

pj(zj)

)2

× pj(zj)

pk(zk)
dνj ⊗ νk(zj , zk) ≤ δ2.

(A.29)

Put E(C, δ) = E1 ∩ E2(C) ∩ E3(δ). By the assumptions of the theorem, there
exists a constant C > 0 such that P (E(C, δ)) → 1 for any δ > 0. Henceforth,
suppose that E(C, δ) occurs for such C and δ.

Define the operators πj : L2((Z,A , PZ−1),H) → L2((Zj ,Aj , PZ−1
j ),H) in

the same way as π̂j with p̂ and p̂j being replaced by p and pj , respectively. Also

define the operator T : SH(p) → SH(p) in the same way as T̂ with π̂j being
replaced by the respective πj . Here,

SH(p) :=

⎧⎨
⎩

d⊕
j=1

fj : fj ∈ L2((Zj ,Aj , PZ−1
j ),H), 1 ≤ j ≤ d

⎫⎬
⎭

⊂ L2((Z,A , PZ−1),H).

Finally, define the norm ‖ · ‖2 on L2((Z,A , PZ−1),H) by

‖f‖22 =

∫
Z
‖f(z)‖2dPZ−1(z) =

∫
Z
‖f(z)‖2p(z)dν(z),

and the operator norm ‖ · ‖L(SH(p)) in the same way as ‖ · ‖L(SH(p̂)) with p̂ and
‖·‖2,n being replaced by p and ‖·‖2, respectively. Then, similarly as in the proof
of Proposition 4, it holds that SH(p) is a closed subspace of L2((Z,A , PZ−1),H)
and ‖T‖L(SH(p)) < 1, under the condition (P). Also, similarly as in the proof of

Proposition 3, there exists a constant c > 0 such that, for any f ∈ SH(p), there

exist a decomposition
⊕d

j=1 fj of f with fj ∈ L2((Zj ,Aj , PZ−1
j ),H) satisfying

max{‖f1‖2, . . . , ‖fd‖2} ≤ c‖f‖2, under the condition (P). For such decomposition
of f ∈ SH(p), we get

‖(π̂j − πj)(f)‖2

≤
d∑

k �=j

‖fk‖2
(∫

Zj×Zk

(
p̂jk(zj , zk)

p̂j(zj)
− pjk(zj , zk)

pj(zj)

)2
pj(zj)

pk(zk)
dνj ⊗ νk(zj , zk)

)1/2

≤ c(d− 1)δ · ‖f‖2.

This implies ‖π̂j − πj‖L(SH(p)) ≤ c(d− 1)δ and thus ‖T̂ − T‖L(SH(p)) ≤ d · 2d−1 ·
c(d− 1)δ. We choose 0 < δ ≤ (1− ‖T‖L(SH(p)))/(d · 2d · c(d− 1)). Then,

‖T̂‖L(SH(p)) ≤ (1 + ‖T‖L(SH(p)))/2 =: τ < 1.
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As in the derivation of (A.28) we may prove that there exists an absolute con-
stant c0 > 0 such that

‖m̂[r]
⊕ � m̂⊕‖2 ≤ c0 · τ r for all r ≥ 0. (A.30)

Now, let
⊕d

j=1 f̂
[r]
j be a decomposition of m̂

[r]
⊕ � m̂⊕ satisfying

max
{
‖f̂ [r]1 ‖2, . . . , ‖f̂ [r]d ‖2} ≤ c ‖m̂[r]

⊕ � m̂⊕‖2.

Put ĉ
[r]
j =

∫
Zj

f̂
[r]
j (zj)� p̂j(zj)dνj(zj). Then,

‖f̂ [r]j ‖22 ≥ ‖f̂ [r]j � ĉ
[r]
j ‖22 + ‖ĉ[r]j ‖2 − 2 ‖ĉ[r]j ‖ · ‖f̂ [r]j � ĉ

[r]
j ‖2 · δ1/2

≥ (1− δ)‖f̂ [r]j � ĉ
[r]
j ‖22

= (1− δ)‖m̂[r]
j � m̂j‖22.

(A.31)

The first inequality in (A.31) follows from an application of Hölder’s inequality
and the first bound in (A.29). The equality in (A.31) holds due to Lemma 1

and the fact that both f̂
[r]
j � ĉ

[r]
j and m̂

[r]
j � m̂j satisfy the constraints (2.16).

This with (A.30) gives the theorem with the choices c∗∗ = (c · c0)2/(1− δ) and
γ = τ2.

A.7. Terminologies and proofs for Section 4

A.7.1. Terminologies for Section 4.4

Here, we give the definitions of Δt,j for t = x, u and v that appear in the
asymptotic distribution of (m̂x,1, . . . , m̂x,dx ; m̂u,1, . . . , m̂u,du ; m̂v,1, . . . , m̂v,dv )
in Section 4.4. Define

δx,j(xj) =

(
dpx,j(xj)/dxj

px,j(xj)
·
∫ 1

−1

t2K(t)dt

)
� Dmx,j(xj)(1),

δxx,jk(xj , xk) =

(
∂pxx,jk(xj , xk)/∂xk

pxx,jk(xj , xk)
·
∫ 1

−1

t2K(t)dt

)
� Dmx,k(xk)(1),

δux,jk(uj , xk) =

(
∂pux,jk(uj , xk)/∂xk

pux,jk(uj , xk)
·
∫ 1

−1

t2K(t)dt

)
�Dmx,k(xk)(1),

δvx,jk(vj , xk) =

(
∂pvx,jk(vj , xk)/∂xk

pvx,jk(vj , xk)
·
∫ 1

−1

t2K(t)dt

)
�Dmx,k(xk)(1),

where the second one arises only when dx ≥ 2. Recall the definition of δ∗j in
Section 4.3 as given by δ∗j = min{δj(vj , v′j) : vj , v

′
j ∈ Vj , vj �= v′j}. For the

constants αj , βj and γj in the condition (D3) and cj denoting the cardinality
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of Uj , define

Δ̃x,j(xj)

= α2
j � δx,j(xj)⊕

dx⊕
k �=j

∫ 1

0

δxx,jk(xj , xk)�
(
α2
k · pxx,jk(xj , xk)

px,j(xj)

)
dxk

⊕
du⊕
k=1

⊕
uk∈Uk

⊕
u′
k∈Uk:u′

k �=uk

(mu,k(u
′
k)�mu,k(uk))�

(
βk

ck − 1
· pxu,jk(xj , u

′
k)

px,j(xj)

)

⊕
dv⊕
k=1

⊕
vk∈Vk

⊕
v′
k∈Vk:δk(vk,v′

k)=δ∗k

(mv,k(v
′
k)�mv,k(vk))�

(
γk · pxv,jk(xj , v

′
k)

px,j(xj)

)
,

Δ̃u,j(uj)

=

dx⊕
k=1

∫ 1

0

δux,jk(uj , xk)�
(
α2
k · pux,jk(uj , xk)

pu,j(uj)

)
dxk

⊕
⊕

u′
j∈Uj :u′

j �=uj

(mu,j(u
′
j)�mu,j(uj))�

(
βj

cj − 1
·
pu,j(u

′
j)

pu,j(uj)

)

⊕
du⊕
k �=j

⊕
uk∈Uk

⊕
u′
k∈Uk:u′

k �=uk

(mu,k(u
′
k)�mu,k(uk))�

(
βk

ck − 1
· puu,jk(uj , u

′
k)

pu,j(uj)

)

⊕
dv⊕
k=1

⊕
vk∈Vk

⊕
v′
k∈Vk:δk(vk,v′

k)=δ∗k

(mv,k(v
′
k)�mv,k(vk))�

(
γk ·

puv,jk(uj , v
′
k)

pu,j(uj)

)
,

Δ̃v,j(vj)

=

dx⊕
k=1

∫ 1

0

δvx,jk(vj , xk)�
(
α2
k · pvx,jk(vj , xk)

pv,j(vj)

)
dxk

⊕
du⊕
k=1

⊕
uk∈Uk

⊕
u′
k∈Uk:u′

k �=uk

(mu,k(u
′
k)�mu,k(uk))�

(
βk

ck − 1
· pvu,jk(vj , u

′
k)

pv,j(vj)

)

⊕
⊕

v′
j∈Vj :δj(vj ,v′

j)=δ∗j

(mv,j(v
′
j)�mv,j(vj))�

(
γj ·

pv,j(v
′
j)

pv,j(vj)

)

⊕
dv⊕
k=1

⊕
vk∈Vk

⊕
v′
k∈Vk:δk(vk,v′

k)=δ∗k

(mv,k(v
′
k)�mv,k(vk))�

(
γk · pvv,jk(vj , v

′
k)

pv,j(vj)

)
.

Let Δtup
x,+j denote the (j − 1)-tuple of maps obtained by taking the first

(j − 1) maps from Δtup ≡ (Δx,1, . . . ,Δx,dx ;Δu,1, . . . ,Δu,du ;Δv,1, . . . ,Δv,dv ),
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and Δtup
x,j+ the tuple consisting of those from Δx,j+1 to Δv,dv . Similarly, let

Δtup
u,+j = (Δx,1, . . . ,Δu,j−1) denote the (dx + j − 1)-tuple and let Δtup

u,j+ =

(Δu,j+1, . . . ,Δv,dv ). Also, let Δtup
v,+j = (Δx,1, . . . ,Δv,j−1) be the (dx + du +

j− 1)-tuple and Δtup
v,j+ = (Δv,j+1, . . . ,Δv,dv ). For 1 ≤ j ≤ dx, define μx,+j(·; ·)

and μx,j+(·; ·) by

μx,+j(xj ;Δ
tup
x,+j) =

⊕
k≤j−1

∫ 1

0

Δx,k(xk)�
pxx,jk(xj , xk)

px,j(xj)
dxk,

μx,j+(xj ;Δ
tup
x,j+) =

( ⊕
k≥j+1

∫ 1

0

Δx,k(xk)�
pxx,jk(xj , xk)

px,j(xj)
dxk

)

⊕
( du⊕

k=1

⊕
uk∈Uk

Δu,k(uk)�
pxu,jk(xj , uk)

px,j(xj)

)

⊕
( dv⊕

k=1

⊕
vk∈Vk

Δv,k(vk)�
pxv,jk(xj , vk)

px,j(xj)

)
.

Likewise, define μt,+j(·; ·) and μt,j+(·; ·) for t = u and v. For example,

μu,+j(uj ;Δ
tup
u,+j) =

( dx⊕
k=1

∫ 1

0

Δx,k(xk)�
pux,jk(uj , xk)

pu,j(uj)
dxk

)

⊕
( ⊕

k≤j−1

⊕
uk∈Uk

Δu,k(uk)�
puu,jk(uj , uk)

pu,j(uj)

)
,

μu,j+(uj ;Δ
tup
u,j+) =

( ⊕
k≥j+1

⊕
uk∈Uk

Δu,k(uk)�
puu,jk(uj , uk)

pu,j(uj)

)

⊕
( dv⊕

k=1

⊕
vk∈Vk

Δv,k(vk)�
puv,jk(uj , vk)

pu,j(uj)

)
.

Then, Δtup is defined as a solution of the following system of equations

Δx,j(xj) = Δ̃x,j(xj)� μx,+j(xj ;Δ
tup
x,+j)� μx,j+(xj ;Δ

tup
x,j+),

1 ≤ j ≤ dx,

Δu,j(uj) = Δ̃u,j(uj)� μu,+j(uj ;Δ
tup
u,+j)� μu,j+(uj ;Δ

tup
u,j+),

1 ≤ j ≤ du,

Δv,j(vj) = Δ̃v,j(vj)� μv,+j(vj ;Δ
tup
v,+j)� μv,j+(vj ;Δ

tup
v,j+),

1 ≤ j ≤ dv,

(A.32)
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subject to the constraints∫ 1

0

Δx,j(xj)� px,j(xj)dxj

=

∫ 1

0

δx,j(xj)� (α2
j · px,j(xj))dxj , 1 ≤ j ≤ dx,⊕

uj∈Uj

Δu,j(uj)� pu,j(uj)

=
⊕

uj∈Uj

⊕
u′
j∈Uj :u′

j �=uj

(mu,j(u
′
j)�mu,j(uj))

�
(

βj

cj − 1
· pu,j(u′

j)

)
, 1 ≤ j ≤ du,⊕

vj∈Vj

Δv,j(vj)� pv,j(vj)

=
⊕
vj∈Vj

⊕
v′
j∈Vj :δj(vj ,v′

j)=δ∗j

(mv,j(v
′
j)�mv,j(vj))

� (γj · pv,j(v′j)), 1 ≤ j ≤ dv.

(A.33)

Below in Section A.7.4, we prove that there exists a unique tuple Δtup that
solves the system of equations (A.32) subject to the constraints (A.33).

A.7.2. Proof of Corollary 3

We first note that (2.8) always holds due to the normalization properties (4.2),
(4.3) and (4.4). Also, the first property at (2.10) holds with probability tending
to one, since∫

[0,1]dx

⊕
u∈
∏du

j=1 Uj

⊕
v∈
∏dv

j=1 Vj

‖μ̂(w)‖p̂(w)dx

≤ n−1
n∑

i=1

‖ψ̂(Wi,Y
∗
i )−ψ(Wi,Y

∗
i )‖+ n−1

n∑
i=1

‖ψ(Wi,Y
∗
i )‖

≤ M + E(‖ψ(W,Y∗)‖) + δ

with probability tending to one, where M is the constant given at (B5) and
δ > 0 is any constant. We only prove

∑
uk∈Uk

∫ 1

0

(
p̂xu,jk(xj , uk)

p̂x,j(xj)
− pxu,jk(xj , uk)

px,j(xj)

)2
px,j(xj)

pu,k(uk)
dxj = op(1), (A.34)

since the proofs for the other parts follow similarly. We note that the left hand
side of (A.34) is bounded by

max
uk∈Uk

1

pu,k(uk)
sup

xj∈[0,1]

px,j(xj)

(p̂x,j(xj)px,j(xj))2
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×
∑

uk∈Uk

∫ 1

0

[
p̂xu,jk(xj , uk)px,j(xj)− pxu,jk(xj , uk)p̂x,j(xj)

]2
dxj .

We decompose the integrand of the above integral as

p̂xu,jk(xj , uk)px,j(xj)− pxu,jk(xj , uk)p̂x,j(xj))

=

[
p̂xu,jk(xj , uk)−

∫ 1

0

Khj (xj , x
′
j)dx

′
j · pxu,jk(xj , uk)

]
px,j(xj)

+ pxu,jk(xj , uk)

[∫ 1

0

Khj (xj , x
′
j)dx

′
j · px,j(xj)− p̂x,j(xj)

] (A.35)

For the first term on the right hand side of (A.35), we note that

sup
xj∈[0,1]

∣∣∣∣p̂xu,jk(xj , uk)−
∫ 1

0

Khj (xj , x
′
j)dx

′
j · pxu,jk(xj , uk)

∣∣∣∣
≤ sup

xj∈[0,1]

|p̂xu,jk(xj , uk)− E(p̂xu,jk(xj , uk))|

+ sup
xj∈[0,1]

∣∣∣∣E(p̂xu,jk(xj , uk))−
∫ 1

0

Khj (xj , x
′
j)dx

′
j · pxu,jk(xj , uk)

∣∣∣∣ .
(A.36)

Lemma 2 implies that the first term on the right hand side of (A.36) is op(1).
For the second term, we observe

E(p̂xu,jk(xj , uk)) = E(Khj (xj , Xj)Lλk
(uk, Uk))

= (1− λk)

∫ 1

0

Khj (xj , x
′
j)pxu,jk(x

′
j , uk)dx

′
j

+
∑

u′
k∈Uk

λk

∫ 1

0

Khj (xj , x
′
j)pxu,jk(x

′
j , u

′
k)dx

′
j

=

∫ 1

0

Khj (xj , x
′
j)pxu,jk(x

′
j , uk)dx

′
j + o(1)

=

∫ 1

0

Khj (xj , x
′
j)dx

′
j · pxu,jk(xj , uk) + o(1)

uniformly for xj ∈ [0, 1]. Hence, the first term on the right hand side of (A.35) is
op(1) uniformly for xj ∈ [0, 1]. Similarly, one may prove that the second term on
the right hand side of (A.35) is op(1) uniformly for xj ∈ [0, 1]. Since p̂x,j(xj) ≥ c
with probability tending to one for some constant c > 0, we obtain (A.34).

A.7.3. Proof of Theorem 4

We only sketch the proof since a full proof is too long. Hereafter, we de-
note

⊕
uj∈Uj

and
⊕

vj∈Vj
by
⊕

uj
and

⊕
vj
, respectively. Let Dt,k(zk, z

′
k) =
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m̂t,k(zk)�mt,k(z
′
k) for t = x, u and v and for zk, z

′
k ∈ [0, 1], Uk and Vk, respec-

tively, and Ri = ψ̂(Wi,Y
∗
i ) � ψ(Wi,Y

∗
i ). Recall the definitions of μ̂A

x,j(xj),

μ̂A
u,j(uj) and μ̂A

v,j(vj) immediately before Lemma 3. Define

μ̂B
x,j(xj) = (np̂x,j(xj))

−1 �
n⊕

i=1

Khj (xj , Xij)� (mx,j(Xij)�mx,j(xj)),

and likewise μ̂B
u,j(uj) and μ̂B

v,j(vj) with mx,j(Xij) � mx,j(xj) being replaced
by mu,j(Uij)�mu,j(uj) and mv,j(Vij)�mv,j(vj), respectively. Then, we may
write the gB-SBF system of equations for the mixed predictor case, as

m̂x,j(xj) = mx,j(xj)⊕ μ̂A
x,j(xj)⊕ μ̂B

x,j(xj)⊕ E(ψ(W,Y∗))� m̂0

� 1

np̂x,j(xj)
�
[ n⊕
i=1

⊕
k �=j

∫ 1

0

Dx,k(xk, Xik)� (Khj (xj , Xij)

×Khk
(xk, Xik))dxk ⊕

n⊕
i=1

du⊕
k=1

⊕
uk

Du,k(uk, Uik)

� (Khj (xj , Xij)Lλk
(uk, Uik))⊕

n⊕
i=1

du⊕
k=1

⊕
vk

Dv,k(vk, Vik)

� (Khj (xj , Xij)Wsk(vk, Vik))�
n⊕

i=1

Khj (xj , Xij)�Ri

]
,

1 ≤ j ≤ dx,

(A.37)

m̂u,j(uj) = mu,j(uj)⊕ μ̂A
u,j(uj)⊕ μ̂B

u,j(uj)⊕ E(ψ(W,Y∗))� m̂0

� 1

np̂u,j(uj)
�
[ n⊕
i=1

dx⊕
k=1

∫ 1

0

Dx,k(xk, Xik)� (Lλj (uj , Uij)

×Khk
(xk, Xik))dxk ⊕

n⊕
i=1

⊕
k �=j

⊕
uk

Du,k(uk, Uik)

� (Lλj (uj , Uij)Lλk
(uk, Uik))⊕

n⊕
i=1

dv⊕
k=1

⊕
vk

Dv,k(vk, Vik)

� (Lλj (uj , Uij)Wsk(vk, Vik))�
n⊕

i=1

Lλj (uj , Uij)�Ri

]
,

1 ≤ j ≤ du,

(A.38)
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m̂v,j(vj) = mv,j(vj)⊕ μ̂A
v,j(vj)⊕ μ̂B

v,j(vj)⊕ E(ψ(W,Y∗))� m̂0

� 1

np̂v,j(vj)
�
[ n⊕
i=1

dx⊕
k=1

∫ 1

0

Dx,k(xk, Xik)� (Wsj (vj , Vij)

×Khk
(xk, Xik))dxk ⊕

n⊕
i=1

du⊕
k=1

⊕
uk

Du,k(uk, Uik)

� (Wsj (vj , Vij)Lλk
(uk, Uik))⊕

n⊕
i=1

⊕
k �=j

⊕
vk

Dv,k(vk, Vik)

� (Wsj (uj , Uij)Wsk(vk, Vik))�
n⊕

i=1

Wsj (vj , Vij)�Ri

]

, 1 ≤ j ≤ dv.

(A.39)

We note that ∥∥∥(np̂x,j(xj))
−1 �

n⊕
i=1

Khj (xj , Xij)�Ri

∥∥∥ = Op(an),

∥∥∥(np̂u,j(uj))
−1 �

n⊕
i=1

Lλj (uj , Uij)�Ri

∥∥∥ = Op(an),

∥∥∥(np̂v,j(vj))−1 �
n⊕

i=1

Wsj (vj , Vij)�Ri

∥∥∥ = Op(an),

‖E(ψ(W,Y∗))� m̂0‖ = Op(n
−1/2+an).

(A.40)

We first approximate the right hand side of (A.37). By the standard kernel
smoothing theory and using Lemma 2, we may prove that

1

np̂x,j(xj)
�

n⊕
i=1

du⊕
k=1

⊕
uk

(mu,k(Uik)�mu,k(uk))

� (Khj (xj , Xij)Lλk
(uk, Uik))

=

du⊕
k=1

⊕
uk

⊕
u′
k

(mu,k(u
′
k)�mu,k(uk))�

(
Lλk

(uk, u
′
k) ·

pxu,jk(xj , u
′
k)

px,j(xj)

)

⊕ op(hj · λ∗)⊕Op(n
−2/5
√

logn · λ∗),

1

np̂x,j(xj)
�

n⊕
i=1

dv⊕
k=1

⊕
vk

(mv,k(Vik)�mv,k(vk))

� (Khj (xj , Xij)Wsk(vk, Vik))

=

dv⊕
k=1

⊕
vk

⊕
v′
k

(mv,k(v
′
k)�mv,k(vk))�

(
Wsk(vk, v

′
k) ·

pxv,jk(xj , v
′
k)

px,j(xj)

)

⊕ op(hj · s∗)⊕Op(n
−2/5
√
logn · s∗)

(A.41)
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uniformly for xj ∈ [0, 1]. We may also show that

sup
xj∈[0,1]

∥∥∥∥⊕
uk

μ̂A
u,k(uk)�

p̂xu,jk(xj , uk)

p̂x,j(xj)

∥∥∥∥ = Op(n
−1/2),

sup
xj∈[0,1]

∥∥∥∥⊕
vk

μ̂A
v,k(vk)�

p̂xv,jk(xj , vk)

p̂x,j(xj)

∥∥∥∥ = Op(n
−1/2).

(A.42)

Define

aj(xj) =

∫ 1

0

(
x′
j − xj

hj

)
Khj (xj , x

′
j)dx

′
j �Dmx,j(xj)(1),

Δ†
x,j(xj) = h2

j � δx,j(xj)⊕
⊕
k �=j

∫ 1

0

δxx,jk(xj , xk)�
(
h2
k · pxx,jk(xj , xk)

px,j(xj)

)
dxk

⊕
du⊕
k=1

⊕
uk

⊕
u′
k

(mu,k(u
′
k)�mu,k(uk))

�
(
Lλk

(uk, u
′
k) ·

pxu,jk(xj , u
′
k)

px,j(xj)

)

⊕
dv⊕
k=1

⊕
vk

⊕
v′
k

(mv,k(v
′
k)�mv,k(vk))

�
(
Wsk(vk, v

′
k) ·

pxv,jk(xj , v
′
k)

px,j(xj)

)
.

Then, from (A.40), (A.41), (A.42) and Lemma S.9 in [15] it follows that

m̂x,j(xj)�mx,j(xj)� μ̂A
x,j(xj)�

hj∫ 1
0
Khj (xj , x′

j)dx
′
j

� aj(xj)

� h2
j � cj(xj)

= Δ†
x,j(xj)�

⊕
k �=j

∫ 1

0

[
m̂x,k(xk)�mx,k(xk)� μ̂A

x,k(xk)

� hk∫ 1
0
Khk

(xk, x′
k)dx

′
k

� ak(xk)� h2
k � ck(xk)

]
� p̂xx,jk(xj , xk)

p̂x,j(xj)
dxk

�
du⊕
k=1

⊕
uk

[
m̂u,k(uk)�mu,k(uk)� μ̂A

u,k(uk)
]
� p̂xu,jk(xj , uk)

p̂x,j(xj)

�
dv⊕
k=1

⊕
vk

[
m̂v,k(vk)�mv,k(vk)� μ̂A

v,k(vk)
]
� p̂xv,jk(xj , vk)

p̂x,j(xj)

⊕ rx,j(xj),

(A.43)

where rx,j : [0, 1] → H are generic stochastic maps satisfying

sup
xj∈Ij

‖rx,j(xj)‖ = op(n
−2/5) +Op(n

−2/5
√
log n · (λ∗ + s∗) + an),
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sup
xj∈[0,1]

‖rx,j(xj)‖ = Op(n
−2/5 + n−2/5

√
logn · (λ∗ + s∗) + an).

We now approximate the right hand side of (A.38). We get that

1

np̂u,j(uj)
�

n⊕
i=1

dx⊕
k=1

∫ 1

0

[mx,k(Xik)�mx,k(xk)]

� (Lλj (uj , Uij)Khk
(xk, Xik))dxk

=

dx⊕
k=1

[ ∫ 1

0

(
hk∫ 1

0
Khk

(xk, x∗
k)dx

∗
k

� ak(xk)⊕ h2
kck(xk)

)

� p̂ux,jk(uj , xk)

p̂u,j(uj)
dxk

⊕
∫ 1

0

δux,jk(uj , xk)�
(
h2
k · pux,jk(uj , xk)

pu,j(uj)

)
dxk

]
⊕ op(n

−2/5),

1

np̂u,j(uj)
�

n⊕
i=1

⊕
k �=j

⊕
uk

[mu,k(Uik)�mu,k(uk)]

� (Lλj (uj , Uij)Lλk
(uk, Uik))

=
⊕
k �=j

⊕
uk

⊕
u′
k

[mu,k(u
′
k)�mu,k(uk)]

�
(
Lλk

(uk, u
′
k) ·

puu,jk(uj , u
′
k)

pu,j(uj)

)
⊕Op(λ∗ · (λj + n−1/2)),

1

np̂u,j(uj)
�

n⊕
i=1

dv⊕
k=1

⊕
vk

[mv,k(Vik)�mv,k(vk)]

� (Lλj (uj , Uij)Wsk(vk, Vik))

=

dv⊕
k=1

⊕
vk

⊕
v′
k

[mv,k(v
′
k)�mv,k(vk)]

�
(
Wsk(vk, v

′
k) ·

puv,jk(uj , v
′
k)

pu,j(uj)

)
⊕Op(s∗ · (λj + n−1/2)).

(A.44)

We may also prove that

μ̂B
u,j(uj) =

⊕
u′
j

(mu,j(u
′
j)�mu,j(uj))�

(
Lλj (uj , u

′
j) ·

pu,j(u
′
j)

pu,j(uj)

)

⊕Op(λj · (λj + n−1/2)).

(A.45)
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Furthermore,

∫ 1

0

μ̂A
x,k(xk)�

p̂ux,jk(uj , xk)

p̂u,j(uj)
dxk = Op(n

−1/2),

⊕
uk

μ̂A
u,k(uk)�

p̂uu,jk(uj , uk)

p̂u,j(uj)
= Op(n

−1/2),

⊕
vk

μ̂A
v,k(vk)�

p̂uv,jk(uj , vk)

p̂u,j(uj)
= Op(n

−1/2).

(A.46)

Define

Δ†
u,j(uj) =

∫ 1

0

δux,jk(uj , xk)�
(
h2
k · pux,jk(uj , xk)

pu,j(uj)

)
dxk

⊕
⊕
u′
j

(mu,j(u
′
j)�mu,j(uj))�

(
Lλj (uj , u

′
j) ·

pu,j(u
′
j)

pu,j(uj)

)

⊕
⊕
k �=j

⊕
uk

⊕
u′
k

(mu,k(u
′
k)�mu,k(uk))

�
(
Lλk

(uk, u
′
k) ·

puu,jk(uj , u
′
k)

pu,j(uj)

)

⊕
dv⊕
k=1

⊕
vk

⊕
v′
k

(mv,k(v
′
k)�mv,k(vk))

�
(
Wsk(vk, v

′
k) ·

puv,jk(uj , v
′
k)

pu,j(uj)

)
.

Let ru,j : Uj → H denote generic stochastic maps satisfying

max
uj∈Uj

‖ru,j(uj)‖ = op(n
−2/5) +Op(λj · (λ∗ + s∗) + an).

Then, from (A.44), (A.45) and (A.46) we have

m̂u,j(uj)�mu,j(uj)� μ̂A
u,j(uj)

= Δ†
u,j(uj)�

dx⊕
k=1

∫ 1

0

[
m̂x,k(xk)�mx,k(xk)� μ̂A

x,k(xk)

�
(

hk∫ 1
0
Khk

(xk, x′
k)dx

′
k

)
� ak(xk)� h2

k � ck(xk)

]

� p̂ux,jk(uj , xk)

p̂u,j(uj)
dxk (A.47)

�
⊕
k �=j

⊕
uk

[
m̂u,k(uk)�mu,k(uk)� μ̂A

u,k(uk)
]
� p̂uu,jk(uj , uk)

p̂u,j(uj)
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�
dv⊕
k=1

⊕
vk

[
m̂v,k(vk)�mv,k(vk)� μ̂A

v,k(vk)
]
� p̂uv,jk(uj , vk)

p̂u,j(uj)

⊕ ru,j(uj).

Similarly, from (A.39) we also get

m̂v,j(vj)�mv,j(vj)� μ̂A
v,j(vj)

= Δ†
v,j(vj)�

dx⊕
k=1

∫ 1

0

[
m̂x,k(xk)�mx,k(xk)� μ̂A

x,k(xk)

�
(

hk∫ 1
0
Khk

(xk, x′
k)dx

′
k

)
� ak(xk)� h2

k � ck(xk)

]

� p̂vx,jk(vj , xk)

p̂v,j(vj)
dxk

�
du⊕
k=1

⊕
uk

[
m̂u,k(uk)�mu,k(uk)� μ̂A

u,k(uk)
]
� p̂vu,jk(vj , uk)

p̂v,j(vj)

�
⊕
k �=j

⊕
vk

[
m̂v,k(vk)�mv,k(vk)� μ̂A

v,k(vk)
]
� p̂vv,jk(vj , vk)

p̂v,j(vj)

⊕ rv,j(vj),

(A.48)

where

Δ†
v,j(vj)

=

∫ 1

0

δvx,jk(vj , xk)�
(
h2
k · pvx,jk(vj , xk)

pv,j(vj)

)
dxk

⊕
⊕
v′
j

(mv,j(v
′
j)�mv,j(vj))�

(
Wsj (vj , v

′
j) ·

pv,j(v
′
j)

pv,j(vj)

)

⊕
du⊕
k=1

⊕
uk

⊕
u′
k

(mu,k(u
′
k)�mu,k(uk))�

(
Lλk

(uk, u
′
k) ·

pvu,jk(vj , u
′
k)

pv,j(vj)

)

⊕
⊕
k �=j

⊕
vk

⊕
v′
k

(mv,k(v
′
k)�mv,k(vk))�

(
Wsk(vk, v

′
k) ·

pvv,jk(vj , v
′
k)

pv,j(vj)

)
,

and rv,j : Vj → H are generic stochastic maps satisfying

max
vj∈Vj

‖rv,j(vj)‖ = op(n
−2/5) +Op(s

δ∗j
j · (λ∗ + s∗) + an).

Now, define

Δ̂x,j(xj) = m̂x,j(xj)�mx,j(xj)� μ̂A
x,j(xj)�

(
hj∫ 1

0
Khj (xj , x′

j)dx
′
j

)
� aj(xj)
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� h2
j � cj(xj) � rx,j(xj),

Δ̂u,j(uj) = m̂u,j(uj)�mu,j(uj)� μ̂A
u,j(uj)� ru,j(uj),

Δ̂v,j(vj) = m̂v,j(vj)�mv,j(vj)� μ̂A
v,j(vj)� rv,j(vj).

Then, from (A.43), (A.47) and (A.48), we have

Δ̂x,j(xj) = Δ†
x,j(xj)� μ̂x,+j(xj ; Δ̂

tup
x,+j)� μ̂x,j+(xj ; Δ̂

tup
x,j+)

⊕ r̃x,j(xj),

Δ̂u,j(uj) = Δ†
u,j(uj)� μ̂u,+j(uj ; Δ̂

tup
u,+j)� μ̂u,j+(uj ; Δ̂

tup
u,j+)

⊕ r̃u,j(uj),

Δ̂v,j(vj) = Δ†
v,j(vj)� μ̂v,+j(vj ; Δ̂

tup
v,+j)� μ̂v,j+(uj ; Δ̂

tup
v,j+)

⊕ r̃v,j(vj),

(A.49)

where μ̂t,+j(tj ; Δ̂
tup
t,+j) and μ̂t,j+(tj ; Δ̂

tup
t,j+) are defined as μt,+j(tj ;Δ

tup
t,+j) and

μt,j+(tj ;Δ
tup
t,j+) with Δt,k, pt,k and ptt′,kk′ being replaced by Δ̂t,k, p̂t,k and

p̂tt′,kk′ for all t, t′ = x, u, v and k, k′, and r̃x,j , r̃u,j and r̃v,j are H-valued stochas-
tic maps satisfying

sup
xj∈[0,1]

‖r̃x,j(xj)‖, max
uj∈Uj

‖r̃u,j(uj)‖, max
vj∈Vj

‖r̃v,j(vj)‖

= op(n
−2/5) +Op(n

−2/5
√

logn · (λ∗ + s∗) + λ2
∗ + s2∗ + an).

(A.50)

We can also show that

sup
xj∈[0,1]

‖Δ†
x,j(xj)‖, max

uj∈Uj

‖Δ†
u,j(uj)‖, max

vj∈Vj

‖Δ†
v,j(vj)‖

= O(n−2/5 + λ∗ + s∗).

(A.51)

Define Δ̂⊕ =
⊕dx

j=1 Δ̂x,j ⊕
⊕du

j=1 Δ̂u,j ⊕
⊕dv

j=1 Δ̂v,j . Then, (A.50) and (A.51)
yield

‖Δ̂⊕‖2 = Op(n
−2/5 + λ∗ + s∗ + an), (A.52)

where the norm ‖ · ‖2 for a square integrable map f : W → H is defined by

‖f‖22 =
∑

u∈
∏du

j=1 Uj

∑
v∈
∏dv

j=1 Vj

∫
[0,1]dx

‖f(x,u,v)‖2p(x,u,v)dx. (A.53)

A version of Proposition 3 implies that there exist a decomposition

Δ̂⊕ =

dx⊕
j=1

Δ̂∗
x,j ⊕

du⊕
j=1

Δ̂∗
u,j ⊕

dv⊕
j=1

Δ̂∗
v,j

and a constant c > 0 such that

max

{
max

1≤j≤dx

‖Δ̂∗
x,j‖2, max

1≤j≤du

‖Δ̂∗
u,j‖2, max

1≤j≤dv

‖Δ̂∗
v,j‖2

}
≤ c · ‖Δ̂⊕‖2. (A.54)
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Then, by Lemma 1 it holds that

Δ̂x,j(xj) = Δ̂∗
x,j(xj)⊕ ĉx,j a.e. with respect to Leb,

Δ̂u,j(uj) = Δ̂∗
u,j(uj)⊕ ĉu,j for all uj ,

Δ̂v,j(vj) = Δ̂∗
v,j(vj)⊕ ĉv,j for all vj

(A.55)

for some stochastic Hilbertian constants ĉx,j , ĉu,j and ĉv,j satisfying
⊕dx

j=1 ĉx,j⊕⊕du

j=1 ĉu,j ⊕
⊕dv

j=1 ĉv,j = 0. Expanding
∫ 1
0
(Δ̂x,j(xj)� Δ̂∗

x,j(xj))� p̂x,j(xj)dxj ,⊕
uj
(Δ̂u,j(uj)� Δ̂∗

u,j(uj))� p̂u,j(uj) and
⊕

vj
(Δ̂v,j(vj)� Δ̂∗

v,j(vj))� p̂v,j(vj)
and using the constraints∫ 1

0

mx,j(xj)� px,j(xj)dxj =

∫ 1

0

m̂x,j(xj)� p̂x,j(xj)dxj = 0, 1 ≤ j ≤ dx,⊕
uj

mu,j(uj)� pu,j(uj) =
⊕
uj

m̂u,j(uj)� p̂u,j(uj) = 0, 1 ≤ j ≤ du,

⊕
vj

mv,j(vj)� pv,j(vj) =
⊕
vj

m̂v,j(vj)� p̂v,j(vj) = 0, 1 ≤ j ≤ dv,

we may prove that

ĉx,j , ĉu,j , ĉv,j = Op(n
−2/5 + λ∗ + s∗ + an). (A.56)

From (A.52), (A.54), (A.55) and (A.56), we have

‖Δ̂x,j‖2, ‖Δ̂u,j‖2, ‖Δ̂v,j‖2 = Op(n
−2/5 + λ∗ + s∗ + an). (A.57)

Now, using (A.49), (A.50), (A.51), (A.57) and the standard kernel smoothing
theory we may establish the theorem.

A.7.4. Proof of Theorem 5

We also sketch the proof. We first prove that there exists (Δx,1, . . . ,Δv,dv ) that
solves the system of equations (A.32) subject to the constraints (A.33). Let

SH(p) =

{ dx⊕
j=1

fx,j ⊕
du⊕
j=1

fu,j ⊕
dv⊕
j=1

fv,j

∣∣∣fx,j : [0, 1] → H are square integrable

}
.

Define Fn : SH(p) → R by

Fn(β) =

∫
[0,1]d

∑
u∈
∏du

j=1 Uj

∑
v∈
∏dv

j=1 Vj∥∥∥∥
dx⊕
j=1

Dmx,j(xj)(1)�
(
h2
j

∫ 1

0

t2K(t)dt · ∂p(x,u,v)/∂xj

p(x,u,v)

)
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⊕
⊕

u′∈
∏du

j=1 Uj

(mu,j(u
′
j)�mu,j(uj))�

(
Lλj (uj , u

′
j) ·

p(x,u,v)|uj=u′
j

p(x,u,v)

)

⊕
⊕

v′∈
∏dv

j=1 Vj

(mv,j(v
′
j)�mv,j(vj))�

(
Wsj (vj , v

′
j) ·

p(x,u,v)|vj=v′
j

p(x,u,v)

)

� β(x,u,v)

∥∥∥∥
2

p(x,u,v)dx.

Then, one may show that Fn is a strictly convex, continuous and Gateaux differ-
entiable functional satisfying Fn(β) → ∞ as ‖β‖2 → ∞. Using this functional
and arguing as in the proof of Theorem 1, we can conclude that there exists a
tuple (Δ̆x,1, . . . , Δ̆v,dv ) of H-valued maps satisfying the system of equations

Δ̆x,j(xj) = Δ†
x,j(xj)� μx,+j(xj ; Δ̆

tup
x,+j)� μx,j+(xj ; Δ̆

tup
x,j+),

1 ≤ j ≤ dx,

Δ̆u,j(uj) = Δ†
u,j(uj)� μu,+j(uj ; Δ̆

tup
u,+j)� μu,j+(uj ; Δ̆

tup
u,j+),

1 ≤ j ≤ du,

Δ̆v,j(vj) = Δ†
v,j(vj)� μv,+j(vj ; Δ̆

tup
v,+j)� μv,j+(vj ; Δ̆

tup
v,j+),

1 ≤ j ≤ dv

(A.58)

and the constraints∫ 1

0

Δ̆x,j(xj)� px,j(xj)dxj =

∫ 1

0

δx,j(xj)

� (h2
j · px,j(xj))dxj , 1 ≤ j ≤ dx,⊕

uj

Δ̆u,j(uj)� pu,j(uj) =
⊕
uj

⊕
u′
j

(mu,j(u
′
j)�mu,j(uj))

� (Lλj (uj , u
′
j) · pu,j(u′

j)), 1 ≤ j ≤ du,⊕
vj

Δ̆v,j(vj)� pv,j(vj) =
⊕
vj

⊕
v′
j

(mv,j(v
′
j)�mu,j(uj))

� (Wsj (vj , v
′
j) · pv,j(v′j)), 1 ≤ j ≤ dv,

(A.59)

where μt,+j(tj ; Δ̆
tup
t,+j) and μt,j+(tj ; Δ̆

tup
t,j+) are defined as μt,+j(tj ;Δ

tup
t,+j) and

μt,j+(tj ;Δ
tup
t,j+) with Δt,k being replaced by Δ̆t,k for all t = x, u, v and k. Then

by arguing as in the proof of Theorem 4, we get

sup
xj∈[0,1]

‖Δ̆x,j‖, max
uj

‖Δ̆u,j‖, max
vj

‖Δ̆v,j‖ = O(n−2/5). (A.60)

Recall the definitions of Δ̂x,j , Δ̂u,j and Δ̂v,j given in the proof of Theorem 4.
Then, we have the following lemma.
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Lemma 4. Under the conditions of Theorem 5, Δ̂x,j(xj)�Δ̆x,j(xj) = Rx,j(xj)

a.e. with respect to Leb, Δ̂u,j(uj) � Δ̆u,j(uj) = Ru,j(uj) for all uj ∈ Uj

and Δ̂v,j(vj) � Δ̆v,j(vj) = Rv,j(vj) for all vj ∈ Vj, where Rx,j ,Ru,j and
Rv,j are maps satisfying supx∈[0,1] ‖Rx,j(xj)‖ = op(n

−2/5), maxuj ‖Ru,j(uj)‖ =

op(n
−2/5) and maxvj ‖Rv,j(vj)‖ = op(n

−2/5).

Lemma 4 yields that, for a.e. fixed xj ∈ (0, 1) with respect to Leb and for all
uj and vj ,

n2/5 � (m̂x,j(xj)�mx,j(xj)) = n2/5 � μ̂A
x,j(xj)⊕ (n2/5h2

j )� cj(xj)

⊕ n2/5 � Δ̆x,j(xj)⊕ op(1),

n2/5 � (m̂u,j(uj)�mu,j(uj)) = n2/5 � μ̂A
u,j(uj)⊕ n2/5 � Δ̆u,j(uj)

⊕ op(1),

n2/5 � (m̂v,j(vj)�mv,j(vj)) = n2/5 � μ̂A
v,j(vj)⊕ n2/5 � Δ̆v,j(vj)

⊕ op(1).

(A.61)

We take the limits of both sides of equations at (A.58) and at (A.59) after
multiplying them by n2/5. Then, by using (A.60) and Proposition E.6 in [8], we
may prove that

(Δx,1, . . . ,Δv,dv ) := ( lim
n→∞

n2/5 � Δ̆x,1, . . . , lim
n→∞

n2/5 � Δ̆v,dv )

satisfies (A.32) and (A.33). The uniqueness of the solution of (A.32) subject
to (A.33) follows by arguing as in the proof of Theorem 1 and by Lemma 1.
The desired asymptotic distributions now follow from (A.61), Lemma 3 and a
version of Proposition 4.8 in [40] for strongly measuarble Gaussian elements.

A.7.5. Proof of Lemma 4

Here, we again give a sketch for the proof. Recall the definitions of r̃x,j , r̃u,j ,

r̃v,j , Δ
†
x,j , Δ

†
u,j and Δ†

v,j given in the proof of Theorem 4. Then by (A.50) and
(A.51), it holds that

sup
xj∈[0,1]

‖r̃x,j(xj)‖, max
uj

‖r̃u,j(uj)‖, max
vj

‖r̃v,j(vj)‖ = op(n
−2/5),

sup
xj∈[0,1]

‖Δ†
x,j(xj)‖, max

uj

‖Δ†
u,j(uj)‖, max

vj
‖Δ†

v,j(vj)‖ = Op(n
−2/5).

(A.62)

Define the integral operators πx,j , πu,j and πv,j by

πx,j(f)(x,u,v)

=

∫
[0,1]dx−1

⊕
u∈
∏du

j=1 Uj

⊕
v∈
∏dv

j=1 Vj

f(x,u,v)� (p(x,u,v)/px,j(xj))dx−j ,

πu,j(f)(x,u,v)
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=

∫
[0,1]dx

⊕
u−j∈

∏
k �=j Uk

⊕
v∈
∏dv

j=1 Vj

f(x,u,v)� (p(x,u,v)/pu,j(uj))dx,

πv,j(f)(x,u,v)

=

∫
[0,1]dx

⊕
u∈
∏du

j=1 Uj

⊕
v−j∈

∏
k �=j Vk

f(x,u,v)� (p(x,u,v)/pv,j(vj))dx.

Likewise, define the operators π̂x,j , π̂u,j and π̂v,j as πx,j , πu,j and πv,j with
px,j , pu,j , pv,j and p being replaced by p̂x,j , p̂u,j , p̂v,j and p̂, respectively. Let

T = (I−πv,dv )◦ · · · ◦ (I−πx,1) and T̂ = (I− π̂v,dv )◦ · · · ◦ (I− π̂x,1). Also, define

τ = Δ†
v,dv

⊕ (I − πv,dv )(Δ
†
v,dv−1)⊕ · · · ⊕ (I − πv,dv ) ◦ · · · ◦ (I − πx,2)(Δ

†
x,1),

τ̂ = Δ†
v,dv

⊕ (I − π̂v,dv )(Δ
†
v,dv−1)⊕ · · · ⊕ (I − π̂v,dv ) ◦ · · · ◦ (I − π̂x,2)(Δ

†
x,1),

ξ̂ = Δ†
v,dv

⊕ (I − π̂v,dv )(r̃v,dv−1)⊕ · · · ⊕ (I − π̂v,dv ) ◦ · · · ◦ (I − π̂x,2)(r̃x,1).

Recall the definition of Δ̂⊕ given in the proof of Theorem 4. Define

Δ̆⊕ =

dx⊕
j=1

Δ̆x,j ⊕
du⊕
j=1

Δ̆u,j ⊕
dv⊕
j=1

Δ̆v,j .

Then, we have

Δ̂⊕ � Δ̆⊕

=

∞⊕
l=0

T̂ l(τ̂ ⊕ ξ̂)�
∞⊕
l=0

T l(τ )

= T̂
( ∞⊕

l=0

T̂ l(ξ̂)
)
⊕ T
( ∞⊕

l=0

T l(τ̂ � τ )
)
⊕ (T̂ − T )

( ∞⊕
l=0

T̂ l(τ̂ )
)

⊕ T
( ∞⊕

l=2

l−2⊕
j=0

T j ◦ (T̂ − T ) ◦ T̂ l−2−j(τ̂ )
)
⊕ ξ̂ ⊕ τ̂ � τ

=: T̂ (η̂1)⊕ T (η̂2)⊕ (T̂ − T )(η̂3)⊕ T (η̂4)⊕ ξ̂ ⊕ τ̂ � τ

(A.63)

a.e. with respect to PW−1, where W = (X,U,V). Using (A.62) we may prove
that

‖η̂1‖2, ‖η̂2‖2, ‖η̂4‖2 = op(n
−2/5),

‖η̂3‖2 = Op(n
−2/5),

sup
x,u,v

‖ξ̂(x,u,v)‖ = op(n
−2/5),

sup
x,u,v

‖τ̂ (x,u,v)� τ (x,u,v)‖ = op(n
−2/5).

(A.64)
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Note that, for a given sum map η :=
⊕dx

j=1 ηx,j ⊕
⊕du

j=1 ηu,j ⊕
⊕dv

j=1 ηv,j

with ‖η‖2 ≤ 1, there exist a constant Cη > 0 and a map rη :=
⊕dx

j=1 r
η
x,j ⊕⊕du

j=1 r
η
u,j ⊕

⊕dv

j=1 r
η
v,j depending on η such that

sup
w

‖T (η)(x,u,v)‖ ≤ Cη,

‖(T̂ − T )(η)(x,u,v)‖ ≤ ‖rη(x,u,v)‖,
sup

xj∈[0,1]

‖rηx,j(xj)‖ = op(1),

max
uj

‖rηu,j(uj)‖ = op(1),

max
vj

‖rηv,j(vj)‖ = op(1).

(A.65)

Combining (A.63), (A.64) and (A.65) gives that Δ̂⊕ � Δ̆⊕ = R⊕ a.e. with
respect to PW−1, where R⊕ is a stochastic map satisfying

sup
x,u,v

‖R⊕(x,u,v)‖ = op(n
−2/5). (A.66)

Considering the terms∫
[0,1]dx−1

⊕
u∈
∏du

j=1 Uj

⊕
v∈
∏dv

j=1 Vj

Δ̂⊕(x,u,v)� Δ̆⊕(x,u,v)dx−j ,

∫
[0,1]dx

⊕
u−j∈

∏
k �=j Uk

⊕
v∈
∏dv

j=1 Vj

Δ̂⊕(x,u,v)� Δ̆⊕(x,u,v)dx,

∫
[0,1]dx

⊕
u∈
∏du

j=1 Uj

⊕
v−j∈

∏
k �=j Vk

Δ̂⊕(x,u,v)� Δ̆⊕(x,u,v)dx,

using (A.66) and applying a similar argument used for (A.56), we may establish
the desired result.

A.8. Proof of Theorem 6

The theorem follows along the lines of the proof of Theorem 4.
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[9] Egozcue, J. J. and Pawlowsky-Glahn, V. (2019). Compositional data: the

sample space and its structure. Test, 28, 599-638. MR3992128
[10] Ferraty, F., Van Keilegom, I. and Vieu, P. (2012). Regression when both

response and predictor are functions. Journal of Multivariate Analysis, 109,
10-28. MR2922850

[11] Han, K., Müller, H.-G. and Park, B. U. (2020). Additive functional regres-
sion for densities as responses. Journal of the American Statistical Associ-
ation, 115, 997-1010. MR4107695

[12] Han, K. and Park, B. U. (2018). Smooth backfitting for error-in-variables
additive models. Annals of Statistics, 46, 2216-2250. MR3845016

[13] Hastie, T. J. and Tibshirani, R. J. (1993). Varying-coefficient models. Jour-
nal of the Royal Statistical Society: Series B (Statistical Methodology), 55,
757–796. MR1229881

[14] Hron, K., Menafoglio, A., Templ, M., Hruzová, K. and Filzmoser, P.
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