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Abstract: In some applications, an experimental unit is composed of two
distinct but related subunits. The response from such a unit is (X1, X2)
but we observe only Y1 = min{X1, X2} and Y2 = max{X1, X2}, i.e., the
subunit identities are not observed. We call (Y1, Y2) unordered paired ob-
servations. Based on unordered paired observations {(Y1i, Y2i)}ni=1, we are
interested in whether the marginal distributions for X1 and X2 are identi-
cal. Testing methods are available in the literature under the assumptions
that var(X1) = var(X2) and cov(X1, X2) = 0. However, by extensive sim-
ulation studies, we observe that when one or both assumptions are violated,
these methods have inflated type I errors or much lower powers. In this pa-
per, we study the likelihood ratio test statistics for various scenarios and
explore their limiting distributions without these restrictive assumptions.
Furthermore, we develop Bartlett correction formulae for these statistics to
enhance their precision when the sample size is not large. Simulation stud-
ies and real-data examples are used to illustrate the efficacy of the proposed
methods.
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1. Introduction

In some applications, an experimental unit is made of two distinct but re-
lated subunits. The response from such a unit is (X1, X2) but we observe only
Y1 = min{X1, X2} and Y2 = max{X1, X2}; that is, the subunit identities are
not observed or unobservable. We call (Y1, Y2) unordered paired observations.
We assume that (X1i, X2i)

τ , for i = 1, . . . , n, are independent and identically
distributed (i.i.d.) normal random vectors:(

X1i

X2i

)
∼ N

((
μ1

μ2

)
,

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

))
. (1.1)

We say that {(Y1i, Y2i)}ni=1 are uncorrelated when ρ = 0 and correlated when
ρ �= 0. This paper studies the homogeneity testing of the marginal distributions
of X1i and X2i:

H0 : (μ1, σ
2
1) = (μ2, σ

2
2) versus Ha : (μ1, σ

2
1) �= (μ2, σ

2
2). (1.2)

https://mathscinet.ams.org/mathscinet/msc/msc2020.html
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Unordered paired data occur in many applications, and there is a long re-
search history. For instance, Hinkley (1973) analyzed such a data set from hu-
man genetics. The genetic blueprint of an individual is contained in 23 pairs of
chromosomes. Each member of the pair is inherited from the corresponding chro-
mosome pair of a parent. If we do not know the chromosome correspondences
between the offspring and the parents, we lose the parental identities and end up
with unordered paired observations. Olkin and Viana (1995) provide more ex-
amples. In visual acuity studies, we may record only a subject’s extreme acuities
(the “best” and “worst” acuities) without recording the corresponding eyes. In
twin experiments, we obtain unordered paired observations without a label for
each member of a twin pair; see Ernst et al. (1996) and Shekar et al. (2006)
and the references therein. Furthermore, unordered data of a higher dimension
are collected in various scientific disciplines. For example, Davies and Phillips
(1988) provided an example of unordered data of dimension k. In the interim
analysis of a double-blinded clinical trial of k treatments, we get the k order
statistics without knowledge of the corresponding treatments; see also van der
Meulen (2005) and Miller et al. (2009). In diffusion tensor (DT) brain imaging,
the eigenvalues of the DT estimates for each brain voxel are viewed as unordered
triples; see Yu et al. (2013) and the references therein.

With unordered paired observations, a fundamental question is whether or
notX1i andX2i have the same distribution. Under Model (1.1), this is equivalent
to testing the hypothesis specified in (1.2). Hinkley (1973) proposed a likelihood
ratio test (LRT) procedure under the assumption that ρ = 0 and σ2

1 = σ2
2 . Li

and Qin (2011) investigated this problem in a semiparametric setup. Other ap-
proaches can be found in Moore II (1973), Lauder (1977), Moore II et al. (1979),
Carothers (1981), Efron et al. (1971), and Qin and Zhang (2005), among others.
All these works assume that X1i and X2i are independent with equal variance.
These assumptions may not hold in applications, and they can be severely vi-
olated, as evidenced by the examples in Section 6. Ignoring the dependence
structure and/or imposing an incorrect equal-variance assumption can lead to
unreliable inference conclusions: the type I error may be severely inflated or the
power markedly decreased.

This paper focuses on tests for (1.2). In particular, we study the LRT in four
scenarios: (1) ρ = 0 and σ2

1 = σ2
2 ; (2) ρ = 0; (3) σ2

1 = σ2
2 ; and (4) no assumption

on ρ, σ2
1 , and σ2

2 .
Investigating the asymptotic behavior of these LRT statistics is technically

challenging. The well-developed theory (Wilks, 1938; Chernoff, 1954; Self and
Liang, 1987; Drton, 2009) is not applicable because of the undesirable mathe-
matical properties (see (2.3) in Section 2) of the log-likelihood function. In addi-
tion, an important byproduct of the theory for the corresponding LRT statistics
is the asymptotic behavior of the maximum likelihood estimators (MLEs) for
(μ1, μ2, σ

2
1 , σ

2
2). Interestingly, we have shown that the asymptotic behavior de-

pends on whether ρ = 0 is known or ρ is unknown. The convergence rates of
these parameter estimates depend on the scenario.

We observe that the limiting distributions of the LRT statistics under H0

are not sufficiently accurate approximations to their finite-sample distributions
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when n is not large. To enhance the approximation precision of the limiting
distributions, we adjust the statistics based on the Bartlett correction (Bartlett,
1937; Lawley, 1956). Simulation results confirm the efficacy of the adjustment.

We organize the rest of the paper as follows. Section 2 introduces the LRT
statistics for (1.2) and studies their asymptotic behavior under H0. Section
3 provides the sketch of the proofs. Section 4 presents the adjusted limiting
distributions of our statistics for data of limited sample size. Section 5 contains
simulation studies, and Section 6 gives real-data examples. Some discussion is
provided in Section 7, and the technical details are relegated to Section 8.

2. Main results

The LRT is an essential tool in statistical inference, especially under the para-
metric model assumption; see Wilks (1938); Chernoff (1954); Self and Liang
(1987); Drton (2009), and the references therein. In this section, we present
LRT statistics and study their properties for testing (1.2) under model assump-
tions on ρ and whether or not σ2

1 = σ2
2 .

We first derive the log-likelihood function with unordered paired observations.
For any y1 < y2, we have

P (Y1 ≤ y1, Y2 ≤ y2) = P ({X1 ≤ y1, X2 ≤ y2} ∪ {X1 ≤ y2, X2 ≤ y1})
= P (X1 ≤ y1, X2 ≤ y2) + P (X1 ≤ y2, X2 ≤ y1)

−P ({X1 ≤ y1, X2 ≤ y2} ∩ {X1 ≤ y2, X2 ≤ y1})
= P (X1 ≤ y1, X2 ≤ y2) + P (X1 ≤ y2, X2 ≤ y1)

−P (X1 ≤ y1, X2 ≤ y1).

Therefore, the joint density function of (Y1, Y2) is given by

φ(y1, y2;θ) + φ(y2, y1;θ),

where φ(x1, x2;θ) denotes the bivariate normal density function with parameters
θ = (μ1, μ2, σ1, σ2, ρ)

τ specified in (1.1). The log-likelihood function based on
{(Y1i, Y2i)}ni=1 and Model (1.1) is:

�n(θ) =
n∑

i=1

log{φ(Y1i, Y2i;θ) + φ(Y2i, Y1i;θ)}. (2.1)

This likelihood function is the basis for our subsequent development.

2.1. Unordered uncorrelated paired data

In this section, we assume that ρ = 0 is known; problem (1.2) is reduced to
H0 : μ1 = μ2, σ1 = σ2. We define

θ̂ = arg sup
θ

{�n(θ) : ρ = 0},



Test with unordered paired observations 1665

θ̃ = arg sup
θ

{�n(θ) : σ1 = σ2 = σ, ρ = 0},

θ̌ = arg sup
θ

{�n(θ) : (μ1, σ1) = (μ2, σ2), ρ = 0},

and we use the notational convention that the entries of θ̂ are μ̂1, μ̂2, and so
on. Note that θ̂, θ̃, and θ̌ are MLEs of θ under various constraints. The LRT
statistics for testing the null hypothesis (1.2) against two alternatives, specified
by σ1 = σ2 and σ1 �= σ2 respectively, are given by

Rn,1 = 2{�n(θ̃)− �n(θ̌)}, Rn,2 = 2{�n(θ̂)− �n(θ̌)}. (2.2)

Theorem 1 below establishes the asymptotic distributions of Rn,1 and Rn,2 as

well as the convergence rates of θ̃ and θ̂ under H0. For presentational continuity,

we relegate its proof to Section 8. Let
D→ denote “convergence in distribution.”

We use 0.5χ2
0 + 0.5χ2

1 for an equal mixture of χ2
0 and χ2

1, with χ2
0 being the

distribution with a point mass at zero.

Theorem 1. Assume Model (1.1) and ρ = 0. Under H0 that μ1 = μ2 = μ0 and
σ2
1 = σ2

2 = σ2
0, as n → ∞, we have

(a) (μ̃1 − μ0)
2, (μ̃2 − μ0)

2, and σ̃ − σ0 are all of order Op(n
−1/2), and

Rn,1
D→ 0.5χ2

0 + 0.5χ2
1;

(b) (μ̂j − μ0)
2, (σ̂j − σ0)

2 for j = 1, 2 are all of order Op(n
−1/2), and

Rn,2
D→ R ≡ sup

x1,x2

{2xτw− xτx} ,

where xτ = (x2
1, x

2
2, 2x1x2) and wτ = (w1, w2, w3) with w1, w2, w3 being

three i.i.d. N(0, 1) random variables.

Deriving the asymptotic null distributions of Rn,1 and Rn,2 is technically
challenging. We make the following comments. Let μ = (μ1 + μ2)/2 and Δ =
(μ1 − μ2)/2 so that μ1 = μ+Δ and μ2 = μ−Δ; we have

∂�n(μ+Δ, μ−Δ, σ1, σ2, ρ)

∂Δ

∣∣∣
Δ=0,σ1=σ2

= 0. (2.3)

This fact implies that the Fisher information matrix of θ under the null hy-
pothesis degenerates and undermines the basis for the elegant classical results
(Wilks, 1938; Chernoff, 1954; Self and Liang, 1987; Drton, 2009). The crucial
step in obtaining the asymptotic null distribution of the LRT is a quadratic ap-
proximation in θ̂−θ to the log-likelihood ratio function. Following this path, we
need to consider a fourth-order Taylor expansion to obtain a quadratic approxi-
mation in (θ̂−θ)2 and so on. Fortunately, we find that the sandwich technique of
Chen and Chen (2001) and Chen et al. (2001) overcomes the technical obstacles
caused by (2.3).
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2.2. Unordered correlated pair data

In this section, we study the LRTs for (1.2) with ρ being an unknown parameter.
Define

θ̂
∗

= arg sup
θ

{�n(θ)},

θ̃
∗

= arg sup
θ

{�n(θ) : σ1 = σ2 = σ},

θ̌
∗

= arg sup
θ

{�n(θ) : (μ1, σ1) = (μ2, σ2)}.

Similarly to the strategy for (2.2), we define the LRT statistics for (1.2) with ρ
being an unknown parameter:

R∗
n,1 = 2{�n(θ̃

∗
)− �n(θ̌

∗
)}, R∗

n,2 = 2{�n(θ̂
∗
)− �n(θ̌

∗
)}. (2.4)

Theorem 2 below establishes the asymptotic distributions of R∗
n,1 and R∗

n,2

as well as the convergence rates of θ̃
∗
and θ̂

∗
under their respective H0. The

proof is given in Section 8.

Theorem 2. Assume Model (1.1) but do not assume ρ = 0. Under H0 that
μ1 = μ2 = μ0, σ

2
1 = σ2

2 = σ2
0, and ρ = ρ0, as n → ∞, we have

(a) (μ̃∗
1−μ0)

2, (μ̃∗
2−μ0)

2, (σ̃∗−σ0), and (ρ̃∗−ρ0) are all of order Op

(
n−1/4

)
,

and

R∗
n,1

D→ 0.5χ2
0 + 0.5χ2

1;

(b) (μ̂∗
1 − μ0)

2, (μ̂∗
2 − μ0)

2, σ̂∗
1 − σ0, σ̂∗

2 − σ0, and ρ̂∗ − ρ0 are all of order
Op

(
n−1/4

)
, and

R∗
n,2

D→ R∗ ≡ max{w2
1 + (w+

2 )
2, w2

1 + (w+
3 )

2},

where w1, w2, and w3 are three i.i.d. N(0, 1) random variables.

The limiting cumulative distribution function (c.d.f.) of R∗
n,2 is given by:

P (R∗ ≤ x) = P
(
max{w2

1 + (w+
2 )

2, w2
1 + (w+

3 )
2} ≤ x

)
=

∫ x

0

Φ2(
√
x− y)(2πy)−1/2 exp(−y/2)dy

for x ≥ 0 with Φ(·) being the c.d.f. of the standard normal distribution. We
use this expression to evaluate the asymptotic quantile and the p-value for the
corresponding test.
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3. Sketch of the proofs of Theorems 1 and 2

3.1. Reparameterization

We first propose a reparameterization scheme that plays a fundamental role
in our proof. Recall that the log-likelihood function based on {(Y1i, Y2i)}ni=1 is
given by

�n(θ) =

n∑
i=1

log{φ(Y1i, Y2i;θ) + φ(Y2i, Y1i;θ)}

=
n∑

i=1

log{φ(X1i, X2i;θ) + φ(X2i, X1i;θ)}.

Let Z1i = (X1i +X2i)/2 and Z2i = (X1i −X2i)/2. We define

μ = E(Z1i) = (μ1 + μ2)/2,

Δ = E(Z2i) = (μ1 − μ2)/2,

σ2
+ = var(Z1i) = (1/4)(σ2

1 + σ2
2 + 2ρσ1σ2),

σ2
− = var(Z2i) = (1/4)(σ2

1 + σ2
2 − 2ρσ1σ2),

ξσ+σ− = cov(Z1i, Z2i) = (1/4)(σ2
1 − σ2

2),

and let β0 = Δ − μ(σ−/σ+)ξ, β1 = (σ−/σ+)ξ, η2 = (1 − ξ2)σ2
−. With this

reparameterization, testing (1.2) is equivalent to testing H0 : β0 = β1 = 0, and
we can decompose the log-likelihood function as

�n(θ) = �∗n,1(μ, σ+) + �∗n,2(β0, β1, η),

where

�∗n,1(μ, σ+) =

n∑
i=1

log{φ(Z1i;μ, σ+)}, (3.1)

�∗n,2(β0, β1, η) =
n∑

i=1

log
{
0.5φ(Z2i;β0 + β1Z1i, η)

+0.5φ(Z2i;−β0 − β1Z1i, η)
}
, (3.2)

and φ(x;μ, σ) denotes the density function of N(μ, σ2).
Based on this transformation and existing results from finite mixture models,

we give intuitive explanations of the convergence rates given in Theorems 1 and
2. For simplicity, we consider the case σ2

1 = σ2
2 = σ2, which implies ξ = 0 and

hence β1 = 0. Therefore, (3.1) can be viewed as the log-likelihood based on n
observations from N(μ, σ2

+), and (3.2) can be viewed as the log-likelihood based
on n observations from the mixture model 0.5N(β0, η

2)+ 0.5N(−β0, η
2), where

σ2
+ = 0.5σ2 + 0.5ρσ2, η2 = 0.5σ2 − 0.5ρσ2. (3.3)
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As a consequence, testing (1.2) is equivalent to testing H0 : β0 = 0 based on
observations from 0.5N(β0, η

2) + 0.5N(−β0, η
2), i.e., testing homogeneity in a

two-component normal mixture model with equal variance.

• When ρ = 0 is known, we immediately have σ2
+ = η2. The MLEs of

(μ, σ2
+) obtained from (3.1) have an n−1/2 convergence rate; so does that

of η2. On the other hand, β2
0 + η2 is the second moment of 0.5N(β0, η

2)+
0.5N(−β0, η

2); it can be estimated by maximizing (3.2) and can achieve
the n−1/2 convergence rate. Hence, the convergence rate for the MLE of
β2
0 is n−1/2, or equivalently, that for the MLE of β0 is n

−1/4. These comply
with the convergence rates given in Part (a) of Theorem 1.

• When ρ is unknown, σ2
+/η

2 = (1 + ρ)/(1− ρ) is unknown; the estimation
of σ2

+ is unable to determine the estimation of η2. The MLEs of (μ, σ2
+)

based on (3.1) continue to have the n−1/2 convergence rates. However,
β0 and η2 need to be estimated from (3.2), which is the likelihood of a
normal mixture model. When η2 is unknown, this model is not strongly
identifiable (Chen and Chen, 2003) or not identifiable in the second order
(Ho and Nguyen, 2016). The MLEs of β0 and η2 can achieve convergence
rates of only n−1/8 and n−1/4 respectively; see Theorem 1 of Chen and Li
(2009) and Proposition 3.16 of Ho and Nguyen (2019). These are in line
with the convergence rates stated in Part (a) of Theorem 2.

3.2. Outline of the proofs

We now give an outline of the proofs of Theorems 1 and 2; the details are pro-
vided in Section 8. Without loss of generality, we assume that under H0, the true
value of (μ1, μ2, σ

2
1 , σ

2
2 , ρ) is (0, 0, 2, 2, 0), or equivalently that of (μ, σ

2
+, β0, β1, η

2)
is (0, 1, 0, 0, 1); the rationale for this assumption can be found in Section 8.

We first show that the MLEs for θ = (μ1, μ2, σ1, σ2, ρ)
τ are consistent. This is

achieved by showing that for any estimator θ̄ of θ, if it leads to a sufficiently large
value of the likelihood function, namely �n(θ̄) − �(θ0) ≥ C for some constant
C > −∞, then under the null model, θ̄ is a consistent estimator of θ. We show
that this conclusion is generally valid whether or not the assumption(s) σ1 = σ2

and/or ρ = 0 are imposed. Therefore, this ensures the consistency of the MLEs
of θ derived from different assumptions.

We then derive the asymptotic distributions of the LRTs through their asymp-
totic quadratic forms based on the consistency of the MLEs of θ. We need the
following notation:

Bi =

(
(Z2

1i − 1)(Z2
2i − 1)

2
, Z1i(Z

2
2i − 1),− (Z4

2i − 6Z2
2i + 3)

12

)τ

, (3.4)

Di =

(
Z1i,

Z2
1i + Z2

2i − 2

2
,
Z2
2i − Z2

1i

4
,
(Z2

1i − 1)(Z2
2i − 1

2
, Z1i(Z

2
2i − 1)

)τ

.

(3.5)
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Applying the central limit theorem, we have

n−1/2
n∑

i=1

Bi
D→ N(0,ΣB) and n−1/2

n∑
i=1

Di
D→ N(0,ΣD), (3.6)

where

ΣB = var(Bi) = diag(1, 2, 1/6) and ΣD = var(Di) = diag(1, 1, 1/4, 1, 2).

With some algebra, we are able to obtain the asymptotic quadratic forms of
the LRTs; these together with (3.6) lead to the asymptotic distribution of the
corresponding LRTs claimed in Theorems 1 and 2.

• If ρ = 0 is known and σ2
1 = σ2

2 , we have

Rn,1 = 4n−1

⎧⎨⎩
(

n∑
i=1

Di[3]

)+
⎫⎬⎭

2

+ op(1),

where Di[k] denotes the kth element of the vector Di, and this convention
is applicable to all vectors hereafter.

• If ρ = 0 is known without σ2
1 = σ2

2 , we have

Rn,2 = sup
t2

{
2tτ2

n∑
i=1

Di2 − ntτ2ΣD2t2

}
+ op(1), (3.7)

where t2 = (β2
0 , β

2
1 , β0β1)

τ , Di2 = (Di[3], Di[4], Di[5])
τ ,

and ΣD2 = var(Di2).
• If ρ is unknown, but σ2

1 = σ2
2 , we have

R∗
n,1 = 6n−1

⎧⎨⎩
(

n∑
i=1

Bi[3]

)+
⎫⎬⎭

2

+ op(1).

• If ρ is unknown, we have

R∗
n,2 = (1/2)n−1

{
n∑

i=1

Bi[2]

}2

+max

⎡⎢⎣n−1

⎧⎨⎩
(

n∑
i=1

Bi[1]

)+
⎫⎬⎭

2

, 6n−1

⎧⎨⎩
(

n∑
i=1

Bi[3]

)+
⎫⎬⎭

2
⎤⎥⎦

+op(1).

4. Adjusted limiting distributions

One drawback of general asymptotic results is that they may offer poor approxi-
mations to the corresponding finite-sample distributions. The convergence rates
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of the parameter estimators given in Theorems 1 and 2 are much lower than
those of the MLEs from the regular parametric models. This adversely affects
the approximation accuracy of the asymptotic distributions to the finite-sample
distributions of the LRT statistics. To improve the approximation precision
when n is not very large, we use the Bartlett correction.

The Bartlett correction was originally proposed by Bartlett (1937) to improve
the approximation of the limiting distribution of an LRT under the regular
model, and it was generalized by Lawley (1956). Let Tn be the LRT statistic
for a hypothesis testing problem, which asymptotically follows a χ2

d distribution
under H0. Define b1 according to the expansion:

d−1E(Tn) = 1 + n−1b1 +O(n−2).

Let b̂1 be a
√
n-consistent estimator of b1 under H0; specifically b̂1 = b1 if b1 is

known. The Bartlett-corrected LRT is then defined to be T ∗
n = (1+ b̂1/n)

−1Tn.
Barndorff-Nielsen and Hall (1988) showed that under appropriate regularity
conditions, the Bartlett correction reduces the error rate of Tn from n−1 to
n−2. Hence, χ2

d better approximates the distribution of T ∗
n than that of Tn; in

other words, (1 + b̂1/n)χ
2
d provides a better approximation to the distribution

of Tn than χ2
d does. In short, the idea of the Bartlett correction is to adjust the

limiting distribution such that its first moment matches that of the LRT up to
order O(n−1); this helps to improve the approximation accuracy of the limiting
distribution to the LRT.

In this spirit, we search for accurate approximate distributions for Rn,1, Rn,2,
R∗

n,1, and R∗
n,2 as follows. Recall that R and R∗ are the limiting distributions

of Rn,2 and R∗
n,2. Let

Fn1 = (1− pn)χ
2
0 + pnχ

2
1, Fn2 = rnR,

F ∗
n1 = (1− p∗n)χ

2
0 + p∗nχ

2
1, F ∗

n2 = r∗nR
∗.

We aim to find pn, rn, p
∗
n, and r∗n so that the above distributions have first

moments very close to the first moments of their corresponding test statistics
for a wide range of n values. High-order asymptotic techniques can be used,
but they may involve complicated analytical tools with little assurance of the
quality of the end products. The computer experiment approach of Chen and
Li (2011) is more effective and practical, and it matches the spirit of the data
science.

The experiment works as follows. We consider a sufficiently wide range of val-
ues for n. For each n, we simulate a large number of data sets, with each data
set composed of n i.i.d. unordered paired observations. Due to the invariance
property of the LRT statistics, each data set is generated from the standard
bivariate normal distribution. Based on these data sets, we obtain the simu-
lated first moments of Rn,1, Rn,2, R

∗
n,1, and R∗

n,2. We choose pn so that the
simulated first moment of Rn,1 matches the first moment of Fn1. We then look
for a regression model for pn versus n. Similar procedures are applied to obtain
regression models for rn, p

∗
n, and r∗n.



Test with unordered paired observations 1671

Specifically, let us take Rn,1 for ease of illustration:

Step 1. For every n in {10, 20, . . . , 100}, generate N = 50, 000 data sets of
size n.
Step 2. Obtain N values of Rn,1 and therefore its simulated first moment,
denoted p̂n. Match p̂n with the first moment of Fn1 to find pn = p̂n.
Step 3. Fit a regression model to (n, pn) with pn being the response and
n being the covariate.

We postulate the following nonlinear but parametric regression models:

pn = 0.5 + an−b + εn (4.1)

rn = 1 + an−b + εn (4.2)

p∗n = 0.5 + an−b + εn (4.3)

r∗n = 1 + an−b + εn, (4.4)

with a and b being regression parameters, and εn accounting for imperfect fit.
Applying Steps 1–2 outlined above leads to the pn, rn, p

∗
n, and r∗n values in Table

1. Fitting the nonlinear regression models (4.1)–(4.4) to the data in Table 1 gives
us the fitted values of a and b. With these values, we calculate the approximate
p-values with the following adjusted limiting distributions:

(0.5− 1.440n−0.676)χ2
0 + (0.5 + 1.440n−0.676)χ2

1 for Rn,1,

(1 + 4.589n−1.163)R for Rn,2,

(0.5− 1.332n−0.492)χ2
0 + (0.5 + 1.332n−0.492)χ2

1 for R∗
n,1,

(1 + 6.325n−1.176)R∗ for R∗
n,2.

For each nonlinear regression model in (4.1)–(4.4), we calculate the squared
correlations between the predicted values and the responses. These are 98.9%,
99.4%, 99.7%, and 99.5%, indicating that models (4.1)–(4.4) fit the data in Table
1 very well. We have implemented the four LRT statistics with the proposed
adjusting limiting distributions in an R package; it is available upon request.

Table 1

Values of pn, rn, p∗n, and r∗n via computer experiments

n 10 20 30 40 50 60 70 80 90 100
pn 0.809 0.681 0.634 0.627 0.596 0.587 0.585 0.587 0.568 0.568
rn 1.312 1.150 1.092 1.070 1.046 1.028 1.030 1.032 1.016 1.012
p∗n 0.932 0.801 0.749 0.721 0.687 0.674 0.669 0.651 0.649 0.645
r∗n 1.417 1.194 1.129 1.090 1.062 1.040 1.038 1.028 1.022 1.018

5. Simulation studies

5.1. Data generation

Because of the invariance property, we need only study the LRT tests based on
data generated from distributions with standardized parameter values.
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To examine the sizes of the tests, we simulate at μ1 = μ2 = 0 and σ1 = σ2 = 1
in (1.1). We study five cases corresponding to ρ = −0.5,−0.25, 0, 0.25, and 0.5.
To compare the powers of the tests, we set μ1 = 0, σ1 = 1, and form 20 cases
as combinations of μ2 = 1.0, 1.5, σ2 = 1.0, 0.5 and ρ = −0.5,−0.25, 0, 0.25, 0.5.

In each case, we generate (X1, X2) from model (1.1) with one of the above
parameter settings. Then, we obtain Y1 = min{X1, X2} and Y2 = max{X1, X2}.
We repeat the process to obtain n unordered pairs (Y1, Y2).

Based on each set of n unordered pairs, we compute the values of Rn,1, Rn,2,
R∗

n,1, and R∗
n,2 and carry out the tests for H0 without checking that the model

for generating the data satisfies the conditions for the tests. We record the
rejection rates based on 50, 000 repetitions; the results are presented in the next
section.

5.2. Results

We calculate the rejection rate of each test at the significance levels α =
10%, 5%, and 1%. The rejection percentages under the null models are sum-
marized in Table 2.

When ρ = 0, X1 and X2 are independent. The assumptions for all the LRTs,
Rn,1, Rn,2, R

∗
n,1, and R∗

n,2, are satisfied. However, as shown in the first section
of Table 2, if their limiting distributions are applied without adjustment, the
resulting tests are inaccurate: their type I errors markedly exceed the nominal
significance levels. The adjustment proposed in Section 4 is very helpful. After
the adjustment, the type I errors of all the tests are close to the nominal levels.
The precision is impressive since the adjustment works well even when n is as
small as 25.

When ρ = ±0.25 or ±0.5, the model assumptions for Rn,1 and Rn,2 are
violated. When we apply the tests, the type I errors are either near zero when
ρ = 0.25 or 0.5 or seriously inflated when ρ = −0.25 or −0.5. In contrast,
because of their invariance property, R∗

n,1 and R∗
n,2 continue to perform well:

with their limiting distributions adjusted, they have satisfactory precision in the
type I errors.

To further illustrate the effects of the adjustment on the limiting distribu-
tions, Figure 1 presents the type I errors (%) of our LRTs at the 5% significance
level when 100 ≤ n ≤ 2500 and ρ = 0. The trends for the 10% and 1% sig-
nificance levels are similar and are omitted. The plots show that the type I
errors of Rn,1, Rn,2 after the adjustment are within a 0.2% band of the nom-
inal level for large n and a 0.4% band otherwise; similar results are observed
for R∗

n,1. For R∗
n,1, the approximation accuracy shows no clear improvement

as n increases, but the type I errors are between 5% and 5.4%, which is suf-
ficiently accurate for typical applications. We have also run the simulation for
n = 3000, 3500, . . . , 5000. The trends are similar to the results for n = 2500 and
are omitted.
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Table 2

Simulated Type I errors (%) of LRTs based on limiting distributions/adjusted limiting
distributions

Levels 10% 5% 1% 10% 5% 1%
n = 25 n = 75

ρ = 0
Rn,1 13.7/10.7 7.3/5.7 1.8/1.4 11.3/ 9.9 5.9/5.1 1.3/1.2
Rn,2 12.9/10.6 6.9/5.2 1.6/1.0 10.8/10.2 5.6/5.2 1.2/1.0
R∗

n,1 15.9/10.5 8.1/5.5 1.8/1.1 13.4/10.4 7.0/5.5 1.5/1.1
R∗

n,2 13.5/10.1 7.4/5.0 1.8/1.1 11.1/10.1 5.9/5.2 1.2/1.0
ρ = 0.25

Rn,1 1.2/0.8 0.5/0.3 0.1/0.1 0.1/0.0 0.0/0.0 0.0/0.0
Rn,2 3.8/3.0 1.9/1.4 0.4/0.3 1.8/1.7 0.7/0.7 0.1/0.1
R∗

n,1 15.9/10.5 8.1/5.5 1.8/1.1 13.4/10.4 7.0/5.5 1.5/1.1
R∗

n,2 13.5/10.1 7.4/5.0 1.8/1.1 11.1/10.1 5.9/5.2 1.2/1.0
ρ = 0.5

Rn,1 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0
Rn,2 0.7/0.5 0.3/0.2 0.0/0.0 0.1/0.1 0.0/0.0 0.0/0.0
R∗

n,1 15.9/10.5 8.1/5.5 1.8/1.1 13.4/10.4 7.0/5.5 1.5/1.1
R∗

n,2 13.5/10.1 7.4/5.0 1.8/1.1 11.1/10.1 5.9/5.2 1.2/1.0
ρ = −0.25

Rn,1 53.7/47.2 38.6/33.0 15.2/12.7 83.1/80.9 71.6/69.1 43.6/41.3
Rn,2 39.0/34.0 25.5/21.2 8.6/6.2 67.6/66.3 53.6/52.0 27.3/25.6
R∗

n,1 15.9/10.5 8.1/5.5 1.8/1.1 13.4/10.4 7.0/5.5 1.5/1.1
R∗

n,2 13.5/10.1 7.4/5.0 1.8/1.1 11.1/10.1 5.9/5.2 1.2/1.0
ρ = −0.5

Rn,1 92.6/89.9 84.5/80.5 57.5/52.4 100.0/99.9 99.9/99.8 98.5/98.3
Rn,2 80.1/76.2 67.1/61.3 37.3/30.2 99.7/99.6 99.0/98.9 94.5/93.9
R∗

n,1 15.9/10.5 8.1/5.5 1.8/1.1 13.4/10.4 7.0/5.5 1.5/1.1
R∗

n,2 13.5/10.1 7.4/5.0 1.8/1.1 11.1/10.1 5.9/5.2 1.2/1.0

Next, we compare the powers of Rn,1, Rn,2, R
∗
n,1, and R∗

n,2 under the alterna-
tives. All combinations of n, ρ, μ, and σ are incorporated, as described in Section
5.1. Their powers, summarized in Table 3, are computed at the 5% significance
level based on the adjusted limiting distributions. We observe that when ρ = 0,
Rn,1 and Rn,2 have higher powers than R∗

n,1 and R∗
n,2; when ρ = 0.25, Rn,1 and

Rn,2 have higher powers in most cases; when ρ is increased to 0.5, R∗
n,1 and R∗

n,2

are much more powerful; when ρ = −0.25 and −0.5, Rn,1 and Rn,2 are more
powerful, but at the cost of the inflated type I errors reported in Table 2; a test
with a markedly inflated type I error is generally not recommended.

From Tables 2 and 3, we also observe that both the type I errors and the
powers of Rn,1 and Rn,2 decrease as ρ increases, whereas the powers of R∗

n,1 and
R∗

n,2 increase as ρ increases. We use the reparameterization in Section 3.1 to
provide some insight into these results. For simplicity, we consider the case where
σ2
1 = σ2

2 = σ2, under which testing (1.2) is equivalent to testing H0 : β0 = 0
based on observations from the mixture model 0.5N(β0, η

2) + 0.5N(−β0, η
2).

The tests based on Rn,1 and Rn,2 are established assuming ρ = 0 is known.
In view of (3.3), this is equivalent to assuming σ2

+ = 0.5σ2 + 0.5ρσ2 and
η2 = 0.5σ2 − 0.5ρσ2 are equal. Thus, when the true value of ρ is positive, the
approach behind these two tests overestimates η2. The estimator based on the
likelihood (3.2), on the other hand, is asymptotically unbiased for the variance
of the mixture distribution 0.5N(β0, η

2) + 0.5N(β2
0 , η

2), which equals β2
0 + η2.
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Fig 1. Simulated type I errors (%) at the 5% significance level when 100 ≤ n ≤ 1500 and
ρ = 0. The solid and dashed lines are the rates before and after the adjustments, respectively.

With η2 underestimated and β2
0 + η2 unbiasedly estimated, we obtain an un-

derestimated β2
0 , asymptotically. As ρ gets larger, the overestimation of η2 and

underestimation of β2
0 become more severe. This explains the decrease in the

type I errors and powers of Rn,1 and Rn,2. Similar arguments are applicable to
the case where ρ < 0.

Tests based on R∗
n,1 and R∗

n,2 are established without a known-ρ assumption.
The test problems become testing H0 : β0 = 0 based on observations from the
mixture model:

0.5N(β0, η
2) + 0.5N(−β0, η

2) = η {0.5N(β0/η, 1) + 0.5N(−β0/η, 1)} .

The powers of these tests are determined by the value of |β0|/η = |μ1 −
μ2|/

√
2(1− ρ)σ2. Therefore, if the true value of ρ increases, the powers of R∗

n,1

and R∗
n,2 increase. This is in line with the trend observed in Table 3.
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Table 3

Powers (%) of Rn,1, Rn,2, R∗
n,1, and R∗

n,2 at the 5% significance level

σ μ n = 25 n = 75
Rn,1 Rn,2 R∗

n,1 R∗
n,2 Rn,1 Rn,2 R∗

n,1 R∗
n,2

ρ = 0
1.0 1.0 28.1 18.3 8.3 6.3 57.6 41.8 11.2 8.0
1.0 1.5 67.0 49.7 19.2 11.3 97.5 93.0 40.2 24.8
0.5 1.0 46.9 85.2 12.3 70.5 88.2 99.9 21.7 99.6
0.5 1.5 92.2 99.2 39.2 90.6 100.0 100.0 79.7 100.0

ρ = 0.25
1.0 1.0 7.2 6.2 10.4 7.2 6.7 6.0 16.7 10.5
1.0 1.5 38.8 27.0 29.6 17.5 70.9 56.9 63.9 44.8
0.5 1.0 22.4 77.3 16.4 78.2 43.2 99.8 32.5 99.9
0.5 1.5 80.9 98.5 54.0 95.5 99.7 100.0 93.5 100.0

ρ = 0.5
1.0 1.0 1.0 1.9 15.8 9.8 0.1 1.0 32.8 20.0
1.0 1.5 17.7 13.1 54.7 34.6 22.4 16.6 93.7 83.2
0.5 1.0 8.4 71.8 24.3 91.3 7.6 99.6 53.6 100.0
0.5 1.5 66.0 98.1 76.4 99.5 95.7 100.0 99.5 100.0

ρ = −0.25
1.0 1.0 65.1 45.6 7.3 5.9 97.7 93.1 9.0 6.8
1.0 1.5 90.0 76.1 14.2 9.0 100.0 99.9 27.1 16.5
0.5 1.0 75.7 92.1 10.2 68.3 99.7 100.0 16.6 99.5
0.5 1.5 97.9 99.7 29.5 87.8 100.0 100.0 64.5 100.0

ρ = −0.5
1.0 1.0 93.8 81.0 6.7 5.7 100.0 100.0 8.1 6.4
1.0 1.5 99.0 94.3 11.3 7.9 100.0 100.0 19.8 12.2
0.5 1.0 94.9 97.8 9.0 73.9 100.0 100.0 13.3 99.8
0.5 1.5 99.7 100.0 23.3 90.6 100.0 100.0 50.3 100.0

6. Real-data examples

6.1. Data from karyotype analysis

This example considers 40 unordered pairs of the lengths of the longer and
shorter arms of chromosome II of Larix decidua from 40 specimens; so n = 40.
The data are available in Table 1 of Matérn and Simak (1968). The test results
from Rn,1, Rn,2, R

∗
n,1, and R∗

n,2 for (1.2) are as follows:

• Rn,1 = 14.91 and Rn,2 = 17.71. Calibrated by the adjusted limiting dis-
tributions, the asymptotic p-values of Rn,1 and Rn,2 are 7 × 10−5 and
2× 10−4.

• R∗
n,1 = 1.08 and R∗

n,2 = 16.69. Calibrated by the adjusted limiting distri-
butions, the asymptotic p-values of R∗

n,1 and R∗
n,2 are 0.21 and 4× 10−4.

The maximum likelihood estimate of (μ1, μ2, σ1, σ2, ρ) is found to be

(μ̂∗
1, μ̂

∗
2, σ̂

∗
1 , σ̂

∗
2 , ρ̂

∗) = (62.05, 65.55, 3.50, 8.20,−0.73).

Note that ρ̂∗ = −0.73 suggests strong negative correlation between X1i and
X2i. As revealed in the simulation studies reported in the bottom section of
Table 2, Rn,1 and Rn,2 are therefore not reliable because they are designed for
ρ = 0. Moreover, the fitted values μ̂∗

1 and μ̂∗
2 are very close, but σ̂∗

1 and σ̂∗
2 are

significantly different. Hence, R∗
n,1 is unsuitable because it is designed for the

case where σ1 = σ2. We recommend R∗
n,2, which is designed to detect departures

from either equal-mean or equal-variance hypotheses.
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Matérn and Simak (1968) proposed a method for testing H0 : μ1 = μ2, and
the outcome is not significant at the 5% level. We observe that their test is
different from ours, since their H0 does not require σ2

1 = σ2
2 . Our test based on

R∗
n,2 rejects (μ1, σ

2
1) = (μ2, σ

2
2) with high significance. In fact, we can use the

classical LRT for their hypothesis. In particular, let

R̃n = 2
{
�n(θ̂

∗
)− �n(θ̌

0
)
}
,

where �n(θ) is as in (2.1), θ̂
∗
is given in Section 2.2, and

θ̌
0
= arg sup

θ
{�n(θ) : μ1 = μ2}.

We observe (proof omitted) that the model under H0 : μ1 = μ2 is regular

when (μ1, σ
2
1) �= (μ2, σ

2
2). Therefore, R̃n has a χ2

1 limiting distribution. The test

results are R̃n = 3.21 with p-value = 0.07, which is in line with the conclusion
of Matérn and Simak (1968). In summary, both R̃n and Matérn and Simak
(1968) indicate that μ1 and μ2 are not empirically distinguishable based on the
given data; however, R∗

n,2 suggests that (μ1, σ
2
1) = (μ2, σ

2
2) should be rejected

with high significance. The difference in the two distributions comes from the
difference in their variances.

6.2. C-band area of human chromosome data

This example consists of normalized measurements of the C-band area on the
No. 9 chromosome pair (Mason et al., 1975). The measurements are based on
three groups: the father, mother, and offspring. These groups respectively have
40, 18, and 31 unordered pairs of normalized measurements of the C-band area.
The data are available in Table 1 of Lauder (1977). We analyze the group of
fathers as an example; the analysis of the other groups is similar. We constructed
Rn,1, Rn,2, R

∗
n,1, and R∗

n,2 and the corresponding p-values from the adjusted
limiting distributions. The results are as follows:

• Rn,1 = 6.51 and Rn,2 = 9.47 with n = 40. Calibrated by the adjusted
limiting distributions, the asymptotic p-values of Rn,1 and Rn,2 are 6.6×
10−3 and 8.9× 10−3.

• R∗
n,1 = 10.74 and R∗

n,2 = 13.48 with n = 40. Calibrated by the ad-
justed limiting distributions, the asymptotic p-values of R∗

n,1 and R∗
n,2

are 7.5×10−4 and 1.9× 10−3.

The maximum likelihood estimate of (μ1, μ2, σ1, σ2, ρ) is found to be

(μ̂∗
1, μ̂

∗
2, σ̂

∗
1 , σ̂

∗
2 , ρ̂

∗) = (86.75, 68.58, 10.55, 8.29, 0.46).

Note that ρ̂∗ = 0.46 suggests strong postive correlation between X1i and X2i.
Moreover, μ̂∗

1 and μ̂∗
2 are quite different whereas σ̂∗

1 ≈ σ̂∗
2 . These suggest that
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R∗
n,1 is the most suitable test while R∗

n,2 is also a possibility. Note that R∗
n,1 is

sharper than R∗
n,2 with a smaller p-value.

Lauder (1977) used the aforementioned data to study the transmission of the
heritage properties on the chromosome from parents to children. The validity
of the analysis hinges on (μ1, σ1) �= (μ2, σ2) in the model for the unordered pair
data of the father or the mother, but the paper did not verify this assumption.
Our work fills this gap and provides numerical evidence to support the analysis.

7. Discussion

We have proposed methods for testing the homogeneity of unordered pair data.
With the LRT approach based on the likelihood of the bivariate normal random
vectors, we considered the testing problem (1.2) for four scenarios: (1) ρ = 0 and
σ2
1 = σ2

2 ; (2) ρ = 0; (3) σ2
1 = σ2

2 ; and (4) no assumption for these parameters.
We derived both the limiting distributions of the LRTs and the convergence
rates of the MLEs of the unknown parameters. Furthermore, in the spirit of the
Bartlett correction, we proposed the adjusted limiting distribution for each LRT.
By simulation, we demonstrated that the adjusted limiting distributions provide
accurate approximations to the finite-sample distributions of the corresponding
LRTs even when the sample size is as small as n = 25.

Throughout this paper, we have focused on unordered paired observations
from normal random vectors. This leads to many interesting but open-ended
research topics. For example, the problem becomes more challenging when the
data are n unordered k-tuples. Our methods and theory serve as a useful starting
point for the general problem. One obstacle is that the joint density function of
an unordered k-tuple involves k! terms. This makes the asymptotic expansion of
the log-likelihood extremely complicated and therefore introduces tremendous
difficulty in the technical development. Another obstacle is that the reparame-
terization in Section 3.1 plays an important role in the theoretical development.
For unordered k-tuples with k > 2, we have yet to find a comparable reparam-
eterization. Because of these difficulties, we leave this theoretical development
to future research. It would also be interesting to consider unordered k-tuples
that follow the general exponential family distributions. In addition to the afore-
mentioned technical difficulties, we may need to model the correlation structure
among the k-tuples. We expect that copula models (Nelsen, 2006) will be useful
for this problem.

8. Technical details

8.1. Some preparation

Throughout the proofs, we use a generic θ for the parameters, which may be in-
terpreted as θ = (μ, σ+, β0, β1, η)

τ when necessary. Recall that (μ, σ+, β0, β1, η)
is defined in Section 3.1, the log-likelihood �(θ) can be written as �(θ) =
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�∗n,1(μ, σ+) + �∗n,2(β0, β1, η), where

�∗n,1(μ, σ+) =

n∑
i=1

log{φ(Z1i;μ, σ+)},

and �∗n,2(β0, β1, η) can be equivalently written as

�∗n,2(β0, β1, η) =
n∑

i=1

log{0.5φ(Z2i;β0 + β1Z1i, η) + 0.5φ(−Z2i;β0 + β1Z1i, η)}.

Under H0 in Theorem 1, which includes the assumption that ρ = 0, suppose
that the true parameter values of the data-generating distribution are μ1 =
μ2 = μ∗, σ

2
1 = σ2

2 = σ2
∗. We may then, in our proofs, work with the transformed

data
X∗

1 =
√
2(X1 − μ∗)/σ∗, X∗

2 =
√
2(X2 − μ∗)/σ∗.

After the transformation, the algebraic form of the likelihood does not change,
but the true parameter values of the data-generating distribution become μ1 =
μ2 = 0 and σ2

1 = σ2
2 = 2. Without loss of generality, based on the above

invariance property, we may assume that the true parameters μ1 = μ2 = 0 and
σ2
1 = σ2

2 = 2 under H0.
Under H0 in Theorem 2, without loss of generality, the same assumption is

applicable to μ and σ. We now reveal that by the same invariance principle we
may also assume ρ = 0 as long as the true value ρ �= ±1. When ρ �= ±1, we
simply let

(X∗∗
1 , X∗∗

2 ) =
{
X∗

1 , (X∗
2 − ρX∗

1 )/
√

1− ρ2
}
.

The distribution-generated data {X∗∗
1 , X∗∗

2 } now has the true parameter values
μ1 = μ2 = 0, σ2

1 = σ2
2 = 2, and ρ = 0 under H0.

With the above standardization operation, for both Theorems 1 and 2, we
study the asymptotic null properties under the assumption that Z1i and Z2i are
independent normal random variables with the standard parameter values:

(μ, σ+, β0, β1, η) = (0, 1, 0, 0, 1).

8.2. Some useful lemmas

In this section, we present three lemmas. Lemma 1 is a technical preparation
that provides an upper bound on the number of observations in a set. Lemma
2 indicates that under the null model any estimator of θ with a large likelihood
value is consistent for θ. Lemma 3 strengthens Lemma 2 by providing specific
convergence rates.

Lemma 1. As n → ∞, we have, almost surely,

sup
β0,β1

n∑
i=1

I(|Z2i − β0 − β1Z1i| ≤ 1/4) ≤ (1/4)n,

where I(·) is the indicator function.
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Proof. Note that

n−1
n∑

i=1

I(|Z2i − β0 − β1Z1i| ≤ 1/4)

is the empirical measure of the two-dimensional stripe formed by the inequality

|Z2 − β0 − β1Z1| ≤ 1/4.

This class of stripes can divide n points in two-dimensional space into at most a
polynomial number of different subsets. By Pollard (1990), this property implies
the uniform strong law of large numbers:

sup
β0,β1

∣∣∣∣∣n−1
n∑

i=1

I(|Z2i − β0 − β1Z1i| ≤ 1/4)− P
(
|Z2 − β0 − β1Z1| ≤ 1/4

)∣∣∣∣∣→ 0

(8.1)
almost surely.

The distribution of Z2 − β0 − β1Z1 is normal with variance at least 1. Based
on this, we have P (|Z2 − β0 − β1Z1| ≤ 1/4) ≤ 0.2 for any β0, β1. Hence, almost
surely,

n∑
i=1

I(|Z2i − β0 − β1Z1i| ≤ 1/4) ≤ 0.2n+ o(n) ≤ 0.25n.

This completes the proof.

Lemma 2. Suppose an estimator θ̄ satisfies

�n(θ̄)− �n(θ0) = {�∗n,1(μ̄, σ̄+) + �∗n,2(β̄0, β̄1, η̄)} − {�∗n,1(0, 1)}+ �∗n,2(0, 0, 1)}
= {�∗n,1(μ̄, σ̄+)− �∗n,1(0, 1)}+ {�∗n,2(β̄0, β̄1, η̄)− �∗n,2(0, 0, 1)}
≥ C > −∞ (8.2)

for some constant C. Then under the null model, θ̄ = θ0+op(1) = (0, 1, 0, 0, 1)τ+
op(1).

Proof. The classical consistency proof of the MLE such as that in Wald (1949)
is essentially done for models with a compact parameter space. If necessary, one
may first compactify the parameter space or show that, with probability one, the
MLE is inside a compact parameter subspace. We adopt the second approach
by showing that as n → ∞, ε0 ≤ η̄ ≤ M0 and ε0 ≤ σ̄+ ≤ M0 almost surely for
some positive ε0 and M0. For convenience, we specifically choose M0 = exp(4)
and ε0 such that when η < ε0, log(η) + (1/64)/η2 ≥ 2. The existence of such an
ε0 is obvious.

We start with η̄. Note that we have decomposed �n(θ̄) − �n(θ0) into a sum
of two terms. For the first term, according to the classical result for the LRT
under regular models (Serfling, 2000), it is clear that

sup
μ,σ+

{�∗n,1(μ, σ+)− �∗n,1(0, 1)} = Op(1). (8.3)
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When in the second term the variance parameter η > M0 = exp(4), we have

n∑
i=1

log{0.5φ(Z2i;β0+β1Z1i, η)+0.5φ(−Z2i;β0+β1Z1i, η)} ≤ −n logM0 = −4n.

By the law of large numbers, we have

n−1�∗n,2(0, 0, 1) ≥ −(1/2) log(2π)− E(Z2
2 ) ≥ −2

almost surely. This implies that when η > M0,

�∗n,2(β0, β1, η)− �∗n,2(0, 0, 1) ≤ −2n (8.4)

and subsequently, uniformly for η in this range,

�∗n,2(β0, β1, η)− �∗n,2(0, 0, 1) → −∞.

Together with (8.3), we have, whenever η > M0,

�n(θ)− �n(θ0) → −∞

in probability. Since the lemma condition clearly states that η̄ does not have the
above property, it cannot be in this range. That is, we conclude that η̄ ≤ M0.

Suppose η < ε0. In this case, for all i, we have

log{0.5φ(Z2i;β0 + β1Z1i, η) + 0.5φ(−Z2i;β0 + β1Z1i, η)} ≤ − log(η).

For i such that

min{|Z2i + β0 + β1Z1i|, |Z2i − β0 − β1Z1i|} > 1/4, (8.5)

we have

log{0.5φ(Z2i;β0+β1Z1i, η)+0.5φ(−Z2i;β0+β1Z1i, η)} ≤ − log(η)− (1/32)/η2.

By Lemma 1, uniformly in β0 and β1 and almost surely, at most (1/2)n of the
i’s satisfy (8.5). Therefore, when η < ε0,

�∗n,2(β0, β1, η)− �∗n,2(0, 0, 1) ≤ −{log(η) + (1/64)/η2}n ≤ −2n (8.6)

uniformly in β0 and β1 and almost surely. Hence, for all η < ε0, we also have

�∗n,2(β0, β1, η)− �∗n,2(0, 0, 1) → −∞.

In conclusion, the η̄ value satisfying the lemma condition must almost surely
fall within the interval [ε0,M0]. That is, this result shows that we may reduce
the parameter space of (β0, β1, η) to R

2× [ε0,M0] for asymptotic considerations.
Next, we consider σ̄+. For a sufficiently small ε > 0, let

Bε = {(β0, β1, η) : β
2
0 + β2

1 + (η2 − 1)2 ≤ ε2}
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be a ball centered at the true value (0, 0, 1). On the reduced parameter space
R

2 × [ε0,M0], the density function

0.5φ(Z2i;β0 + β1Z1i, η) + 0.5φ(−Z2i;β0 + β1Z1i, η)

satisfies the conditions specified in Wald (1949) for the consistency of the MLE.
For instance, it is a continuous density function with its limit being 0 whenever
β0 or β1 goes to infinity. The side conclusion stated in Wald (1949) is

sup
(β0,β1,η) �∈Bε

�∗n,2(β0, β1, η)− �∗n,2(0, 0, 1) ≤ −δn → −∞ (8.7)

for some δ > 0.
Define

g(z1, z2; ε) = sup
(β0,β1,η)∈Bε

{φ(z2;β0 + β1z1, η) + φ(−z2;β0 + β1z1, η)} .

Then limε→0+ g(z1, z2; ε) = φ(z2; 0, 1). This easily leads to

lim
ε→0+

E{log g(Z1, Z2; ε)} − E{logφ(Z2; 0, 1)} = 0.

Hence, we can find a sufficiently small ε > 0 such that

E{log g(Z1, Z2; ε)} ≤ E{log φ(Z2; 0, 1)}+ 1/2.

By the law of large numbers, almost surely, we have

sup
(β0,β1,η)∈Bε

�∗n,2(β0, β1, η)− �∗n,2(0, 0, 1)

≤
n∑

i=1

{log g(Z1i, Z2i; ε)− log g(Z2i; 0, 1)} ≤ n. (8.8)

We remark that the upper bounds in the above two inequalities are much larger
than necessary, but they are small enough for our proof.

By (8.7) and (8.8), we have shown that

sup
(β0,β1,η)

�∗n,2(β0, β1, η)− �∗n,2(0, 0, 1)

≤
n∑

i=1

{log g(Z1i, Z2i; ε)− log g(Z2i; 0, 1)} ≤ n. (8.9)

Similarly to the proof of (8.4) and (8.6), we can show that, when σ+ /∈ [ε0,M0],

�∗n,1(μ, σ+)− �∗n,1(0, 1) ≤ −2n (8.10)

uniformly in μ, almost surely.
Using (8.9) and (8.10), we obtain, when σ+ /∈ [ε0,M0],

�n(θ)− �n(θ0) = {�∗n,2(β0, β1, η)− �∗n,2(0, 0, 1)}+ {�∗n,1(μ, σ+)− �∗n,1(0, 1)}
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≤ n+ (−2n) = −n → −∞.

Therefore, the σ̄+ value satisfying the lemma condition must almost surely fall
within the interval [ε0,M0]. When we combine this with the results for η̄, the
effective parameter space for (μ, β0, β1, σ+, η) is reduced to R3×[ε0,M0]×[ε0,M0]
from the asymptotic point of view. Within this range, the joint density function

φ(Z1i;μ, σ+){0.5φ(Z2i;β0 + β1Z1i, η) + 0.5φ(−Z2i;β0 + β1Z1i, η)}

satisfies the conditions specified in Wald (1949) for the consistency of the MLE.
Therefore, the lemma condition ensures the consistency of θ̄. This completes
the proof.

Next, we strengthen the results of Lemma 2. We first define some notation.
Let

Ai = (Z1i, (Z
2
1i − 1)/2)τ ,

Bi = ((Z2
2i − 1)/2, (Z2

1i − 1)(Z2
2i − 1)/2, Z1i(Z

2
2i − 1)/2,−(Z4

2i − 6Z2
2i + 3)/12)τ .

It can be seen that E(Ai) = 0, E(Bi) = 0, Ai and Bi are uncorrelated, and

ΣA = var(Ai) = diag(1, 1/2); ΣB = var(Bi) = diag(1/2, 1, 2, 1/6).

Further, we introduce two parameter vectors of lengths 2 and 4:

s1 = (μ, σ2
+ − 1)τ ; s2 = (β2

0 + β2
1 + (η2 − 1), β2

1 , β0β1, β4
0)

τ . (8.11)

In the following, we use |x| and ‖x‖ to denote the L1 and L2 norms of the vector
x, respectively.

Lemma 3. Under the conditions of Lemma 2 and the null hypothesis, we have

(a) �∗n,1(μ̄, σ̄+)− �∗n,1(0, 1) = s̄τ1
∑n

i=1 Ai − n
2 {s̄τ1ΣAs̄1}{1 + op(1)}+ op(1);

(b) �∗n,2(β̄0, β̄1, η̄)−�∗n,2(0, 0, 1) ≤ s̄τ2
∑n

i=1 Bi− n
2 {s̄τ2ΣB s̄2}{1+op(1)}+op(1);

(c) μ̄, σ̄2
+ − 1, β̄4

0 , β̄2
1 , and (η̄2 − 1)2 are Op(n

−1/2).

Proof. We first prove (a). By Lemma 2, we have (μ̄, σ̄+) = (0, 1) + op(1). We
obtain (a) by expanding �∗n,1(μ̄, σ̄+) at (μ̄, σ̄+) = (0, 1) to the second order and
then assessing the asymptotic orders via the weak law of large numbers.

To prove (b), we first denote

δi(β0, β1, η) = {φ(Z2i;β0+β1Z1i, η)+φ(−Z2i;β0+β1Z1i, η)}/{2φ(Z2i; 0, 1)}−1

and then write

�∗n,2(β0, β1, η)− �∗n,2(0, 0, 1) =
n∑

i=1

log{1 + δi(β0, β1, η)}.
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Applying the inequality log(1 + x) ≤ x− x2/2 + x3/3, we have

�∗n,2(β0, β1, η)− �∗n,2(0, 0, 1)

≤
n∑

i=1

δi(β0, β1, η)− (1/2)

n∑
i=1

δ2i (β0, β1, η) + (1/3)

n∑
i=1

δ3i (β0, β1, η).

(8.12)

Next, we delineate δi(β0, β1, η) when (β0, β1, η) are in an op(1) neighborhood of
(0, 0, 1), given (β̄0, β̄1, η̄) = (0, 0, 1) + op(1) as proved in Lemma 2. We perform
two main steps. In the first step, we obtain the fourth-order Taylor expansion
of δi(β0, β1, η); in the second step, we assess the asymptotic orders of the terms
in the expansion and put them into appropriate order expressions.

We start with the first step. Let the partial derivatives be

δ
(s,t,k)
i (β0, β1, η) =

∂s+t+kδi(β0, β1, η)

∂βs
0∂β

t
1∂(η

2)k
.

Expanding both φ(±Z2i;β0 + β1Z1i, η) to the fourth order at (β0, β1, η) =
(0, 0, 1), we get

δi(β0, β1, η) =

4∑
s+t+k=1

βs
0β

t
1(η

2 − 1)k

s!t!k!
δ
(s,t,k)
i (0, 0, 1) + ε

(1)
in , (8.13)

where the summation is over all non-negative integer combinations of s, t, k

summing to 4 and ε
(1)
in is the remainder term in the Taylor expansion. Let

ε
(1)
n =

∑n
i=1 ε

(1)
in ; then

ε(1)n = Op(n
1/2)

∑
s+t+k=5

βs
0β

t
1(η

2 − 1)k.

Next, we argue that every term in the above summation part is of order
op(n

1/2)|s2|. For instance, when s = t = 1 and k = 3, we have

|β0β1(η
2 − 1)3| = op(1)|β0β1| = op(|s2|),

helped by the fact that we are investigating the region of η2 − 1 = op(1). The
orders of the other terms can be similarly assessed. Hence,

ε(1)n = op(n
1/2)|s2|.

In the second step, we first show that every term in the summation part of
(8.13) satisfying s+2t+2k ≥ 5 is also of order op(n

1/2)|s2|. We use s = t = k = 1
as an example. Note that

|β0β1(η
2 − 1)| = op(1)|β0β1| = op(|s2|).
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For notational simplicity, let δ
(s,t,k)
i = δ

(s,t,k)
i (0, 0, 1). It is easy to check that

δ
(s,t,k)
i has zero mean and finite variance, so

n∑
i=1

δ
(s,t,k)
i = Op(n

1/2).

Therefore, we have

n∑
i=1

βs
0β

t
1(η

2 − 1)k

s!t!k!
δ
(s,t,k)
i = op(n

1/2|s2|).

The proofs for the other s+2t+2k ≥ 5 terms are similar. Hence, we may write

δi(β0, β1, η) =

4∑
s+2t+2k=1

βs
0β

t
1(η

2 − 1)k

s!t!k!
δ
(s,t,k)
i + ε

(2)
in (8.14)

and still have
n∑

i=1

ε
(2)
in = op(n

1/2|s2|). (8.15)

By straightforward algebra, we find

4∑
s+2t+2k=1

βs
0β

t
1(η

2 − 1)k

s!t!k!
δ
(s,t,k)
i = sτ2Bi − 1.5{β2

0 + (η2 − 1)}2Bi[4] (8.16)

where the unwanted term Bi[4] is the fourth element of vector Bi. Its coefficient
is easily verified to be {β2

0 + (η2 − 1)}2 = op(|s2|). This allows us to obtain a
neater expression by absorbing it into the higher-order term, concluding that

δi(β0, β1, η) = sτ2Bi + ε
(3)
in (8.17)

such that
n∑

i=1

ε
(3)
in = op(n

1/2|s2|) = op(1) + op(n‖s2‖2). (8.18)

In short, we have shown that

n∑
i=1

δi(β0, β1, η) = sτ2

n∑
i=1

Bi + op(1) + op(n‖s2‖2). (8.19)

The above algebraic manipulations are typical of the techniques employed in
Chen and Chen (2001) and Chen et al. (2001). The same techniques, which are
tedious but not sophisticated, give

n∑
i=1

δ2i (β0, β1, η) = sτ2

{
n∑

i=1

BiB
τ
i

}
s2 + op(1) + op(n‖s2‖2), (8.20)
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n∑
i=1

δ3i (β0, β1, η) =

n∑
i=1

|sτ2Bi|3 + op(1) + op(n‖s2‖2). (8.21)

We provide some details below for (8.20); the result in (8.21) can be similarly
obtained.

Note that
n∑

i=1

δ2i (β0, β1, η) =

n∑
i=1

(sτ2Bi)
2 + 2

n∑
i=1

(sτ2Bi)ε
(3)
in +

n∑
i=1

{ε(3)in }2. (8.22)

Repeating the procedures for assessing the order of
∑n

i=1 ε
(3)
in in (8.18), we sim-

ilarly have
n∑

i=1

{ε(3)in }2 = op(n)(|s2|2) = op(1)(n
1/2|s2|)2 = op(1) + op(n‖s2‖2) (8.23)

and
n∑

i=1

(sτ2Bi)ε
(3)
in = op(n)(|s2|2) = op(1) + op(n‖s2‖2). (8.24)

Combining (8.22)–(8.24) gives (8.20).
Together with the weak law of large numbers (8.20) and (8.21) lead to

n∑
i=1

δ2i (β0, β1, η) = nsτ2ΣBs2 + op(1) + op(n‖s2‖2), (8.25)

n∑
i=1

δ3i (β0, β1, η) = op(1) + op(n‖s2‖2). (8.26)

Combining (8.19)–(8.26) with (8.12), we have

�∗n,2(β0, β1, η)− �∗n,2(0, 0, 1) ≤ sτ2

n∑
i=1

Bi − (n/2)sτ2ΣBs2{1 + op(1)}+ op(1).

Recall that (β̄0, β̄1, η̄) = (0, 0, 1)+op(1), so the above upper bound is applicable
to �∗n,2(β̄0, β̄1, η̄)− �∗n,2(0, 0, 1). This completes the proof of (b).

Finally, we come to (c). Combining (a) and (b) and the conditions in Lemma
2, we have

C ≤ {�∗n,1(μ̄, σ̄+)− �∗n,1(0, 1)}+ {�∗n,2(β̄0, β̄1, η̄)− �∗n,2(0, 0, 1)}

≤
n∑

i=1

{s̄τ1Ai + s̄τ2Bi} − (n/2){s̄τ1ΣAs̄1 + s̄τ2ΣB s̄2}{1 + op(1)}+ op(1),

(8.27)

which is possible only if both s̄1 = Op(n
−1/2) and s̄2 = Op(n

−1/2). This leads to
the order assessments in (c) and completes the proof of the entire lemma.

Remark: The MLE of θ always satisfies the condition (8.2) with C = 0.
Hence, Lemma 2 implies the consistency of the MLE of θ, and Lemma 3 estab-
lishes the asymptotic order of the MLE.
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8.3. Proof of Theorem 1

The difference between Theorems 1 and 2 is that in the former we consider
ρ0 = 0 to be known when formulating the test statistic. This makes it helpful to
reorganize the entries of Ai and Bi and the corresponding entries of s1 and s2.
After that, we will refine the results in Lemma 3 and apply the refined results
to prove (a) and (b).

When ρ0 = 0 is known, we have σ+ = σ−. Let

t = (μ, β2
0/2 + σ2

+ − 1, β2
0 , β

2
1 , β0β1)

τ . (8.28)

Every entry of s1 and s2 is a linear combination of the entries of t, possibly with
an Op(‖t‖2) difference when these parameter values approach their default null
values. We enumerate these entries as follows. The first entry of s1 is s1[1] = t[1],
and the second is s1[2] = t[2]− t[3]/2. For the entries of s2, we have

s2[1] = β2
0 +β2

1 +(η2−1) = t[2]+ t[3]/2−β2
1(σ

2
+−1) = t[2]+ t[3]/2+Op(‖t‖2).

For the others, s2[2] = t[4], s2[3] = t[5], and s2[4] = (t[3])2 = Op(‖t‖2). In
summary,

s1 = (t[1], t[2]− t[3]/2)
τ
, s2 = (t[2] + t[3]/2, t[4], t[5], 0)

τ
+Op(‖t‖2). (8.29)

Because every entry of s1 and s2 is virtually a linear combination of the
entries of t, we can reorganize the entries of Ai and Bi into Di such that

sτ1Ai + sτ2Bi = {tτ +Op(‖t‖2)}Di. (8.30)

Recall that Di is defined in (3.5):

Di =
(
Z1i, (Z

2
1i + Z2

2i − 2)/2, (Z2
2i − Z2

1i)/4, (Z
2
1i − 1)(Z2

2i − 1)/2, Z1i(Z
2
2i − 1)

)τ
with E(Di) = 0 and var(Di) = ΣD = diag(1, 1, 1/4, 1, 2). Using the central
limit theorem, we have

n−1/2
n∑

i=1

Di
D→ N(0,ΣD). (8.31)

With the above preparation, we refine the results in Lemma 3 to the following
lemma.

Lemma 4. Assume the conditions of Lemma 3 and let ρ̄ = 0. If, under the null
model,

�n(θ̄)− �n(θ0) ≥ C > −∞,

we then have

(a) �n(θ̄)− �n(θ0) ≤ t̄
τ

n∑
i=1

Di − (n/2)t̄
τ
ΣD t̄{1 + op(1)}+ op(1);

(b) μ̄, σ̄2
+ − 1, β̄2

0 , and β̄2
1 are Op(n

−1/2).
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Proof. Combining the results of (a) and (b) in Lemma 3, we have

�n(θ̄)−�n(θ0) ≤
n∑

i=1

{s̄τ1Ai+s̄τ2Bi}−(n/2){s̄τ1ΣAs̄1+s̄τ2ΣB s̄2}{1+op(1)}+op(1).

(8.32)
With (8.29) and (8.30), after some algebra, (8.32) can be simplified to

�n(θ̄)− �n(θ0) ≤ t̄
τ

n∑
i=1

Di − (n/2)t̄
τ
ΣD t̄{1 + op(1)}+ op(1), (8.33)

as claimed in part (a) of the lemma.
For (b), with the lemma assumption �n(θ̄)−�n(θ0) ≥ C > −∞, (8.33) implies

that t̄ has the order Op(n
−1/2). The order assessment in (b) then follows the

definition of t in (8.28).

We are now ready for Theorem 1. Note that the MLEs in both Theorem
1(a) and 1(b) satisfy the conditions of Lemma 4 with C = 0. Hence, the order
conclusions of the MLEs in both Theorem 1(a) and 1(b) have been established
in Lemma 4. We next derive the limiting distributions.

We rewrite Rn,1 defined in (2.2) as

Rn,1 = 2{�n(θ̃)− �n(θ0)} − 2{�n(θ̌)− �n(θ0)}

with θ̌ being the maximum point of the reduced model where (μ1, σ1) = (μ2, σ2).
Since the reduced model is regular, by standard techniques such as those in
Serfling (2000):

2{�n(θ̌)− �n(θ0)} = n−1

⎧⎨⎩
(

n∑
i=1

Di[1]

)2

+

(
n∑

i=1

Di[2]

)2
⎫⎬⎭+ op(1). (8.34)

Next, note that θ̃ is the maximum point of the reduced model where σ1 =
σ2 = σ. This makes β1 = ξ = 0 and subsequently for t under the reduced
model,

t = (μ, β2
0/2 + (σ2

+ − 1), β2
0 , 0, 0)

τ .

Nevertheless, Lemma 4 is applicable to the above form of t as long as it is
close to its counterpart in the null model. Applying Lemma 4(a) to θ̃, we
have

2{�n(θ̃)− �n(θ0)}

≤ 2

n∑
i=1

t̃
τ
Di − nt̃

τ
ΣD t̃+ op(1)

≤ sup

{
2

n∑
i=1

tτDi − ntτΣDt : t[3] ≥ 0, t[4] = 0, t[5] = 0

}
+ op(1)
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≤ n−1

⎡⎢⎣( n∑
i=1

Di[1]

)2

+

(
n∑

i=1

Di[2]

)2

+ 4

⎧⎨⎩
(

n∑
i=1

Di[3]

)+
⎫⎬⎭

2
⎤⎥⎦+ op(1).

(8.35)

Note that the range of the supremum conforms to the form of t in the reduced
model and the fact that t[3] = β2

0 ≥ 0. The specific coefficient values are due to
the value of ΣD.

To derive the limiting distribution of Rn,1, we need to show that the upper

bound in (8.35) can be attained. Let θ̆ be the estimator of θ such that the
corresponding

t̆ = n−1

⎛⎝ n∑
i=1

Di[1],

n∑
i=1

Di[2], 4

{
n∑

i=1

Di[3]

}+

, 0, 0

⎞⎠τ

.

With some straightforward algebra, the corresponding θ̆ values of t̆ exist and
satisfy

μ̆1 = Op(n
−1/4), μ̆2 = Op(n

−1/4), σ̆2 − 1 = Op(n
−1/2). (8.36)

If we apply the Taylor expansion, the order assessment in (8.36) leads to the
following approximation:

2{�n(θ̆)− �n(θ0)}

= n−1

⎡⎢⎣( n∑
i=1

Di[1]

)2

+

(
n∑

i=1

Di[2]

)2

+ 4

⎧⎨⎩
(

n∑
i=1

Di[3]

)+
⎫⎬⎭

2
⎤⎥⎦+ op(1).

(8.37)

Since θ̃ is the maximum point of �n(θ), 2{�n(θ̃) − �n(θ0)} is not smaller than
the value in (8.37). The sandwich technique of Chen and Chen (2001) and Chen
et al. (2001) or the squeeze theorem can be applied to obtain

2{�n(θ̃)− �n(θ0)}

= n−1

⎡⎢⎣( n∑
i=1

Di[1]

)2

+

(
n∑

i=1

Di[2]

)2

+ 4

⎧⎨⎩
(

n∑
i=1

Di[3]

)+
⎫⎬⎭

2
⎤⎥⎦+ op(1).

(8.38)

Combining (8.34) and (8.38) gives

Rn,1 = 4n−1

⎧⎨⎩
(

n∑
i=1

Di[3]

)+
⎫⎬⎭

2

+ op(1).
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By (8.31), 2n−1/2
∑n

i=1 Di[3]
D→ N(0, 1). Hence, Rn,1 has the limiting distribu-

tion 0.5χ2
0 + 0.5χ2

1. This completes the proof of part (a).
We now prove conclusion (b). In this case, the range of t has only an intrinsic

restriction as seen in the expression

t = (μ, β2
0/2 + (σ2

+ − 1), β2
0 , β

2
1 , β0β1)

τ .

Let t1 = (μ, β2
0/2 + (σ2

+ − 1))τ and t2 = (β2
0 , β

2
1 , β0β1)

τ . It can be seen that t2
lies on a two-dimensional manifold. Nonetheless, the upper bound developed in
Lemma 4 remains valid for θ̂. We partition Di into Di1 = (Di[1], Di[2])

τ and
Di2 = (Di[3], Di[4], Di[5])

τ with covariance matrices ΣD1 and ΣD2. With these
preparations, we have

2{�n(θ̂)− �n(θ0)}

≤ 2t̂
τ

1

n∑
i=1

Di1 + 2t̂
τ

2

n∑
i=1

Di2 − n
(
t̂
τ

1ΣD1t̂1 + t̂
τ

2ΣD2t̂2

)
+ op(1)

≤ n−1

(
n∑

i=1

Di1

)τ ( n∑
i=1

Di1

)
+ sup

t2

{
2tτ2

n∑
i=1

Di2 − ntτ2ΣD2t2

}
+ op(1).

(8.39)

The supremum is taken over t2 with the intrinsic restriction respected. Similarly
to (8.38), the upper bound (8.39) is attained at some feasible parameter value.
Hence,

2{�n(θ̂)− �n(θ0)}

= n−1

(
n∑

i=1

Di1

)τ ( n∑
i=1

Di1

)
+ sup

t2

{
2tτ2

n∑
i=1

Di2 − ntτ2ΣD2t2

}
+ op(1).

(8.40)

Combining (8.34) and (8.40), we get

Rn,2 = sup
t2

{
2tτ2

n∑
i=1

Di2 − ntτ2ΣD2t2

}
+ op(1).

The intrinsic restriction due to the specific form of t2 = (β2
0 , β

2
1 , β0β1)

τ and
(8.31) leads to the nonstandard form of the limiting distribution in the theorem.

8.4. Proof of Theorem 2

The test problem in Theorem 2 is different from that of Theorem 1 because
we do not assume knowledge of the ρ0 value. The parameter vector is now
θ = (μ1, μ2, σ1, σ2, ρ)

τ including the correlation coefficient ρ.
Since the MLEs in Theorem 2(a) and (b) both satisfy the conditions of

Lemma 3 with C = 0, Lemma 3(c) can be used to establish the order con-
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clusions of the MLEs in Theorem 2. Next, we focus on the limiting distribution
results. We start with some preparation.

With the introduction of ρ, it helps to redefine s1, s2, and so on as follows:

s1 = (μ, σ2
+ − 1, β2

0 + β2
1 + (η2 − 1))τ ; s2 = (β2

1 , β0β1, β4
0)

τ

and the corresponding Ai, Bi as

Ai = (Z1i, (Z
2
1i − 1)/2, (Z2

2i − 1)/2)τ ,

Bi = ((Z2
1i − 1)(Z2

2i − 1)/2, Z1i(Z
2
2i − 1),−(Z4

2i − 6Z2
2i + 3)/12)τ .

These are almost the quantities with the same names defined/recalled above
Lemma 3. The difference is that the first entry of s2 is now the third entry
of s1. That is, we partition the vector differently here. Note that E(Ai) = 0,
E(Bi) = 0, Ai and Bi are still uncorrelated, and

ΣA = var(Ai) = diag(1, 1/2, 1/2); ΣB = var(Bi) = diag(1, 2, 1/6).

Using the central limit theorem, we have

n−1/2
n∑

i=1

Bi
D→ N(0,ΣB). (8.41)

We are now ready to prove the limiting distribution results. When (μ1, σ1) =
(μ2, σ2) in Theorem 2, the asymptotic expansion of the likelihood ratio is an
expansion for regular models:

2{�n(θ̌
∗
)− �n(θ0)} = n−1

(
n∑

i=1

Ai

)τ

Σ−1
A

(
n∑

i=1

Ai

)
+ op(1). (8.42)

The result of Lemma 3 remains applicable to both θ = θ̃
∗
and θ = θ̂

∗
:

2{�n(θ)− �n(θ0)} ≤ 2sτ1

n∑
i=1

Ai + 2sτ2

n∑
i=1

Bi − n{sτ1ΣAs1 + sτ2ΣBs2}+ op(1).

Since σ1 = σ2 in Theorem 2(a), we have

s1 = (μ, σ2
+ − 1, β2

0 + (η2 − 1))τ ; s2 = (0, 0, β4
0)

τ .

This leads to

2{�n(θ̃
∗
)− �n(θ0)} ≤

n−1

(
n∑

i=1

Ai

)τ

Σ−1
A

(
n∑

i=1

Ai

)
+ 6n−1

⎧⎨⎩
(

n∑
i=1

Bi[3]

)+
⎫⎬⎭

2

+ op(1),

(8.43)
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where we have (
∑n

i=1 Bi[3])
+ instead of (

∑n
i=1 Bi[3]) because of the intrinsic

constraint s2[3] = β4
0 ≥ 0. We skip the step of showing that the above upper

bound is attainable, since this is now routine.
Combining (8.42) and (8.43) gives

R∗
n,1 = 6n−1

⎧⎨⎩
(

n∑
i=1

Bi[3]

)+
⎫⎬⎭

2

+ op(1),

which converges to 0.5χ2
0 + 0.5χ2

1 in distribution by (8.41). This is conclusion
(a).

For R∗
n,2 in (b), we are not helped by σ1 = σ2. Yet

2{�n(θ)− �n(θ0)} ≤ 2sτ1

n∑
i=1

Ai + 2sτ2

n∑
i=1

Bi − n{sτ1ΣAs1 + sτ2ΣBs2}+ op(1)

remains true for θ in a small neighborhood of θ0. Similarly, we still have

2
{
�n(θ̂

∗
)− �n(θ0)

}
= n−1

(
n∑

i=1

Ai

)τ

Σ−1
A

(
n∑

i=1

Ai

)
+ sup

s2

{
2sτ2

n∑
i=1

Bi − nsτ2ΣBs2

}
+ op(1).

We skip the proof that this upper bound is attained. Hence,

R∗
n,2 = sup

s2

{
2sτ2

n∑
i=1

Bi − nsτ2ΣBs2

}
+ op(1). (8.44)

The challenge is to provide an analytical description of the limiting distribu-
tion when

s2 = (β2
1 , β0β1, β4

0)
τ .

For this purpose, we highlight the fact that n−1/2
∑n

i=1 Bi is asymptotically
multivariate normal with mean 0 and covariance matrix ΣB = diag(1, 2, 1/6).
The supremum is hence attained in the range of s2 = Op(n

−1/2). In the sub-
region where |β0| < n−1/7 = o(n−1/8), we have s2[3] = β8

0 < n−8/7 = o(n−1).
Hence,

sup
s2,|β0|<n−1/7

{
2sτ2

n∑
i=1

Bi − nsτ2ΣBs2

}

= sup
s2,β0=0

{
2sτ2

n∑
i=1

Bi − nsτ2ΣBs2

}
+ op(1)

= n−1

⎧⎨⎩
(

n∑
i=1

Bi[1]

)+
⎫⎬⎭

2

+ (1/2)n−1

{
n∑

i=1

Bi[2]

}2

+ op(1). (8.45)
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In the other subregion where |β0| ≥ n−1/7, combined with the restriction β0β1 =
Op(n

−1/2), we must have β1 = Op(n
−1/3). Consequently, in this region, s2[1] =

β2
1 = O(n−2/3). This leads to

s2[1]
n∑

i=1

Bi[1]− n{s2[1]}2 = op(1).

Hence,

sup
s2,|β0|≥n−1/7

{
2sτ2

n∑
i=1

Bi − nsτ2ΣBs2

}

= sup
s2

{
2s2[2]

n∑
i=1

Bi[2]− 2ns2[2]
2 + 2s2[3]

n∑
i=1

Bi[3]− (1/6)ns2[3]
2

}
+ op(1)

= (1/2)n−1

{
n∑

i=1

Bi[2]

}2

+ 6n−1

⎧⎨⎩
(

n∑
i=1

Bi[3]

)+
⎫⎬⎭

2

+ op(1). (8.46)

Combining (8.44)–(8.46), we find

R∗
n,2 = (1/2)n−1

{
n∑

i=1

Bi[2]

}2

+max

⎡⎢⎣n−1

⎧⎨⎩
(

n∑
i=1

Bi[1]

)+
⎫⎬⎭

2

, 6n−1

⎧⎨⎩
(

n∑
i=1

Bi[3]

)+
⎫⎬⎭

2
⎤⎥⎦+ op(1).

Therefore, R∗
n,2 has the limiting distribution as claimed.

Acknowledgments

The authors thank the editor, the associate editor, and the referees for con-
structive comments and suggestions that led to significant improvements in the
paper.

References

Barndorff-Nielsen, O. E. and Hall, P. (1988), ‘On the level-error after
Bartlett adjustment of the likelihood ratio statistic’, Biometrika 75, 374–378.
MR0946056

Bartlett, M. S. (1937), ‘Properties of sufficiency and statistical tests’, Proceed-
ings of The Royal Society A 160, 268–282. MR0024103

Carothers, A. D. (1981), ‘On determining the parental origins of homologous
chromosomes’, Annals of Human Genetics 45, 367–374.

https://www.ams.org/mathscinet-getitem?mr=0946056
https://www.ams.org/mathscinet-getitem?mr=0024103


Test with unordered paired observations 1693

Chen, H. and Chen, J. (2001), ‘The likelihood ratio test for homogeneity in
finite mixture models’, The Canadian Journal of Statistics 29, 201–215.
MR1840705

Chen, H. and Chen, J. (2003), ‘Tests for homogeneity in normal mixtures in the
presence of a structural parameter’, Statistica Sinica 13, 351–365. MR1977730

Chen, H., Chen, J. and Kalbfleisch, J. D. (2001), ‘A modified likelihood ratio
test for homogeneity in finite mixture models’, Journal of the Royal Statistical
Society: Series B 63, 19–29. MR1811988

Chen, J. and Li, P. (2009), ‘Hypothesis test for normal mixture models: The
EM approach’, The Annals of Statistics 37, 2523–2542. MR2543701

Chen, J. and Li, P. (2011), ‘Tuning the EM-test for finite mixture models’, The
Canadian Journal of Statistics 39(3), 389–404. MR2842420

Chernoff, H. (1954), ‘On the distribution of the likelihood ratio’, The Annals of
Mathematical Statistics 25, 573–578. MR0065087

Davies, P. and Phillips, A. J. (1988), ‘Nonparametric tests of population differ-
ences and estimation of the probability of misidentification with unidentified
paired data’, Biometrika 75, 753–760. MR0995117

Drton, M. (2009), ‘Likelihood ratio tests and singularities’, The Annals of Statis-
tics 37, 979–1012. MR2502658

Efron, B., Miller, R. G. and Brown, B. W. (1971), Spurious appearance of
mosaicism in three generations in one family with a 3/B translocation. II.
Statistical model of the chromosomal abnormality, Technical Report 27, De-
partment of Statistics, Stanford University.

Ernst, M. D., Guerra, R. and Schucany, W. R. (1996), ‘Scatterplots for un-
ordered pairs’, The American Statistician 50, 260–265.

Hinkley, D. V. (1973), ‘Two-sample tests with unordered pairs’, Journal of the
Royal Statistical Society: Series B 35, 337–346. MR0334369

Ho, N. and Nguyen, X. (2016), ‘Convergence rates of parameter estimation for
some weakly identifiable finite mixtures’, The Annals of Statistics 44, 2726–
2755. MR3576559

Ho, N. and Nguyen, X. (2019), ‘Singularity structures and impacts on parameter
estimation in finite mixtures of distributions’, SIAM Journal on Mathematics
of Data Science 1, 730–758. MR4016133

Lauder, I. J. (1977), ‘Tracing quantitative measurements on human chromo-
somes in family studies’, Annals of Human Genetics 41, 77–86.

Lawley, D. N. (1956), ‘A general method for approximating to the distribution
of likelihood ratio criteria’, Biometrika 43, 295–303. MR0082237

Li, P. and Qin, J. (2011), ‘A new nuisance-parameter elimination method with
application to the unordered homologous chromosome pairs problem’, Journal
of the American Statistical Association 106, 1476–1484. MR2896850

Mason, D., Lauder, I., Rutovitz, D. and Spowart, G. (1975), ‘Measurement of
C-bands in human chromosomes’, Computers in Biology and Medicine 5, 179–
201.

Matérn, B. and Simak, M. (1968), ‘Statistical problems in karyotype analysis’,
Hereditas 59, 280–288.

Miller, F., Friede, T. and Kieser, M. (2009), ‘Blinded assessment of treatment

https://www.ams.org/mathscinet-getitem?mr=1840705
https://www.ams.org/mathscinet-getitem?mr=1977730
https://www.ams.org/mathscinet-getitem?mr=1811988
https://www.ams.org/mathscinet-getitem?mr=2543701
https://www.ams.org/mathscinet-getitem?mr=2842420
https://www.ams.org/mathscinet-getitem?mr=0065087
https://www.ams.org/mathscinet-getitem?mr=0995117
https://www.ams.org/mathscinet-getitem?mr=2502658
https://www.ams.org/mathscinet-getitem?mr=0334369
https://www.ams.org/mathscinet-getitem?mr=3576559
https://www.ams.org/mathscinet-getitem?mr=4016133
https://www.ams.org/mathscinet-getitem?mr=0082237
https://www.ams.org/mathscinet-getitem?mr=2896850


1694 J. Chen et al.

effects utilizing information about the randomization block length’, Statistics
in Medicine 28, 1690–1706. MR2675245

Moore II, D. (1973), ‘Do homologous chromosomes differ? Two statistical tests’,
Cytogenetics and Cell Genetics 12, 305–314.

Moore II, D. H., Carrano, A. V. and Mayall, B. H. (1979), ‘Do homologous chro-
mosomes differ? A preliminary investigation based on DNA measurements’,
Cytogenetics and Cell Genetics 23, 108–116.

Nelsen, R. B. (2006), An Introduction to Copulas, Springer, New York.
MR2197664

Olkin, I. and Viana, M. (1995), ‘Correlation analysis of extreme observations
from a multivariate normal distribution’, Journal of the American Statistical
Association 90, 1373–1379. MR1379480

Pollard, D. (1990), Empirical Processes: Theory and Applications. NSF-CBMS
Regional Conference Series in Probability and Statistics, Vol. 2, Institute of
Mathematical Statistics. MR1089429

Qin, J. and Zhang, J. (2005), ‘Marginal likelihood, conditional likelihood and
empirical likelihood: Connections and applications’, Biometrika 92, 251–270.
MR2201358

Self, S. G. and Liang, K.-Y. (1987), ‘Asymptotic properties of maximum like-
lihood estimators and likelihood ratio tests under nonstandard conditions’,
Journal of the American Statistical Association 82, 605–610. MR0898365

Serfling, R. J. (2000), Approximation Theorems of Mathematical Statistics, Wi-
ley, New York. MR0595165

Shekar, S. N., Banerjee, T. and Biswas, A. (2006), ‘Hypotheses on the effect of
cadmium on glutathione content of red blood corpuscles’, Twin Research and
Human Genetics 9, 73–75.

van der Meulen, E. A. (2005), ‘Are we really that blind?’, Journal of Biophar-
maceutical Statistics 15, 479–489. MR2190563

Wald, A. (1949), ‘Note on the consistency of the maximum likelihood estimate’,
The Annals of Mathematical Statistics 20, 595–601. MR0032169

Wilks, S. S. (1938), ‘The large-sample distribution of the likelihood ratio for
testing composite hypotheses’, The Annals of Mathematical Statistics 9, 60–
62.

Yu, T., Zhang, C., Alexander, A. L. and Davidson, R. J. (2013), ‘Local tests for
identifying anisotropic diffusion areas in human brain with DTI’, The Annals
of Applied Statistics 7, 201–225. MR3086416

https://www.ams.org/mathscinet-getitem?mr=2675245
https://www.ams.org/mathscinet-getitem?mr=2197664
https://www.ams.org/mathscinet-getitem?mr=1379480
https://www.ams.org/mathscinet-getitem?mr=1089429
https://www.ams.org/mathscinet-getitem?mr=2201358
https://www.ams.org/mathscinet-getitem?mr=0898365
https://www.ams.org/mathscinet-getitem?mr=0595165
https://www.ams.org/mathscinet-getitem?mr=2190563
https://www.ams.org/mathscinet-getitem?mr=0032169
https://www.ams.org/mathscinet-getitem?mr=3086416

	Introduction
	Main results
	Unordered uncorrelated paired data
	Unordered correlated pair data

	Sketch of the proofs of Theorems 1 and 2
	Reparameterization
	Outline of the proofs

	Adjusted limiting distributions
	Simulation studies
	Data generation
	Results

	Real-data examples
	Data from karyotype analysis
	C-band area of human chromosome data

	Discussion
	Technical details
	Some preparation
	Some useful lemmas
	Proof of Theorem 1
	Proof of Theorem 2

	Acknowledgments
	References

