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Abstract: Current status data arise commonly in applications when there
is only one feasible observation time to check if the failure time has oc-
curred, but the exact failure time remains unknown. To accommodate the
covariate effect on failure time, the accelerated failure time (AFT) model
has been widely used to analyze current status data with the distribution
of the failure time assumed to be specified or unspecified. In this paper,
we consider a logistic regression with a misclassfied covariate from the cur-
rent status observation scheme. A semiparametric AFT model was built
to model current status data to eliminate the bias caused by this misclas-
sification. This model is also robust to the misspecification of the failure
time compared to the parametric AFT model, as we assume an unknown
distribution of the failure time in the proposed model. Furthermore, incor-
porating the covariate effect on the failure time increases the flexibility of
the model. Finally, we adapt the Expectation-Maximization algorithm for
estimation, which guarantees the convergence of the estimate. Both theory
and empirical studies show the consistency of the estimator.
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1. Introduction

In many applications, it is challenging to obtain an accurate measurement of
a covariate. In general, the naive use of mismeasured covariates may lead to
inconsistent estimators of covariate effects in a regression model (e.g., [6], [41],
and [40]). There exists an extensive literature on methods to address the mis-
measurement covariate problem, including likelihood-based methods (e.g., [31]),
pseudo-likelihood methods (e.g., [23]), Bayesian methods (e.g., [15]), or the esti-
mating equation method (e.g., [27]). To estimate the parameters of the mismea-
surement distribution, all of these methods require either internal or external
validation samples from replication studies ([6]).

There has been considerable work on methods for estimations under the
framework of current status observation. Ayer et al. [1] discussed the nonpara-
metric estimation of the survivor function using the pool adjacent violator al-
gorithm (PAVA). Groeneboom, Maathuis and Wellner ([13, 14]) considered the
current status data with competing risks, where they studied consistency, rates
of convergence and limiting distribution of the maximum likelihood estimate
(MLE). Rabinowitz, Tsiatis and Aragon [29] studied an accelerated failure time
(AFT) model with interval-censored data. Jewell and Shiboski [19], Rossini and
Tsiatis [30], Huang and Wellner [18], Lin, Oakes and Ying [24], and Shiboski
[32], among others, considered the maximum likelihood inference on semipara-
metric transformation models for current status data. Maathuis and Hudgens
[25] proposed nonparametric inference for competing risks current status data
with continuous, discrete or grouped observation times. By inverting a Wald-
type test for testing a null embedded proportional hazards model, Tian and
Cai [33] introduced a novel method for an AFT model based on current status
data or interval-censored data. Lam and Xue [21] and Cook et al. [9] developed
semiparametric cure rate models to allow for the fact that not all individuals in
the population are susceptible to such an event.

Zeng, Cook and Warkentin [43] considered a logistic regression analysis with
a misclassified covariate from a current status observation scheme, from which
they developed a likelihood-based approach for fitting regression models. Para-
metric and nonparametric estimates for the distribution of failure (seroconver-
sion) time were developed. In particular, they only considered modeling the
distribution of failure time without covariate effects. Because it is known that
failure time may depend on the exposure of an antithrombotic drug, ignoring
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the dependence of the failure time on these covariates can lead to invalid in-
ference (See Section 6). Thus, in practice, it is desirable to accommodate some
covariates when modeling the distribution of the failure time.

To overcome this problem, in this paper we consider a logistic regression
analysis with a misclassified covariate from a current status observation scheme,
in which a semiparametric AFT model for the failure time was built. In the
semiparametric AFT model the distribution of the failure time is assumed to
be unspecified. Few studies exist in the current status data literature regard-
ing misclassified covariates that use a semiparametric AFT model. An adapted
Expectation-Maximization (EM) algorithm ([10]) is developed using the PAVA
to estimate the parameters in the AFT model. We have shown that, both in the-
ory and in simulation studies, all estimators are consistent under some regularity
conditions. This method is appealing in that it corrects the bias from covariate
misclassification in the current status scheme. Furthermore, it accommodates
the dependence of the failure time on covariates, leading to a more accurate
and flexible model. Moreover, as a semiparametric method, it is robust to the
misspecification of the distribution assumption of the failure time. Finally, this
method is easily implemented in practice.

The remainder of this article is organized as follows. In Section 2, we introduce
a motivating example. In Section 3, we introduce the notations and models. In
Section 4, we describe an EM algorithm for the estimation of parameters. In
Section 5, we study the asymptotic property of the estimator. Simulation studies
are performed in Section 6 to assess the performance of the proposed method.
Concluding remarks are made in Section 7.

2. Motivating example: A thrombosis study

Prophylaxis with antithrombotic heparin-based therapies is known to be highly
effective in reducing the risk of thrombosis. In orthopedic surgery, administra-
tion of these therapies is now a standard practice ([38]). A study from four
multi-center randomized trials in which patients underwent orthopedic surgery
was conducted ([2, 11, 22, 34]). In this study, 3132 patients were randomized
to receive enoxaparin in order to evaluate the treatment effect of enoxaparin
vs. fondaparinux on reducing the risk of deep vein thrombosis (DVT) following
hip or knee replacement. Some patients experienced serological responses when
they underwent orthopedic surgery and were exposed to antithrombotic. The
current research extends these results by investigating the association between
this serological response and the subsequent risk of DVT.

Before surgery, patients are seronegative, and approximately 10 days follow-
ing the surgery, antibodies develop among seroconverters. If all patients were
tested approximately ten days after surgery, the seroconversion status would be
known for all patients. However, patients were only tested at the time of hos-
pital discharge, which in general is less than 10 days. According to Zeng, Cook
and Warkentin [43], the median time from surgery to blood test is 5.9 days, and
most seroconversions occur between 5 and 8 days. Therefore, negative test re-
sults may represent false negative classifications of the true seroconversion status
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since these patients may have been tested before they developed the antibody
response. Thus, to obtain a valid analysis, it is necessary to accommodate the
timing of the test. In this situation, the seroconversion time is subject to a cur-
rent status observation scheme. Because the seroconversion time may depend
on exposure to an antithrombotic drug, it is desirable to accommodate some
covariates when modeling the distribution of the seroconversion time. Here, we
have developed a novel semiparametric method to analyze current status data
with misclassified covariates.

3. Notation and models

Let Xi = 1 if individual i develops serological response and 0 otherwise, where
i = 1, . . . , n. Denote Ti as the serological response (failure) time if Xi = 1 and
Ci is the random inspection time. We let Ti = ∞ if Xi = 0. Define Di = I(Ti ≤
Ci). If Di = 1, it means that the serological response occurs before or at the
inspection time, hence Xi = 1; if Xi = 0 then Di = 0; if Di = 0, it is possible
that the serological response time occurs after the blood test, hence Di is a
misclassified version of Xi. Let Zi = (Zi1, . . . , Zip)

T be a vector of p×1 baseline
covariates which are observed without measurement error.

For the serological response time Ti, we build a semiparametric AFT model
for individuals who develop serological responses to accommodate for covariate
effects. Specifically, we consider the model

log Ti = γ0 + γTZi + εi (3.1)

when Xi = 1, where γ0 is an intercept, γ is an unknown p × 1 vector of coef-
ficients, εi has mean zero with an unspecified cumulative distribution function
G(s). It is noted that

P (Di = 1 | Xi = 1, Ci, Zi) = P (Ti ≤ Ci | Xi = 1, Ci, Zi)

= G(logCi − γ0 − γTZi)
.
= F (logCi − γTZi), (3.2)

where F (x) = G(x + γ0). Since G(·) or F (·) is a nonparametric function, the
model (3.1) is not identifiable unless we fix F (·) or G(·) at some point. As is
commonly done in the literature (e.g., [37, 20]), we posit γ0 = 0 so that the
model (3.1) is identifiable.

Let Yi denote the fully observed binary response of interest for individual
i which takes the value 1 if individual i develops a DVT and 0 otherwise, i =
1, . . . , n. Define πi = P (Yi = 1 | Xi, Zi), then we may consider building a logistic
regression model:

log
πi

1− πi
= β0 + β1Xi + βT

2 Zi, (3.3)

where β = (β0, β1, β
T
2 )

T is a vector of unknown regression parameters. Our
primary interest is to estimate β.
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If Xi is fully observed, we can then directly fit the model (3.3) to obtain an
estimate β. However, the Xi value is not available when the inspection time is
before the serological response time. A naive method is to use the current status
indicator Di instead of the true serological status Xi in the model (3.3); i.e., we
fit the model:

log
πi

1− πi
= β0 + β1Di + βT

2 Zi. (3.4)

Simulation studies conducted in Section 6 demonstrate that the naive method
using model (3.4) leads to substantive biases for β. Methods on handling mea-
surement errors in the literature generally require internal or external validation
samples or replication studies, which are not available in the thrombosis study.
In this paper, we consider a simple and efficient estimation method for β un-
der a current status observation scheme without needing the internal or external
validation samples or replication studies by using a semiparametric AFT model.

To describe this method, we must specify a model for the probability of the
serocoversion process Xi. Let pi = P (Xi = 1 | Zi) denote the probability for
the serocoversion process Xi. Similarly, we can build a logistic regression model
for pi

log
pi

1− pi
= α0 + αT

1 Zi. (3.5)

Denote α = (α0, α
T
1 )

T .
The observed data are {(Yi, Zi, Di, Ci), i = 1, . . . , n}. We assume that the

inspection time Ci is independent of Xi and Ti given Zi. Let θ = (βT , γT , αT )T

be the vector of all the Euclidean parameters, where β is the parameter of
interest, and γ and α are nuisance parameters.

4. Estimation procedure

With misclassified covariates, a popular technique to obtain the parameter es-
timation is to adapt the EM algorithm ([10]) by treating the true covariates as
“missing data”. The complete data density-mass function is

P (Y,X,D,Z,C) = P (Y,X,D | Z,C)P (Z,C)

= P (Y | X,D,Z,C)P (D | X,Z,C)P (X | Z,C)P (Z,C)

= P (Y | X,Z)P (D | X,Z,C)P (X | Z)P (Z,C),

where in the last step we used the fact that Y is independent of C, and that
given (X,Z), D has no predictive value on Y ([43]), so that P (Y | X,D,Z,C) =
P (Y | X,Z), and that X is independent of C, so P (X | Z,C) = P (X | Z). Note
that P (Z,C) contains no parameter of interest, so for inference of parameters
of interest, we only need to consider the conditional density-mass function

P (Y,X,D | Z,C) = P (Y | X,Z)P (D | X,Z,C)P (X | Z).

Using the evaluations in the complete data conditional likelihood below, the
conditional density of the observed incomplete data (Y,D | Z,C) is

g(Y,D | Z,C, θ, F ) := P (Y,D | Z,C)



Using the AFT model to analyze current status data 1377

= P (Y,D | X = 0, Z, C)P (X = 0 | Z,C)

+P (Y,D | X = 1, Z, C)P (X = 1 | Z,C)

= P (Y | X = 0, D, Z)P (D | X = 0, Z, C)P (X = 0 | Z)

+P (Y | X = 1, D, Z)P (D | X = 1, Z, C)P (X = 1 | Z)

=
( exp(β0 + βT

2 Z)

1 + exp(β0 + βT
2 Z)

)Y ( 1

1 + exp(β0 + βT
2 Z)

)1−Y 1

1 + exp(α0 + αT
1 Z)

+
( exp(β0 + β1 + βT

2 Z)

1 + exp(β0 + β1 + βT
2 Z)

)Y ( 1

1 + exp(β0 + β1 + βT
2 Z)

)1−Y

×{F (logC − γTZ)}D{1− F (logC − γTZ)}1−D exp(α0 + αT
1 Z)

1 + exp(α0 + αT
1 Z)

.

Let g(Y,D,Z,C | θ, F ) = g(Y,D | Z,C, θ, F )h(Z,C) be the joint density of

the observed data, and (θ̂n, F̂n) be the maximum likelihood estimate (MLE) of
the true (θ0, F0). Then

(θ̂n, F̂n) = argmax
(θ,F )

n∏
i=1

g(Yi, Di | Zi, Ci, θ, F ) = argmax
(θ,F )

n∏
i=1

g(Yi, Zi, Di, Ci, | θ, F ).

(4.1)
The last equality is because g(Yi, Zi, Di, Ci, | θ, F ) and g(Yi, Di | Zi, Ci, θ, F )

are equivalent in terms of maximization over (θ, F ). i.e., (θ̂n, F̂n) is the MLE
of (θ0, F0) under the full likelihood of the observed data. However, parameter
estimation based on the above incomplete data mixture model is not easy. A
common practice is to compute (θ̂n, F̂n) via the iterative EM algorithm based
on the complete data likelihood, which is a non-mixture model but with missing
data.

The complete data likelihood for {(Yi, Xi, Di), i = 1, . . . , n} given {(Zi, Ci), i =
1, . . . , n} is

Ln(θ, F ) =

n∏
i=1

P (Yi, Xi, Di | Zi, Ci)

=

n∏
i=1

P (Yi | Xi, Zi; θ)×
n∏

i=1

P (Di | Xi, Zi, Ci; θ)×
n∏

i=1

P (Xi | Zi; θ)

:= L1,n(β)× L2,n(γ, F )× L3,n(α),

where

L1,n(β) =
n∏

i=1

P (Yi | Xi, Zi; θ),

with P (Yi | Xi, Zi; θ) specified in (3.3),

L2,n(γ, F ) =
n∏

i=1

P (Di | Xi, Zi, Ci; θ),
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and

L3,n(α) =

n∏
i=1

P (Xi | Zi; θ).

Note that Xi = 0 implies Di = 0, thus P (Di = 0 | Xi = 0, Zi, Ci) = 1. Since
P (Di = 1 | Xi = 0, Zi, Ci) = 0, to make L2(γ, F ) non-zero, we define 00 = 1, so
that P (Di = 1 | Xi = 0, Zi, Ci) is written as F (logCi−γTZi)

Xi = 00 = 1. Using
(3.2), the second part is L2,n(γ, F ) =

∏n
i=1 P (Di = 1 | Xi, Zi, Ci)

Di×P (Di = 0 |
Xi, Zi, Ci)

1−Di =
∏n

i=1{F (logCi − γTZi)}XiDi{1−F (logCi − γTZi)}Xi(1−Di),
which involves the unknown parameter γ and unknown nonparametric function
F . Let n1 =

∑n
i=1 Xi, and S1 = {i : Xi = 1, 1 ≤ i ≤ n} with |S1| = n1, then

L2,n(γ, F ) is re-witten as

L2,n(γ, F ) =
∏
i∈S1

{F (logCi − γTZi)}Di{1− F (logCi − γTZi)}1−Di .

The third part L3,n(α) =
∏n

i=1 P (Xi = 1 | Zi)
Xi{1−P (Xi = 1 | Zi)}1−Xi =∏n

i=1 p
Xi
i (1− pi)

1−Xi , with pi specified in (3.5).
In practice, the X is subject to missingness, so the observed data are (Y, Z,D,

C). In the EM algorithm, we iterate the E and M steps until convergence.
Specifically, the estimation of the parameter θ and F is updated at the (t+1)st
through the following two steps:

E-step: Compute

Q(θ, F ; θ̂(t), F̂ (t)) = E[log{Ln(θ, F ;Y,X,Z,D,C)} | Y, Z,D,C; θ̂(t), F̂ (t)].

M-step: Maximize Q(θ, F ; θ̂(t), F̂ (t)) with respect to θ and F to obtain

θ̂(t+1) and F̂ (t+1).

The E-step requires the calculation of the conditional expectation given the
observed data, which can be written to three parts

Q(θ, F ; θ̂(t), F̂ (t)) = Q1(β; θ̂
(t), F̂ (t)) +Q2(γ, F ; θ̂(t), F̂ (t)) +Q3(α; θ̂

(t), F̂ (t)),
(4.2)

where each component represents the conditional expectation of the logarithm
of each of the three parts in the complete data likelihood. Since these three parts
do not share the same parameters, we can update estimates β̂(t+1), γ̂(t+1), F̂ (t+1)

and α̂(t+1) by maximizing the Q-functions separately. For updating β̂(t+1), it is
noted that

Q1(β; θ̂
(t), F̂ (t))

=

n∑
i=1

[
Di log{P (Yi | Xi = 1, Zi)}

+(1−Di)
[ 1∑
Xi=0

(ŵ
(t)
i )Xi(1− ŵ

(t)
i )1−Xi log{P (Yi | Xi, Zi)}

]]
, (4.3)



Using the AFT model to analyze current status data 1379

where ŵ
(t)
i = P (Xi = 1 | Yi, Di = 0, Zi, Ci; θ̂

(t), F̂ (t)). It is easy to spec-

ify that ŵ
(t)
i = A/B, where A = P (Yi | Xi = 1, Di = 0, Zi; β̂

(t))P (Di =

0 | Xi = 1, Zi, Ci; γ̂
(t), F̂ (t))P (Xi = 1 | Zi; α̂

(t)) and B =
∑1

Xi=0 P (Yi |
Xi, Di = 0, Zi; β̂

(t))P (Di = 0 | Xi, Zi, Ci; γ̂
(t), F̂ (t))P (Xi | Zi; α̂

(t)). Maximiz-

ing Q1(β; θ̂
(t), F̂ (t)) with respect to β can be easily achieved using standard

statistical software by creating a pseudo-data set similar to [43].

For updating γ̂(t+1) and F̂ (t+1), the conditional expectationQ2(γ, F ; θ̂(t), F̂ (t))
takes the form

Q2(γ, F ; θ̂(t), F̂ (t)) = E[log{L2,n(γ, F )} | Y,D,Z,C; θ̂(t)]

=

n∑
i=1

Di log{F (logCi − γTZi)}

+(1−Di)ŵ
(t)
i log{1− F (logCi − γTZi)}.

Maximizing Q2(γ, F ; θ̂(t), F̂ (t)) with respect to γ and F may not be easy, as
F is a nonparametric non-decreasing function. Here we describe a two-stage
estimation procedure:

Stage 1: For a given γ, we maximize Q2(γ, F ; θ̂(t), F̂ (t)) with respect to
F under the constraint that F (a1) ≤ . . . ≤ F (an) if a1 ≤ . . . ≤ an,
ai = logCi−γTZi. This maximization can be easily achieved by regressing

Di/(Di + (1 − Di)ŵ
(t)
i ) on logCi − γTZi with weight Di + (1 − Di)ŵ

(t)
i

using the PAVA. Denote the estimate F̂ (γ).

Stage 2: We maximize Q2(γ, F̂ (γ); θ̂(t), F̂ (t)) with respect to γ to obtain
γ̂(t+1). This maximization can be achieved using existing software, such
as the optim() function in R ([28]).

Finally, for updating α̂(t+1), the conditional expectationQ3(α; θ̂
(t), F̂ (t)) takes

the form

Q3(α; θ̂
(t), F̂ (t)) = E[log{L3,n(α)} | Y,D,Z,C; θ̂(t), F̂ (t)]

=

n∑
i=1

[
ŵ

(t)
i log pi + (1− ŵ

(t)
i ) log(1− pi)

]
.

Maximizing Q3(α; θ̂
(t), F̂ (t)) with respect to α can be easily achieved as it has

the form of a binary log-likelihood with data ŵ
(t)
i .

In fact, our model is equivalent to a mixture model. It is well known that
there is no general convergence theorem on the EM algorithm, and generally, it
converges to a local maxima ([39], Theorem 3). If the underlying model has the
concave property, the EM algorithm converges to the global MLE. On the other
hand, if the underlying model is not concave, only local convergence is possible.
Thus in an application, one needs to apply the EM algorithm with different
starting values to get possible different local stationary points and compare the
log-likelihood at these stationary points to find the global maxima.
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Our algorithm is a semiparametric version of the EM algorithm. The semi-
parametric and nonparametric EM algorithms are used widely in the literature,
such as in [26, 5, 16, 12], and see the argument there for the convergence of
such algorithm ([12], p.67-68). Chen, Zhang and Davidian [8] applied the EM
algorithm to a semiparametric random effects model, while Bordes, Chauveau
and Vandekerknove [4] applied the EM algorithm to a semiparametric mixture
model, using simulation studies to justify the convergence of the algorithm. Fi-
nally, Balan and Putter [3] developed an R-package of EM algorithm for semi-
parametric shared frailty models.

5. Consistency of the estimators

Let g0(y, z, d, c | θ, F ) = g0(y, d | z, c, θ, F )h0(z, c) be the true joint mass-density
of (Y, Z,D,C), Θ be the domain of θ and F be the collection of all the distri-
bution functions F of T , and P be the probability measure of F0. To show the
consistency of the estimators, we need the following regularity conditions:

(C0). The inspection time Ci is independent of Xi and Ti given Zi.
(C1). The range of (β, α) is bounded.
(C2). The support of Z is bounded.

We show the convergence of the estimators based on the following theorems:

Theorem 5.1. Assume (C0)-(C2), then as n → ∞,

θ̂n
a.s.→ θ0, and

∫ ∣∣F̂n(x)− F0(x)
∣∣dF0(x)

a.s.→ 0,

Condition (C0) is commonly assumed for this type of problem, such as in
[43].

With interval censoring data (type I or current status data) for the Cox pro-
portional hazards model, the regression parameters can be efficiently estimated
with rate n1/2 (see, for example, [17]). However, using the same data for the
standard semiparametric accelerated failure time model, the asymptotic distri-
bution for the estimated regression parameters is an open problem: it is not
clear whether or not θ̂n is n1/2 convergence, or whether it has a normal limiting
distribution (see [18], Section 3.3.2). The reason may be because for the current
status model, the nonparametric maximum likelihood estimate F̂n of F has a
convergence rate only of n1/3, and the process {n1/3(F̂n(·)−F0(·)) : 0 ≤ t ≤ τ}
is not tight in D[0, τ ], and does not converge weakly as a process ([18], Section
2.2). Hence the profile log-likelihood ln(θ, F̂n(· | θ)) is not smooth enough as a
function of θ. Chen et al. [7] encountered another similar challenge in density
ratio models. Our model is more complicated than the standard AFT model,
hence the asymptotic distribution of θ̂n in our model is currently not clear. In
application, we suggest using a bootstrap method to obtain the variability of
the proposed estimators.
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Next we study the possibility of rate
√
n estimability of our model. Let the

original data be V0 ∼ Q ∈ Q = {Qθ : θ ∈ Θ}. In practice, sometimes the origi-
nal data V0 is not completely observed; instead only V = T (V0) is observed, for
some known map T . The resulting model for V is P = {P = QθT

−1 : θ ∈ Θ}.
Denote L0

2(Q) = {g :
∫
g(v)Q(dv) = 0,

∫
g2(v)Q(dv) < ∞}, and denote

L0
2(P ) similarly. Let a(v0) = i(v0 | θ,Q) be the score for θ in model Q, and

i(v | θ, P ) be that in model P , by Proposition 1.1 in [12],

i(v | θ, P ) = E
(
a(V0) | T (V0) = v

)
.

For missing data, the above observation is extended to the following notion
of score operator i : L0

2(Q) → L0
2(P ) (see [12]), where

ia = E(a(V0) | T (V0) = v), ∀ a ∈ L0
2(Q).

It is a bounded linear operator and has an adjoint i∗ : L0
2(P ) → L0

2(Q) deter-
mined by

< b, ia >L2(P )=< i∗b, a >L2(Q), ∀ a ∈ L0
2(Q), b ∈ L0

2(P ),

where< b, g >L2(P )=
∫
b(v)g(v)P (dv) and< b, g >L2(Q)=

∫
b(v0)g(v0)Q(dv0).

Also, i∗b = E(b(V) | V0), ∀b ∈ L0
2(P ). The information operator is defined as

i∗i : L0
2(Q) → L0

2(Q).

The information operator can provide a guideline for the rate
√
n estimability

of the model parameters. If it is boundedly invertible, the parameter is likely
to be

√
n estimable; otherwise, it may not. Yuan, Xu and Zheng [42] used this

method to evaluate the rate
√
n estimability of parameters in some incomplete

data models.

Below we investigate model (4.1) for the rate
√
n estimability for functionals

of F , by evaluating its information operator.

Theorem 5.2. For model (4.1), the information operator i∗i is not boundedly
invertible.

Thus many functionals of the model (4.1), including θ, may not be
√
n es-

timable. For the MLE θ̂n, although its asymptotic distribution and exact con-
vergence rate are unknown, we can get an upper bound on its convergence rate,

as shown in the next Theorem. Let ‖θ̂n − θ0‖ =
( ∑d

j=1(θ̂n,j − θ0,j)
2
)1/2

, where

d = dim(θ), and ‖F̂n − F0‖ =
∫
|F̂n(x)− F0(x)|dF0(x).

Theorem 5.3. Assume (C0)-(C2), then

‖θ̂n − θ0‖+ ‖F̂n − F0‖ = Op

(
n−1/3

)
.

For presentational continuity, we have relegated all the long proofs of Theo-
rems 5.1 to 5.3 to the Appendix.
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6. Simulation studies

In this section, we assess the performance of the proposed method by comparing
the following methods: (i) the näıve method by using a logistic regression model
and including the current status indicator Di as a covariate (Naive), i.e., we
fit the model (3.4); (ii) the proposed method by fitting a semiparametric AFT
model for the seroconversion time (Proposed); (iii) the method by fitting a cor-
rectly specified parametric AFT model for the seroconversion time, which serves
as a benchmark for comparisons (Parametric); and (iv) the method developed
by [43] using a nonparametric estimate of the seroconversion time distribution
(ZCW).

We posit that Zi ∼ Bin(1, 0.5), Xi ∼ Bin(1, pi), pi = expit(α0 + α1Zi),
Yi ∼ Bin(1, πi) with πi = expit(β0+β1Xi+β2Zi), where expit(a) = exp(a)/(1+
exp(a)). The underlying times to seroconversion for individuals who are suscep-
tible are simulated under the AFT model

log Ti = γ0 + γ1Zi + εi.

We consider two distributions: (a) Ti follows a log-normal distribution with
E[log Ti] = γ0 + γ1Zi, and Var(log Ti) = σ2; and (b) Ti follows a Weibull dis-
tribution with a shape a, and a scale bi = exp(−γ0 − γ1Zi). For the inspection
process, we posit that Ci follows the Gamma distribution with a shape 1, and a
rate ξ. In the simulation, we posit that α0 = 0, α1 = 1, β0 = 0, β1 = 1, β2 = 1,
γ0 = 1, γ1 = 1 or 0.1, σ2 = 1, a = 1, and we posit different values of ξ to
induce different proportions of patients who develop serological response before
inspection time, i.e., P (T < C | X = 1). We consider a sample size n = 2000
and 200, and for each model configuration, we conduct 2000 simulations.

Tables 1 and 2 report the empirical biases and standard deviations where T
follows log-normal distribution for γ1 = 1 and γ1 = 0.1, respectively. To evaluate
the efficiency of the proposed method compared to the parametric method,
we also report the relative efficiency (RE) for the proposed method, which is
defined as the ratio of the empirical standard deviations between the proposed
estimate and the parametric estimate. The probability P (T < C | X = 1) = 0.2
and 0.4 by assuming ξ = 0.5 and 0.2. It can be seen that the naive analysis
yields substantial biases for all three parameters. The ZCW’s method also yields
estimators with substantial biases for a larger γ1 value (e.g., γ1 = 1), especially
for β1, β2 and α1; as is expected, the ZCW’s method yields estimators with
smaller biases for a smaller γ1 value (e.g., γ1 = 0.1). The biases of the naive
and ZCW’s estimators also depend on the probability of P (T < C | X = 1) (or
ξ), where as P (T < C | X = 1) decreases (or ξ increases), the bias increases.
When P (T < C | X = 1) is large or ξ is small, the ZCW method yields
comparable estimates as to the proposed method. The proposed method and
the correctly specified parametric method yield negligible biases for all kinds of
parameter estimates. Although the proposed estimate of β is less efficient than
the parametric estimate, the efficiency loss is limited.

Tables 3 and 4 report the empirical biases and standard deviations where T
follows the Weibull distribution for γ1 = 1 and γ1 = 0.1, respectively. In this
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Table 1

Empirical biases and standard deviations where T follows log-normal distribution: γ1 = 1

Naive Proposed Parametric ZCW
ξ Parameter Bias SD Bias SD RE Bias SD Bias SD

n = 2000
0.50 β0 0.391 0.070 0.009 0.221 1.15 -0.017 0.192 0.020 0.194
0.50 β1 -0.426 0.186 0.004 0.325 1.09 0.030 0.299 -0.112 0.288
0.50 β2 0.238 0.111 0.024 0.185 1.12 0.015 0.165 0.439 0.169
0.50 α0 -0.009 0.285 1.06 0.001 0.268 0.111 0.287
0.50 α1 -0.005 0.454 1.04 0.001 0.435 -1.991 0.218
0.50 γ0 -0.012 0.174
0.50 γ1 -0.006 0.196 1.07 0.002 0.184
0.50 σ -0.007 0.089

0.20 β0 0.314 0.075 0.015 0.138 1.16 -0.014 0.119 0.038 0.118
0.20 β1 -0.382 0.135 -0.012 0.211 1.10 0.021 0.192 -0.128 0.177
0.20 β2 0.246 0.111 0.010 0.143 1.06 -0.002 0.135 0.313 0.113
0.20 α0 -0.012 0.190 1.17 0.017 0.162 0.082 0.160
0.20 α1 -0.019 0.369 1.04 0.020 0.355 -1.372 0.136
0.20 γ0 0.004 0.146
0.20 γ1 -0.002 0.187 1.07 0.001 0.175
0.20 σ -0.002 0.088

n = 200
0.50 β0 0.404 0.226 -0.017 0.707 1.13 0.019 0.625 -0.182 0.913
0.50 β1 -0.286 1.350 0.008 1.175 1.14 -0.033 1.035 0.203 1.613
0.50 β2 0.249 0.357 0.046 0.726 1.20 0.017 0.605 0.655 0.774
0.50 α0 0.011 0.859 1.08 -0.008 0.799 0.448 0.660
0.50 α1 0.017 1.329 1.07 -0.008 1.246 -2.130 0.843
0.50 γ0 -0.006 0.488
0.50 γ1 -0.011 0.664 1.03 -0.011 0.642
0.50 σ -0.012 0.369

0.20 β0 0.314 0.233 -0.017 0.544 1.35 0.020 0.403 -0.104 0.552
0.20 β1 -0.332 0.445 0.021 0.725 1.05 -0.029 0.693 0.051 0.729
0.20 β2 0.257 0.366 0.011 0.492 1.07 0.003 0.460 0.366 0.489
0.20 α0 0.011 0.502 1.10 -0.041 0.456 0.302 0.462
0.20 α1 0.014 1.204 1.08 -0.017 1.117 -1.383 0.524
0.20 γ0 -0.008 0.420
0.20 γ1 -0.008 0.606 1.09 -0.008 0.555
0.20 σ -0.005 0.301

case, we consider a smaller probability of P (T < C | X = 1). We posit ξ = 6
and 3 so that P (T < C | X = 1) = 0.04 and 0.07. The conclusions were similar
as those found in the log-normal model scenario.

In summary, the proposed method is robust to the distribution assumption
for the seroconversion time. The ZCW’s method, by ignoring the covariate ef-
fect in the distribution of seroconversion time, yields substantial biases for the
parameters of interest when the survival time is covariate dependent. When the
dependency is small, the ZCW’s method may yield less biased or comparable
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Table 2

Empirical biases and standard deviations where T follows log-normal distribution: γ1 = 0.1

Naive Proposed Parametric ZCW
ξ Parameter Bias SD Bias SD RE Bias SD Bias SD

n = 2000
0.50 β0 0.396 0.068 0.030 0.345 1.01 0.020 0.342 -0.033 0.616
0.50 β1 -0.463 0.152 -0.019 0.546 1.01 -0.013 0.541 0.066 0.776
0.50 β2 0.173 0.107 0.029 0.347 1.01 0.029 0.342 0.071 0.294
0.50 α0 -0.013 0.461 1.01 -0.009 0.458 -0.038 0.483
0.50 α1 -0.009 0.748 0.92 -0.003 0.815 -0.225 0.690
0.50 γ0 -0.031 0.334
0.50 γ1 -0.011 0.272 0.76 0.015 0.358
0.50 σ -0.019 0.185

0.20 β0 0.310 0.072 -0.015 0.297 1.01 -0.011 0.293 0.025 0.348
0.20 β1 -0.364 0.120 0.005 0.452 1.19 0.005 0.381 -0.014 0.465
0.20 β2 0.146 0.107 -0.002 0.266 1.00 0.010 0.265 0.047 0.225
0.20 α0 0.008 0.331 1.01 0.003 0.328 -0.060 0.268
0.20 α1 0.010 0.575 1.05 0.031 0.548 -0.167 0.336
0.20 γ0 -0.033 0.299
0.20 γ1 -0.012 0.263 0.77 0.017 0.341
0.20 σ -0.016 0.177

n = 200
0.50 β0 0.392 0.227 -0.038 1.157 1.09 -0.031 1.064 -0.043 1.532
0.50 β1 -0.377 0.915 0.023 1.999 1.04 0.018 1.916 0.099 1.882
0.50 β2 0.220 0.371 -0.038 1.283 1.08 0.035 1.190 0.061 1.493
0.50 α0 -0.021 1.569 1.15 -0.011 1.369 -0.030 1.556
0.50 α1 0.011 2.033 0.94 -0.007 2.159 -0.098 1.900
0.50 γ0 -0.035 1.214
0.50 γ1 0.015 1.234 0.91 -0.015 1.359
0.50 σ -0.020 0.620

0.20 β0 0.314 0.229 -0.013 1.055 1.06 -0.008 0.991 -0.021 1.403
0.20 β1 -0.340 0.416 0.009 1.475 1.05 0.008 1.402 0.017 1.598
0.20 β2 0.176 0.361 -0.015 1.245 1.07 0.017 1.159 0.042 1.184
0.20 α0 0.016 1.306 1.02 -0.012 1.286 0.029 1.141
0.20 α1 0.033 1.673 1.02 0.031 1.647 -0.093 1.366
0.20 γ0 -0.035 1.143
0.20 γ1 0.015 1.199 0.96 -0.011 1.252
0.20 σ -0.015 0.607

estimate to the proposed method. The naive method using the current status
indicator Di as the covariate also yields substantial biases for the parameters of
interest. The R code for the simulation is available upon the request from the
authors.

7. Concluding remarks

We have proposed a semiparametric AFT model to address a misclassified co-
variate in the current status data scheme. This method overcomes the limitation
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Table 3

Empirical biases and standard deviations where T follows Weibull distribution: γ1 = 1

Naive Proposed Parametric ZCW
ξ Parameter Bias SD Bias SD RE Bias SD Bias SD

n = 2000
6 β0 0.459 0.066 0.018 0.247 1.06 0.017 0.233 -0.270 0.549
6 β1 -0.468 0.401 0.008 0.598 1.06 -0.005 0.563 0.155 0.828
6 β2 0.197 0.112 -0.009 0.173 1.08 0.002 0.160 0.564 0.414
6 α0 -0.012 0.109 1.25 0.011 0.087 0.807 0.308
6 α1 0.005 0.183 1.21 -0.002 0.151 -1.973 0.702
6 γ0 0.076 0.547
6 γ1 -0.017 0.423 1.10 0.016 0.383
6 a 0.027 0.202

3 β0 0.444 0.070 0.022 0.204 1.07 -0.014 0.190 -0.195 0.351
3 β1 -0.488 0.284 -0.009 0.426 1.04 0.005 0.409 0.139 0.546
3 β2 0.206 0.110 -0.007 0.155 1.08 0.006 0.143 0.516 0.252
3 α0 -0.014 0.121 1.48 0.015 0.082 0.742 0.239
3 α1 0.018 0.165 1.15 -0.013 0.144 -2.010 0.477
3 γ0 0.015 0.302
3 γ1 -0.009 0.324 1.10 0.008 0.292
3 a 0.011 0.145

n = 200
6 β0 0.460 0.210 0.019 0.726 1.17 0.020 0.619 -0.132 0.962
6 β1 1.951 5.898 0.011 1.853 1.02 -0.014 1.809 0.365 1.845
6 β2 0.209 0.361 0.001 0.587 1.23 0.005 0.476 0.421 0.736
6 α0 -0.011 0.344 1.09 -0.014 0.317 0.388 0.646
6 α1 0.005 0.605 1.19 0.003 0.508 -1.183 1.309
6 γ0 0.066 2.090
6 γ1 -0.022 1.357 1.06 0.018 1.286
6 a 0.029 0.687

3 β0 0.442 0.219 0.023 0.763 1.26 0.013 0.606 -0.195 1.142
3 β1 0.316 3.479 0.018 1.508 1.11 -0.013 1.363 0.404 2.090
3 β2 0.212 0.354 0.002 0.509 1.04 0.005 0.488 0.583 0.963
3 α0 -0.006 0.399 1.35 -0.019 0.295 0.579 0.680
3 α1 0.023 0.503 1.06 0.015 0.476 -1.711 1.387
3 γ0 0.011 1.116
3 γ1 -0.013 1.162 1.14 0.007 1.017
3 a 0.013 0.458

of the method of [43] by accommodating the dependence of covariates on the
distribution of the seroconversion time. The proposed method is robust to the
distribution assumption of the suroconversion time by assuming a semipara-
metric AFT model. Both theory and simulation studies show that the proposed
method yields consistent estimates of all parameters.

The question being studied can also fit into a general framework of missing
data while missing of a covariate is at random, and the distribution of the
observed values depends on the study time and other covariates. Though in
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Table 4

Empirical biases and standard deviations where T follows Weibull distribution: γ1 = 0.1

Naive Proposed Parametric ZCW
ξ Parameter Bias SD Bias SD RE Bias SD Bias SD

n = 2000
6 β0 0.456 0.067 0.025 0.442 1.04 0.018 0.426 0.036 0.613
6 β1 -0.511 0.297 -0.027 1.075 1.08 -0.024 0.997 0.035 1.853
6 β2 0.191 0.110 0.016 0.348 1.01 0.014 0.344 0.018 0.516
6 α0 -0.036 0.188 1.09 0.033 0.172 0.055 0.383
6 α1 -0.042 0.384 1.26 0.050 0.305 -0.070 1.246
6 γ0 0.018 1.150
6 γ1 0.003 0.477 1.15 -0.005 0.414
6 a 0.030 0.338

3 β0 0.436 0.065 0.015 0.429 1.03 0.012 0.416 -0.028 0.595
3 β1 -0.510 0.208 -0.014 0.994 1.09 -0.011 0.911 0.027 1.713
3 β2 0.186 0.107 0.016 0.318 1.04 0.018 0.307 0.067 0.505
3 α0 -0.018 0.168 1.03 -0.018 0.163 0.028 0.310
3 α1 -0.042 0.312 1.15 0.043 0.272 -0.092 0.755
3 γ0 0.019 0.777
3 γ1 -0.009 0.457 1.14 0.006 0.401
3 a 0.019 0.333

n = 200
6 β0 0.452 0.202 0.024 1.540 1.18 0.017 1.306 -0.049 1.705
6 β1 1.984 5.928 0.032 3.956 1.16 0.026 3.393 1.076 5.154
6 β2 0.221 0.354 0.024 1.361 1.01 0.018 1.350 0.361 2.008
6 α0 -0.037 0.619 1.12 -0.035 0.555 0.261 0.980
6 α1 0.071 1.224 1.15 0.034 1.068 -0.370 2.490
6 γ0 0.025 3.171
6 γ1 0.007 1.511 1.17 0.005 1.287
6 a 0.042 0.969

3 β0 0.435 0.214 0.018 1.639 1.14 0.017 1.441 -0.271 1.759
3 β1 0.169 3.231 0.016 3.898 1.11 0.019 3.521 0.896 4.058
3 β2 0.222 0.356 0.018 1.293 1.13 0.016 1.144 0.180 2.252
3 α0 -0.064 0.591 1.17 -0.029 0.505 0.062 0.789
3 α1 0.096 0.999 1.04 0.054 0.965 0.240 3.978
3 γ0 -0.021 2.458
3 γ1 0.016 1.435 1.07 0.011 1.339
3 a 0.027 1.137

this paper, we considered a binary outcome using a logistic regression model,
this method can be applied to different type of outcomes using generalized linear
models. The estimation procedure introduced in Section 4 can be easily adapted
to estimate parameters in the generalized linear model.

Appendix

This Appendix contains a detailed proof of Theorems 5.1 to 5.3 in Section 5.
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Proof of Theorem 5.1

Let S = (Y,D,Z,C). Recall the density for the observed data is g(s | θ, F ) =

g(y, d | z, c, θ, F )h(z, c). Denote ĝn(·) = g(· | θ̂n, F̂n), and g0(·) = g(· | θ0, F0).
Let Pn(·) be the empirical distribution function of (Yi, Di, Zi, Ci) (i = 1, ..., n)
and P be that of (Y,D,Z,C). Let Θ be the space for θ, F be the collection of
all distribution functions F of the true response time T ,

M(θ, F ) =

∫
log

g(s | θ, F )

g(s | θ0, F0)
dP (s)

=

∫
g(y, d, z, c | θ0, F0) log

g(y, d | z, c, θ, F )

g(y, d | z, c, θ0, F0)
ds

and

Mn(θ, F ) =

∫
log

g(s | θ, F )

g(s | θ0, F0)
dPn(s) =

n∑
i=1

1

n
log

g(Yi, Di | Zi, Ci, θ, F )

g(Yi, Di | Zi, Ci, θ0, F0)
.

Then

(θ0, F0) = arg max
(θ,F )∈(Θ,F)

M(θ, F ), and (θ̂n, F̂n) = arg max
(θ,F )∈(Θ,F)

Mn(θ, F ).

Let a(s | θ, F ) = log
(
g(y, d | z, c, θ, F )/g(y, d | z, c, θ0, F0)

)
, A = {a(s | θ, F ) :

θ ∈ Θ, F ∈ F}, G = {g(y, d | z, c, θ, F ) : θ ∈ Θ, F ∈ F}. For any function
q, let ‖q‖L1(P ) =

∫
|q(s)|P (ds) be its L1(P ) norm. Let N[ ](ε,G, L1(P )) be the

minimum number of ε-brackets to cover G under norm ‖ · ‖L1(P ), and similarly
for N[ ](ε,G0, L1(P )). We need to evaluate N[ ](ε,A, L1(P )).

Note that with (C1) and (C2), there is c0 > 0 such that for all (y, d, z, c) and
all (θ, F ),

g(y, d | z, c, θ, F ) ≥( exp(β0 + βT
2 z)

1 + exp(β0 + βT
2 z)

)y( 1

1 + exp(β0 + βT
2 z)

)1−y 1

1 + exp(α0 + αT
1 z)

≥ c0

or

sup
(y,d,z,c),(θ,F )∈(Θ,F)

1

g(y, d | z, c, θ, F )
≤ 1

c0
:= C < ∞.

So for any a(· | θ1, F1), a(· | θ2, F2) ∈ A, for some (θ̄, F̄ ) between (θ1, F1) and
(θ2, F2),

∣∣a(s | θ2, F2)− a(s | θ1, F1)
∣∣

=
∣∣ log g(y, d | z, c, θ2, F2)− log g(y, d | z, c, θ1, F1)

∣∣
=

1

g(y, d | z, c, θ̄, F̄ )

∣∣g(y, d | z, c, θ2, F2)− g(y, d | z, c, θ1, F1)
∣∣

≤ C
∣∣g(y, d | z, c, θ2, F2)− g(y, d | z, c, θ1, F1)

∣∣.
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Consequently,

N[ ](ε,A, L1(P )) ≤ N[ ](
ε

C
,G, L1(P )).

So below, we only need to evaluate N[ ](ε,G, L1(P )).
Note that g(y, d | z, c, θ, F ) is of the form (see the expression before (6))

g(y, d | z, c, θ, F ) = g1(y, z | β)g2(y, z | β)g3(z | α)

+g4(y, z | β)g5(y, z | β)g6(d, z, c | γ, F )g7(d, z, c | γ, F )g8(z | α),
with g1(1, z | β) = 1 − g2(0, z | β), g3(z | α) = 1 − g8(z | α) and g4(1, z |
β) = 1 − g5(0, z | β). To unify notation, we write g1(y, z | β), ..., g8(z | α) as
g1(s | θ, F ), ..., g8(s | θ, F ). Then 0 ≤ gj(· | ·) ≤ 1 (j = 1, ..., 8), and for (θ1, F1),
(θ2, F2) ∈ (Θ,F),

∣∣g(y, d | z, c, θ1, F1)− g(y, d | z, c, θ2, F2)
∣∣ ≤

8∑
j=1

∣∣gj(s | θ1, F1)− gj(s | θ2, F2)
∣∣.

Let Gj = {gj(s | θ, F ) : θ ∈ Θ, F ∈ F}, (j = 1, ..., 8). Then

N[ ](ε,G, L1(P )) ≤
8∏

j=1

N[ ](
ε

8
,Gj , L1(P )).

Below we evaluate N[ ](ε,Gj , L1(P )) (j = 1, ..., 8). Note that g2(1, z | β) ≡ 1.
Write g2(0, z | β) = (1 + exp(βT z̃)−1 with z̃ = (1, zT )T . For θ1, θ2 ∈ Θ, there is
a β̄ lies between β1 and β2 such that

∣∣g2(0, z | β2)−g2(0, z|β1)
∣∣ = exp(β̄T z̃)

∣∣z̃T (β2 − β1)
∣∣

[1 + exp(β̄T z̃)]2
≤ |z̃T (β2−β1)

∣∣ ≤ C‖β2−β1‖,

for some 0 < C < ∞. The last step above is by (C2). Thus, with d = dim(θ),

N[ ](
ε

8
,G2, L1(P )) ≤ N[ ](

ε

8C
,Θ, ‖ · ‖) = O

( 1

εd
)
< ∞.

Since g1(1, z | β) = 1−g2(0, z | β), N[ ](ε/8,G1, L1(P )) = N[ ](ε/8,G2, L1(P )) =

O
(
1/εd) < ∞. By the same way, N[ ](ε/8,Gj , L1(P )) = O

(
1/εd) < ∞, (j =

3, 4, 5, 8).
Also, g6(s | θ, F ) = g6(d, z, c | γ, F ), g6(0, z, c | γ, F ) ≡ 1 and g6(1, z, c |

γ, F ) = F (log c − γT z) := F (x) is a bounded monotone function from R �→
[0, 1]. Similarly, g7(s | θ, F ) = 1 − F (x) is a bounded monotone function from
R �→ [0, 1]. Thus by Theorem 2.7.5 in [36], for some generic constant 0 < C < ∞,

N[ ](
ε

8
,Gj , L1(P )) ≤ exp{C

ε
}, (j = 6, 7).

Now we get, for some generic constant 0 < C < ∞,

N[ ](ε,A, L1(P )) ≤ N[ ](
ε

C
,G, L1(P )) ≤

8∏
j=1

N[ ](
ε

8
,Gj , L1(P ))
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≤ C

ε6d
exp{2C

ε
} < ∞.

Thus, by Theorem 2.4.1 in [36], A is a Glivenko-Cantelli class with respect to
P , i.e,

sup
(θ∈Θ,F∈F)

|Mn(θ, F )−M(θ, F )| → 0, a.s.

Let d(θ, F ; θ0, F0) = ‖θ − θ0‖ +
∫
|F (x) − F0(x)|dF0(x). Since the model is

identifiable, (θ0, F0) is the unique maximizer of M(θ, F ), so for every δ > 0,

sup
d(θ,F ;θ0,F0)>δ

M(θ, F ) < M(θ0, F0).

Also, (θ̂n, F̂n) is the MLE implies PnM(θ̂n, F̂n) ≥ PnM(θ0, F0). So by Theorem
5.8 in [35],

d(θ̂n, F̂n; θ0, F0)
a.s.→ 0.

This gives the desired result.

Proof of Theorem 5.2

Denote V0 = (Y,X,D,Z,C) for the original data, and V = (Y,D,Z,C) for the
observed incomplete data. The likelihood for V0 is

Q(v0) = Q(v0 | θ, F ) = πy(x, z | θ)
[
1− π(x, z | θ)

]1−y
px(z | θ)

[
1− p(z | θ)

]1−x

×F (log c− γT z)d
[
1− F (log c− γT z)

]1−d
h(z, c),

where π(x, z | θ) and p(z | θ) are given in (3) and (5). Denote the density-mass
for the observed V given in (6) by

P (v) = P (v | θ, F ) = P (y, d, z, c | θ, F ) =

1∑
x=0

Q(y, x, d, z, c).

We identify the tangent space as Q̇ = L0
2(Q). Let p(Z | θ) as given in (5).

The score operator i for model (6) is given by, ∀a ∈ L0
2(Q),

(ia)(v) = (ia)(y, d, z, c) = E
(
a(V0)

∣∣∣∣v
)

= a(y, 0, d, z, c)[1− p(z | θ)] + a(y, 1, d, z, c)p(z | θ).
Its adjoint i∗ satisfies< b, ia >L2(P )=< i∗b, a >L2(Q), ∀ (a, b) ∈ (L0

2(Q), L0
2(P )).

Since

< b, ia >L2(P )=
∑
y

∑
d

∫ ∫
b(y, d, z, c)

[
a(y, 0, d, z, c)[1− p(z | θ)]

+a(y, 1, d, z, c)p(z | θ)
]
P (y, d, z, c)dzdc
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=
∑
y

∑
x

∑
d

∫ ∫ [
b(y, d, z, c)

[1− p(z | θ)]1−xpx(z | θ)P (y, d, z, c)

Q(y, x, d, z, c)

]

a(y, x, d, z, c)Q(y, x, d, z, c)dzdx,

as i∗b ∈ L0
2(Q), from the above we get,

(i∗b)(v0) = e(v0)− EQ(e(V
0)),

e(v0) = b(y, d, z, c)
[1− p(z | θ)]1−xpx(z | θ)P (y, d, z, c)

Q(y, x, d, z, c)
.

Now we have, ∀a ∈ L0
2(Q),

(i∗ia)(v0) = i∗[(ia)(v)] = i∗
[
a(y, 0, d, z, c)[1− p(z | θ)] + a(y, 1, d, z, c)p(z | θ)

]

=
∑
s

a(y, s, d, z, c)[1− p(z | θ)]1−sps(z | θ) [1− p(z | θ)]1−xpx(z | θ)P (y, d, z, c)

Q(y, x, d, z, c)

−
∑
y

∑
x

∑
d

∑
s

∫ ∫
a(y, s, d, z, c)[1− p(z | θ)]1−sps(z | θ)

× [1− p(z | θ)]1−xpx(z | θ)P (y, d, z, c)

Q(y, x, d, z, c)
Q(y, x, d, z, c)dzdc

:=
∑
s

a(y, s, d, z, c)g(s, y, x, d, z, c)−
∫ ∑

s

a(y, s, d, z, c)g(s,u)Q(du).

Thus solving i∗ia = a1 in a ∈ L0
2(Q) for any given a1 ∈ L0

2(Q) amounts to
solve the above equation (set it to a1) in a. It is easy to see that the array
{g(s, y, x, d, z, c) : s, y, x, d = 0, 1} is not of full rank, so the above equation
cannot be solved, i.e., i∗i is not boundedly invertible. Yuan, Xu and Zheng [42]
used this method for several incomplete data models, more details can be found
there.

Proof of Theorem 5.3

Let �(θ, F | s) be the log-likelihood based on data s = (y, z, d, c), and Dn be the
set of all the observed data, and Mn(θ, F ) and M(θ, F ) as defined in the proof
of Theorem 5.1.

Since (θ̂n, F̂n) ∈ (Θ,F) is the MLE of (θ0, F0), it is the M-estimator based
on the log-likelihood function �(θ, F | Dn) on the constrained parameter space

(Θ,F), and so Mn(θ̂n, F̂n) ≥ Mn(θ, F ) ≥ Mn(θ, F )−Op(r
−2
n ), for any (θ, F ) ∈

(Θ,F) and any positive sequence rn → ∞.

Let d(θ̂n − θ0, F̂n − F0) as in the proof of Theorem 5.1. Since conditions of

Theorem 5.1 is satisfied, ‖θ̂n − θ0‖+ ‖F̂n − F0‖ P→ 0.
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Note that (θ0, F0) = arg sup(θ,F )∈(Θ,F) M(θ, F ). Denote f(θ, F ) := �(θ, F |
s) − �(θ0, F0 | s) be the log-likelihood ratio, and f (1)(θ, F ) and f (2)(θ, F )
be the first and second order partial derivatives of f(θ, F ) with respect to
(θ, F (·)), here the partial derivative with respect to F is in the Gâteaux sense.
Denote �(1)(θ, F | s) and �(2)(θ, F | s) similarly. Note that f(θ0, F0) = 0,
E(θ0,F0)f

(1)(θ0, F0) = E(θ0,F0)�
(1)(θ0, F0 | s) = 0, and E(θ0,F0)f

(2)(θ0, F0) =

E(θ0,F0)�
(2)(θ0, F0 | s) is negative definite, so using Taylor expansion, M(θ, F )−

M(θ0, F0) = (1/2)E(θ0,F0)[(θ − θ0, F − F0)
′f (2)(θ̄, F̄ )(θ − θ0, F − F0)] < 0 is of

order O
(
d2(θ − θ0, F − F0)

)
, in small neighborhood of (θ0, F0), where (θ̄, F̄ ) is

an intermediate value between (θ, F ) and (θ0, F0). So for any 0 < δn → 0 and
any δ and some η < ∞ with δn < δ ≤ η, for some 0 < C < ∞,

sup
δ/2<d(θ−θ0,F−F0)≤δ, (θ,F )∈(Θ,F)

M(θ, F )−M(θ0, F0) ≤ −Cδ2.

Next we show, with E∗ for outer expectation,

E∗ sup
δ/2<d(θ−θ0,F−F0)≤δ, (θ,F )∈(Θ,F)

√
n
∣∣∣(Mn−M)(θ, F )−(Mn−M)(θ0, F0)

∣∣∣ ≤ φn(δ),

(A.0)
for some decreasing function φn(·).

For this, let A as defined in the proof of Theorem 5.1, N[ ](ε,A, L2(P )) be the
bracketing number of size ε, under the L2(P ) norm, to cover the space A. In the
proof of Theorem 5.1, we showed that N[ ](ε,A, L1(P )) = O

(
ε−6d exp(C/ε)

)
.

The same conclusion is true with L1(P ) replaced by L2(P ), as the evaluation
there is true for Lr(P ) with all r > 0. Let C be some generic finite positive
constant, and

J[ ](ε, (Θ,F), L2(P )) =

∫ δ

0

√
1 + logN[ ](ε, (Θ,F), L2(P ))dε

=

∫ log δ

−∞
et
√
1 + Ce−tdt ≤ C

∫ log δ

−∞
ete−t/2dt = Cδ1/2.

In the above, we used the fact that for small δ > 0, log δ < 0, so e−t > 1 and
1 + Ce−t ≤ (1 + C)e−t on (−∞, log δ).

Let G = {f(· | θ, F ) : (θ, F ) ∈ (Θ,F), δ/2 < d(θ − θ0, F − F0) ≤ δ},
Gnf =

√
n(Pn − P )f , ‖Gn‖G = supf∈G Gnf , and ‖f‖ = sups f(s | θ, F ). Note

that since G is a subset of log-likelihood ratios, and �(θ0, F0 | s) is fixed, so
N[ ](ε,G, L2(P )) ≤ N[ ](ε, (Θ,F), L2(P )) and consequently, J[ ](ε,G, L2(P )) ≤
J[ ](ε, (Θ,F), L2(P )) ≤ Cδ1/2.

Also, it is easy to see that, with our specification of the likelihood, Pf2 < δ2

and ‖f‖∞ < C for all f ∈ G, for some 0 < C < ∞. Thus, by Lemma 3.4.2 in
[36] (p.324),

E∗‖Gn‖G ≤ J[ ](ε,G, L2(P ))
(
1 +

J[ ](ε,G, L2(P ))

δ2
√
n

C
)
≤ Cδ1/2(1 + δ−3/2n−1/2),
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which is (A.0) with φn(δ) = Cδ1/2(1 + δ−3/2n−1/2). Take rn = n1/3, then

r2nφn

( 1

rn

)
= Cn1/3 ≤

√
n.

Now, all conditions of Theorem 3.4.1 in [36] (p.322) are satisfied, so by this

Theorem, rnd(θ̂n − θ0, F̂n − F0) = n1/3d(θ̂n − θ0, F̂n − F0) = Op(1). �
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