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Rate of escape of conditioned Brownian motion*
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Abstract

We study the norm of the two-dimensional Brownian motion conditioned to stay outside
the unit disk at all times. By conditioning the process is changed from barely recurrent
to slightly transient. We obtain sharp results on the rate of escape to infinity of the
process of future minima:

(i) we find an integral test on the function g so that the future minima process drops
below the barrier exp{ln t× g(ln ln t)} at arbitrary large times;

(ii) we show that the future minima process exceeds K
√
t× ln ln ln t at arbitrary

large times with probability 0 [resp., 1] if K is larger [resp., smaller] than some
positive constant.

For this, we introduce a renewal structure attached to record times and values.
Additional results are given for the long time behavior of the norm.
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1 Introduction

This paper is devoted to the planar Brownian motion conditioned to stay outside
the unit ball B(0, 1) at all times. Besides its own appeal from its fundamental character,
this process has attracted a keen interest as being the elementary brick of the two-
dimensional Brownian random interlacement recently introduced in [9]. By rotational
symmetry, the norm R of the conditioned Brownian motion itself follows a stochastic
differential equation in [1,∞),

dR(t) =
( 1

R(t) lnR(t)
+

1

2R(t)

)
dt+ dB(t) (1.1)
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Rate of escape of conditioned Brownian motion

with B a standard Brownian motion in R, and we can – and we will – restrict the study of
the conditioned process to that of R itself since the angle obeys a diffusion subordinated
to it. The two-dimensional Brownian motion is critically recurrent, but conditioning it
outside the unit ball turns it into (delicately) transient. A natural question is the rate at
which R(t) tends to∞ as t→∞, this is the object of the present paper. A measure of
the reluctance of R to tend to infinity is given by the future minima process

M(t) = inf{R(s); s ≥ t}

which is non-decreasing to ∞ a.s. The corresponding model in the discrete case, the
two-dimensional simple random walk conditioned to avoid the origin at all times, has
motivated many recent papers. Estimates on the future minimum distance to the origin
have been obtained in [22], we will use them as benchmarks. It is also shown that two
independent conditioned walkers meet infinitely often although they are transient. The
range of the walk, i.e. the set of visited sites, is studied in [11]: if a finite A ⊂ Z2 \ {0}
is “big enough and well distributed in space”, then the proportion of visited sites is
approximately uniformly distributed on [0, 1]. In [20] the explicit formula for the Green
function is obtained, and a survey is given in Chapter 4 of [21].

For dimensions d ≥ 3, the random interlacement model has been introduced in [27]
to describe the local picture of the visited set by a random walk at large times on a
large d-dimensional torus, and similarly in [28], the Brownian random interlacement to
describe the Wiener sausage around the Brownian motion on a d-dimensional torus. For
dimension d = 2, the random interlacement model is the local limit of the visited set by
the random walk around a point which has not been visited so far [7], and analogously,
the Brownian random interlacement is the local limit of the Wiener sausage on the
two-dimensional torus around a point which is outside the sausage [9]. Formally, the
two-dimensional Brownian random interlacement is defined as a Poisson process of
bi-infinite paths, which are rescaled instances of the so-called “Wiener moustache”.
The Wiener moustache is obtained by gluing two instances (for positive and negative
times, see Figure 1 in [9]) of planar Brownian motion conditioned to stay outside the
unit ball, which are independent except that they share the same starting point (see
Lemma 3.9 in [9]). Hence, the process we consider in this paper is the building brick of
Brownian random interlacement in the plane. We also recall that the complement of the
sausage around the interlacement has an interesting phase transition, changing from
a.s. unbounded to a.s. bounded as the Poisson intensity is increased, see Th. 2.13 in [9]
and [8] for the discrete case.

With a slight abuse of terminology, we say f(t) ≤ g(t) i.o. (infinitely often) if the
set {t ≥ 0 : f(t) ≤ g(t)} is unbounded, and f(t) ≤ g(t) ev . (eventually) if the set
{t ≥ 0 : f(t) ≤ g(t)} is a neighborhood of∞ in R+.

We now give a short overview of some of our results on the rate of escape of R to
infinity. They are consequences of the results in section 2.1.

Theorem 1.1. For g : R+ → R+ non-increasing such that (ln t)g(ln ln t) is non-decreasing,

P
(
M(t) ≤ e(ln t)g(ln ln t) i.o.

)
=

{
0

1
according to

∫∞
g(u)du

{
<∞
=∞ .

This result with an integral condition has a flavor of Kolmogorov’s test (see, e.g., sect.
4.12 in [14]).

Theorem 1.2. The limit

K∗ = lim sup
t→∞

M(t)√
t ln ln ln t

is almost surely constant, and
0 < K∗ <∞ .
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Rate of escape of conditioned Brownian motion

Though we do not know the actual value of K∗ we can see that both theorems are
much finer than the corresponding Theorem 1.2 of [22]. These two theorems together
yield a precise version of the observation from [20] that the pathwise divergence of R to
infinity occurs in a highly irregular way. The future minima process has been considered
earlier, e.g. [16] and [17] for Bessel processes and for random walks, and [19] for
positive self-similar Markov processes. Let us recall the similar result for transient
Bessel processes. Denote by BESd the d-dimensional Bessel process, i.e. the solution of
the stochastic differential equation

dX(t) =
d− 1

2X(t)
dt+ dB(t) , (1.2)

that is the norm of the standard Brownian motion in Rd when d integer: then, by Th. 4.1
in [16],

for d > 2, lim sup
t→∞

min{BESd(s); s ≥ t}√
2t ln ln t

= 1 . (1.3)

An important (and beautiful) finding of our work is a renewal structure in Section
3 which allows sharp estimates. To illustrate that, let’s mention that we will find a
sequence of relevant random variables Sn > 0 solving a random difference equation

Sn = αnSn−1 + βn , n ≥ 1 , (1.4)

where the sequence (αn, βn)n is i.i.d. with positive coefficients, αn < 1 and βn with
logarithmic tails, P(β1 > t) ∼ c/ ln t for large t. Although autoregressive processes AR(1)
of the type (1.4) are usually addressed with exponential or power-law tail for βn, see
[5], the case of logarithmic tail has been also considered, see [15], [31], [3], and also
both papers [1] and [32] for a recent account. Interestingly, our model is critical in the
perspective of the Markov chain Sn, in the sense that the actual value of the constant c
is precisely the transition from recurrence to transience for the chain.

The paper is organized as follows. We give the main results in the next section.
The regeneration structure is defined in Section 3, together with the basic estimates,
and ending with Remark 3.8 on the above random difference equation. In the next
section we prove some results showing that R somewhat behaves at large times like the
two-dimensional Bessel process. In Sections 5 and 6 we prove the two above theorems.

2 Main results

We first collect a few properties of the involved processes.

We start with some notations. Consider W a two-dimensional standard Brownian
motion and denote by Px the law of W starting at x, Ŵ a Brownian motion conditioned
to stay outside the unit ball, and denote by P̂x its law when starting at x, and R = |Ŵ |
its Euclidean norm with Pr the corresponding law (r = |x|). In this paper we are mainly
interested in P = P1. The construction of the process starting from R(0) > 1 is standard
from taboo process theory, and the one starting from R(0) = 1 is given in definition 2.2
of [9].

Denote by |·| the Euclidean norm and B(x, r) the closed ball with center x and radius
r > 0. For a closed subset B of the state space of a process Y, we denote the entrance
time τ(Y ;B) = inf{t ≥ 0 : Y (t) ∈ B}, and write for short τ(Y ; r) = τ(Y ; ∂B(0, r)) and also
τ(r) = τ(R; r) when Y = R. The function h(x) = ln |x| is harmonic in R2 \ {0}, positive
on R2 \ B(0, 1) and vanishes on the unit circle. Then, the law P̂x of the planar Brownian
motion W conditioned outside B(0, 1) is given by Doob’s h-transform of Px. By definition,
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for A ⊂ C(R+,R) which is Fτ(r1)-measurable (1 < |x| = r < r1),

Pr(R ∈ A) = Px(|W | ∈ A
∣∣τ(W ; r1) < τ(W ; 1))

= Px(|W | ∈ A, τ(W ; r1) < τ(W ; 1))× ln r1
ln |x|

,
(2.1)

recalling that Px(τ(W ; r1) < τ(W ; 1)) = ln |x|
ln r1

since ln |x| is harmonic in R2\{0}.
Another remarkable property is Remark 3.8 in [9]: For all x /∈ B(1), ρ > 0, we have

P̂x
[
τ(Ŵ ;B(y, ρ)) <∞

]
→ 1

2
as |y| → ∞ .

The scale function for the process R – that is, the unique (up to affine transformation) real
function S such that S(R(t)) is a local martingale – is S(r) = −1

ln r . Then, for 1 < a < r < b,

Pr[τ(b) < τ(a)] =
ln(r/a)× ln b

ln(b/a)× ln r
. (2.2)

We refer to section 2.1 in [9] for more details on the many interesting properties of
Ŵ and R.

2.1 Results for the future minimum

With L(t) = ln(t ∨ 1) and ln(·) the natural logarithm, define ln1(t) = L(t), and for
k ≥ 2, lnk(t) = L(lnk−1(t)) so that lnk(t) = (ln ◦ . . . ◦ ln)(t) for t large.

Theorem 2.1. For g : R+ → R+ non-increasing such that (ln t)g(ln2 t) is non-decreasing,
we have: ∫ ∞

g(u)du <∞ =⇒ a.s., M(t) ≥ e(ln t)g(ln2 t) eventually , (2.3)

and ∫ ∞
g(u)du =∞ =⇒ a.s., M(t) ≤ e(ln t)g(ln2 t) infinitely often. (2.4)

(Note that the second assumption is quite natural in view of the monotonicity of
M(t).) Theorem 1.1 is a direct consequence of the above theorem. This result with an
integral condition is reminiscent of Kolmogorov’s test (see, e.g., sect. 4.12 in [14]), but
the process M here is not Markov.

These estimates are stronger than the corresponding ones in Th. 1.2 of [22]. So are
the following ones:

Theorem 2.2. There exist 0 < K ′ < K <∞ such that, almost surely,

M(t) ≤ K
√
t ln3 t eventually , (2.5)

and

M(t) ≥ K ′
√
t ln3 t infinitely often. (2.6)

Theorem 1.2 is essentially a reformulation of Theorem 2.2, it will be proved below
Remark 6.2.

We recall the similar result (1.3) for transient Bessel processes: a.s. for all a <
√

2 < b,
the future minima process min{BESd(s); s ≥ t} is eventually smaller than b

√
t ln2 t and

infinitely often larger than a
√
t ln2 t.

Finally we mention that, for d > 2, min{BESd(s); s ≥ t} ≤ ε
√
t ln2 t i.o., a.s. for all

ε > 0. (See [16], P.349.)
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2.2 Long time behavior of R(t)

At large times the process R behaves like BES2. We emphasize that this is for the
marginal law, but not for the future minimum. We formulate here precise statements of
these facts.

It is well known that the random variable t−1/2BES2(t) converges to the Rayleigh
distribution

dν(x) = xe−x
2/21(0,∞)(x)dx

as t→∞. Similarly for R, we have

Theorem 2.3. Let Z ∼ ν. As t→∞,

R(t)√
t

law−→ Z .

Theorem 2.4 (Pointwise ergodic theorem). For all bounded continuous function f on
(0,∞), as t→∞,

1

t

∫ et−1

0

f

(
R(u)√
1 + u

)
1

1 + u
du −→

∫
R

fdν a.s.

We will prove Theorems 2.3 and 2.4 in section 4.

3 Regenerative structure

We fix a parameter r > 1. We construct a regenerative structure associated with the
process R starting from R(0) = 1.

3.1 Renewal times

We define a random sequence (Hn, An, Tn)n≥0 by H0, T0 = 0, A0 = 1, then
H1 = inf{t > T0 : R(t) = r}
A1 = inf{R(t); t ≥ H1}
T1 = inf{t ≥ H1 : R(t) = A1} ,

and for n ≥ 1, 
Hn+1 = inf{t > Tn : R(t) = rAn}
An+1 = inf{R(t); t ≥ Hn+1}
Tn+1 = inf{t ≥ Hn+1 : R(t) = An+1} .

Since R is a continuous function with limt→∞R(t) = ∞ a.s., we see by induction that
Tn <∞ a.s. with Tn < Tn+1 and limn→∞ Tn =∞ a.s. The Tn are not stopping times, but
they are called renewal times for the following reasons.

Proposition 3.1. Let G1 = σ
(
T1, (R(t)1t<T1

; t ≥ 0)
)
. Then,(

R(T1 +A2
1t)

A1
; t ≥ 0

)
has same law as R and is independent of G1.

This proposition is the building brick of the

Theorem 3.2 (Renewal structure). The sequence(
R(Tn +A2

nt)

An
; t ∈

[
0,
Tn+1 − Tn

A2
n

])
n≥0

is independent and identically distributed with the law of (R(t); t ∈ [0, T1]).
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In particular, since R(Tn+1) = An+1, the sequence(
Tn+1 − Tn

A2
n

,
An+1

An

)
n≥0

is i.i.d. and distributed as (T1, A1). Therefore (Tn, An) can be written using i.i.d.r.v.’s,
which will be used repeatedly all through.

Proof. Proposition 3.1. Recall that Pr denotes the law of the process R with R(0) = r.
Observe that H1 is a stopping time, and denote by FH1

the sigma-field of events that
occur before time H1. By the strong Markov property,

under P1, (R(H1 + t))t≥0 is independent ofFH1and has the law Pr.

Moreover, by Theorem 2.4 in [30] (see also the proof of Lemma 3.9 in [9]), conditionally
on T1, (R(t); t ∈ [H1, T1]) and A1 = a, (R(T1+t); t ≥ 0) has the same law as R starting from
a and conditioned to R(t) ≥ a,∀t ≥ 0. By Brownian scaling, the latter law is equal to that
of aR(·/a2) under P1; see also Remark 2.5 in [9]. Since G1 = σ(FH1 ; (R(t); t ∈ [H1, T1]))

up to null events, we obtain the desired statement.

Proof. Theorem 3.2. By induction, Proposition 3.1 implies that for all n, the process(
R(Tn+A

2
nt)

An
; t ≥ 0

)
is independent of Gn = σ

(
Tn, (R(t); t < Tn)

)
with the law of R. Then,

the claim follows.

As a direct consequence we have discovered a simple representation of crucial times
and points of the process.

Corollary 3.3. Define

A′n+1 =
An+1

An
, T ′n+1 =

Tn+1 − Tn
A2
n

, n ≥ 0 .

Then, (A′n, T
′
n)n≥1 is an i.i.d. sequence with the same law as (A1, T1), and we have the

representation{
Tn = T ′1 +A′ 21 T ′2 + . . .+ (A′1 . . . A

′
n−1)2 T ′n

An = A′1 . . . A
′
n

, n ≥ 1 . (3.1)

3.2 Description of a cycle

Recall r > 1 is fixed. We will shorten the notations: (H,A, T ) = (H1, A1, T1). Recall
that R starts from R(0) = 1, hits r at H for the first time, and reaches its future minimum
A ∈ (1, r) at time T . We also introduce its maximum B > r on the time interval [H,T ], as
well as their logarithms U, V :{

A = rU = min{R(t); t ≥ H}
B = rV = max{R(t); t ∈ [H,T ]} ,

see figure 1. It was shown in [9] that U is uniform on [0,1] (see (2.2) with b→∞), but
we can even compute the joint law of U and V . For 1 < a− h < a < r < b, we have by
the strong Markov property

P
(
A∈ [a−h, a), B>b

)
= P

(
A∈ [a−h, a), B>b, τ(b)<τ(a)

)
+ P

(
A∈ [a−h, a), B>b, τ(b)>τ(a)

)
= Pr

(
τ(b) < τ(a)

)
× Pb

(
min{R(t); t ≥ 0} ∈ [a− h, a)

)
+ o(h)

=
ln(r/a) ln b

ln(b/a) ln r
× 1

a ln b
h+ o(h) ,
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R(t)

0

1

H T t

A

r

B

Figure 1: First cycle: A = rU , B = rV

using (2.16) in [9] and that, for R started at b, min{R(t); t ≥ 0} has density (a ln b)−1

on (1, b). Hence (A,B) has a density given by the negative of the b-derivative of the
dominant term as h↘ 0, i.e.,

pA,B(a, b) =
1

ab ln r

ln(r/a)

ln2(b/a)
, 1 < a < r < b .

By changing variables, it follows that (U, V ) has density

pU,V (u, v) =
1− u

(v − u)2
10<u<1<v .

We recover that U is uniform on (0,1) and that V has density

pV (v) = − ln
(
1− 1/v

)
− 1/v , v > 1 .

It follows that for v ≥ 1,

P(V > v) =

∞∑
n=1

1

n(n+ 1)vn
, (3.2)

and then P(V > v) ∼ 1/(2v) as v →∞.
We also need information on the cycle length T . For any s ≥ 1 we consider the hitting

time by R starting at s of its absolute minimum, and denote by µs a r.v. with the same
law:

µs ∼ Ps
(

arg min{R(t); t ≥ 0} ∈ ·
)
.

Recall that, under P, R(0) = 1.

Proposition 3.4. (i) We have

T = H + (T −H) ,

where H and (T −H) are independent with T −H law
= µr.

(ii) For u ∈ (0, 1), the conditional law of T given U ≥ u is equal to the law of an
independent sum H + r2uµ(r1−u).
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Proof. (i) directly follows from the strong Markov property for the Markov process R
and the stopping time H.

For (ii), we recall Remark 2.5 in [9]: for c > 1, denoting by Rc the diffusion R

conditioned to stay outside (1, c], and started at r ≥ c, we have

Rc(·) = cR(·/c2) in law

with R started at r/c. (Alternatively, this follows from R being the norm of conditioned
Brownian motion (2.1) and from Brownian scaling.) Hence, for s ∈ R, again from the
strong Markov property,

E1[eisT
∣∣U ≥ u] = E1[eis(T−H+H)

∣∣U ≥ u]

= E1[eisH ]× Er[eis(T−H)
∣∣U ≥ u]

= E1[eisH ]× Er[eis×argmin{R(t);t≥0}∣∣min{R(t); t ≥ 0} ≥ ru]

= E1[eisH ]× E[eisr
2uµ(r1−u) ] ,

which proves the result.

3.3 Tail estimates for T

We need some estimates of the upper and lower tails of T , that we derive in this
section. But first we state elementary comparisons of R and Bessel processes, see (1.2),
that will be used all through the paper.

Proposition 3.5. (i) There exists a coupling of the processes R and BES2 starting at 1
such that

∀t ≥ 0, R(t) ≥ BES2(t) .

(ii) For δ > 0 there exists a coupling of the processes R and BES2+δ starting at 1 such
that for σ = sup{t ≥ 0;R(t) ≤ e2/δ},

∀s ≥ 0, R(σ + s) ≤ BES2+δ(σ + s)− BES2+δ(σ) + e2/δ .

Proof. It is well known [6] that the stochastic differential equation (1.2) has a strong
solution, so we can couple the processes R and BES2,BES2+δ by driving equations (1.1)
and (1.2) by the same Brownian motion B. Then, with x+ = max{x, 0} for x real, we
have for all t > 0 and all realization of B,

d
(
BES2(t)−R(t)

)+
= 1{BES2(t)≥R(t)}

(
1

2BES2(t)
− 1

2R(t)
− 1

R(t) lnR(t)

)
dt

≤ 0 ,

which implies (i) by integration. Similarly for (ii) we write the differential

d
(
R(t)− BES2+δ(t)

)+
= 1{BES2+δ(t)≤R(t)}

(
1

2R(t)
+

1

R(t) lnR(t)
− 1 + δ

2BES2+δ(t)

)
dt

≤ 0 for t ≥ σ.

Integrating on t ∈ [σ, σ + s] we obtain (ii).

We are now ready to start with the upper tail of T .

Proposition 3.6. As t→∞,

P(T ≥ t) ∼ ln r

ln t
. (3.3)

More precisely, there exists constants t0 and C such that for all t ≥ t0,(
1− ln3 t+ C

ln t

)
ln r

ln t
≤ P[T ≥ t] ≤

(
1 +

ln3 t+ C

ln t

)
ln r

ln t
. (3.4)
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Proof. We first obtain two preliminary estimates.
Upper bound : for 0 < ε < 1,

P(T ≥ t) = P

(
T ≥ t, V ≥ ln t

2(1+ε) ln r

)
+P

(
T ≥ t, V <

ln t

2(1+ε) ln r

)
≤ P

(
V ≥ ln t

2(1 + ε) ln r

)
+ P

(
R(s) ≤ t

1
2(1+ε) , s ∈ [0, t]

)
≤ (1 + ε) ln r

ln t
+

1

5

(
2(1 + ε) ln r

ln t

)2

+ C0 exp
(
−C1t

ε/(1+ε)
)

(3.5)

for t ≥ t1 with t1 > 0 not depending on ε ∈ (0, 1). Indeed, to obtain the first term we have
used (3.2) in the form of P(V ≥ v) ≤ (1/2v) + (1/5v2) for large v. In order to obtain the
second one, we first bound R(·) ≥ BES2(·), with BES2 started at 0 using Proposition 3.5,
and finally that there exist positive C0, C1 such that

∀t > 0,∀ρ > 0, P
(
BES2(s) ≤ ρ, s ∈ [0, t]

)
≤ C0 exp

(
− C1

t

ρ2
)
,

see e.g. exercise 1 p.106 in [26].
Lower bound : for 0 < ε < 1/2,

P(T ≥ t) ≥ P
(
T −H ≥ t, V ≥ ln t

2(1− ε) ln r

)
= P

(
V ≥ ln t

2(1− ε) ln r

)
− P

(
T −H ≤ t, V ≥ ln t

2(1− ε) ln r

)
≥ P

(
V ≥ ln t

2(1− ε) ln r

)
− Pr

(
τ(R; t

1
2(1−ε) ) ≤ t

)
≥ (1− ε) ln r

ln t
− C2 exp

(
−C3t

ε/(1−ε)
)

(3.6)

for t ≥ t2, with t2 > 0 not depending on ε ∈ (0, 12 ). In (3.6) we have used (3.2) for the first
term, and we give details for the second one: for |x| = r > 1 by (2.1), we get for all t > 1,

Pr
(
τ(R; t

1
2(1−ε) ) ≤ t

)
= Px

(
τ(|W |; t

1
2(1−ε) ) ≤ t

∣∣ τ(|W |; t
1

2(1−ε) )<τ(|W |; 1)
)

≤ Px
(
τ(|W |; t

1
2(1−ε) ) ≤ t

)
× ln t

2(1− ε) ln r

≤ C2 exp
(
−C3t

ε/(1−ε)
)

for some constants C2, C3 > 0 by the moderate deviation principle for Brownian motion.
For both the upper and lower bounds, we now choose

ε = εt =
ln3 t+ C4

ln t

with a constant C4. Provided the constant C4 is large enough, the terms

C0 exp
(
−C1t

εt/(1+εt)
)

and C2 exp
(
−C3t

εt/(1−εt)
)

are dominated by (ln t)−2. We then get (3.4) from (3.5) and (3.6), taking any C larger
than C4 + 4 ln r

5 .
Finally, (3.3) is a direct consequence of (3.4). The proof is complete.

We also need to control the lower tail of T .
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Rate of escape of conditioned Brownian motion

Proposition 3.7. (i) For all ε ∈ (0, r − 1), there exists t0 > 0 such that for t ≤ t0,

P[T ≤ t] ≤ exp

(
− (r − 1− ε)2

2t

)
. (3.7)

(ii) For all ε > 0, there exists t1 > 0 such that for t ≤ t1, and all u ∈ [0, 1),

P
[
T ≤ t|U ≥ u

]
≥ exp

(
− (r − 1 + ε)2

2t

)
. (3.8)

Proof. (i) Setting a = 1 + ε/2 ∈ (1, r) and using the strong Markov property for the
hitting time of a by R, we obtain

P(T ≤ t) ≤ P1(τ(r)− τ(a) ≤ t)

= Pa(τ(r) ≤ t)
(2.1)
= P(a,0)(τ(|W |; r) ≤ t

∣∣τ(|W |; r) < τ(|W |; 1))

≤ P(a,0)(τ(|W |; r) ≤ t)× ln r

ln a
.

Recalling large deviation results for Brownian motion in small time, e.g. section 6.8 of
Ch. 5 in [2],

lim
t→0

t lnP(a,0)(τ(|W |; r) ≤ t) = − (r − a)2

2
, (3.9)

we see that the above upper bound implies (i).
(ii) Let t ≤ 1. By Proposition 3.4-(ii), and by comparing R and BES2 from Proposition

3.5 (i), we obtain

P(T ≤ t|U ≥ u) ≥ P(H ≤ t− t2)× P(r2uµ(r1−u) ≤ t2)

≥ P(BES2(t− t2) ≥ r)× P
(
µ(r1−u) ≤

t2

r2u

)
= P(1,0)

(
|W (t− t2)| ≥ r

)
× Pr1−u

(
arg min{R(s); s ≥ 0} ≤ θ

)
, (3.10)

with θ = t2

r2u . We estimate the first term using again large deviation for Brownian motion
in small time [2]: for |x| < r,

lim
t→0

t lnPx(|W |(t) ≥ r) = − (r − |x|)2

2
. (3.11)

To estimate the second term in (3.10), note that R(θ) ≥ r1−u+
√
θ and R(s) ≥ r1−u for all

s ≥ θ implies that, Pr1−u -a.s., R achieves its minimum before time θ. Hence, by Markov
property and (2.2),

Pr1−u
(

arg min{R(s); s ≥ 0} ≤ θ
)
≥Pr1−u

(
R(θ) ≥ r1−u +

√
θ
)
×
(

1− ln r1−u

ln(r1−u +
√
θ)

)
≥P

(
B(θ) ≥

√
θ
)
×
(

1− ln r1−u

ln(r1−u +
√
θ)

)
≥ P (B(1) ≥ 1)× t

2r ln r
, for small t, indep. of u,

arguing on the second line that R dominates Brownian motion by comparing the drift.
Combined with (3.10) and (3.11), this completes the proof of (ii).
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Rate of escape of conditioned Brownian motion

3.4 Tail estimate for U

Recall Hoeffding’s inequality [13], or Th. 2.8 in [4]: for b < 1, c > 1 and i ≥ 1,

P [2(U1+. . .+Ui) ≥ c.i] ≤ exp
(
− i

2
(c− 1)2

)
, (3.12)

and

P [2(U1+. . .+Ui) ≤ b.i] ≤ exp
(
− i

2
(1− b)2

)
. (3.13)

Remark 3.8 (The random difference equation (1.4)). Introduce the sequence

Sn =
Tn
A2
n

which is key in Section 6. In view of (3.1), we see that it solves the recursion

Sn+1 = αn+1Sn + βn+1

(i.e., (1.4) above), with

αn = (A′n)−2 , βn =
T ′n

(A′n)2
.

The bi-dimensional sequence (αn, βn), n ≥ 1, is i.i.d., and the sequence (Sn) falls into the
usual setup of random difference equation. In our case, the following quantities exist

a := E[lnα1] , b := lim
t→∞

P[β1 > t]× ln t ,

and satisfy a < 0 (contractive case), 0 < b < ∞ (very heavy tail). Following [1] and
[32], this prevents the Markov chain Sn to be positive recurrent: though the contraction
brings stability to the process, yet occasional large values of βn overcompensate this
behavior so that positive recurrence fails to hold. In our case, we easily check from (3.3)
that

b = −a (= ln r) ,

in which case the Markov chain Sn is null recurrent, but in a critical manner: the chain
is transient if b > −a and null recurrent if b ≤ −a.

4 Proofs for section 2.2

We consider the process R from (1.1) on a geometric scale,

X(t) = e−t/2R(et−1) (4.1)

and we observe that

β(t) =

∫ et−1

0

1√
1 + s

dB(s)

is a standard Brownian motion by Paul Lévy’s characterization. We claim that X solves
the stochastic differential equation dX(t) =

(
1

2X(t)
− X(t)

2
+

1

X(t) ln[et/2X(t)]

)
dt+ dβ(t)

X(0) = R(0) .
(4.2)

Indeed,

X(t) = e−t/2X(0) + e−t/2
∫ et−1

0

(
1

2R(s)
+

1

R(s) lnR(s)

)
ds+ e−t/2B(et−1)

= J(t) +K(t) + L(t) ,
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with dJ(t) = − 1
2J(t)dt, and

dK(t)

dt
= −1

2
K(t) +

1

2X(t)
+

1

X(t) ln[et/2X(t)]
,

dL(t) = −1

2
L(t)dt+ e−t/2dB(et−1) .

Moreover, we easily check the equality∫ t

0

e−s/2dB(es−1) =

∫ et−1

0

1√
1 + u

dB(u)

in the Gaussian space generated by B. Adding up terms, we see that X solves the
stochastic differential equation (4.2). Denote by bt, resp. b∞ the drift coefficient and its
limit, given for x ∈ (0,∞) by

bt(x) =
1

2x
− x

2
+

1

x(lnx+ t/2)
, b∞(x) =

1

2x
− x

2
,

and by X(∞) the homogeneous diffusion

dX(∞)(t) =

(
1

2X(∞)(t)
− X(∞)(t)

2

)
dt+ dβ(t) .

Following the approach of Takeyama [29], we state the following

Lemma 4.1. The diffusion X(t) = e−t/2R(et−1) is asymptotically homogeneous with
homogeneous limit X(∞), i.e, for all continuous f with compact support in (0,∞) and all
t > 0,

E
[
f(X(t+ s))|X(s) = x

]
−→ Ex

[
f(X(∞)(t))

]
as s→∞

uniformly on compact subsets of (0,∞).

Proof. It is easier to consider X̂(t) = X(t)− e−t/2 which takes values in the fixed interval

(0,∞), and X̂(s)(t) = X̂(s + t). Then, the coefficients of the diffusion X̂(s) converge to
those of X(∞), uniformly on compact subsets of (0,∞), and the corresponding martingale
problems have a unique solution. Thus, Theorem 11.1.4 in [25] yields the desired
result.

The process X(∞) is the transform X(∞)(t) = X(∞,2)(t) = e−t/2BES2(et − 1) of BES2

by the rescaling and deterministic time-change (4.1). It is recurrent and ergodic on
(0,∞) with the Rayleigh law as invariant probability measure,

dν(x) = xe−x
2/21(0,∞)(x)dx .

A first consequence is that R marginally behaves like BES2.

Corollary 4.2 (Convergence in law). Let Z ∼ ν. As t→∞,

R(t)√
t

law−→ Z .

Proof. Denote by Ps,t, P
(∞)
s,t (0 ≤ s ≤ t) the Markov semi-groups associated to X and

X(∞),

(Ps,tf)(x) = E
[
f(X(t))|X(s) = x

]
, (P

(∞)
s,t f)(x) = E

[
f(X(∞)(t))|X(∞)(s) = x

]
,
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so that P (∞)
s,t = P

(∞)
0,t−s. For a bounded continuous f : (0,∞)→ R we write for x ≥ 1

P0,t+sf(x)−
∫
fdν = P0,s(Ps,s+tf)(x)−

∫
fdν

=P0,s

(
Ps,s+tf − P (∞)

s,s+tf
)

(x) + P0,s

(
P

(∞)
s,s+tf −

∫
fdν

)
(x) ,

where both terms vanish as s, t→∞, which is our claim. Indeed, by convergence of X(∞)

to equilibrium, P (∞)
s,s+tf −

∫
fdν = P

(∞)
0,t f −

∫
fdν → 0 uniformly on compact subsets of

(0,∞) as t→∞ and Lemma 4.1 implies that Ps,s+tf−P (∞)
s,s+tf → 0 uniformly on compacts

as s→∞: thus, we only need to prove tightness, i.e. that for all x ≥ 1,

inf
{
P0,s(1[ε,1/ε])(x); s ≥ 1

}
→ 1 as ε→ 0 .

But this follows from the next two bounds

• R ≥ BES2 (see Proposition 3.5 (i)) which implies that X ≥ X(∞),

• sups≥1E[X(s)2|X(0) = x] ≤ sups≥1 s
−1Ex[R(s)2] <∞ that we explain now.

First recall from [9] that 1
lnR is a local martingale. Since it is positive, by Fatou’s lemma

it is also a super-martingale when started at r > 1 and thus,

Er

[
1

lnR(t)

]
≤ 1

ln r
. (4.3)

By Itô’s formula,

d(R2) = 2
(

1 +
1

lnR(t)

)
dt+ 2R(t)dB(t) . (4.4)

Thus, for all r > 1,

Er[R(t)2] ≤ r2 + 2t
(

1 +
1

ln r

)
.

We now consider the process starting from R(0) = 1. Integrating (4.4), we get

E1

[
(R(t)2 − r2)1τ(r)<t

]
= 2E1

[∫ t

0

1τ(r)<s
(
1 +

1

lnR(s)

)
ds+

∫ t

0

1τ(r)<sR(s)dB(s)

]
Markov

= 2

∫ t

0

E1

[
1τ(r)<sEr

(
1 +

1

lnR(·)

)
·=s−τ(r)

]
ds+ 0

≤ 2
(

1 +
1

ln r

)
E1

[(
t− τ(r)

)+]
by (4.3). Finally we obtain that

E1R(t)2 = E1

[
R(t)21τ(r)≥t

]
+ E1

[
R(t)21τ(r)<t

]
≤ 2r2 + 2t

(
1 +

1

ln r

)
for any r > 1. The corollary is proved.

Remark 4.3 (The local martingale 1
lnR is not a martingale). Indeed, in the opposite case

we would have the equality in (4.3), and further, Er[R(t)2] = r2 +2t
(

1+ 1
ln r

)
for all r > 1.

This would contradict monotonicity, namely that for all t > 1, Er[R(t)2] is non-decreasing
in r > 1. Observe that we can actually compute these quantities, using equation (2.7) in
[9]. We get for |x| = r > 1: Er

[
1

lnR(t)

]
= Px(τ(W ;1)≥t)

ln r , which is smaller than 1
ln r for t > 0,

and further, Er[R(t)2] = r2 + 2t+ 2Ex[τ(W ;1)∧t]
ln r .
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Corollary 4.4 (Pointwise ergodic theorem). For all bounded continuous f on (0,∞), as
t→∞,

1

t

∫ t

0

f(X(s))ds −→
∫
R

fdν a.s.,

or, equivalently,

1

t

∫ et−1

0

f

(
R(u)√
1 + u

)
1

1 + u
du −→

∫
R

fdν a.s.

Proof. It is easy to check that, w.l.o.g., we can assume that f : (0,∞) → R is non-
decreasing. By the comparison principles of Proposition 3.5, we can couple the processes
R,BES2,BES2+δ (δ > 0) starting at 1 such that, a.s., for all t ≥ ln(1 + σ) with

σ = sup{s > 0 : R(s) ≤ e2/δ} <∞,

we have

X(∞,2)(t) ≤ X(t) ≤ X(∞,2+δ)(t)− e−t/2(BES2+δ(σ)− e2/δ) .

By the pointwise ergodic theorem for X(∞,2) and X(∞,2+δ) and monotonicity of f , we
derive ∫

fdν ≤ lim inf
t→∞

1

t

∫ t

0

f(X(s))ds ≤ lim sup
t→∞

1

t

∫ t

0

f(X(s))ds ≤
∫
fdνδ ,

where dνδ(x) = cδx
1+δ/2e−x

2/21(0,∞)(x)dx is the invariant law of X(∞,2+δ). As δ vanishes,
the two extreme members coincide, ending the proof of the first statement. The second
one follows by changing variables.

5 Proof of Theorem 2.1

Recall the representation (3.1) from Corollary 3.3,

Tk = T ′1 +A′ 21 T
′
2 + . . .+ (A′1 . . . A

′
k−1)2T ′k , Ak = A′1 . . . A

′
k

with (T ′k, A
′
k)k≥1 an i.i.d. sequence with the same law as (T1, A1).

Fix r± with 1 < r− < r < r+ < ∞. By (3.12) and (3.13), with probability one there
exists some finite random k0 such that for all k ≥ k0

r
k/2
− ≤ A′1 . . . A′k = rU1+...+Uk ≤ rk/2+ .

In what follows we will use the rough bounds

max
i=1,...,k

T ′i ≤ Tk ≤ Tk0 + (k − k0) max
i=1,...,k

ri−1+ T ′i . (5.1)

Lemma 5.1. There exists a constant c such that for all sequence (δ(k))k tending to 0,
we have

P
[
k max
i=1,...,k

ri−1+ T ′i ≥ ek/δ(k)
]
≤ cδ(k)

eventually.

Proof. Fix a with 1 < a < e. Letting vk = a
k
δ(k) and tk = krk+vk, we note that e

k
δ(k) ≥ tk

eventually since δ vanishes, and we have by independence

P[k max
i=1,...,k

ri−1+ T ′i < tk] = Πk
i=1P[T ′i < rk−i+1

+ vk]

EJP 27 (2022), paper 31.
Page 14/26

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP737
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Rate of escape of conditioned Brownian motion

From Proposition 3.6 there exists c1 > 0 such that for all t > 1

P(T1 ≥ t) ≤
c1
ln t

and since vk →∞ as k →∞, we have for all large enough k,

P[k max
i=1,...,k

ri−1+ T ′i < tk] ≥ Πk
i=1

(
1− c1

ln(rk−i+1
+ vk)

)

= Πk
i=1

(
1− c1

ln(ri+vk)

)

≥ exp

(
−2c1

k∑
i=1

1

i ln r+ + ln vk

)

≥ exp

(
− 2c1

ln r+
ln

(
k ln r+ + ln vk

ln vk

))
= exp

(
− 2c1

ln r+
ln(1 +

ln r+
ln a

δ(k))

)
≥ 1− cδ(k)

with c = 2c1/ ln a for all large k, since δ vanishes at∞. This ends the proof.

Proof. Theorem 2.1, claim (2.3). Let

δ(t) = g(ln t), κ(i) = 2i, i ≥ 1, K = {κ(i) : i ≥ 1} .

Define, for x ≥ 2, bxcK = max{k ∈ K : k ≤ x} = 2b(ln x)/(ln 2)c. Note that

x ≥ bxcK ≥ x/2 . (5.2)

First, since g is non-increasing,∑
k∈K

δ(k) =
∑
i≥1

δ(k(i))

=
∑
i≥1

g(ln k(i))

=
∑
i≥1

g(i ln 2)

≤ 1

ln 2

∑
i≥1

∫ i ln 2

(i−1) ln 2

g(t)dt

=
1

ln 2

∫ ∞
0

g(t)dt <∞ .

(5.3)

Fix a constant c2 > 0 to be chosen later and c3 = c−12 . Combining Borel-Cantelli’s lemma
and Lemma 5.1, we have a.s.

k max
i=1,...,k

ri−1+ T ′i < ec2k/δ(k) for all k ∈ K large enough,

and, in addition to (5.1), we have for large k ∈ K,

Tk ≤ Tk0 +
k − k0
k

ec2k/δ(k) ≤ ec2k/δ(k) (5.4)
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since g is non-increasing. By integrability, g is vanishing at infinity, so the function

f(t) = c3(ln t) g(ln2 t)

is such that f(t) ≤ ln t eventually, and also g(ln2 t) ≤ g(ln f(t)) by monotonicity. Thus, for
large k and t’s,

k ≤ c3(ln t)δ(ln t) = f(t) implies that (5.5)

k

δ(k)
=

k

g(ln k)
≤ f(t)

g(ln f(t))
=
c3(ln t)g(ln2 t)

g(ln f(t))
≤ c3 ln t .

Now, define random integers k(t) = max{k ∈ K;Tk ≤ t}, and note from (5.4) that a.s.,

for large t we have k(t) ≥ max{k ∈ K; ec2
k
δ(k) ≤ t}. Then, a.s., for all large enough t,

Mt ≥MTk(t) = Ak(t) ≥ r
k(t)
2
− ≥ r

1
2 max{k∈K:e

c2
k
δ(k)≤t}

−

= r
1
2 max{k∈K: k

δ(k)
≤c3 ln t}

− (using c3 = c−12 )

≥ r
1
2 max{k∈K:k≤f(t)}
− (by (5.5))

= r
1
2 bc3(ln t)δ(ln t)cK
−

≥ r
c3
4 (ln t)δ(ln t)
− (by (5.2)) .

Taking c3 = c−12 > 4/ ln r−, we conclude that a.s., M(t) ≥ e(ln t)g(ln2 t) eventually, ending
the proof of (2.3).

We now turn to the proof of claim (2.4) of Theorem 2.1. We start with a lemma:

Lemma 5.2. Let (nk)k≥0 be a non-decreasing sequence of integers and (tk)k≥0 be a
sequence with tk > 1. Then,∑

k≥0

nk+1 − nk
ln tk+1

=∞ =⇒ a.s., Tnk ≥ tk infinitely often.

Proof. The events Ek = {maxi=nk+1,...,nk+1
T ′i ≥ tk+1}, k ≥ 0 are independent with

Ek ⊂ {Tnk+1
≥ tk+1}. Hence the conclusion holds as soon as these events occurs

infinitely often a.s. By the second Borel-Cantelli lemma, it suffices to show that the
assumption implies

∑
k≥0P(Ek) = ∞. We use Proposition 3.6 and independence. The

case when tk does not tend to infinity is easily considered, so we assume from now on
that k is large enough so that P(T ≥ tk+1) ≥ c/ ln tk+1 for some fixed constant c ∈ (0, ln r).
Then, we can bound

P(Ek) = 1− P(T ≤ tk+1)nk+1−nk

≥ 1−
(

1− c

ln tk+1

)nk+1−nk

≥ 1− exp

(
−c(nk+1 − nk)

ln tk+1

)
which is the general term of a divergent series.

Proof. Theorem 2.1, claim (2.4). Let us consider

tk = ee
k

, nk = bf(tk)c , f(t) = c3(ln t)g(ln2 t)
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with c3 > 0 to be fixed later. Note that f is non-decreasing by assumption. We have

∑
k≥0

nk+1 − nk
ln tk+1

=
∑
k≥0

bf(tk+1)c − bf(tk)c
ln tk+1

=
∑
k≥0

f(tk+1)− f(tk)

ln tk+1
+ c4

= c3
∑
k≥0

g(k + 1)− 1

e
g(k) + c4

with a constant c4 which is finite since tk is increasing fast and the truncation error is
bounded. As in (5.3),

∑
k≥0 g(k) ≥

∫∞
0
g(t)dt =∞, and

n∑
k=0

g(k + 1)− 1

e
g(k) = g(n+ 1)− 1

e
g(0) +

(
1− 1

e

) n∑
k=1

g(k) .

Therefore
∑
k≥0

nk+1−nk
ln tk+1

=∞. From Lemma 5.2 we obtain that a.s., Tnk ≥ tk i.o., which
shows that

Mtk ≤MTnk
= Ank ≤ r

nk
+ ≤ r

f(tk)
+ .

Taking c3 < 1/ ln r+, we obtain the desired claim.

6 Proof of Theorem 2.2

We study the sequence

Sn =
Tn
A2
n

=

n∑
i=1

T ′iA
2
i−1

A2
n

=

n∑
i=1

T ′i
r2(Ui+···+Un)

,

which can be written in the form

Sm =
Sn

r2(Un+1+···+Um)
+ Smn+1 , (6.1)

where, for 1 ≤ n < m,

Smn+1 =

m∑
i=n+1

T ′i
r2(Ui+···+Um)

.

The point is that, in (6.1), Sn and Smn+1 are independent, with Smn+1 equal to Sm−n in law.

We study the convergence/divergence of the series
∑
n≥1P[Sn ≤ tn], with tn of the

form

tn =
β

ln2 n
∧ 1 (6.2)

for some β > 0.

6.1 Proof of (2.5)

Let (i(n))n≥1 be a sequence of integers such that 1 ≤ i(n) ≤ n and (c
(n)
i )i=i(n)+1,...,n,n≥1

be a doubly-indexed sequence of real parameters with c(n)i > 1, to be fixed later on.
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Upper bound:

From (6.1) we have

P[Sn ≤ tn] ≤ P
[

T ′1
r2(U1+···+Un)

≤ tn, Sn2 ≤ tn
]

≤ P
[

T ′1
r2(U1+···+Un)

≤ tn, Sn2 ≤ tn, 2(U1 + · · ·+ Un) ≤ c(n)n .n

]
+ P[2(U1 + · · ·+ Un) > c(n)n .n]

≤ P[T ′1 ≤ tnrc
(n)
n .n, Sn2 ≤ tn] + P[2(U1 + · · ·+ Un) > c(n)n .n]

≤ P[T ≤ tnrc
(n)
n .n]× P[Sn−1 ≤ tn] + P[2(U1 + · · ·+ Un) > c(n)n .n] .

Iterating the estimate,

P[Sn−1 ≤ tn] ≤ P[T ≤ tnrc
(n)
n−1.(n−1)]× P[Sn−2 ≤ tn] + P[2(U1 + · · ·+ Un−1) > c

(n)
n−1.(n−1)] ,

and so on down to i(n) + 1, we obtain

P[Sn ≤ tn] ≤

 n∏
i=i(n)+1

P[T ≤ tnrc
(n)
i .i]

× P[Si(n) ≤ tn]

+

n∑
i=i(n)+1

 n∏
j=i+1

P[T ≤ tnrc
(n)
j .j ]

× P[2(U1+. . .+Ui) > c
(n)
i .i] .

(6.3)

Choice of i(n) and the c(n)i

Let i(n) = bln2 nc and for i(n) + 1 ≤ i ≤ n,

c
(n)
i = 1 +

√
8

i
(ln i+ ln2 n) . (6.4)

We have for i(n) + 1 ≤ i ≤ n and large n,

lnP[T ≤ tnrc
(n)
i .i] ≤ lnP[T ≤ rc

(n)
i .i] (by (6.2))

≤ −P[T ≥ rc
(n)
i .i]

≤ − 1

c
(n)
i .i

+ εn,i,1 (by (3.4))

≤ −1

i
+ εn,i,2 (by (6.4)) ,

with error terms

εn,i,1 =
ln2

(
c
(n)
i .i ln r

)
+ C(

c
(n)
i .i

)2
ln r

, εn,i,2 = εn,i,1 +

√
8

i3
(ln i+ ln2 n) .

One can check that supn
∑n
i=i(n)+1 εn,i,2 <∞, so for some positive constant D, for n

large and i(n) ≤ i ≤ n,

n∏
j=i+1

P[T ≤ tnrc
(n)
j .j ] ≤ exp

− n∑
j=i+1

1

j
+

n∑
j=i+1

εn,j,2


≤ D exp

(
− ln

(n
i

))
= D

i

n
.

(6.5)
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Combining this with (3.12), we get for n large and i(n) + 1 ≤ i ≤ n, n∏
j=i+1

P[T ≤ tnrc
(n)
j .j ]

× P[2(U1+. . .+Ui) > c
(n)
i .i] ≤ D i

n
exp(−4(ln i+ ln2 n))

=
D

i3n(lnn)4
.

Thus, the series
∑
an, with

an =

n∑
i=i(n)+1

 n∏
j=i+1

P[T ≤ tnrc
(n)
j .j ]

× P[2(U1+. . .+Ui) > c
(n)
i .i] ,

is convergent.

Choice of tn

To conclude, we need to take care of the first term in the right-hand side of (6.3). Recall
tn from (6.2) (we will assume n large so that ln2 n ≥ β), and fix an integer i1 ≥ 1 and an
ε ∈ (0, r − 1). For 1 ≤ i ≤ i1, applying (3.7) we get as n→∞,

P[T ≤ tnr2i] ≤ exp

(
− (r − 1− ε)2

2βr2i
ln2 n

)
,

and then, for n large,

P[Si(n) ≤ tn] ≤ P[T ′i ≤ tnr2i, i = 1, . . . , i1]

=

i1∏
i=1

P[T ≤ tnr2i]

≤ exp

(
−

i1∑
i=1

(r − 1− ε)2

2βr2i
ln2 n

)

≤ exp

(
− (r − 1− ε)2

2β

1

r2
1−

(
1
r2

)i1
1− 1

r2

ln2 n

)

≤ (lnn)
− (r−1−ε)2

2β(r2−1)

(
1−( 1

r2
)
i1

)
.

Using (6.5) we will bound n∏
i=i(n)+1

P[T ≤ tnrc
(n)
i .i]

× P[Si(n) ≤ tn] ≤ Di
(n)

n
(lnn)

− (r−1−ε)2

2β(r2−1)
(1−( 1

r2
)
i1 )

,

where i(n) = bln2 nc. As soon as β < (r−1)
2(r+1) , there exists some integer i1 and some

ε ∈ (0, r − 1) such that

(r − 1− ε)2

2β(r2 − 1)

(
1−

(
1

r2

)i1)
> 1 ,

and combining (6.3) with
∑
n an <∞, we obtain

∑
P(Sn ≤ tn) <∞, i.e.,∑

n≥1

P[Tn ≤ A2
ntn] <∞ .
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Conclusion

Let β < (r−1)
2(r+1) . It follows from Borel-Cantelli’s lemma that a.s., eventually

Tn ≥
βA2

n

ln2 n
.

Now, for Tn ≤ t ≤ Tn+1, if n is large enough,

Mt ≤MTn+1 = An+1 ≤ rAn ≤ r
√
β−1Tn ln2 n ≤ r

√
β−1t ln2 n ,

and since we have Tn ≥ βA2
n

ln2 n
≥ r

n
2
− for n large enough, we have t ≥ r

n
2
− , and n ≤ 2 ln t

ln r−
.

Finally,

Mt ≤ r

√
β−1t ln2

(
2 ln t

ln r−

)
.

Hence, we have proved (2.5) with any K > r
√

2(r+1)
(r−1) .

6.2 Proof of (2.6)

We start by proving that it suffices to show divergence of the series introduced above
(6.2):

Lemma 6.1. Let β0 = inf{β > 0 :
∑
nP(Sn ≤ β

ln2 n
) =∞}. Then

lim inf
n

Sn ln2 n = β0 a.s.

Proof. For all β < β0, we have
∑
nP(Sn ≤ β

ln2 n
) <∞ and the first Borel-Cantelli lemma

shows that lim infn Sn ln2 n ≥ β0. To prove the reverse inequality we proceed by steps:

• First step: For any non-increasing sequence (tn)n,∑
n≥1

P[Sn ≤ tn] =∞ =⇒ P(Sn ≤ tn i.o.) ≥
1

4
.

Indeed, for 1 ≤ n ≤ m,

P[Sn ≤ tn, Sm ≤ tm] ≤ P[Sn ≤ tn, Smn+1 ≤ tm]

= P[Sn ≤ tn]× P[Smn+1 ≤ tm]

= P[Sn ≤ tn]× P[Sm−n ≤ tm]

≤ P[Sn ≤ tn]× P[Sm−n ≤ tm−n] ,

since tm ≤ tm−n. Now, for k ≥ 1,∑
1≤n<m≤k

P[Sn ≤ tn, Sm ≤ tm] ≤
∑

1≤n<m≤k

P[Sn ≤ tn]× P[Sm−n ≤ tm−n]

≤
∑

1≤n,m≤k

P[Sn ≤ tn]× P[Sm ≤ tm] .

For all k large enough we have
∑k
n=1P[Sn ≤ tn] ≥ 2, and then for all 1 ≤ n ≤ k,∑

1≤m≤k,m 6=n

P[Sm ≤ tm] ≥ 2− P[Sn ≤ tn] ≥ P[Sn ≤ tn] .
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Therefore,∑
1≤n,m≤k

P[Sn ≤ tn]× P[Sm ≤ tm] ≤ 2
∑

1≤n,m≤k,n 6=m

P[Sn ≤ tn]× P[Sm ≤ tm]

= 4
∑

1≤n<m≤k

P[Sn ≤ tn]× P[Sm ≤ tm] .

Kochen-Stone’s theorem [18] – a variant of Borel-Cantelli’s lemma – yields

P[Sn ≤ tn i.o.] ≥ lim sup
k≥1

∑
1≤n<m≤k P[Sn ≤ tn]× P[Sm ≤ tm]∑

1≤n<m≤k P[Sn ≤ tn, Sm ≤ tm]
≥ 1

4
,

which concludes this step.
• Second step: Let’s introduce the σ-fields

Ak = σ((A′n, T
′
n);n ≥ k), k = 1, 2 . . . , T =

⋂
k≥1

Ak .

By Kolmogorov 0–1 law and independence of the sequence ((A′n, T
′
n);n ≥ 1), every

element A of the tail field T has P(A) ∈ {0, 1}. Fix β ≥ 0 and introduce the events

E = {lim inf
n

Sn ln2 n ≤ β} , Ek = {lim inf
n

Sn+kk+1 ln2 n ≤ β} ,

and

Ω0 = { lim
n→∞

ln2 n

r2(U1+...+Un)
= 0} .

Note that E = E0 and that P(Ω0) = 1. Since, by definition,

Sn+k+1
k+1 =

T ′k+1

r2(Uk+1+...+Un+k+1)
+ Sn+k+1

k+2 ,

we see that the two sets Ek and Ek+1 coincide on Ω0, for all k ≥ 0. Denoting the common
intersection by

Ê = E ∩ Ω0 = Ek ∩ Ω0 ,

we see that Ê belongs to T and then has probability equal to 0 or 1. The similar 0–1 law
holds for E which is equal to Ê up to a negligible set.
• Final step: For any β > β0, the series

∑
nP(Sn ≤ tn) with tn = β/ ln2 n is diverging.

By the first step, the probability P[Sn ≤ tn i.o.] ≥ 1/4, and by the second one is equal to
1. Thus lim infn Sn ln2 n ≤ β a.s., for all such β’s. The lemma is proved.

Remark 6.2. We have followed the approach of the renewal structure to get the 0–1 law,
with the advantage to keep the paper self-contained. A tempting alternative would be to
show that the tail σ-field of R is trivial; we mention the illuminating survey [23] on the
tail σ-field of a diffusion.

Anticipating on the proof of (2.6) we now give a short proof of Theorem 1.2.

Proof. It is not difficult to check the criteria of [10] or [24] for triviality of the tail σ-field
of one-dimensional diffusion (see Theorem 3 in [23]). Then, K∗ = lim supt→∞

M(t)√
t ln3 t

is
a.s. constant, and results (2.5) and (2.6) show that K∗ is positive and finite.

To continue the proof of (2.6) we need an intermediate result.

Lemma 6.3. For all α0 > 0, there exists β > 0 such that, for all n large enough,

P
[
Sbα0 ln2 nc ≤

β

ln2 n

]
≥ 1

lnn
.
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Proof. Clearly, it suffices to prove that for v > 0, there exists u > 0 such that, for all
large n, we have

P[Sn ≤
u

n
] ≥ 1

evn
. (6.6)

Indeed, substituting v, n in (6.6) by α−10 , bα0 ln2 nc shows that any β > u/α0 fulfills the
statement of the lemma.

To show (6.6), we fix some b ∈ (0, 1) (b will be chosen small later on), and we note
that:

Ui ≥ b and T ′i ≤ u
n (rb − 1)rb(n−i+1) for all i = 1, . . . , n

imply that

Sn =

n∑
i=1

T ′i
r2(Ui+···+Un)

≤
n∑
i=1

u
n (rb − 1)rb(n−i+1)

r2b(n−i+1)
≤ u

n
.

Then,

P[Sn ≤
u

n
] ≥

n∏
i=1

P[Ui ≥ b, T ′i ≤
u

n
(rb − 1)rb(n−i+1)]

= (1− b)n
n∏
i=1

P[T ′i ≤
u

n
(rb − 1)rb(n−i+1)|Ui ≥ b]

= (1− b)n
n∏
i=1

P[T ≤ u

n
(rb − 1)rbi|U ≥ b] . (6.7)

By Proposition 3.7, we can find t0 > 0 and ρ > 0 such that, for t ≤ t0,

P[T ≤ t|U ≥ b] ≥ exp(−ρ
t

) .

Now, we fix some t1 > t0, we will bound the factors in (6.7) as follows:

For
ln(t1

n

u(rb−1)
)

b ln r ≤ i ≤ n:

P[T ≤ u

n
(rb − 1)rbi|U ≥ b] ≥ P[T ≤ t1|U ≥ b] ,

for
ln(t0

n

u(rb−1)
)

b ln r ≤ i ≤
ln(t1

n

u(rb−1)
)

b ln r :

P[T ≤ u

n
(rb − 1)rbi|U ≥ b] ≥ P[T ≤ t0|U ≥ b] ,

and for 1 ≤ i ≤
ln(t0

n

u(rb−1)
)

b ln r :

P[T ≤ u

n
(rb − 1)rbi|U ≥ b] ≥ exp

(
−ρ n

u(rb − 1)

1

rbi

)
.

With this choice, the estimate (6.7) becomes

P[Sn ≤
u

n
] ≥ (1− b)n × P[T ≤ t1|U ≥ b]n × P[T ≤ t0|U ≥ b]

ln(
t1
t0

)

b ln r +1

×
b
ln(t0

n
u(rb−1)

)

b ln r c∏
i=1

exp

(
−ρ n

u(rb − 1)

1

rbi

)

≥ (1− b)n × P[T ≤ t1|U ≥ b]n × P[T ≤ t0|U ≥ b]
ln(

t1
t0

)

b ln r +1

× exp

(
−ρ n

u(rb − 1)2

)
.
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From this we derive the claim (6.6) by taking b small, u and t1 large. This ends the proof
of the lemma.

Proof. Theorem 2.2, claim (2.6). Similarly to the proof of (2.5), we let tn = β
ln2 n

∧
1, (i(n))n≥1 be a sequence of integers, and (b

(n)
i )i=i(n)+1,...n,n≥1 be a doubly-indexed

sequence with 0 < b
(n)
i < 1, given by

b
(n)
i = 1−

√
8

i
(ln i+ ln2 n) , for i(n) + 1 ≤ i ≤ n, i(n) = bα0 ln2 nc ,

with α0 large (take α0 > 8 so that b(n)i > 0 for n large).

This time, we need an extra doubly-indexed, positive sequence (s
(n)
i )i=i(n)+1,...,n,n≥1

such that for n large
n∑

i=i(n)+1

s
(n)
i ≤ tn .

(Note that this implies s(n)i ≤ 1.) Similarly, using (6.1) we estimate

P[Sn ≤ tn] ≥ P
[

T ′1
r2(U1+···+Un)

≤ s(n)n , Sn2 ≤ tn − s(n)n

]
≥ P

[
T ′1

r2(U1+···+Un)
≤ s(n)n , Sn2 ≤ tn − s(n)n , 2(U1 + · · ·+ Un) ≥ b(n)n .n

]
≥ P

[
T ′1 ≤ s(n)n rb

(n)
n .n, Sn2 ≤ tn − s(n)n , 2(U1 + · · ·+ Un) ≥ b(n)n .n

]
≥ P

[
T ′1 ≤ s(n)n rb

(n)
n .n, Sn2 ≤ tn − s(n)n

]
− P[2(U1 + · · ·+ Un) < b(n)n .n]

≥ P
[
T ≤ s(n)n rb

(n)
n .n

]
× P

[
Sn−1 ≤ tn − s(n)n

]
− P[2(U1 + · · ·+ Un) < b(n)n .n] .

We iterate the procedure,

P[Sn−1 ≤ tn − s(n)n ] ≥ P
[
T ≤ s(n)n−1.r

b
(n)
n−1.(n−1)

]
× P

[
Sn−2 ≤ tn − s(n)n − s(n)n−1

]
− P[2(U1 + · · ·+ Un−1) < b

(n)
n−1.(n− 1)] ,

and so on down to i(n). We obtain

P[Sn ≤ tn] ≥

 n∏
i=i(n)+1

P
[
T ≤ s(n)i rb

(n)
i .i

]× P
Si(n) ≤ tn −

n∑
i=i(n)+1

s
(n)
i


−

n∑
i=i(n)+1

 n∏
j=i+1

P
[
T ≤ s(n)j rb

(n)
j .j

]× P[2(U1+. . .+Ui)<b
(n)
i .i] .

(6.8)

Using s(n)i ≤ 1 and b(n)i < 1, we have, for n large and i(n) + 1 ≤ i ≤ n:

n∏
j=i+1

P[T ≤ s(n)j rb
(n)
j .j ] ≤

n∏
j=i+1

P[T ≤ rj ]

≤ exp

− n∑
j=i+1

P[T ≥ rj ]


≤ exp

− n∑
j=i+1

(
1

j
− ln2(j ln r) + C

j2 ln r

) (by (3.4))

≤ D′ i
n
,
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for some positive constant D′.
As we did for the series

∑
n an, cf. below (6.5) except for using (3.13) instead of

(3.12), we easily see that the series
∑
n a
′
n, with

a′n =

n∑
i=i(n)+1

 n∏
j=i+1

P[T ≤ s(n)j rb
(n)
j .j ]

× P[2(U1+. . .+Ui) < b
(n)
i .i] ,

is convergent. Now, we choose

s
(n)
i =

1

i3
,

and we start to bound from below the product

n∏
i=i(n)+1

P[T ≤ s(n)i rb
(n)
i .i] = exp

 n∑
i=i(n)+1

ln(1− P[T ≥ s(n)i rb
(n)
i i])

 .

Observe that, by taking α0 > 16, we have b(n)i ∈ (1/2, 1) for all large n and i ∈ [i(n) + 1, n],
and also that for large n,

inf{s(n)i rb
(n)
i .i ; i(n) + 1 ≤ i ≤ n} ≥ r

α0
2 ln2 n , (6.9)

which tends to ∞ as n → ∞. For i(n) + 1 ≤ i ≤ n and n large, in view of (6.9) we have
(using − ln(1− u) ≤ u+ u2 for small u > 0 and 1

1−u ≤ 1 + 2u for 0 < u < 1
2 )

− ln(1− P[T ≥ s(n)i rb
(n)
i .i]) ≤ P[T ≥ s(n)i rb

(n)
i .i] + ε′n,i,1

≤ ln r

ln
(
s
(n)
i rb

(n)
i .i

) + ε′n,i,2 (by (3.4))

=
1

b
(n)
i .i+

ln s
(n)
i

ln r

+ ε′n,i,2

≤ 1

b
(n)
i .i

+ ε′n,i,3

≤ 1

i
+ ε′n,i,4 ,

with error terms

ε′n,i,1 = P
[
T ≥ s(n)i rb

(n)
i .i

]2
, ε′n,i,2 = ε′n,i,1 +

1

ln r
×

ln3

(
s
(n)
i rb

(n)
i .i

)
+ C(

b
(n)
i .i+

ln s
(n)
i

ln r

)2 ,

ε′n,i,3 = ε′n,i,2 − 2
ln s

(n)
i(

b
(n)
i .i

)2
ln r

, ε′n,i,4 = ε′n,i,3 + 2

√
8

i3
(ln i+ ln2 n) .

One can check that supn
∑n
i=i(n)+1 ε′n,i,4 < ∞, so for some positive constant D′′, for

large n,

n∏
i=i(n)+1

P[T ≤ s(n)i rb
(n)
i .i] ≥ exp

− n∑
i=i(n)+1

(
1

i
+ ε′n,i,4

)
≥ D′′ i

(n)

n
. (6.10)
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Finally, consider the term

P

Si(n) ≤ tn −
n∑

i=i(n)+1

s
(n)
i

 .
Note that tn −

∑n
i=i(n)+1 s

(n)
i = β

ln2 n
−
∑n
i=i(n)+1

1
i3 ≥

β
ln2 n
− 1

2 i(n)2
, which implies that for

all β′ < β, tn −
∑n
i=i(n)+1 s

(n)
i ≥ β′

ln2 n
for large n, and then

P

Si(n) ≤ tn −
n∑

i=i(n)+1

s
(n)
i

 ≥ P [Si(n) ≤
β′

ln2 n

]
.

Now, we are ready to conclude the proof: Fix α0 > 16, and let β′ be associated to α0

by Lemma 6.3. Then,

P

[
Si(n) ≤

β′

ln2 n

]
≥ 1

lnn
,

and for tn = (β/ ln2 n) ∧ 1 with β > β′, using (6.10), n∏
i=i(n)+1

P[T ≤ s(n)i rb
(n)
i .i]

× P
Si(n) ≤ tn −

n∑
i=i(n)+1

s
(n)
i

 ≥ D′′ i(n)
n
× 1

lnn
.

Using now (6.8) and
∑
n a
′
n < ∞ we obtain

∑
n≥1P[Sn ≤ tn] = ∞. By Lemma 6.1 we

have a.s.,

Tn ≤
βA2

n

ln2 n
i.o.

i.e., An ≥
√
β−1Tn ln2 n. Since, for all large n, βA2

n

ln2 n
≤ rn+, we see that Tn ≤ rn+, so

n ≥ lnTn
ln r+

, and also

MTn = An ≥

√
β−1Tn ln2

(
lnTn
ln r+

)
.

Finally, for some (small) K ′ > 0, with probability one, Mt ≥ K ′
√
t ln3 t i.o. The proof of

(2.6) is complete.
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