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Abstract

We study the overlaps between right and left eigenvectors for random matrices of
the spherical ensemble, as well as truncated unitary ensembles in the regime where
half of the matrix at least is truncated. These two integrable models exhibit a form
of duality, and the essential steps of our investigation can therefore be performed in
parallel.

In every case, conditionally on all eigenvalues, diagonal overlaps are shown to be
distributed as a product of independent random variables with explicit distributions.
This enables us to prove that the scaled diagonal overlaps, conditionally on one
eigenvalue, converge in distribution to a heavy-tail limit, namely, the inverse of a 72
distribution. We also provide formulae for the conditional expectation of diagonal and
off-diagonal overlaps, either with respect to one eigenvalue, or with respect to the
whole spectrum. These results, analogous to what is known for the complex Ginibre
ensemble, can be obtained in these cases thanks to integration techniques inspired
from a previous work by Forrester & Krishnapur.

Keywords: eigenvectors overlaps; non-Hermitian random matrices; truncated unitary matrices;
spherical ensemble.

MSC2020 subject classifications: 60B20; 15B52.

Submitted to EJP on January 29, 2021, final version accepted on August 17, 2021.

Contents

1 Introduction 2
2 Spherical ensemble 10
3 Truncated unitary ensemble 21

*We acknowledge partial support from the grants NSF DMS-1812114 of P. Bourgade (PI) and NSF CAREER
DMS-1653602 of L.-P. Arguin (PI). This project has also received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Sktodowska-Curie Grant Agreement No. 754411.

TIST Austria, Am Campus 1, 3400 KLOSTERNEUBURG, AUSTRIA

E-mail: gdubach@ist.ac.at


https://imstat.org/journals-and-publications/electronic-journal-of-probability/
https://doi.org/10.1214/21-EJP686
https://ams.org/mathscinet/msc/msc2020.html
mailto:gdubach@ist.ac.at

On eigenvector statistics in the spherical and truncated unitary ensembles

1 Introduction

1.1 Spherical and Truncated Unitary Ensembles

This work considers two ensembles of random matrices defined as follows.

(i) The spherical ensemble consists of products G G;l, where G1, G are i.i.d. complex
Ginibre matrices. We denote the N x N complex Ginibre ensemble by CGE(NV) and
the corresponding spherical ensemble by Sph(/N). The name spherical comes from
a geometric description of the eigenvalues, stated as Fact 2.5 and illustrated on
Figure 1.

CGE(1000)

Sph(1000) Projection on the sphere

Figure 1: Scaled eigenvalues of CGE(1000) and Sph(1000); the third picture is the
preimage of the latter by the stereographic projection (2.9).

(ii) The truncated unitary ensemble consists of truncations of unitary matrices dis-
tributed according to the Haar measure (CUE). It therefore depends on two
parameters determining the size of the original CUE matrix and the size of the
truncation, as exemplified on Figure 2. We denote by TUE(N, M) the ensemble
of truncations of size N of matrices distributed according to CUE(N + M). Our
results are only valid when N < M, that is, when the truncated matrix is at most
half as large as the original matrix. In the relevant limits, both parameters are
assumed to go to infinity; a regime of particular interest is when % — K= 1.

TUE(500,500) TUE(500,1000) TUE(500,1500)

Figure 2: Eigenvalues of TUE(N, M) for N = 500 and M = 500, 1000, 1500.

The reason for treating these two ensembles in the same paper is the strong analogy
between them, underlined and exemplified by [11], that extends to the overlap distribu-
tion. All results are presented in details for the spherical case in Section 2, while the
corresponding results in the truncated unitary case are found in Section 3 — with less
detail given whenever the two computations are exactly the same.

1.2 The matrix of overlaps

The matrix of overlaps associated to the bi-orthogonal family of left and right eigen-
vectors of a non-Hermitian random matrix has been introduced and studied by Chalker
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& Mehlig in [6, 7], then more recently in a series of papers involving a variety of methods
from mathematics and physics [1,4,5,8,10,12,14,18,20]. Most of these works deal with
Gaussian ensembles, the complex Ginibre ensemble in particular. But more generally, the
diagrammatic approach performed in [4, 18] supports very interesting conjectures much
beyond the Gaussian cases, and it is one of the aims of the present work to establish
some of these in the particular cases of Sph(/N) and TUE(N, M).

The matrix of overlaps is defined as follows: for a given matrix G € .#n(C) with
simple spectrum {\,..., Ax} (note that the random spectra are almost surely simple
in the cases we consider), if R; = |R;) is the right eigenvector associated to A; and
L; = (L,| the left eigenvector associated to the same eigenvalue, that is, for every j,

GR; = \jR; & L;G = \Lj, (1.1)
are chosen such that they form a bi-orthogonal family, i.e. under the condition
(LilRj) = LiR; = 0y, (1.2)
then we define the matrix of overlaps & by
01 = (LilL;)(R;|R:) = (LiL})(R}Ry). (1.3)

It is now clearly established that the matrix of overlaps quantifies the stability of the
spectrum in various ways. We refer to the introduction of [5] as well as Section 2.4 of
the review [3] for a more detailed presentation of overlaps and their relevance to both
mathematics and physics.

1.2.1 Results.

The results we obtain in the spherical and truncated unitary cases are analogous to some
of the results obtained in [5] for the complex Ginibre ensemble CGE (V). We recall these
results, and point out which statement of the present paper corresponds to each one.

(i) A decomposition of the distribution of diagonal overlaps. The first notable
fact is that, conditionally on the spectrum A € CV, diagonal overlaps can be de-
composed as a product of independent variables. In the complex Ginibre ensemble,
Theorem 2.2 from [5] states that, conditionally on the event {A = (A1,...,An)}, the
distribution of diagonal overlaps is given by

CGE(N) d TH |1Zi|*
7 =11 Hm ; (1.4)
i=2 v

where (Z;), are i.i.d. standard complex Gaussian. Instead of Gaussian variables,
the analogous statements in the spherical and truncated unitary ensembles involve
ii.d. variables whose distribution is specific to each case. Namely, in Sph(V), we
have

N

14+ MDA+ [Ae]?

@wmgno+<|dxm2uu@» 1.5
k=2

where the X](\f) are i.i.d. variables whose distribution is defined in (2.5); and in
TUE(N, M),

N

TUE(N,M) d (1*|/\1|2)(1*|)‘k|2) k

Ao+ SRIE). oo
k=2

where the Y](Vﬁ ) are i.i.d. variables whose distribution is defined in (3.5). These
decompositions are stated as Theorem 2.6 and 3.5 respectively.
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Conditional expectations of overlaps. It follows from the decomposition of the
law explained above that the expectation of diagonal overlaps also takes a product
form. For CGE(N), following (1.4), this reads:

N
CGE(N 1
Ex ( )(ﬁll):H <1+]V)‘i_)‘k|2), (1.7)

k=2

which had been obtained earlier by Chalker & Mehlig [6, 7] by a direct computation.
In the cases under consideration here, analogous identities derive from equations
(1.5) and (1.6); they are stated in Theorem 2.6 and 3.5 respectively. We are
also able to get explicit formulae for the conditional expectations with respect to
only one eigenvalue, see Propositions 2.10 and 3.8. Moreover, expressions of the
same kind can be obtained for off-diagonal overlaps, although no decomposition in
independent variables holds in that case. In the Ginibre ensemble, the formula is

N

1 1
ECCEN) (o N = & | I <1+ SV > 1.8
A ( 12) |)\1 . )\2|2 P _Z\/'(/\1 — )\k)()\Q — )\k) ( )

The analogous results for Sph(N) and TUE(N, M) are stated as Theorem 2.11 and
3.9 respectively, and also appear in the synoptic table below.

Limit theorems for diagonal overlaps. In the complex Ginibre ensemble, The-
orem 1.1 from [5] states that conditionally on the event {\; = 2z} with z € D, the
scaled diagonal overlap &, converges to the inverse of a v, distribution:

I ccew) 4 1
N o (1.9)

This heavy-tail limit appears to be universal, as illustrated on Figure 3. In particular,
the exact same convergence holds at the origin for the spherical and truncated
unitary ensembles, which is stated as Proposition 2.8 and 3.7 respectively. Unlike
the complex Ginibre case, where ﬁﬁl follows a beta distribution when {\; = 0},
the distribution of the overlap for fixed N does not take an especially simple form
here; nevertheless, the asymptotical result can be worked out in an analogous way.

The specific structure of the spherical ensemble allows one to extend this result to
the whole complex plane in this case, yielding the following Theorem.

14 14 14

CGE(1000) Sph(1000) TUE(1000,1000)
p

Figure 3: Histograms of scaled diagonal overlaps for CGE(N), Sph(N) and TUE(N, N)
respectively, with N = 1000 and over 30 experiments (for each experiment, the overlaps
of all eigenvalues in a given domain, chosen arbitrarily inside the bulk, have been
considered).
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Theorem 1.1. Conditionally on the event {\; = z1} with z; € C,

Sph(N I sphvy a1
By (") =N ana Lo = (1.10)

It is to be expected that a similar statement holds for TUE(N, M) in the bulk of its
limit density of eigenvalues. More precisely, we expect the following to hold.
Conjecture 1.2. In the limit % — k > 1, conditionally on {\; = 2} with |z;|?> <

1
k+17

%@TFB(MW ﬁ (1—(1+/@)\z|2)%. (1.11)
Such a result appears to be within the reach of known methods but to require a
much longer study. We provide here two partial results: convergence to the proper
limit at the origin (Proposition 3.7) and a derivation of the right scaling parameter
in the conditional expectation (limit (3.12) in Proposition 3.8). This second step
confirms a specific case of the general expressions conjectured in [4].

(iv) Conditional expectation of a mixed moment. The conditional expectation of
Tr G*G with respect to A also exhibits a remarkable decomposition in all three
ensembles. One reason for considering this particular quantity, which is the
simplest ‘mixed moment’, is that it is obtained from the eigenvalues and the
overlaps by a simple identity:

N
TrGG* = Y \iX; 0. (1.12)

4,5=1

The link between mixed moments and overlaps motivated the work of Walters &
Starr [20], and similarly, more general mixed moments are linked to the generalized
overlaps considered in [8]. In the complex Ginibre case, the distribution of Tr G*G
is straightforward to describe: it suffices to write

N
TrGG* = Te(TT*) =Y [Ty =Y INIP+ D ITy1% (1.13)

A ] i=1 1<j

and to note the fact that the upper-diagonal entries (T;;);<; of the Schur transform
are i.i.d. Gaussian and independent of the eigenvalues. A very simple formula for
the conditional expectation follows. The spherical and truncated unitary ensembles
yield slightly more intricate expressions, stated as Proposition 2.12 and 3.10
respectively.

We summarize all results relative to (iii) and (iv) in the table below, Section 1.4. It
follows from (1.12) that the third column is related to the first two by elementary linear
relations - a fact which is not directly seen from the quenched expressions.

1.3 Method, notations and conventions

1.3.1 Overlaps and Schur form.

We present here the first steps of the general method, already used in previous works
such as [5-7,10], that is now to be applied to the spherical and truncated unitary cases.

We first note that the conditions (1.2) can be achieved by choosing R; as the columns
of P and L; as the rows of P! for a given diagonalization G = PAP~!; the overlaps are
independent of this choice. Moreover, overlaps are unchanged by an unitary change of
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basis, and therefore one can study directly the overlaps of the Schur form

A1 TLQ TI,N
0 X ... Thn

T=U"GU = . . ) (1.14)
0o ... 0 An

By exchangeability of the eigenvalues, we can also limit ourselves to studying the vari-
ables 071 and 05, whose definitions only involve the first two left and right eigenvectors
of T', chosen such that

R1:(1a07"'a0)t7 RQZ(G/71707"'70)t7
Ly = (by,...,bNn), Lo = (dy,...,dN).
Biorthogonality (1.2) gives by = 1, dy = 0, d2 = 1 and @ = —by. Thanks to the upper-
triangular form of T', the coefficients b;, d; are obtained according to a straightforward
recurrence. Indeed, if we consider the sequences of sub-vectors:
Bk:(l,b27...7bk) so that L1:BN,
Dy = (O,I,dg,...,dk) so that Lo :DN,
ug = (Th gy .-, Te—14)"  (subset of the kth column of 7).

The recurrence formula is

bﬂJrl = mBnunJrl, n 2 ].,
(1.15)
dpy1 = mDnunHa n=2.
The first overlaps, according to (1.3), are then given by the expressions
N N
On=>Y_[bil>,  Ora=-b) bid;. (1.16)
1=1 =1

In order to deduce from the recurrence (1.15) a decomposition in distribution (resp.
a decomposition of the conditional expectation with respect to all eigenvalues) of the
overlaps in different ensembles, we need the distribution of the Schur form to be known
and to allow to perform such a computation explicitly. For instance, in the complex
Ginibre case treated in [5], the upper-triangular entries (Tij)Kj are i.i.d. complex
Gaussian variables with variance 1/N, so that ugy; is a k-dimensional Gaussian vector
with independent coordinates, and independent of o, ..., ur. The cases at stake here
are more intricate, but still integrable: indeed, it was proved in [11] that the Schur
forms of both Sph(N) and TUE(N, M) also have explicit densities expressed in the form
of a determinant; a structure which allows an analogous analysis in these non-Gaussian
cases.

1.4.1 Notations and conventions.

Throughout the paper, N is the size of the system (i.e. the number of eigenvalues); the
spectrum is A = Ay = (A1,...,Ax). For any n < N, we denote by T,, the n x n top-left
submatrix of the Schur form 7T, and by w,, the first n — 1 coordinates of the last column

vector of T;,, so that
Tho1 U
T = T="Tp.
n ( 0 )\n ) ’ N
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IE4 denotes the conditional expectation with respect to A (if A is a random variable or
a sigma algebra), or the expectation for the conditional probability (if A is an event);
the context should prevent any ambiguity to arise. In particular, I, is the conditional
expectation with respect to the spectrum A. When conditioning on A, we will also use
the following filtration, adapted to the nested structure of the Schur transform:

Fn=0ur,2<k<n)=0(T;;,1<i<j<n).

(This convention differs from the one chosen in [5]. In particular, b, = % € %5, and

%1 is trivial.) With any suitable function V, the generalized Gamma and Meijer functions
are defined as

Ty () ;:/R t e VOdt,  Gy(k) =Ty (1)---Ty(k).

We also define the partial sums

m k
(m) [y X
v (X) = ,;Fv(k+ 1)’

and the generalized Gamma distributions 7y («), with density
1
Ly (a)
with respect to the Lebesgue measure. We will use the fact, established for instance in
[9,15,16], that a point process in C with joint density given by
ZL I 1x = ayfPe ZE vy, (1.18)

1<i<j<N

o e V1R, (1.17)

where Zy = Gy (N), is such that the following identity in distribution holds:
Proposition 1.3 (Kostlan’s property). {|\|%, ..., |An|?} 4 {w(@),...,7v(N)} where the
latter variables are independent, and v (k) is distributed according to (1.17) with o = k.

What we need here is a specific form of Kostlan’s property, obtained by applying
Proposition 1.3 to the conditioned measure.

Proposition 1.4. Conditionally on the event {\; = 0}, the identity in distribution

{IX2?, .. | AN %} 4 {w(2),...,7(IN)} holds, where the latter variables are independent,
and vy (k) is distributed according to (1.17) with a = k.

Other notations or conventions relative specifically to the spherical or truncated
unitary case are mentioned in the corresponding section.

1.4.2 Two general facts

We conclude this introduction with two results that are used similarly in both cases.
The first one is a general identity that holds for any determinantal point process with
joint density given by (1.18) with a radially invariant potential such that the generalized
Gamma function is well defined.

Proposition 1.5 (Product statistics). For any function g € L?(u),

N 1 _ _ ) N—1
E,, (H g()\i)> = =0 det (/ 271N — 22g(2)e VA )dm(z)) ,
=2 ZN ij=1
where
Zy) = Gv(N)ey (M),
EJP 26 (2021), paper 124. https://www.imstat.org/ejp
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Proof. The determinant comes from Andréief identity [2] applied to the conditioned
measure. It remains to compute the normalization constant by setting ¢ = 1. We find

Zz(\}) = det (fi,j)%;ll =:Dn—1

where the determinants Dy are Hermitian, tridiagonal and nested (i.e. Dy, is the principal
minor of Dg1), with

Fee = M 2Ty (k) + Ty (k +1)
fer1k = frorrr = —Mlv(k+1).
This gives the initial value Zél) =Dy = |MTy(1)+Ty(2) = Gv(2)€§/l)(|/\1|2) and the
induction
Dy, = fexDi-1 — | frup—1"Di—2 = (M [’Tv (k) + Tv(k + 1)) Di—y — [\ [*Tv (k) Do,
)

whose solution is the formula provided for Z](\}
given by the expected formula, then

. Indeed, by induction, if Dy_o, D1 are

Dy, = [M|*Ty (k) (Di—1 — Dy (k) Dp—2) + Ly (k + 1) Dy

(k—1) X[
= Gv(k‘ + 1) ey + m

= Gy (k+1)ell,
which yields the claim, for k = N — 1. O

This three-terms induction structure will appear again in Propositions 2.10 and 3.8 -
that is, whenever we use Proposition 1.5 to perform an explicit computation. We will
systematically call the determinant at stake Dy, and use the shorthands

- 1 L Ty(k)

Dy : = 1.19
k Yk Ty (k+ 1) ( )

= ——— Dy,
Gylk+1) "
with respect to the appropriate V. One more general result we shall need as a technical
input is an elementary exercise on sequences and series.
meN
Lemma 1.6. Let (u,ii’l)) be a countable family of double-indexed real positive

1<k<n
sequences such that

Ym,k > 1, u,(;’v? — 0.

n— o0
Then there exists a sequence (k,),>1 such that 1 < k, < n, k, —— o0, and for any
n—oo
m € NN,

Proof of Lemma 1.6. We first prove the statement for one double-indexed sequence
(Ukn)1<ks<n. We define, for 1 < k < n, the partial sums Sy, = Zleui,m and the
following sequence, iteratively:
. 1
ny =1, njy1:=min<ql | ¥n =1, Sjt1, < 55.7',71,- .

By assumption on ug ., the sequence (n;);>1 is well defined, increasing, and goes to infin-
ity. Moreover, by construction we see that S; ,,; converges to zero. It is straightforward
to check that the sequence

kn :=max{j € [1,n] | n; <n}

EJP 26 (2021), paper 124. https://www.imstat.org/ejp
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issuchthat1 <k, <n, k, —— o0, and

n— o0
1
Vn € [[nja Nj+1 — 1]]7 Sk'n,,n = Sj,n < §Sj—1,nj,17
so that Sy, , converges to 0; thus, the Lemma is established for one sequence. We

extend this to a countable family of double-indexed sequences u,(:;) by defining vy, :=
Efﬁ:l u,(:;), which converges to 0 for every fixed k; by the above argument, there exists

a sequence k,, such that

k}n kn
. (m)
ZULTL ::;C? 0, so that Vm € ]N, ZU]JL m 0.
j=1 j=1
Indeed, every term being positive, as k,, — oo, the latter sum can be bounded by the first
one as soon as k,, > m. This concludes the proof of Lemma 1.6. O

In fact, the argument we will make relies on the multiplicative version of Lemma 1.6,
namely: if a countable family of double-indexed sequences p,(:;) is such that pg?;? — 1 for
every fixed k and m, then there exists a sequence (k,),>1, going to infinity, such that for

every m
kn
I 1
j=1

Note that this existential statement does not give any estimate on the growth rate of

(Fn)-

2 Spherical ensemble

This section contains the proof of all claims related to the spherical ensemble Sph(N).
These proofs rely on a few estimates that are found in Subsection 2.3.

2.1 Schur form and eigenvalues

We first present a few general results in order to illustrate the method; the tools
and definitions that follow are specific to the spherical case. We recall that the Schur
transfom 7T of a matrix from Sph(N) is distributed with density proportional to

1
i — N2 2.1
1<i1<_J['<N | 4 det(Iy + TT*)*N @b

with respect to the Lebesgue measure on all complex matrix elements, diagonal (dA =
dA; - --dAy) and upper-triangular (dus - - - du,). We introduce the Hermitian, definite-

positive matrices
Hy =TI, +T,T,  Snp_1 = (14 M\JH)V2HYA. (2.2)

The following lemma is the essential tool used in [11].

Lemma 2.1. The determinant of H,, = I,, + T,,T,; can be recursively decomposed as

1
2 * —1

Proof. We first write

I, T, 1T * A
det(Hn) :det< n-l + n—-lin-1 +Unun Anun >

Anur, 1+ [Aa)?
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Elementary operations on columns brings this matrix to an upper-triangular form, so
that

1
det(H,) = (14 |\n|?)det ( Ly_y + Ty 1 T - _uut
et(H,) = (14 [0 det (Lo + T T3+ ot

1 N
= (1 + |A'IL| )dCt( n— 1)dCt < n—1 =+ 1+|)\n|2unuan_11> .
The claim follows by Sylvester’s identity, det(I + AB) = det(I + BA), for matrices A, B
of such sizes that the second determinant is reduced to a scalar. O

For any p > n, we denote by ”i/p(") a random vector with density

1 1

G (L 0 0)P (2.4)

with respect to the Lebesgue measure on C"; the value of (), , is given by (2.22). For
any m > 0, we denote by X,,, a real random variable with density

m+1

with respect to the Lebesgue measure. In particular EX,, = % and if v; is a coordinate
of 7/1)(”), it follows from Lemma 2.16 that

d
‘Ui|2 = Xp—n-1.
Note that the i.i.d. variables that appear in Theorem 2.6 follow the distribution of X,,

with m = N.

Lemma 2.2. Identity holds between the following expressions, for p > n and f, g inte-
grable functions of the matrix elements:

/f ATM“Q;" s Up— 1)g(u’n>dTn
det(H, )P

F(An,us, ..., un_l)]E< (s,,_f%”*”))
=C, Lp/ dTnfld)\na

(14 [An[?)P=n+t det(Hyp—1)P~!
where H,,S,_1, 7" are defined in (2.2) and (2.4).

Proof. Lemma 2.1 and the change of variable u,, = S,,_1v,, bring the left hand side to
the form
/ f(An7u27---;unfl)g(snflvn)
(I + [Ap2)p—rtldet(Hp—1)P~ (1 + viv,)P

Recall that u,,, and therefore v,,, are column vectors of size n — 1. The claim follows by
definition of the random vector 7" V. O

dT,,—1dv,dA,.

A first relevant fact that can be deduced from the above Lemma is the distribution of
every top-left submatrix of the Schur form 7'.

Proposition 2.3. Conditionally on A and for 2 < n < N, the submatrix T,, of the Schur
transform is distributed with density proportional to

1
det(I,, + T, T )N+n

(2.6)

with respect to the Lebesgue measure on upper-triangular matrix elements (dus - - - duy).
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Proof. The claim is known for n = N. We deduce it for all n by a backward recurrence;
indeed, as long as n — 1 > 2, the claim for n — 1 follows from the claim for n by Lemma
2.2 with g = 1 and generic f. O

We can also derive the joint eigenvalue density of the spherical ensemble from the
density of its Schur form, as was done in [11].

Theorem 2.4. The joint density of eigenvalues for the spherical ensemble is proportional
to

1
Ai — A2 2.7)
H' T @ e

with respect to the Lebesgue measure on CV.

Proof. Let h be a bounded and continuous function of the spectrum A,,. We use Lemma
2.1 with p=2N, g =1 and

fO(A7L7u27 ce 7un) = H |>\z - /\j|2h(An)a
1<J

which yields

f7L(ATL7u27 DRI un—l)
(14 |An|2)N+ det(H,—1)2N

E(h(Ay)) = CN—1,2N/ — dT,,_1dA,.

We then use Lemma 2.1 again with

—— fn(An,U/Q,..,7un71)
fnil(Anil’u%”"u"*l) o / (1+ |)\n|2)p—n+1 d)\na

and so on; this recurrence leads to the expression

E (h(An)) = C/H X — N2

1<J

h(AN)
T, (1 + [M\2)N+1

N

which is equivalent to the claim. O

Theorem 2.4 can be rephrased by saying that the eigenvalues of Sph(N) are dis-
tributed according to (1.18) with potential V(¢t) = (N 4 1)In(1 + ¢). A straightforward
computation shows that

d 1

v (@) -1 (2.8)

ﬁN+17a,oc

Origin of the name spherical.
The stereographic projection from $2 to C is defined by

sin ¢ cos 6

p(w) = tan (g) e’ where w = sin ¢ sin 0 € $? (2.9)
cos ¢
and its inverse map from C to $? is given by:
1 2ReA
p(\) = [ERpE |§‘12m_)\1 €%?  where A e C. (2.10)

The reason for the name spherical is that the following identity in distribution holds,
as was first established in Section 3 of [17].
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Fact 2.5. Let (wy,...,wy) = (p(A1),...,p(AN)) be the images of the eigenvalues of
GlGQ_1 by the map (2.10). This point process on $? has joint density proportional to

T 1w = wilizs- 2.11)

1<J

In other terms, the eigenvalues of Sph(/V) can be described as the stereographic
projection of a one-component plasma on $2, with respect to a uniform potential®.

Proof. This is obtained by a change of variable applied to the density (2.7), noting that

Ip(A) — () s = a+ 4)\|)\2)_(1M—||- |1]?)

(2.12)

and that the Jacobian of p at \ is W. O

2.2 Distribution and conditional expectation of overlaps

We now give the proof of the claims concerning diagonal and off-diagonal overlaps
in the spherical ensemble. Some results hold conditionally on the whole spectrum Ay,
whereas others only imply a condition on one eigenvalue.

Theorem 2.6. Conditionally on {A = (\1,...,An)}, the diagonal overlaps of Sph(N) are

distributed as
N

d (14 M P)A+ M) )
on 2] (1 X 2.13
! Pt ( " A1 = Ag[? N (13)

where the X](\]f) are i.i.d. distributed according to (2.5) with m = N. In particular, the
quenched expectation is given by

N

1+ A2+ Al

Ex(on) =[] (1 4! +J|V|1A|1)£ ;;IL d )> . (2.14)
k=2

Proof. For 1 < d < N, we define the partial sums

d
d
of == |bil”.
i=1

It follows from the general facts presented in Section 1.2 that ﬁﬁ)

d>1,

= 1, and for any

1 Baugyi|?
ﬁﬁ(i*l) - ﬁ’l(‘f) + |bgs1]? = ﬁﬁi) (1 + | Battd1] )

A1 = Aas1l? || Ball?
In order to characterize the distribution of this factor, we use our preliminary results in
the following order:

» Proposition 2.3 gives the distribution of 7;11, so that p = N + d + 1 in the following
steps.

e Lemma 2.2 with n = d + 1, generic f and g(ug41) := h(|Bauat1]?) with generic h
gives that

d
|Bauas1|? £ | BaSatn "yl

and is independent of .%,.

1Note that the appropriate convention for the stereographic projection here is such that the unit circle is
mapped to the equator of $2. In particular, the average proportion of eigenvalues of Sph(N) falling in the unit
disk is .
2
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* Lemma 2.16 with a = b= Bj and S = S, yields

\Baugs1 > 2 |SaB:2 XN = (1 + | Aara|?) (Bally + TyTH) B X v, (2.15)

where X is distributed according to (2.5) with parameter m = NN, and independent
of cg‘\d.

We notice that, as T is triangular and T}, B; are obtained from 7" and L;,
B Ty = M By, (2.16)

which implies that Bq(I; + T4T;) B} = (1 + [A1|?)||Bal|?. 1t follows that

14+ AP+ [Mgaal?
otge0 £ g9 (14 LA M) )
A1 — Aat1]

where Xy is independent of .%,;; we denote this variable by X](\?H) in order to avoid
confusion between the different variables X . This implies the claim, as 01, = ﬁl(jlv). O

Diagonal overlap are (deterministically) larger than one, and typically of order N.
The following proposition states that in the spherical ensemble the expectation of the
diagonal overlap for an eigenvalue conditioned to be at the origin is exactly NV, as is also
the case in the complex Ginibre and truncated unitary ensembles.

Proposition 2.7. Conditionally on {\; = 0}, the expectation of the diagonal overlap 0’1,
in the spherical ensemble Sph(N) is

E{)\lzo} ﬁll - N
Proof. We know from Proposition 1.3 that the squared radii are distributed like indepen-

dent variables with distributions 7y, with V(z) = (N +1)log(1 +z) and 2 < k < N. We
have

N 1 1
Efy—nO11 = Ef1+—=
=031 kll ( Ty va,k)’
and according to Lemma 2.13,

E(l)_ﬁ(N+2—k:,k:—1)_N+1—k:
YWk B ﬂ(N%’l*k,k) B E—1

so that the expectation is given by the telescopic product

Nk
Epy—0301 =[] —1=-N
k=2
as was claimed. O

Proposition 2.8. Conditionally on {\; = 0}, the following convergence in distribution
takes place:

1@ d 1
N 1 N—oo ’72.

The proof relies on the multiplicative version of the elementary Lemma 1.6 presented
in the introduction.
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Proof of Proposition 2.8. We first recall how convergence to vy, ! arises for the complex
Ginibre ensemble; part of the argument then relies on comparison with this case, treated
in [5]. The reason why this situation is more tractable is that the distribution of the
diagonal overlap yields an exact expression: using a few classical identities of the beta
and gamma distributions, we see that

DA N
— d d d
Nﬁll —N | I <1+ ) =N I | Bk,l :N,B27N_1 —>N%oo Y.
k=2

Now, for any sequence of integers (k,)n>1 such that

1<k, <n, k,— o, (2.17)

n—oo

the same product can be decomposed as

k H 1+ i ><ﬁ ﬂ 1+ n L kn x g
N 2 e NP2, kny—1 kN kn+1,N—1-

k=kn-+1

It is straightforward to check that
d N d
knB2ky—1 —— Y2, —Brn+1,N — L.
N—oo kN N—o0

In other words, the limit distribution v, essentially depends on the first ky factors,
provided ky goes to infinity. Similarly in the spherical case, using Theorem 2.6 and
Proposition 1.4, we write:

—1

~ 14y (k N X T4y (k) o\~
st ) < )

We will prove that the first factor F(2,ky) converges to 7, for a suitable sequence
kx that allows comparison with the complex Ginibre case, whereas the second factor
F(ky + 1, N) converges to 1. By the identity (2.8), the independent variables involved
are distributed as follows:

1+’7V(k)X(k) o Xy

F =1+ -
oK v (k) Br,N+1-k

where Xy is defined by (2.5).

Convergence of F'(2, ky) to ., for a suitable sequence (ky). For fixed k, each term
Fn j, converges to its analog in the complex Ginibre case. Indeed,

d d
NXny —— v, and NS N_kr1 — Vi,
N—oo N—oo

so that

d NXn d gal
Fyr=1+ 1+ —.
' NBkp N—k41 N—oo Vi
The function x — =™ being smooth and bounded on (1, o) for any integer m, we have
that

—-m et

EFVY —> E <1 + )
N— Yk
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and so, by the multiplicative version of Lemma 1.6 applied to the appropriate fraction of
moments, there exists a sequence k,, verifying (2.17), such that for every m,

L BRGE

—m - 1’
k=2 & (1 + :Yy—i)

which implies, by comparison with the product arising in the complex Ginibre case,

kN —-m
E(F(2,ky)™) = kNEHFN’,? ~KRE ] <1+ 7;) — (m+1)! = By,

so that we have .
F(2,kn) — 7.
N—oo

Convergence of F'(ky + 1, N) to the constant 1. Let k, be the sequence of integers
used in the first part of the argument; in particular, it satisfies (2.17). We check that this
is enough to ensure the convergence of F'(ky +1, N) to 1. A straightforward computation,
similar to the one performed in Proposition 2.7, yields

k

k
]EFNJC:71’ EFJ%’k:m’

k —

so that, thanks to telescopic products, we obtain the following expressions

N N N(N -1
o I me) =i w(I1 )= 0

k=knx—+1 k=kn—+1
As kn verifies condition (2.17),

N —ky

B(Flky+LN)) =1, Var (Flhw + LN) ™) = o=

— 0,
which proves that F(ky + 1, N)~! —> 1, and in particular F(ky + 1, N) —> 1,

concluding the second half of the proof The claim of the Theorem follows by Slutsky S
theorem. 0

The following proposition relies on the spherical structure of Sph(N) and has no
analog in Section 3.

Fact 2.9. The distribution of ¢, conditionally on the event {\; = z € C} does not
depend on z.

Proof. Recall that the Jacobian ofpat A € Cis W and that, for any A, u € C, identity
(2.12) holds. For any continuous and bounded function F' of N — 1 variables, evaluated in

2
41 — g =2

N
(L+ AL+ [Al?)

I =

we have for any z € C, by a straightforward change of variables,

Epn—ay (F(l2, - In)) = By —poyy (F (Jlwr — wa?, ..., [lwr — wn?)) (2.18)

where (wq,...,wy) is a point process on the sphere with density proportional to (2.11).
As the expectation on the right hand side does not depend on z (by invariance under
orthogonal transformations), neither does the one on the left hand side. The claim
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follows by noting that for any continuous and bounded function G, by the tower property
of conditional expectation,

Eqx,=G(011) = Epy =y F(l2, -, In),
where F(la,...,In) := EAG(011) is indeed a function of the variables lo, ..., Ix. O

Clearly, Propositions 2.7, 2.8 and Fact 2.9 provide together a full proof of Theorem
1.1. The explicit formula of the conditional expectation can also be obtained by a direct
computation that has an analog in Section 3 — we give a proof below in order to illustrate
this analogy.

Proposition 2.10. The conditional expectation of diagonal overlaps with respect to \;
in the spherical ensemble is
Ex, (011) =N

Proof. By the tower property of conditional expectation,

(1+ M2+ | \e]?
Ey, (011) =E\Ex (O11) = Ey, (H 1+ ]|V|1)\1)( )\k||2 £l )> )

Using Proposition 1.5 together with the specific potential for the spherical ensemble, we
find

(14 M)+ [\ 1
<H1+ NIA = Ml? Z<1>det<fw) -1 = g P

where the determinants D, are Hermitian, tridiagonal and ‘nested’ (i.e. Dy is the
principal minor of Dy i, as in the proof of Proposition 1.5), with coefficients

1
k= My (k) + Ty (k+1) + %(1 + APy (k+1)
Jrihe = foprr = =MLy (k+1).

This gives the initial values Dy = 1, D1 = [Ty (1) + T'v(2) + (1 + [A1]?)T'v(2) and the
induction

Dy = fuxDr—1 — | frp—1>Di—2
1
= <)\1|2FV(1€) +Ty(k+1)+ %(1 + M ATy (k + 1)) Di—1 — [M[PTy (k)? Dy

We use the shorthands (1.19) and pose X = \)\1|2. Note that in the spherical case,
with potential Vi (t) = (N + 1) In(1 + ¢),

(k—DWN—k)! 1 /N-1\" Ty, (k) N
v (k) N N\k-1) T Took+r1) &
and e%\fv_l)(X) = N(1+ X)N-1 coherently with Lemma 2.13. This gives Dy = N,

R ¢ 1 1+ X)
b=rmo'no no

and the three-terms induction

= N2X + 2N,

. 1 ~ ~
Dy = (ka +14 (1t X)’Yk) D1 = XDy 2,
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which defines a sequence of polynomials in X; the next one is

. N(N -1

Dy :N<3+2NX+(2)X2>.
These first terms suggest the general formula below, which can be checked by a direct
computation:

~ b N
Dk=N§ (k—z+1)<l>xl. (2.19)
=0

It follows from the above formula and the one for Z](\}) in Proposition 1.5 that the

expectation is given by

Dn_1 D1 N1 4 X)NH

70 N1 - N1+ X)N-t

:N,

which is the claim. O

Theorem 2.11. The quenched expectation of off-diagonal overlaps in the spherical
ensemble is given by the formula

N
) (1+MA)(1+ IAk|Z))
SR 12 Y s
A (612) N‘)\l _ >\2|2 k];[3 ( + N()\l — )\k)(>\2 - Ak) ( 0)

Proof. Similarly to the diagonal case, we define the partial sums

A1 = Aol

One can check, following the proof of Theorem 2.6, that |us|? 2 Xy, so that

-1

1 2
Elus|> = — and Fp003 = ———
|u2| N an AVU19 N|>\1 — /\2|27

which initiates the recurrence. We now compute the conditional expectation of b,,11d, 11
by integrating out the vector u, ;. We use Proposition 2.3 and (2.26) from Lemma 2.15
with a = B}, b= D} and S = S, such that 52 = (1 + |\,|*)(In—1 + Tpn—1T_;). It follows
that

1
(A1 = Ang1) (A2 = Angr)
_ (1+|)‘n+1‘2)
N(/\l - )\n+1)(>\2 - )\n+1)

We notice that, as T is triangular and B,,, D,, are subvectors of I.; and Lo,

]EA,,?,,,_lbn—Q—ldn-&-l = N BnS2D:

(B, D, + B,TT*D%).

BnTn - )\1Bn7 DnTn - )\2Dn7
which gives o
(1+ 1A+ M)
NAL = Ang1) (A2 = Ang)
The factorization follows. O

o,

_B2EA,ﬁn bn+1dn+1 -
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Proposition 2.12. The conditional expectation Of% Tr G*G with G distributed accord-
ing to Sph(N) is given by the formula:

N
1 . L+ |\

i=1
Proof. 1t is clear that Tr G*G = Tr T\, T, and that for any n < N,

T T, T = [An|? + |unll® + Te T 1 T,
so that defining

UN,n = 'UN,n()\l, ey )\n) = ]ENJ\ Tr TnT;:7
yields a recursion with vy ; = |)\1\2 and, using Proposition 2.3 and (2.27) from Lemma
2.15,
1+ |)\n+1|2

UNn+l = UNn <1+ N

n
)+|/\n+1|2+N (14 Ang1]?) - (2.21)

This suggests the introduction of wy,,, = vn,, + N + n, for which we see that

1+ M2 W)

wN71:N<1+ N N

) and WN,n+1 = WN,n <1 +

so that for every n < N,

N

2
Jb“Nm:H(HHNAl' )—(1+]7\L[),

i=1

which is equivalent to the statement, when n = N. O

2.3 Constants and integrals

Lemma 2.13. The normalization constant for generalized gamma variables ~yy (k) with
potential V(z) = (N + 1)log(l+ ) and1 < k < N is

k-1
/]R de:ﬁ(N+1—k,k),
N

4 1
T BN41-kE

(N-1)

and vy (k) — 1. Moreover, the associated function ey, is given by

VY = N1+ X))V

Proof. Let us compute, for any suitable function f,

k—1 1

— B(N +1—k,k)Ef (11),

BN+1—k.k
which implies the first claims; the next ones follow naturally. O

Lemma 2.14. For any p > n,

1 (p—n—1)!
Chp = / - dm(zy)...dm(z,) = " ~———, (2.22)
? zeen (1+ 20, |Zi‘2)p (p—1)!
and forp >n+1,
c) ::/ |’f}‘2 Sdm(z;)...dm(z,) = 1 . b (2.23)
P Lo (L+ 2200 |2]?) p—(n+1)
EJP 26 (2021), paper 124. https://www.imstat.org/ejp
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Proof. We first compute C), ,, by induction on n. Forn =1,p > 1,

1 1 T
C :/ ————dm(z) = / —dr =
i G ) L Sl N

and one can note that for any a > 0,

1 To
——d = —.
/zeC (1+a71z[2)" m(z) p—1

For general n, using the above equalities with a,, = 1+ 7" |2

2

’

o / 1 y 1
n,p — p — p
2eCn (1 4 Z?:_]_l |Z'L'|2) (1 -+ an1|zn|2)

dm(z)...dm(zy,)

T ! dm(z1)...dm(zp—1) = T

—1/2 n— n—1 p—1
D cgn—1 (1+Zi=1 |Zz\2)

Equation (2.22) follows. A similar induction can be performed on Cﬁ}}, The only
difference is that the last step involves the following identity: for any p > 2,

2 1 1 1 T
C(l) :/ 7|Z| dm zZ) = 7T'/ " d?“ = 7T< — ) = 1)
= o T E =T —p 2-p) " G-D0-2

m in (2.23). 0O

which, in general, yields the extra factor

Note that when we begin the recursion from [11] withn = N — 1,p = 2N, the extra
factor is +; at every step.

Lemma 2.15. For any p > n, a,b € C" and any Hermitian positive-definite matrix .S,

1
/ T+ ws2ap = Cp,p| det S|, (2.24)
a*u
M =2 p 0= 2.2
/n (1 —l—u*S*?u)Pdu 0, ( 5)
(a™u)(u"b) _ s  a*S%
/Cn T+ ws2up ™ Crp| det S| — CEL (2.26)
[ , Trs?
L s = Cnsl et =2 s, 2.27)

where the constant C,, ,, is explicitly computed in Lemma 2.14.

Proof. Integral (2.24) was computed in [11]. (2.25) is zero by symmetry. For (2.26), the
change of variables u = Sv yields

|detS|2/de.
(1+v*v)p

We notice that
(a*Sv)(v*Sb) = v*(Sba*S)v = v* Av,

where A = Sba*S is a matrix of rank 1. If we express v = ) _ v;e; in a unitary basis such
that the vectors (e, ..., e,) form a basis of ker(A) and denote Ae; = Ai(A)er + 5, aie,

viAv = Al(A)’uf + Zaivlvi.

i>2
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Therefore, after a unitary change of basis the integral becomes, using Lemma 2.14 and
the fact that cross-terms v;v; vanish by symmetry,

/ A (A)v? _ a4
( o

1+ovi4+- 402 p—(n+1)
The value of \;(A) can be obtained by writing
A (A) = Tr Sba*S = a*S?b,
from which the claim (2.26) follows. The same technique applied to (2.27) yields

2
| det S)? /de.
(1 +v*v)P

and a unitary change of variable to a basis that diagonalizes S, together with Lemma
2.14, gives

M(SH)vf 4 - 4+ A (S22 ) ) 1
/dv (T2 4 - +02)P = NS+ A8 ))p—(n+1)C”’p’

concluding the proof of the last claim. O

Lemma 2.16. For any p > n, a € C" and any Hermitian positive-definite matrix S, if
u € C" is distributed with density
1 1
Chpldet S|? (1 + u*S—2u)P

with respect to the Lebesgue measure on C", then the following identity in distribution
holds:
X d
ja*ul® £ [|Sal? X1

Proof. By a direct change of variable, it is clear that u 4 S7,'. We note that la*Sv|? =
v* Av where A = Saa*S is a Hermitian matrix of rank one. A unitary change of variable
brings it to the form \; (A)v? with A\;(A) = Tr A = a*S%a = ||Sal|?. Successive integration
of the other coordinates vo, ..., v, yields the result. O

3 Truncated unitary ensemble

This section contains the proof of all claims concerning the truncated unitary ensem-
bles TUE(N, M) when N < M. Almost every step in this study is analogous to what was
done in the spherical case; we therefore refer constantly to the corresponding parts
of Section 2. The condition N < M is an essential requirement here, as it was in [11],
for the integration techniques to apply. The cases where N > M require a different
approach and will be the subject of a separate paper. Note that the particular case M =1
can be treated by the analytical techniques exposed in [13]. It follows in particular that,
in this weakly non-unitary case, the overlaps are functions of the eigenvalues, with no
extra randomness.

3.1 Schur form and eigenvalues

As in Section 2, we first present a few general results in order to illustrate the method,
as well as a few tools and definitions that are specific to the truncated unitary case. We
first recall that the Schur transfom 7' is distributed with density proportional to

LT 1% = AP det(In = TT)™ N ppe o (3.1)

i<j
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with respect to the Lebesgue measure on all complex matrix elements, diagonal (dA =
d\; - --dAy) and upper-triangular (dus - - - duy,).

Provided TT* < 1 (which implies the same condition on every submatrix 7;,), we
introduce the Hermitian, definite-positive matrices

Hy =1, =T, T, Su_1:=(1—|\JH)V2H2. (3.2)

Note that the only differences with the matrices H,,, .S, _1 used in the spherical case are
the minus sign and the condition on the eigenvalues of T7T*.

Lemma 3.1. The determinant of H,, = I,, — T,,T; can be recursively decomposed as

det(H,) =(1 — |\,|*) det(H,,_1) (1 u H_llun> . (3.3)

EEESTWE 2 =

The proof is analogous to the proof of Lemma 2.1.
For any p > 0, we denote by %™ a random vector with density

1
Cnp

(1 - ’U*U)p]lv*v<1 (34)

with respect to the Lebesgue measure on C”; the value of C,, , is given by (3.15). For
any m > 2, we denote by Y,,, a real random variable with density

(m—-1)(1-y)" Loy (3.5)

with respect to the Lebesgue measure, i.e. it follows a ; ,,—1 distribution; in particular
EY,, = 7—}1 If w; is a coordinate of %("), it follows from Lemma 3.14 that

=

lw;|* = p+n+1-

Note that the i.i.d. variables that appear in Theorem 3.5 follow the above distribution
with m = M.

Lemma 3.2. Identity holds between the following expressions, for p > n and f, g inte-
grable functions of the matrix elements:

/f(TTL717 )\n)g(un)det(Hn)p]lT”T;:<1dTn = C¥nfl,p><

/f(Tn—h An)E (9(5n—1%(n_1))) (1= (APt det(Hp—1 )P M g, 1e <1d T 1d Ay,

where H,,, S, _1, %(") are defined in (3.2) and (3.4).

We deduce from the above Lemma the distribution of every top-left submatrix of the
Schur form, analogously to Proposition 2.3.

Proposition 3.3. Conditionally on A and for 2 < n < N, the submatrix T,, of the Schur
transform is distributed with density proportional to

det(I, — T,T;)M " 17, e <1 (3.6)

n

with respect to the Lebesgue measure on upper-triangular matrix elements (dus - - - duy, ).

We also derive the joint eigenvalue density of the truncated unitary ensemble from
the density of its Schur form, as was done in [11]. The result itself was first proven in
[19].
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Theorem 3.4 (Zyczkowski & Sommers). The joint density of eigenvalues for the trun-
cated unitary ensemble when M > N is proportional to

N

1

Z IT M=zl =M ) (3.7)
MN 1 <ici<N i=1

with respect to the Lebesgue measure on CV.

The proof is analogous to the one of Theorem 2.4.

Theorem 3.4 can be rephrased by saying that the eigenvalues of TUE(N, M) are
distributed according to (1.18) with potential V'(t) = Vi (t) = —(M — 1) In(1 — )1 (o,1). A
straightforward computation shows that in that case

Tyv(a) =B, M),  v(a)Z B (3.8)

Thus, Kostlan’s theorem in that case asserts that the set of squared radii is distributed
as a set of independent ( variables. Namely,

(AP, ) 4 {Bi,aas - B}

3.2 Distribution and conditional expectation of overlaps

Theorem 3.5. Conditionally on {A = (\1,...,An)}, diagonal overlaps in the truncated
unitary ensemble TUE(N, M) are distributed as

N
1= M)A = M) )
oy L (1 4 v | (3.9)
11 ]:!;[2 |)\1 7 )\k|2 M

where the Y]\(/f) are i.i.d. distributed according to (3.5) with m = M. In particular, the
quenched expectation is given by the formula

N
-\ - |/\k|2)>
Ep (O11) = 14 . (3.10)
A( 11) ]CUQ( M‘)\l_>\k|2

Proof. It is similar to the one of Theorem 2.6; we sketch it again to see where the
differences lie. We first write

1 Bau 2
ﬁ’ﬁlﬂ) - ﬁl(‘li) + |bd+1|2 — ﬁﬁi) (1 + | Battg+1] )

A1 — Aay1]? || Bal?

In order to characterize the distribution of this factor, we use Proposition 3.3, then
Lemma 3.2 and Lemma 3.14 with a = b = By and S = S441 such that S3,, = (1 —
|)\d+1|2)(Id — Tde*) This yields

|Batar1|? £ (1= M || (L — TuT;) Bal*Yu, (3.11)

where Yy is distributed according to (3.5) with m = M, and independent of .%;; we
denote this variable by YJS,dH) to avoid confusion. The last steps of the proof follow
accordingly. O

Proposition 3.6. Conditionally on {\; = 0}, the expectation of the diagonal overlap 0’1,
in the truncated unitary ensemble TUE(N, M) is

E{x,—0y011 = N.
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Proof. We know from Proposition 1.4 that the squared radii, conditionally on the event
{A\1 = 0}, are distributed like independent variables with distributions vy ; with V(z) =
—(M —1)log(l — )1 (p,1) and 2 < k < N. We already noticed that v 4 B A
straightforward computation follows:

N 1— [Ael? N 1 1
_ -l -

For any k£ > 2,

IE( 1 >_B(/€—17M)_M+k—1
Br,.m B(k, M) k-1 7
so that the expectation is given by the telescopic product

Sk
E{Alzo}ﬁll = H ﬁ =N
k=2

as was claimed. O

Proposition 3.7. Conditionally on {\; = 0}, the following convergence in distribution
takes place:

1@ d 1
N 1 N—o0 ’yQ'

Note that N — oo implies M — oo, as we study the truncated unitary ensemble in the
regime where N < M. The rate at which N, M go to infinity does not have any impact on
the following proof (although it is expected to play a role when conditioning on a generic
z in the bulk).

Proof. The technique is similar to the proof of Proposition 2.8 and also relies on the
the multiplicative version of Lemma 1.6. We decompose the distribution obtained by
Theorem 3.5 in two factors
kN -1 N 1
_ L —v(k) ., ) 1 — v (k) k)
Not L ky (1+Y X 1+ —y,
11 1]:[2 'YV(k') M k:g-H 'YV(]C) M

N

N
= G(2,kn) x G(ky + 1, N).
As vy (k) 4 Bk, m, we have

L—yv(k) (k) d ( 1 >
Gup =14+ — Wy dy (2 )y,
Mk wk) M Br,m M

where Y), is defined by (3.5). The proof then proceeds in two separate parts.

Convergence of G(2,ky) to 7, for a suitable sequence ky. It is straightforward to
check that for every k, the term G, converges to the factor playing an analogous role
in the complex Ginibre case. Indeed,

d d
MYy ——— v, and MBray —— r,
N— oo N—o0

so that
d 1 1 d T
GMk=1+< —)MYM—>1+.
’ Mﬂk,M M N—oo Yk
The argument then proceeds exactly as in Proposition 2.8: by Lemma 1.6, there exists a

sequence ky that verifies (2.17) and such that we can derive the convergence

G(2, ky) —2— 7
N—o00

by comparison with the complex Ginibre case.
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Convergence of G(ky + 1, N) to 1. It follows from the computation performed in the

proof of Proposition 3.6 that
k

k-1
which is the same as the expectation of Fly (and does not depend on M nor N). We
compute the second moment, using the values

. 2 1 2 M(M+1)
EYu = o= E(ﬁk,M_1> S (k-1)(k-2)

EGuy =

and find, as for Fy g,
k

k= 77 oo

k—2
so that we obtain the exact same expressions as in the spherical case. The end of the
argument is strictly similar to what has been written in the proof of Proposition 2.8. O

EG?,

The analog of the spherical structure of Sph(N) for TUE(N, M) is the stereographic
projection on the pseudosphere (see [11]). However, the symmetries of the pseudosphere
do not allow to establish an exact equivalent to Fact 2.9. The way in which the distribution
of the diagonal overlap £;; depends on the eigenvalue \; in the truncated unitary
ensembles is a more delicate question that would require analytical tools beyond the
scope of the present work. What can be obtained with techniques analogous to the
spherical case is an explicit formula for the conditional expectation with respect to one
eigenvalue, which checks the general form predicted in [4].

Proposition 3.8. The conditional expectation of diagonal overlaps with respect to A\, in
the truncated unitary ensemble TUE(N, M) is
NEy_1,n (M%) = [MPOFay—1,n (M)

Fa v ([A1]?) ’

Ey, (O11) =

where for any integer parameters a, b,

b—1

Fup(X) =" <“ l+ Z)Xl.

=0

In particular, in the regime where the limit M/N — x > 1 holds, for any z; s.t. |z1|? <
1

k+17 1

2

NE{Alzzl} (ﬁll) ml—(l—‘rlﬁﬂzﬂ . (3.12)

Note that the limit (3.12) is a special case of eq. (25) in [4]. In that same regime,

the eigenvalue limit distribution is on a disk of radius \/ij such that for a typical
2

eigenvalue, has mean density

A — a2 o]

This should be compared to the complex Ginibre case, where the empirical distribution
of eigenvalues converge to the circular law on the unit disk, and the corresponding
conditional expectation of the diagonal overlap ¢}, is approximately N(1 — |A; |2)]l‘ Ar|<1-

Proof. Proposition 1.5, together with the specific potential for the truncated unitary
ensemble, yields

(1= M) = [Aef?) 1 No1 1
1+ = det (fl‘7)'L = Dpy_1,
(H M|AL = Al? zy PR Gy ()
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where the determinants D, are Hermitian, tridiagonal and nested, with matrix coeffi-
cients

o = IMPTy (k) + Ty (k+1) + %(1 = [Mf?) Py (k) = Ty (k + 1))

fet1k = forerr = —Mlv(k+1).

This gives the initial values Dy = 1,

1
D1 = My (1) + Ty (2) + 2= (1= M)y (1) = Ty (2),
and the three-terms induction Dy, = fi xDk—1 — | frk—1]*>Di—2.
As in the previous cases, we use the shorthands (1.19) and pose X = |\;|?. Note that
in the truncated-unitary case, with potential V'(t) = —(M —1)In(1 — t)1(9 1),

1 (M+k—1\" Ty (k M

and e%N_l)(X) = M Fy n(X), coherently with Lemma 3.11. This gives Dy = M,

R X 1 (1—X)( 1 1

* * Tv(2) Ty

EAINS VRIS PR VR Y )= e+ )

and the three-terms induction

- 1 ~ =
Dy = (X’)/k +1+ E(l - X)) Dy — X’Yka’—Q’

which defines a sequence of polynomials in X; the next one is

M(M + 1)X2) |

[?QM(3+2MX+ 5

These first terms suggest the general solution below, which can be checked by a direct
computation:

k
Dp=M> (k—1+ 1)<M _ll +l)Xl,
=0

so that in particular

Dn_1(X) =M (NFy—1,5(X) — XOxFr—1,n8(X)),

1

15 a straightfor-

and the statement follows. In the regime M/N — & and for fixed z <
ward computation gives the asymptotics

1 1 M
FM,N(I) ~ m7 FJW—LN(I) ~ m7 8xFM—1,N(17) ~ Wa

so that the limit (3.12) follows in the corresponding regime. O

Theorem 3.9. The quenched expectation of off-diagonal overlaps in TUE(N, M) with
N < M is given by the formula

N _
1 (1 — )\1>\2)(1 - |)\k2)>
N T —M)y, 3.13

A( 12) n[|)\1_)\2|2kl:[3< + n[’()\l—Ak)(AQ—)\k) ( )
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Proof. As for the proof of theorem 2.11, we consider the partial sums ﬁfg) and proceed
by induction. It follows from the proof of Theorem 2.6, that |uQ|2 4 Yy, so that
1 2) -1
Elus|? = — d E,6) = — —
|U2| M an AY12 M|)\1 — )\2|2

We then compute the conditional expectation of b, 11d,+1 by integrating out the vector
Un+1, Using Proposition 3.3 and (3.19) from Lemma 3.13 witha = B}, b = D} and S = 5,,.
It follows that

(1= [An1]?)
(A1 = Ang1) (A2 = Ay)
As noted in the proof of Theorem 2.11, we have

BnTn = >\an’ DnTn = )\2Dn7

EA&%_JM+NM+1::A4 (B.D; — B, T,,T:D;).

and conclude that

(1= g1 )2 = Mo
M1 = Ang1) (A2 — Ang1)
The factorization follows. O

_BQEA,é’Z}L bn-‘,—ldn-i-l - 6)1(721)

Proposition 3.10. The quenched expectation of Tr G*G with G distributed according to
TUE(N, M) is given by the formula:

N
1 1—|\)? N
Erl=TrG*G | = 14+ — ) —(1+—].
\ (N ) 11 ( T W
Proof. As in the proof of Proposition 2.12, we define vy, := Eny A TrT,,T}; and note that

forany n < N,
T T, T = (M| + |unl® + Te T 1 T,

Using (3.20) from Lemma 3.13 yields a induction with vy ; = |A;|? and
1—- |)\7L+1|2 2 n 2
UNn+1 UN, ( + % + [An1] +M( Ant1]?) ( )

This is an analogous recursion formula to the one obtained in Proposition 2.12 and it can
be solved the same way, replacing |);|?> by —|)\;|?> and N by M in the denominators; this
leads to the expression

n

NUN’"H(1+M> - (1 57)

i=1

which is equivalent to the statement, when n = N. O

3.3 Constants and integrals

Lemma 3.11. The normalization constant for generalized gamma variables ~y (k) with
potential V(z) = —(M — 1)log(1 — )1 (o,1) and k > 1 is

1
|t e ae = gk o),
0

and vy (k) 4 Bk, - Moreover, the associated function e%,Nfl) is given by

N-1

B M+ kN

ey 1)(X):MZ ( A )X’* =: MFyn(X),
k=0

where the Fy n(X) corresponds to the partial sums of W as formal series.
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Proof. The first computations are straightforward. The correspondence with partial
sums of W can be established either by induction, or combinatorially by noticing
that this is an identity related to ‘weak compositions’ (unordered partitions of integers
with possible zeros). O

Lemma 3.12. Forany p > 0, with B,, := {(A1,...,A\,) € C" | 1 |N? < 1},

n

p
|
D, , = 1=S7 02 ) dm(Ay) .. dm(z,) = 2" —2 3.15
vim [, (1= S0 d) - ane =2

i=1

and

n p
1
(1) . 2 o 12 _
DM = /ZEB A (1 ;:1 |/\1|> dm(Al)...dm(zn)_p7+n+lpn,p. (3.16)

n

Proof. We first compute D,, , by induction on n. Forn =1,p > 0,

s

1
D =/ 1—z2pdmz=7r/ rPdr = ——.
1p ZGD( |2[%)"dm(z) - P

Note that for any a > 0,

1—a Y22 dm(z) = —2 .
[ ey ame) = T

2
,

For general n, using the above equalities with a,, = 1 — 2?2—11 [ A

n—1 P
Dpp= / <1 — Z |>\Z-2> x (1 =y Anf?)Pdm(\) ... dm(),)
ZeBn

i=1

n—1 p+1
Vs Vs
= 1— \il? dm(\)...dmM,—1) = ——D,,_ .
p+1la%l< > |> ) dm(An1) = 2 Dt

Equation (3.15) follows. A similar induction can be performed on DS])D. The only

difference is that the last step involves the following identity: for any p > 0,

1

D= [ - prane) =x [ - 1ra
z€D

r=0

B < 1 B 1)_ T
“T\pF1 T pr2) T )+

which in general yields the extra factor Jﬂll —7 in (3.16). O

Note that when we begin the recursion from [11] withn = N —1,p = M — N, the
extra factor is ﬁ at every step.

Lemma 3.13. For any p > n, a,b € CV and any Hermitian positive-definite matrix S,

/ (1 —u*S™2u)Pdu = D, ,|det S|?, (3.17)
SB,
/ (a*u)(1 — u*S™2u)Pdu = 0, (3.18)
SB,
*S2b
/ (@ u)(u*b)(1 — w*S~2u)Pdu = D,, | det S|2——"—"— (3.19)
SB, ’ n+p+1
Tr 52
(1= u*Su)Pdu = Dy, p| det S| ————— 3.20
[ TP SRy = Dyt S (3:20)
where the constant D,, ,, is explicitly computed in Lemma 3.12.
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Lemma 3.14. For any p > n, a € C" and any Hermitian positive-definite matrix S, if
u € C" is distributed with density
1
C, p|det S|?

with respect to the Lebesgue measure on C", then the following identity in distribution
holds:

(1 —u*S™%u)P

d
ja*ul® = [[Sal*Ypni1.

The proofs of Lemmata 3.13 and 3.14 are exactly analogous to the proofs of their
spherical counterpart, Lemmata 2.15 and 2.16.

References

[1] G. Akemann, R. Tribe, A. Tsareas, and O. Zaboronski, On the determinantal structure of conditional
overlaps for the complex Ginibre ensemble, Random Matrices: Theory and Applications 9 (2020), no. 04,
2050015. MR4133071

[2] M.C. Andréief, Note sur une relation entre les intégrales définies des produits des fonctions, Mémoires de
la société des sciences physiques et naturelles de Bordeaux 2 (1886), 1-14.

[3] Y. Ashida, Z. Gong, and M. Ueda, Non-hermitian physics, Advances in Physics 69 (2020), no. 3, 249-435.

[4] S. Belinschi, M. A. Nowak, R. Speicher, and W. Tarnowski, Squared eigenvalue condition numbers and
eigenvector correlations from the single ring theorem, Journal of Physics A: Mathematical and Theoretical
50 (2017), no. 10, 105204. MR3609093

[5] P. Bourgade and G. Dubach, The distribution of overlaps between eigenvectors of Ginibre matrices,
Probability Theory and Related Fields 177 (2020), 397-464. MR4095019

[6] J. T. Chalker and B. Mehlig, Eigenvector statistics in non-Hermitian random matrix ensembles, Phys. Rev.
Lett. 81 (1998), no. 16, 3367-3370. MR1666250

[7] J. T. Chalker and B. Mehlig, Statistical properties of eigenvectors in non-Hermitian Gaussian random
matrix ensembles, J. Math. Phys. 41 (2000), no. 5, 3233-3256. MR1755501

[8] N. Crawford and R. Rosenthal, Eigenvector correlations in the complex Ginibre ensemble (2018), available
at arXiv:1805.08993.

[9] G. Dubach, Powers of Ginibre Eigenvalues, Electron. J. Probab. 23 (2018), 1-31. MR3878136

[10] G. Dubach, Symmetries of the Quaternionic Ginibre Ensemble, Random Matrices: Theory and Applications
(2020), 2150013. MR4193186

[11] P. J. Forrester and M. Krishnapur, Derivation of an eigenvalue probability density function relating to the
Poincaré disk, J. Phys. A 42 (2009), no. 38, 385204, 10. MR2540391

[12] Y. V. Fyodorov, On statistics of bi-orthogonal eigenvectors in real and complex ginibre ensembles:
combining partial schur decomposition with supersymmetry, Communications in Mathematical Physics
363 (2018), no. 2, 579-603. MR3851824

[13] Y. V. Fyodorov and B. Mehlig, Statistics of resonances and nonorthogonal eigenfunctions in a model for
single-channel chaotic scattering, Physical Review E 66 (2002), no. 4, 045202.

[14] Y. V. Fyodorov and W. Tarnowski, Condition numbers for real eigenvalues in the real Elliptic Gaussian
ensemble, Annales Henri Poincaré, 2020, pp. 1-22. MR4201596

[15] J. B. Hough, M. Krishnapur, Y. Peres, and B. Virag, Determinantal processes and independence, Probab.
Surv. 3 (2006), 206-229. MR2216966

[16] E. Kostlan, On the spectra of Gaussian matrices, Linear Algebra Appl. 162/164 (1992), 385-388. Direc-
tions in matrix theory (Auburn, AL, 1990). MR1148410

[17] M. Krishnapur, From random matrices to random analytic functions, The Annals of Probability 37 (2009),
no. 1, 314-346. MR2489167

[18] M. A. Nowak and W. Tarnowski, Probing non-orthogonality of eigenvectors in non-Hermitian matrix
models: diagrammatic approach, Journal of High Energy Physics 2018.6 (2018), 152. MR3831715

[19] K. Zyczkowski and H.-J. Sommers, Truncations of random unitary matrices, ]. Phys. A 33 (2000), no. 10,
2045-2057. MR1748745

[20] M. Walters and S. Starr, A note on mixed matrix moments for the complex Ginibre ensemble, ]J. Math.
Phys. 56 (2015), no. 1, 013301, 20. MR3390837

Acknowledgments. We would like to thank Paul Bourgade and Laszl6 Erdés for many

helpful comments.

EJP 26 (2021), paper 124. https://www.imstat.org/ejp
Page 29/29


https://arXiv.org/abs/1805.08993
https://doi.org/10.1214/21-EJP686
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Electronic Journal of Probability
Electronic Communications in Probability

e Very high standards

e Free for authors, free for readers
e Quick publication (no backlog)
e Secure publication (LOCKSS!)
Easy interface (EJMS?)

Non profit, sponsored by IMS3, BS* | ProjectEuclid®

Purely electronic

Donate to the IMS open access fund® (click here to donate!)

Submit your best articles to EJP-ECP

Choose EJP-ECP over for-profit journals

'LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/

2EJMS: Electronic Journal Management System http://www.vtex.1lt/en/ejms.html
3IMS: Institute of Mathematical Statistics http://www.imstat.org/

4BS: Bernoulli Society http://www.bernoulli-society.org/

5Project Euclid: https://projecteuclid.org/

6IMS Open Access Fund: http://www.imstat.org/publications/open.htm


http://en.wikipedia.org/wiki/LOCKSS
http://www.vtex.lt/en/ejms.html
http://en.wikipedia.org/wiki/Institute_of_Mathematical_Statistics
http://en.wikipedia.org/wiki/Bernoulli_Society
https://projecteuclid.org/
https://secure.imstat.org/secure/orders/donations.asp
http://www.lockss.org/
http://www.vtex.lt/en/ejms.html
http://www.imstat.org/
http://www.bernoulli-society.org/
https://projecteuclid.org/
http://www.imstat.org/publications/open.htm

	Introduction
	Spherical ensemble
	Truncated unitary ensemble

