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Abstract

Let f be a martingale with values in a uniformly p-smooth Banach space and w any
positive weight. We show that E(f∗ · w) . E(Spf · w∗), where ·∗ is the martingale
maximal operator and Sp is the `p sum of martingale increments.
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1 Introduction

A Banach space (X, |·|) is called (p, Csm)-smooth (with p ∈ [1, 2] and Csm ∈ R>0) if, for
every x, y ∈ X, we have

1

2

(
|x+ y|p + |x− y|p

)
≤ |x|p + Cpsm|y|

p
. (1.1)

The most basic examples are that, for any r ∈ (1, 2], any Lr space is (r, 1)-smooth, see [14,
(10.33)] (this is also a consequence of Clarkson’s inequality), and, for any r ∈ [2,∞), any
Lr space is (2, r − 1)-smooth, this follows from [14, (10.37)] and Jensen’s inequality. In
general, unless X is zero-dimensional, we must have Csm ≥ 1, as can be seen by taking
x = 0 in (1.1).

Our main result is the following.

Theorem 1.1. Let p ∈ (1, 2]. Let (fn)n∈N be a martingale on a filtered probability
space (Ω, (Fn)n) with values in a (p, Csm)-smooth Banach space X and w : Ω → R≥0 a
measurable function (called a weight). Then,

E(f∗w) ≤ 84p′CsmE(Spf · w∗), (1.2)
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A1 for martingale maximal function

where p′ denotes the Hölder conjugate 1/p′ + 1/p = 1, and

Spf =
(
|f0|p +

∞∑
n=1

|fn − fn−1|p
)1/p

, f∗ = sup
n∈N
|fn|, w∗ = sup

n∈N
E(w|Fn).

In order to put Theorem 1.1 into context, we list the previously known cases (in each
of which the inequality (1.2) is in fact known with a smaller constant).

1. The unweighted (w = 1) scalar (X = R) case is one of the Burkholder–Davis–Gundy
inequalities [4].

2. The scalar (X = R) case, which served as the main inspiration for this work, was
proved in [12].

3. The unweighted (w = 1) case is one of the implications in the characterization of
martingale type, see [14, Theorem 10.60].

We follow [12] in calling the inequality (1.2) a Fefferman–Stein inequality, in reference
to [7, §3], where the first inequality involving the pair of weights w,w∗ appeared (see [9,
Theorem 3.2.3] for a martingale version). In order to distinguish this result from many
others going back to Fefferman and Stein, we prepend the designation “A1”, which in
the one-weight theory stands for the condition w∗ ≤ [w]A1w. The pair w,w∗ can be seen
as satisfying a two-weight version of the A1 condition.

For dyadic martingales, assuming w ∈ A∞, an inequality similar to (1.2) with w∗

replaced by w is known [8, Theorem 2]. The recent result [2, Theorem 1.3] (which
applies to martingale transforms in place of the square function) suggests that no such
inequality is possible for general martingales.

The advantage of weighted estimates such as (1.2) is that they can be easily extrapo-
lated to estimates for other moments, see Appendix A. We illustrate the extrapolation
idea with a basic argument, which shows that the linear dependence on Csm in (1.2) is
optimal. Assume that the inequality

E(f∗w) ≤ KE(Spf · w∗)

holds for all weights w. By Hölder’s inequality and Doob’s maximal inequality, see e.g.
[9, Theorem 3.2.2], for any r ∈ (1,∞), we obtain

E(f∗w) ≤ K‖Spf‖Lr‖w∗‖Lr′ ≤ Kr‖Spf‖Lr‖w‖Lr′ .

Since Lr
′

is the dual space of Lr, this implies

‖f∗‖Lr ≤ Kr‖Spf‖Lr . (1.3)

Incidentally, the linear growth in r of the constant in the inequality (1.3) is optimal in
the scalar case X = R, p = 2, see [3, Theorem 3.2].

Let now X be a Banach space such that the inequality (1.3) holds with p = r ∈ (1, 2]

for all martingales f with values in X. By Pisier’s renorming theorem [14, Theorem
10.22], the space X admits an equivalent norm that is (p, CK)-smooth for some C

depending only on p. In this sense, the linear dependence of (1.2) on Csm is optimal.

The dependence of the bound (1.2) on p′ does not seem natural, since it does not
appear in the corresponding non-maximal bound (3.1). Also, the p = 1 bound clearly
holds with constant 1. Therefore, we find it reasonable to conjecture that 84p′ in (1.2)
can be replaced by a constant that does not depend on p.
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A1 for martingale maximal function

1.1 Non-martingale version

The proof of Theorem 1.1 in fact yields a more general statement, involving processes
with a structure that was introduced in [15, Theorem 3.1]. Let (Ω, (Fn)n∈N) be a filtered
probability space, (gn)n∈N be a martingale, and (fn)n∈N, (f̃n)n∈N be adapted processes
with values in a (p, Csm)-smooth Banach space X. Assume that f0 = f̃0 = 0, and for every
n ∈ N>0 we have

fn = f̃n−1 + (gn − gn−1), |f̃n| ≤ |fn|.

Then,
E(f∗w) ≤ 84p′CsmE(Spg · w∗). (1.4)

As in (1.3), for r ∈ [1,∞), this implies

‖f∗‖Lr ≤ 84p′Csmr‖Spg‖Lr . (1.5)

The Rosenthal-type inequality in [15, Theorem 3.1] states that, if X is a (2, Csm)-space
and r ∈ [2,∞), then

‖f∗‖Lr ≤ 30r‖sup
n
|gn − gn−1|‖Lr + 40Csmr

1/2‖sg‖Lr , (1.6)

where sg is the conditional square function:

sg =
(∑

n

E(|gn − gn−1|2|Fn−1)
)1/2

.

For r ≥ 2, (1.6) implies (1.5), since

‖sg‖Lr ≤ (r/2)1/2‖S2g‖Lr , r ∈ [2,∞),

by Doob’s maximal inequality and duality. On the other hand, the version of (1.6) for
r < 2 in [15, Corollary 3.6] is not obviously related to (1.5).

1.2 Outline of the article

The proof of Theorem 1.1 is based on the Bellman function technique; we refer to the
books [11, 17] for other instances of this technique.

In Section 2, we review the characterization of uniform smoothness that will be used
in the proofs of our main results.

In Section 3, we prove the inequality (3.1), which is a non-maximal version of The-
orem 1.1. The proof of that inequality uses a Bellman function that is adapted from
[12]. Although that inequality will not be used in the proof of Theorem 1.1, the Bellman
function estimate in Proposition 3.1 will be used again there.

In Section 4, we prove the full Theorem 1.1. This is accomplished using a Bellman
function that combines features present in the articles [1] and [12].

In Appendix A, we give a sample application of the weighted bound (1.2).

2 General facts about uniformly smooth spaces

We will use the regularity properties of the norm on a uniformly smooth Banach space
that can be found e.g. in [16, Lemma 2.1]. We take the opportunity to streamline the
deduction of these properties from (1.1). The following lemma is a minor variant of [5,
Lemma I.1.3] (there, the case φ(x) = |x| is considered).

Lemma 2.1. Let (X, |·|) be a Banach space, φ : X → R a convex function, and x ∈ X
such that

L := lim sup
y→0

|φ(x+ y)− φ(x)|
|y|

<∞, and (2.1)
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A1 for martingale maximal function

lim
y→0

φ(x+ y) + φ(x− y)− 2φ(x)

|y|
= 0. (2.2)

Then φ is Fréchet differentiable at x, and its derivative satisfies |φ′(x)|X′ ≤ L.

Proof. Convexity implies that, for any y ∈ X, the function t 7→ φ(x+ty)−φ(x)
t is monotoni-

cally increasing in t ∈ (0,∞). Therefore, there exist one-sided directional derivatives

A(y) := lim
t→0+

φ(x+ ty)− φ(x)

t
,

and |A(y)| ≤ L|y| by (2.1). We will show that A is the Fréchet derivative of φ at x. From
(2.2), it follows that A(y) +A(−y) = 0 for all y ∈ X. Hence, again by (2.2), we obtain

sup
|y|≤1

φ(x+ ty)− φ(x)

t
−A(y)

≤ sup
|y|≤1

φ(x+ ty)− φ(x)

t
−A(y) +

φ(x− ty)− φ(x)

t
−A(−y)

= sup
|y|≤1

φ(x+ ty) + φ(x− ty)− 2φ(x)

t

t→0−−−→ 0.

This shows that the difference quotients of φ converge to A locally uniformly. It remains
to show that A is linear. To this end, we first observe that A is convex, since it is the
limit of the convex functions y 7→ (φ(x+ ty)− φ(x))/t. Then also y 7→ −A(y) = A(−y) is
convex, so that A is concave. It follows that A is affine. Finally, A(0) = 0.

Let (X, |·|) be a (p, Csm)-smooth Banach space with p ∈ (1, 2] and

φ(x) := |x|p, x ∈ X.

The hypothesis (2.2) of Lemma 2.1 follows directly from the definition (1.1). It is also easy
to see that, for any x ∈ X, the hypothesis (2.1) holds with L = L(x) = p|x|p−1. Therefore,
Lemma 2.1 implies that the function φ is Fréchet differentiable, and |φ′(x)|X′ ≤ p|x|p−1.

Let CH ∈ [0,∞] be the smallest constant such that, for any x, y ∈ X, we have

|φ′(x)− φ′(y)|X′ ≤ CpH|x− y|
p−1

. (2.3)

The proof of [5, Lemma V.3.5] (with α = p− 1) shows that

CpH ≤ 2pCpsm. (2.4)

Conversely, for any x, y ∈ X, we have

1

2

(
|x+ y|p + |x− y|p

)
=

1

2

(
φ(x) +

∫ 1

0

φ′(x+ ty)y dt+ φ(x) +

∫ 1

0

φ′(x− ty)(−y) dt
)

≤ φ(x) +
1

2

∫ 1

0

|φ′(x+ ty)− φ′(x− ty)|X′ |y|dt

≤ φ(x) +
1

2

∫ 1

0

CpH|2ty|
p−1|y|dt = |x|p +

2p−2CpH
p

|y|p.

Therefore, Cpsm ≤ 2p−2CpH/p, so the conditions (2.3) and (1.1) are equivalent. However,
we find the condition (2.3) more convenient to use, so all subsequent results will be
formulated in terms of CH. We note that CpH ≥ p, as can be seen by considering a
one-dimensional subspace of X.
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3 Bellman function for the martingale

In this section, we adapt the Bellman function from [12] to our setting. This will allow
us to prove the inequality

E(|f |w) ≤ 9CHE(Spf · w∗). (3.1)

Note that, unlike in (1.2), the constant on the right-hand side of (3.1) does not explicitly
depend on p.

For x ∈ X, q ≥ 0, and 0 ≤ u ≤ v, let

U(x, q, u, v) := u(|x|p/CpH + q)1/p − Cvq1/p + C̃vq1/p ln(1 + u/v). (3.2)

We denote the x- and the u-derivatives of U by Ux and Uu, respectively. Note that U is
indeed Fréchet differentiable in x, and the derivative is given by

Ux(x, q, u, v)h =
φ′(x)h

pCpH(|x|p/CpH + q)1−1/p
.

The main feature of the function (3.2) is the following concavity property.,

Proposition 3.1. Suppose that C = 9 and C̃ = 4
√

2. Then, for any x, d ∈ X, q, u, v ∈ R≥0,
and e ∈ R with u ≤ v and 0 ≤ u+ e, we have

U(x+ d, q + |d|p, u+ e, (u+ e) ∨ v) ≤ U(x, q, u, v) + Ux(x, q, u, v)d+ Uu(x, q, u, v)e. (3.3)

Before turning to the verification of 3.3, let us quickly show why it is useful.

Proof of (3.1) assuming Proposition 3.1. Let wn := E(w|Fn) and w∗n := maxn′≤n wn′ . For
each n, we apply Proposition 3.1 with

x = fn, q = qn = |f0|p +

n∑
m=1

|fn − fn−1|p,

u = wn, v = w∗n, d = fn+1 − fn, e = wn+1 − wn. (3.4)

Taking the conditional expectation on both sides of the resulting inequality, we obtain

EU(fn+1, qn+1, wn+1, w
∗
n+1) ≤ EU(fn, qn, wn, w

∗
n).

Iterating this inequality, we obtain

E(wN |fN |/CH − Cw∗Nq
1/p
N ) ≤ EU(fN , qN , wN , w

∗
N ) ≤ EU(f0, q0, w0, w

∗
0) ≤ 0.

This implies (3.1).

Unlike in the scalar case in [12], it does not seem possible to directly use the Bellman
function (3.2) to deduce the maximal estimate (1.2). However, Proposition 3.1 will be
used in the proof of Proposition 4.1, which will in turn imply the maximal estimate.

We did not attempt to optimize the numerical values of C, C̃ in Proposition 3.1. Also
the conditions (3.16) and (3.17), according to which these values are chosen, can be
improved by a more careful choice of numerical constants at various places in the proof.
However, we should like to point out that the main loss compared to [12] is due to the
use of the estimate (3.9) in several denominators.

Proof of Proposition 3.1. The inequality (3.3) is quite delicate for small values of d and e,
and quite sloppy for large values. This can be seen by looking at the asymptotic behavior
of (3.3) for d→∞ or e→∞, which is dominated by the term −C((u+ e)∨ v)(q+ |d|p)1/p.
Accordingly, we distinguish the following cases.
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1. |d|p ≤ q/2 and u+ e ≤ v,
2. |d|p ≥ q/2, u+ e ≤ v,

3. u+ e ≥ v.

Throughout the proof, let

ψ(t) := |x+ td|p/CpH, a := ψ(0), b := ψ(0). (3.5)

As a consequence of Lemma 2.1 and (2.3), we have

|ψ′(t)| ≤ p|x+ td|p−1|d|/CpH = p(ψ(t))1−1/p|d|/CH ≤ p(ψ(t))1−1/p|d|, (3.6)

|ψ′(t)− ψ′(t̃)| ≤ |t− t̃|p−1|d|p. (3.7)

Case 1. Suppose that u+ e ≤ v and |d|p ≤ q/2.
We have

|ψ(t)− ψ(0)− tψ′(0)| ≤
∫ t

0

|ψ′(t̃)− ψ′(0)|dt̃ ≤
∫ t

0

t̃p−1|d|p dt̃ =
1

p
|td|p. (3.8)

By the AMGM inequality, we have

|ψ′(0)| ≤ pψ(0)1−1/p|d| ≤ 1

2
ψ(0) + pp−1|d|p ≤ 1

2
ψ(0) + q,

|ψ′(0)| ≤ pψ(0)1−1/p|d| ≤ ψ(0) + |d|p ≤ ψ(0) + q/2.

This implies in particular that, for any t ∈ [0, 1], we have

ψ(0) + ψ′(0)t+ q ≥ max(ψ(0)/2, q/2). (3.9)

Let

G(t) := U(x+ td, q + |td|p, u+ te, v)

= (u+ te)(ψ(t) + q + |td|p)1/p − v(q + |td|p)1/p(C − C̃ ln(1 + (u+ te)/v)).

The claim is then equivalent to G(1) ≤ G(0) +G′(0). Let also

H(t) := (u+ te)(ψ(0) +ψ′(0)t+ q)1/p−C5v(q+ |td|p)1/p− vq1/p(C6− C̃ ln(1 + (u+ te)/v)),

where the splitting C = C5+C6 will be chosen later. Then H(0) = G(0) and H ′(0) = G′(0).
In view of (3.8), we have

ψ(1) + q + |d|p ≤ ψ(0) + ψ′(0) +
1

p
|d|p + q + |d|p, (3.10)

and it follows that

G(1)−H(1) = (u+ e)(ψ(1) + q + |d|p)1/p − v(q + |d|p)1/p(C − C̃ ln(1 + (u+ e)/v))

−
(

(u+ e)(ψ(0) + ψ′(0) + q)1/p − C5v(q + |d|p)1/p − vq1/p(C6 − C̃ ln(1 + (u+ e)/v))
)

≤ (u+ e)(ψ(0) + ψ′(0) + q + (1 + 1/p)|d|p)1/p − v(q + |d|p)1/p(C6 − C̃ ln(1 + (u+ e)/v))

−
(

(u+ e)(ψ(0) + ψ′(0) + q)1/p − vq1/p(C6 − C̃ ln(1 + (u+ e)/v))
)

= K(|d|p)−K(0),

where

K(s) = (u+ e)(ψ(0) + ψ′(0) + q + (1 + 1/p)s)1/p − v(q + s)1/p(C6 − C̃ ln(1 + (u+ e)/v)).
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We have

K ′(s) =
(u+ e)(1 + 1/p)

p(ψ(0) + ψ′(0) + q + (1 + 1/p)s)1−1/p

− v

p(q + s)1−1/p
(C6 − C̃ ln(1 + (u+ e)/v))

≤ v(1 + 1/p)

p(q/2 + s/2)1−1/p
− v

p(q + s)1−1/p
(C6 − C̃ ln(2)) ≤ 0

provided that

C6 ≥ 21−1/p(1 + 1/p) + C̃ ln(2). (3.11)

Next, to show that H(1) ≤ H(0) +H ′(0), we show that H ′(t) ≤ H ′(0) for t ∈ [0, 1]. We
compute

H ′(t) = e(a+ bt+ q)1/p +
(u+ te)b

p(a+ bt+ q)1−1/p

− C5vt
p−1|d|p

(q + |td|p)1−1/p
+ eq1/pC̃/(1 + (u+ te)/v),

H ′′(t) =
2eb

p(a+ bt+ q)1−1/p
− (1− 1/p)(u+ te)b2

p(a+ bt+ q)2−1/p

− (p− 1)C5vt
p−2|d|p

(q + |td|p)1−1/p
+
p(1− 1/p)C5vt

2p−2|d|2p

(q + |td|p)2−1/p
− e2q1/pC̃/(1 + (u+ te)/v)2/v

≤ 2|e|a1−1/p|d|
(a+ bt+ q)1−1/p

− (p− 1)C5vt
p−2|d|pq

(q + |td|p)2−1/p
− e2q1/pC̃/(4v)

≤ 22−1/p|e||d| − (p− 1)C5vt
p−2|d|p

(3/2)2−1/pq1−1/p
− e2q1/pC̃/(4v).

Integrating this inequality, we obtain

H ′(t)−H ′(0) =

∫ t

0

H ′′(t̃) dt̃ ≤ 22−1/p|e||d|t− C5vt
p−1|d|p

(3/2)2−1/pq1−1/p
− e2q1/pC̃/(4v)t.

By the AMGM inequality,

|e||d| =
( v|d|p
q1−1/p

)1/p( |e|p′q1/p

vp′/p
)1−1/p

≤
( v|d|p
q1−1/p

)1/p( |e|2q1/p

v

)1−1/p

≤ 1

p

v|d|p

q1−1/p
+

1

p′
|e|2q1/p

v

(3.12)

Hence, H ′(t) ≤ H ′(0) provided that

C5 ≥ 32−1/p/p, C̃ ≥ 24−1/p/p′. (3.13)

Case 2. Suppose now |d|p ≥ q/2, u+ e ≤ v. Let

I(t) := U(x+ td, q + |td|p, u+ e, v)− U(x, q, u, v)− Ux(x, q, u, v)td− Uu(x, q, u, v)e.
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For |td|p ≤ q/2, we showed I(t) ≤ 0 in the previous step. Hence, it suffices to show
I ′(t) ≤ 0 for all t ∈ [0, 1] such that |td|p ≥ q/2. We have

I ′(t) =
(u+ e)(ψ′(t) + ptp−1|d|p)
p(ψ(t) + q + |td|p)1−1/p

− vtp−1|d|p

(q + |td|p)1−1/p
(C − C̃ ln(1 + (u+ e)/v))− uψ′(0)

p(ψ(0) + q)1−1/p

≤ v|d|(ψ(t)1−1/p + |td|p−1
)

(ψ(t) + q + |td|p)1−1/p
− vtp−1|d|p

(q + |td|p)1−1/p
(C − C̃ ln(2)) +

vψ(0)1−1/p|d|
(ψ(0) + q)1−1/p

≤ 21/pv|d| − v|d|
31−1/p

(C − C̃ ln 2) + v|d| ≤ 0

provided that
C ≥ 31−1/p(1 + 21/p) + C̃ ln 2. (3.14)

Case 3. Suppose now that u+ e ≥ v. We want to show

J(e) := U(x+ d, q + |d|p, u+ e, u+ e)− U(x, q, u, v)− Ux(x, q, u, v)d− Uu(x, q, u, v)e ≤ 0.

For u+ e = v, we have shown that J(e) ≤ 0 in the previous steps. Hence, it suffices to
show J ′(e) ≤ 0 for e ≥ v − u. We have

J ′(e) = (|x+ d|p/CpH + q + |d|p)1/p − (q + |d|p)1/p(C − C̃ ln 2)

− (|x|p/CpH + q)1/p − q1/pC̃/(1 + u/v)

≤ |x+ d|/CH + q1/p + |d| − (q + |d|p)1/p(C − C̃ ln 2)− |x|/CH − q1/pC̃/2

≤ 2|d| − |d|(C − C̃ ln 2)− q1/p(C̃/2− 1) ≤ 0

provided that
C̃ ≥ 2, C ≥ 2 + C̃ ln 2. (3.15)

The inequalities (3.11), (3.13), (3.14), (3.15) can be summarized as

C̃ ≥ max(2, 24−1/p/p′), (3.16)

C ≥ max(2, 31−1/p(1 + 21/p), 32−1/p/p+ 21−1/p(1 + 1/p)) + C̃ ln 2. (3.17)

Plotting these functions, we see that the inequalities are satisfied with the claimed values
of C, C̃.

4 Bellman function for the maximal function

In this section, we combine the Bellman functions from [12] and [1]. For x ∈ X,
|x| ≤ m, q ≥ 0, and 0 ≤ u ≤ v, let

U(x,m, q, u, v)

:= u(mp/CpH + q)1/p − u

p

mp/CpH − |x|
p
/CpH

(mp/CpH + q)1−1/p
− Cvq1/p + C̃vq1/p ln(1 + u/v)

=
u

p′
(mp/CpH + q)1/p +

u

p

q + |x|p/CpH
(mp/CpH + q)1−1/p

− Cvq1/p + C̃vq1/p ln(1 + u/v)

(4.1)

Evidently, the function (4.1) is a modification of (3.2). The most obvious such mod-
ification would be to replace |x| by m; the more sophisticated modification in (4.1) is
chosen in such a way that the left-hand side of (4.2) becomes differentiable in d. The
following concavity property is the main feature of the function (4.1).
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A1 for martingale maximal function

Proposition 4.1. Let p ∈ (1, 2], C = 21, and C̃ = 4
√

2. Then, for any x, d ∈ X, m, q, u, v ∈
R≥0, and e ∈ R with |x| ≤ m, u ≤ v, and u+ e ≥ 0, we have

U
(
x+ d,m ∨ |x+ d|, q + |d|p, u+ e, (u+ e) ∨ v

)
≤ U(x,m, q, u, v) + Ux(x,m, q, u, v)d+ Uu(x,m, q, u, v)e. (4.2)

The numerical value of C, which comes out of the condition (4.12), is again probably
far from optimal.

Proof of Theorem 1.1 assuming Proposition 4.1. We apply Proposition 4.1 with the same
parameters as in (3.4), and additionally

m = f∗n := max
n′≤n
|fn′ |.

Taking the conditional expectation on both sides of the resulting inequality, we obtain

EU(fn+1, f
∗
n+1, qn+1, wn+1, w

∗
n+1) ≤ EU(fn, f

∗
n, qn, wn, w

∗
n).

Iterating this inequality, we obtain

E
(wNf∗N
p′CH

− Cw∗Nq
1/p
N ) ≤ EU(fN , f

∗
N , qN , wN , w

∗
N ) ≤ EU(f0, f

∗
0 , q0, w0, w

∗
0) ≤ 0.

This implies

E(f∗w) ≤ 21p′CHE(Spf · w∗), (4.3)

which in turn implies (1.2) in view of (2.4).
A similar argument also shows (1.4).

Remark 4.2. Proposition 4.1 can also be used to recover a non-maximal bound similar
to (3.1) (but with a larger absolute constant). This is because, by the AMGM inequality,

wN |fN |
CH

≤ wN ((|fN |/CH)p+qN )1/p ≤ wN
p′

((f∗N/CH)p+qN )1/p+
wN
p

qN + |fN |p/CpH
((f∗N/CH)p + qN )1−1/p

.

Proof of Proposition 4.1. Due to an additional maximum in (4.2), we have to distinguish
a few more cases than in Section 3. The main distinction is according to the ordering of
|x + d| and m, since this ordering substantially affects the shape of the function (4.1).
The cases are as follows.

1. |x+ d| ≤ m

(a) |d|p ≤ q/2, u+ e ≤ v,
(b) |d|p ≤ q/2, u+ e ≥ v,
(c) |d|p ≥ q/2.

2. |x+ d| ≥ m

(a) |d|p ≤ q/2,
(b) |d|p ≥ q/2.

Similarly as in Proposition 3.1, only the cases 1a and 2a are delicate.
We continue to use the notation (3.5) and the estimates (3.6), (3.7).
Case 1. First, we consider the case |x+ d| ≤ m.
Case 1a. We consider the subcase u+ e ≤ v, |d|p ≤ q/2.
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A1 for martingale maximal function

Let

G(t) := U(x+ td,m, q + |td|p, u+ te, v)

=
u+ te

p′
(mp/CpH + q + |td|p)1/p +

u+ te

p

q + |td|p + |x+ td|p/CpH
(mp/CpH + q + |td|p)1−1/p

− v(q + |td|p)1/p(C − C̃ ln(1 + (u+ te)/v)).

With this notation, the claim (4.2) turns into G(1) ≤ G(0) +G′(0).

With a splitting C = C1 + C2 to be chosen later, let

H(t) :=
u+ te

p′
(mp/CpH + q)1/p +

u+ te

p

q + ψ(0) + ψ′(0)t

(mp/CpH + q)1−1/p

− C1v(q + |td|p)1/p − vq1/p(C2 − C̃ ln(1 + (u+ te)/v)).

Then G(0) = H(0) and G′(0) = H ′(0). By (3.10), we have

G(1)−H(1) =
u+ e

p′
(mp/CpH + q + |d|p)1/p +

u+ e

p

q + |d|p + |x+ d|p/CpH
(mp/CpH + q + |d|p)1−1/p

−v(q+ |d|p)1/p(C− C̃ ln(1+(u+e)/v))−
(u+ e

p′
(mp/CpH +q)1/p+

u+ e

p

q + ψ(0) + ψ′(0)

(mp/CpH + q)1−1/p

− C1v(q + |d|p)1/p − vq1/p(C2 − C̃ ln(1 + (u+ e)/v))
)

≤ u+ e

p′
(mp/CpH + q + |d|p)1/p +

u+ e

p

q + |d|p + ψ(0) + ψ′(0) + |d|p/p
(mp/CpH + q + |d|p)1−1/p

−v(q+ |d|p)1/p(C2−C̃ ln(1+(u+e)/v))−
(u+ e

p′
(mp/CpH +q)1/p+

u+ e

p

q + ψ(0) + ψ′(0)

(mp/CpH + q)1−1/p

− vq1/p(C2 − C̃ ln(1 + (u+ e)/v))
)

= K(|d|p)−K(0),

where

K(s) =
u+ e

p′
(mp/CpH + q + s)1/p +

u+ e

p

q + s+ a+ b+ s/p

(mp/CpH + q + s)1−1/p

− v(q + s)1/p(C2 − C̃ ln(1 + (u+ e)/v)).

In order to show that G(1) ≤ H(1), we compute

K ′(s) =
u+ e

p′
1

p(mp/CpH + q + s)1−1/p

+
u+ e

p

( 1 + 1/p

(mp/CpH + q + s)1−1/p
− (1− 1/p)(q + s+ a+ b+ s/p)

(mp/CpH + q + s)2−1/p

)
− v

p(q + s)1/p
(C2 − C̃ ln(1 + (u+ e)/v))

≤ (u+ e)
2/p

(mp/CpH + q + s)1−1/p
− v

p(q + s)1/p
(C2 − C̃ ln(2)).

≤ 2v

p

1

(q + s)1/p
− v

p(q + s)1/p
(C2 − C̃ ln(2)) ≤ 0

provided that

C2 ≥ 2 + C̃ ln(2). (4.4)
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Now, it suffices to show H(1) ≤ H(0) +H ′(0). This will follow from H ′(t) ≤ H ′(0) for
t ∈ [0, 1]. Compute

H ′(t) =
e

p′
(mp/CpH + q)1/p +

e

p

q + a+ bt

(mp/CpH + q)1−1/p
+
u+ te

p

b

(mp/CpH + q)1−1/p

− tp−1|d|pC1v

(q + |td|p)1/p
+ eq1/pC̃/(1 + (u+ te)/v),

and

H ′′(t) =
2e

p

b

(mp/CpH + q)1−1/p

− (p− 1)tp−2|d|pC1v

(q + |td|p)1−1/p
+

(1− 1/p)ptp−1|d|ptp−1|d|pC1v

(q + |td|p)2−1/p

− e2

v
q1/pC̃/(1 + (u+ te)/v)2

≤ 2|e| a1/p′ |d|
(mp/CpH + q)1−1/p

− (p− 1)tp−2|d|pC1v

(q + |td|p)1−1/p

(
1− |td|p

q + |td|p
)
− e2

v
q1/pC̃/4

≤ 2|e||d| − (p− 1)tp−2|d|pC1v

(3/2)2−1/pq1−1/p
− e2

v
q1/pC̃/4.

Integrating this inequality, we obtain

H ′(t)−H ′(0) ≤ 2|e||d|t− tp−1|d|pC1v

(3/2)2−1/pq1−1/p
− e2q1/pC̃

4v
t.

Recalling (3.12), we see that H ′(t) ≤ H ′(0) provided that

C1 ≥ 2 · (3/2)2−1/p/p, C̃ ≥ 23/p′. (4.5)

Case 1b. We keep the assumptions |x+ d| ≤ m and |d|p ≤ q/2. Now, we consider the
case u+ e ≥ v. In particular, e ≥ v − u ≥ 0. Let

J(e) := U
(
x+ d,m, q + |d|p, u+ e, u+ e

)
− U(x,m, q, u, v)− Ux(x,m, q, u, v)d− Uu(x,m, q, u, v)e.

For e = v − u, we showed that J(e) ≤ 0 in the previous case. Hence, it suffices to show
that J ′(e) ≤ 0 for e ≥ v − u. We have

J ′(e) =
1

p′
(mp/CpH + q + |d|p)1/p +

1

p

q + |d|p + |x+ d|p/CpH
(mp/CpH + q + |d|p)1−1/p

− (q + |d|p)1/p(C − C̃ ln 2)

− 1

p′
(mp/CpH + q)1/p − 1

p

q + |x|p/CpH
(mp/CpH + q)1−1/p

− C̃q1/p/(1 + u/v)

≤ |d|
p′

+
1

p

|d|p + |x+ d|p/CpH − |x|
p
/CpH

(mp/CpH + q)1−1/p
− (q + |d|p)1/p(C − C̃ ln 2).

Using (3.8), we obtain

J ′(e) ≤ |d|
p′

+
1

p

|d|p + |b|+ |d|p/p
(mp/CpH + q)1−1/p

− (q + |d|p)1/p(C − C̃ ln 2)

≤ (1/p)|d|+ 1

p

|d|p(1 + 1/p) + pap/p
′ |d|

(mp/CpH + q)1−1/p
− (q + |d|p)1/p(C − C̃ ln 2)

≤ (1/p+ (1 + (1/p+ 1/p2)p)1/p)|d| − (q + |d|p)1/p(C − C̃ ln 2).
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This is ≤ 0 provided that

C ≥ 1/p+ (1 + (1/p+ 1/p2)p)1/p + C̃ ln 2. (4.6)

Case 1c. Suppose now that still |x+ d| ≤ m, but now |d|p ≥ q/2. Let ṽ := (u+ e) ∨ v.
Let

I(t) := U(x+ td,m, q + |td|p, u+ e, ṽ)

− U(x,m, q, u, v)− Ux(x,m, q, u, v)td− Uu(x,m, q, u, v)e.

For |td|p ≤ q/2, we showed I(t) ≤ 0 in the previous steps. Hence, it suffices to show
I ′(t) ≤ 0 for t ∈ [0, 1] such that |td|p ≥ q/2. We have

I ′(t) =
u+ e

p′
tp−1|d|p

(mp/CpH + q + |td|p)1−1/p

+
u+ e

p

( ptp−1|d|p + ψ′(t)

(mp/CpH + q + |td|p)1−1/p
−

(q + |td|p + |x+ td|p/CpH) · (1− 1/p)ptp−1|d|p

(mp/CpH + q + |td|p)2−1/p

)
− ṽtp−1|d|p

(q + |td|p)1−1/p
(C − C̃ ln(1 + (u+ e)/ṽ))− uψ′(0)

p(mp/CpH + q)1−1/p
.

≤ ṽ
( (1 + 1/p′)tp−1|d|p + ψ(t)1/p′ |d|

(mp/CpH + q + |td|p)1−1/p

)
− ṽtp−1|d|p

(q + |td|p)1−1/p
(C − C̃ ln 2) +

ṽa1/p′ |d|
(mp/CpH + q)1−1/p

≤ ṽ|d|((1 + 1/p′)p + 1)1/p − ṽt

31−1/p
(C − C̃ ln 2) + ṽ|d| ≤ 0

provided that
C ≥ 31−1/p(1 + (1 + (1/p′)p)1/p) + C̃ ln 2. (4.7)

Case 2. Suppose now that |x + d| > m. Let ṽ := v ∨ (u + e). In this case, the claim
(4.2) becomes

(u+ e)(|x+ d|p/CpH + q + |d|p)1/p − Cṽ(q + |d|p)1/p + C̃ṽ(q + |d|p)1/p ln(1 + (u+ e)/ṽ)

≤ u

p′
(mp/CpH + q)1/p +

u

p

q + |x|p/CpH
(mp/CpH + q)1−1/p

− Cvq1/p + C̃vq1/p ln(1 + u/v)

+
uψ′(0)

p(mp/CpH + q)1−1/p
+
( 1

p′
(mp/CpH + q)1/p +

1

p

q + |x|p/CpH
(mp/CpH + q)1−1/p

+ C̃q1/p/(1 +u/v)
)
e.

(4.8)

Case 2a. Suppose first |d|p ≤ q/2. Let a splitting C = C3 + C4 be chosen later. By
Proposition 3.1, we have

(u+ e)(|x+ d|p/CpH + q + |d|p)1/p − C3ṽ(q + |d|p)1/p + C̃ṽ(q + |d|p)1/p ln(1 + (u+ e)/ṽ)

≤ u(|x|p/CpH + q)1/p − C3vq
1/p + C̃vq1/p ln(1 + u/v)

+
uψ′(0)

p(|x|p/CpH + q)1/p
+
(

(|x|p/CpH + q)1/p + C̃q1/p/(1 + u/v)
)
e

with
C3 = 9, C̃ = 4

√
2. (4.9)

Note that this value of C̃ is compatible with (4.5).
By the AMGM inequality, we have

(|x|p/CpH + q)1/p ≤ 1

p′
(mp + q)1/p +

1

p

q + |x|p/CpH
(mp + q)1−1/p

.
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Multiplying this inequality by u+ e and inserting it on the right-hand side of (4.8), we
see that it suffices to show

C4vq
1/p − C4ṽ(q + |d|p)1/p ≤ uψ′(0)

p(mp/CpH + q)1−1/p
− uψ′(0)

p(|x|p/CpH + q)1−1/p
.

If ψ′(0) ≤ 0, then the right-hand side is positive, so there is nothing to show. Let us
assume ψ′(0) > 0. The claim is then equivalent to

uψ′(0)

p

( 1

(|x|p/CpH + q)1−1/p
− 1

(mp/CpH + q)1−1/p

)
≤ C4ṽ(q + |d|p)1/p − C4vq

1/p.

Since 0 ≤ u ≤ v ≤ ṽ and |ψ′(0)| ≤ pa1/p′ |d|, it suffices to show

|x|p/p
′
|d|

CpH

( 1

(|x|p/CpH + q)1−1/p
− 1

(mp/CpH + q)1−1/p

)
≤ C4(q + |d|p)1/p − C4q

1/p.

By concavity of ·1/p and convexity of ·1/p−1, this will follow from

|x|p/p
′
|d|

CpH
(|x|p/CpH −m

p/CpH)(1/p− 1)(|x|p/CpH + q)1/p−2 ≤ C4|d|p(1/p)(q + |d|p)1/p−1.

Since |d|p ≤ q/2, this will follow from

|x|p/p
′
|d|

C2p
H

(p− 1)(mp − |x|p)(|x|p/CpH + q)1/p−2 ≤ C4|d|p(3q/2)1/p−1.

This will follow from

|d|
CpH

(p− 1)(mp − |x|p)(|x|p/CpH + q)−1 ≤ C4|d|p(3q/2)1/p−1.

Since |x| ≤ m ≤ |x + d| ≤ |x| + |d| and using the elementary inequality (a + b)p ≤
a+pap−1b+bp (which holds for any a, b ≥ 0 and p ∈ [1, 2], as can be seen by differentiating
both sides in b), we have

mp/CpH + q ≤ (|x|+ |d|)p/CpH + q ≤ (|x|p + p|x|p−1|d|+ |d|p)/CpH + q

≤ |x|p/CpH + p(|x|/CH)p−1|d|+ 2q ≤ |x|p/CpH + p((|x|/CH)p/p′ + |d|p/p) + 2q

≤ 3(|x|p/CpH + q),

so it suffices to show

3(p− 1)
|d|
CpH

(mp − |x|p) ≤ C4|d|p(3q/2)1/p−1(mp/CpH + q).

⇐= 3(p− 1)
|d|
CpH

p(m− |x|)mp−1 ≤ C4|d|p(3q/2)1/p−1(mp/CpH + q).

⇐= 3(p− 1)
|d|
CpH

p(m− |x|)mp−1 ≤ C4|d|p(3/2)1/p−1(mp/CpH + q)1/p.

⇐= 3(p− 1)|d|p(m− |x|)mp−1 ≤ C4|d|p(3/2)1/p−1m.

Since m− |x| ≤ min(|d|,m), this holds provided that

C4 ≥ 3(p− 1)p(3/2)1−1/p. (4.10)
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Case 2b. Suppose now |d|p ≥ q/2. Let

I(t) := (u+e)(|x+td|p/CpH+q+|td|p)1/p−Cṽ(q+|td|p)1/p+C̃ṽ(q+|td|p)1/p ln(1+(u+e)/ṽ)

− u

p′
(mp/CpH + q)1/p − u

p

q + |x|p/CpH
(mp/CpH + q)1−1/p

+ Cvq1/p − C̃vq1/p ln(1 + u/v)

− uψ′(0)t

p(mp/CpH + q)1−1/p
−
( 1

p′
(mp/CpH + q)1/p +

1

p

q + |x|p/CpH
(mp/CpH + q)1−1/p

+ C̃q1/p/(1 +u/v)
)
e.

The claim (4.8) is equivalent to I(1) ≤ 0. From the previous cases, we know that I(t) ≤ 0

if t is so small that either |x+ td| = m or |td|p ≤ q/2. Hence, it suffices to show I ′(t) ≤ 0

for all t ∈ [0, 1] such that |x+ td| ≥ m and |td|p ≥ q/2. We compute

I ′(t) = (u+ e)
ψ′(t) + ptp−1|d|p

p(|x+ td|p/CpH + q + |td|p)1−1/p

− ṽtp−1|d|p

(q + |td|p)1−1/p
(C − C̃ ln(1 + (u+ e)/ṽ))− uψ′(0)

p(mp/CpH + q)1−1/p

≤ (u+ e)|d|
|x+ td|p/p

′
/CpH + |td|p−1

(|x+ td|p/CpH + q + |td|p)1−1/p

− ṽtp−1|d|p

(q + |td|p)1−1/p
(C − C̃ ln(2)) +

u|x|p/p
′
|d|/CpH

(mp/CpH + q)1−1/p

≤ (u+ e)|d|21/p − ṽ|d|
31−1/p

(C − C̃ ln(2)) + u|d|.

This is negative provided that

C ≥ 31−1/p(1 + 21/p) + C̃ ln(2). (4.11)

Conclusion of the proof. The conditions (4.4), (4.5), (4.6), (4.7), (4.9), (4.10), (4.11)
amount to C̃ = 4

√
2 and

C ≥ max(2 · (3/2)2−1/p/p+ 2, 1/p+ (1 + (1/p+ 1/p2)p)1/p,

31−1/p(1 + (1 + (1/p′)p)1/p), 9 + 3(p− 1)p(3/2)1−1/p,

31−1/p(1 + 21/p)) + C̃ ln(2). (4.12)

The latter condition holds for C = 21.

A Extrapolation

Here, we show how weighted estimates such as (1.2) can be used to obtain a different
kind of vector-valued estimates, where the vector space is a UMD Banach function
space. We recall that a Banach space X is UMD if and only if every martingale transform
with bounded coefficients on a filtered probability space Ω defines a bounded operator
on every Lr(Ω, X) with r ∈ (1,∞); we refer to [9, Section 4] for many equivalent
characterizations (including via the eponymous unconditional summability of martingale
differences) and examples of UMD spaces. We start with a very simple extrapolation
result, which uses only the duality argument introduced in [7].

Proposition A.1 (Banach function space valued extrapolation). For every r ∈ (1,∞) and
every UMD Banach function space X over a σ-finite measure space (S,Σ, µ), there exists
a constant Cr,X <∞ such that the following holds.

Let (Ω, (Fn)n∈N) be a filtered probability space and let f, g : Ω × S → R≥0 be
measurable functions such that, for some A <∞, µ-almost every s ∈ S, and every weight
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w on Ω, we have ∫
Ω

f(·, s)w ≤ A
∫

Ω

g(·, s)w∗. (A.1)

Then, we have

‖f‖Lr(Ω,X) ≤ Cr,XA‖g‖Lr(Ω,X). (A.2)

Proposition A.1 is not new, in the sense that it also follows from the usual Rubio
de Francia extrapolation argument and (a martingale version of) [10, Theorem 2.4.1].
However, the direct proof is substantially easier.

Proof. Truncating f , we may assume that the left-hand side of (A.2) is finite.
Recall that the Banach function space X has an associate Banach function space X ′,

which is again a Banach function space on (S,Σ, µ) with the property that, for every
h ∈ X ′, we have

‖h‖X′ = sup
f∈X,‖f‖X≤1

∫
S

fhdµ,

and all these integrals converge absolutely. In particular, X ′ is isomorphic to a closed
subspace of the dual space of X. The associate space is norming in the sense that, for
every f ∈ X, we have

‖f‖X = sup
h∈X′,‖h‖X′≤1

∫
S

fhdµ,

see e.g. [20, §71] for the proof of this fact.
Next, we need a measurable selection of h(f) that almost extremize the supremum

on the right-hand side. In concrete spaces X, it is frequently possible to explicitly find
such a selection. For an abstract Banach function space X, it seems necessary to reduce
to a finite-dimensional subspace first.

Since X is UMD, it is reflexive [9, Theorem 4.3.3]. It follows that the norm of X
is absolutely continuous [20, §73, Theorem 2]. Therefore, a version of the dominated
convergence theorem holds in X [20, §72, Theorem 2]. Hence, we can approximate
f by simple functions in Lr(Ω, X), that is, finite linear combinations of characteristic
functions of product subsets of Ω× S.

Let ε > 0, and let f be such a simple function with

‖f − f‖Lr(Ω,X) < ε.

Then f(ω, ·) takes values in a finite-dimensional subspace of X as ω ∈ Ω varies. On this
finite-dimensional subspace, we may choose a measurable map f 7→ h(f) such that

‖h(f)‖X′ ≤ ‖f‖r−1
X , and (A.3)

(1 + ε)

∫
S

fh(f) dµ ≥ ‖f‖rX . (A.4)

We do this by first choosing such a map on the unit sphere, using compactness of the
unit sphere, and then extend it by homogeneity.

By the hypothesis (A.1) with the weights

w(ω, s) := h(f(ω, ·))(s),

we obtain ∫
Ω

∫
S

f(ω, s)w(ω, s) dµ(s) dω ≤ A
∫
S

∫
Ω

g(ω, s)w∗(ω, s) dµ(s) dω, (A.5)
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where w∗(ω, s) := supn≥0E(w(·, s)|Fn)(ω). By duality,

(A.5) ≤ A
∫

Ω

‖g(ω, ·)‖X‖w
∗(ω, ·)‖X′ dω ≤ A‖g‖Lr(Ω,X)‖w

∗‖Lr′ (Ω,X′).

Since X ′ is a closed subspace of the Banach space dual of X, it is again UMD [9,
Proposition 4.2.17]. By the UMD-valued maximal inequality [18, Theorem 3.2], we have

‖w∗‖Lr′ (Ω,X′) ≤ Cr′,X′‖w‖Lr′ (Ω,X′).

By (A.3), we have
‖w‖Lr′ (Ω,X′) ≤ ‖f‖

r−1
Lr(Ω,X). (A.6)

It follows that
(A.5) ≤ ACr′,X′‖g‖Lr(Ω,X)‖f‖

r−1
Lr(Ω,X).

Finally, by duality and (A.6), we have∫
Ω

∫
S

(f − f)(ω, s)w(ω, s) dµ(s) dω ≤ ‖f − f‖Lr(Ω,X)‖f‖
r−1
Lr(Ω,X).

Combining the last two inequalities, we obtain

‖f‖rLr(Ω,X) ≤ (1 + ε)

∫
Ω

∫
S

f(ω, s)h(f(ω, ·))(s) dµ(s) dω

≤ (1 + ε)(ACr′,X′‖g‖Lr(Ω,X) + ‖f − f‖Lr(Ω,X))‖f‖
r−1
Lr(Ω,X).

Since ε can be chosen arbitrarily small, this implies the claim (A.2).

Remark A.2. The space Lr(Ω) in Proposition A.1 can be replaced by another Banach
function space Y , provided that Y ′(X ′) is a norming subspace of the dual space of Y (X),
and, most importantly, that the martingale maximal operator is bounded on Y ′(X ′). One
example is when Y is a weighted Lr space and X = R; the appropriate maximal bounds
in this case have been proved in [6].

As a direct consequence of the weighted BDG inequality (1.2) (or rather just the
scalar case from [12]) and Proposition A.1, we recover the following BDG-type inequality.

Corollary A.3 ([18, Theorem 1.1]). Let r, S,X,Cr,X be as in Proposition A.1. Let
(Ω, (Fn)n∈N) be a filtered probability space. Let f : N × Ω × S → R be a function
with f0(ω, s) = 0 such that

1. for every n, fn(·, ·) is Fn × Σ-measurable, and

2. for almost every s ∈ S, (fn(·, s))n∈N is a martingale with respect to (Fn)n.

Then,

‖sup
n∈N
|fn(·, ·)|‖Lr(Ω,X) ≤ 16(

√
2 + 1)Cr,X

∥∥∥(∑
n≥1

|fn(·, ·)− fn−1(·, ·)|2
)1/2∥∥∥

Lr(Ω,X)
. (A.7)

Proof. By the monotone convergence theorem, we may consider a finite sequence of
times n ≤ N , so that the left-hand side of (A.7) is finite if the right-hand side is. Let

f(ω, s) := max
n≤N
|fn(ω, s)|.

This is an FN × Σ-measurable function, and for a.e. ω we have f(ω, ·) ∈ X. By [12,
Theorem 1.1], the hypothesis (A.1) of Proposition A.1 holds for the above function f with
A = 16(

√
2 + 1) and

g(ω, s) =
( N∑
n=1

|fn(ω, s)− fn−1(ω, s)|2
)1/2

.
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Remark A.4. In [18, Theorem 1.1], also a converse inequality to (A.7) has been proved.
That converse inequality does not follow from the main result of [13], due to the re-
striction to weights that are almost surely continuous in time in that result. In [19], we
extend the main result of [13] in such a way that it recovers the converse to (A.7).
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