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Abstract

This note presents a method based on Feynman-Kac semigroups for logarithmic
Sobolev inequalities. It follows the recent work of Bonnefont and Joulin on intertwining
relations for diffusion operators, formerly used for spectral gap inequalities, and
related to perturbation techniques. In particular, it goes beyond the Bakry-Émery
criterion and allows to investigate high-dimensional effects on the optimal logarithmic
Sobolev constant. The method is illustrated on particular examples (namely Subbotin
distributions and double-well potentials), for which explicit dimension-free bounds on
the latter constant are provided. We eventually discuss a brief comparison with the
Holley-Stroock approach.

Keywords: diffusion processes; Feynman-Kac semigroups; logarithmic Sobolev inequalities;
perturbed functional inequalities.
MSC2020 subject classifications: 39B62; 47D08; 60J60.
Submitted to EJP on March 4, 2020, final version accepted on June 7, 2021.
Supersedes arXiv:2002.01167v2.
Supersedes HAL:hal-02464170.

1 Introduction

Since their introduction by Gross in 1975, the Logarithmic Sobolev Inequalities (LSI)
became a widely used tool in infinite dimensional analysis. Initially studied in relation to
the hypercontractivity property for Markov semigroups, they turned out to be prominent
in many various domains, at the interface of analysis, probability theory and geometry
(one of the best example of such prominence being their use in Perelmann’s proof of
Poincaré’s conjecture in [23]).

For µ a probability measure on the Euclidean space (Rd, | · |), this inequality provides
a control on the entropy of any smooth function f in term of its gradient:

Entµ(f2) ≤ c
∫
Rd

|∇f |2dµ,
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for some c > 0, where Entµ(f2) =
∫
Rd f

2 log(f2) dµ −
(∫

Rd f
2 dµ

)
log
(∫

Rd f
2 dµ

)
. The

optimal constant for the latter inequality to hold, often called the logarithmic Sobolev
constant and denoted cLSI(µ), is of primary importance in the study of the measure µ,
since it encodes many of its properties. For instance, among many results in this area,
Otto and Villani established in [22] a connection between LSI and some transportation
inequalities (see also the related work by Bobkov and Götze in [9]), and Herbst provided
a powerful argument that links LSI to Gaussian concentration inequalities (see the
lecture notes by Ledoux [20] for more details and his reference monograph [21] about
concentration of measure).

The case where µ is the invariant measure of some Markov process is also of great
interest. For example, apart from Gross’ initial results on hypercontractivity in [17],
cLSI(µ) encodes the decay in entropy of the related semigroup, and is linked to the Fisher
information (defined for a positive function f as

∫
Rd |∇

√
f |2dµ) through de Bruijn’s

identity. Significant advances in this setting were due to Bakry and Émery in [4],
who stated their eponymous criterion, also known as “curvature-dimension criterion”,
that connects the logarithmic Sobolev inequality (and many functional inequalities) to
geometric properties of µ. We refer to [5] for a comprehensive overview of this theory.

Although the value of cLSI(µ) is key in the study of µ, its exact value is hardly ever
known explicitly. Bakry-Émery theory provides sharp estimates on this constant for
some log-concave measures, assumption that might be weakened according to some
perturbation arguments. More precisely, although the Bakry-Émery criterion is defined
in a more general situation, it can be reformulated conveniently in the Euclidean setting
as follows.

Theorem (Bakry-Émery, [4]). Assume that µ(dx) ∝ e−V (x)dx, for some smooth potential
V . If there exists some ρ > 0 such that ∇2V (x) ≥ ρId for any x ∈ Rd (the Hessian matrix
of V is uniformly bounded from below as a symmetric matrix), then µ satisfies a LSI
with constant 2/ρ.

We refer to [5] §5.7 for the general curvature-dimension criterion. We shall stick
from know on to the assumption that µ(dx) ∝ e−V (x)dx, for some smooth potential V .
In particular, this bound is sharp for the standard Gaussian distribution γ, providing
cLSI(γ) = 2 (whatever the dimension of the underlying space is). Unfortunately, this
criterion fails as soon as V is not uniformly convex. Yet, if this “lack of convexity” can be
balanced by a bounded transformation, one may use perturbation techniques, such as
the well-known Holley-Stroock method.

Theorem (Holley-Stroock, [19]). Assume that dµ ∝ eΦdν where ν is a probability measure
that satisfies a LSI and Φ is continuous and bounded. Then µ satisfies a LSI with
cLSI(µ) ≤ e2(sup(Φ)−inf(Φ))cLSI(ν).

Note that perturbation by unbounded functions (under for example growth assump-
tions) has been studied, see for example [6]. However, authors in the latter explain
that their method weakens the inequality as soon as the perturbation is not bounded.
Nevertheless, the LSI can be preserved by unbounded perturbation in some specific
cases, as will be developed in this article.

Apart from perturbation, stability of LSI by tensorization is also a key property of
such inequalities, since it exhibits dimension-free behaviours for product measures, but
fails in general to provide efficient bounds beyond this case. In particular, one may wish
to keep track of the geometry of µ (dimension of the space, log-concavity, curvature, etc.)
through cLSI(µ), which can be difficult in many settings (as will be discussed in Section
4). For further reading, we refer to [5] §5.7 for detailed results and to the remarkably
synthetic monograph [1] for a broader introduction.

In this note, we provide a probabilistic approach based on the study of some Feynman-
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Kac semigroups to derive new estimates on the logarithmic Sobolev constant. It follows
the recent work of Bonnefont and Joulin involving intertwinings and functional inequali-
ties of spectral flavour [10, 11] and extends their approach to the latter. A somewhat
similar approach can also be found in the recent work of Sturm and his collaborators on
metric measure spaces [14]. Let us give an overview of our main results. They will be
properly stated and proved in Section 3.

We first show a representation theorem for Feynman-Kac semigroups acting on
gradient fields. Namely, for a perturbation function a satisfying some regularity and
growth assumptions, the following result holds.

Theorem. There exist a stochastic process (Xt,a)t≥0, a martingale (Rt,a)t≥0 and a matrix-
valued process (JXat )t≥0 such that for any smooth function f , one has

P∇
2V

t (∇f) = E[Rt,aJ
Xa
t ∇f(Xt,a)],

where (P∇2V
t )t≥0 is the Feynman-Kac semigroup of interest.

The invariant measure of the above process is known and closely related to µ. The
martingale is given by Girsanov’s theorem, while the matrix-valued process can be seen
as the Jacobian matrix of (Xt,a)t≥0 (with respect to the initial condition).

Note that this formula can be related to other forms of derivatives of heat semigroups,
including for example the well-known Bismut formula (as presented for instance in [16]).
Originally derived using Malliavin calculus (see [8]), Elworthy and Li emphasize in [16]
a more geometric approach and our proof relates to the differentiation of the flow of
some stochastic differential equation (as presented for example in [24] §V.7). Yet, the
above expression as a Feynman-Kac semigroup acting on a gradient field is particularly
suitable when one aims to infer a logarithmic Sobolev inequality. In particular, this
probabilistic representation allows to obtain Grönwall-type estimates on the semigroup,
that lead to a new criterion for LSI. Namely, for a perturbation function a satisfying
some growth assumptions, we can define a curvature κa ∈ R (depending on a and ∇2V )
which provides a Bakry-Émery-like condition.

Theorem. If κa > 0, then µ satisfies a LSI with cLSI(µ) ≤ Ca/κa, for some Ca > 0.

This result indeed encompasses the Bakry-Émery criterion (taking a ≡ 1). Note that
we derive, in the specific case of monotonic functions, a very similar result, yet allowing
the function a to be unbounded.

The choice of a (provided that technical assumptions are satisfied) in the latter
theorem is rather free, so that one expects to take it such that Ca/κa is minimal (to get
the sharpest bound on cLSI(µ)). The precise value of Ca and κa and their behaviour with
respect to a are discussed in more details around two examples.

The first one is the quadric potential, that is V (x) = |x|4/4; the second is the double-
well: V (x) = |x|4/4− β|x|2/2 (for β ∈ (0, 1/2)). Bakry-Émery criterion fails in both cases,
yet our main theorem applies and we manage to infer the following behaviour of cLSI(µ).

Theorem. • Assume that V (x) = |x|4/4. Then µ satisfies a LSI and cLSI(µ) does not
depends on the dimension.

• Assume that V (x) = |x|4/4 − β|x|2/2, β ∈ (0, 1/2). Then µ satisfies a LSI and
cLSI(µ) only depends on β.

We briefly compare both results with the Holley-Stroock method, and provide explicit
constants.

The article is organised as follows. We introduce in Section 2 the framework of the
paper, along with some results about intertwinings and Feynman-Kac semigroups. In
Section 3, we properly state and prove our main results and discuss a comparison with
the Holley-Stroock approach. Finally, Section 4 is devoted to examples, where explicit
constants and detailed computations are provided.
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2 Basic framework

In this first section, we recall the framework of our analysis, basic results and
definitions about intertwinings and Feynman-Kac semigroups (as introduced in [10, 2]).

2.1 Setting

The whole analysis shall be performed on the d-dimensional Euclidean space (Rd, | · |),
for d ∈ N?. We let C∞(Rd,R) and C∞(Rd,Rd) be respectively the set of infinitely
differentiable functions and vector fields on Rd, and let C∞c (Rd,R) and C∞+ (Rd,R)

denote respectively the set of compactly supported and positive C∞ functions on Rd. We
endow those spaces with the supremum norm ‖ · ‖∞. We consider throughout this article
a probability measure µ on Rd whose density with respect to the Lebesgue measure is
proportional to e−V , for some potential V at least twice differentiable. To this measure,
one can associate a Markov diffusion operator defined as

L = ∆−∇V · ∇,

where ∆ and ∇ respectively stand for the usual Laplace operator and gradient on Rd.
The flow of the equation ∂tu = Lu over R+ defines a Markov semigroup (Pt)t≥0, invariant
with respect to µ, which is, under standard assumptions on V , ergodic in L2(µ). Such
assumptions include for example that L vanishes only for constant functions and the
latter are stable by (Pt)t≥0. See [5] §3.1.9 for a general result. Moreover, this semigroup
describes the dynamics of a diffusion process (Xx

t )t≥0 that solves the following Stochastic
Differential Equation (SDE):

dXx
t =
√

2 dBt −∇V (Xx
t )dt, Xx

0 = x ∈ Rd a.s., (E)

where (Bt)t≥0 denotes the standard d-dimensional Brownian motion. All stochastic
processes are defined on some probability space (Ω,F ,P), and we let (Ft)t≥0 denote the
natural (completed) filtration associated to (Bt)t≥0. Under mild assumptions on V , this
process is non-explosive and converges in distribution towards µ, its invariant distribu-
tion. Moreover, regularity of V ensures that x 7→ Xx

t is (at least) differentiable over Rd,
for any t ≥ 0. See Remarks 2.3 and 2.4 at the end of this section for more informations
and references about non-explosion and regularity w.r.t. the initial condition.

In addition, L is symmetric on C∞c (Rd,R) with respect to µ, and the integration by
parts formula rewrites as follows: for any f, g ∈ C∞c (Rd,R),∫

Rd

fLg dµ =

∫
Rd

gLf dµ = −
∫
Rd

∇f · ∇g dµ.

In particular, L is non-positive on C∞c (Rd,R). Hence by completeness, this operator
admits a unique self-adjoint extension (which shall still be denoted L) on some domain
D(L) ⊂ L2(µ) for which C∞c (Rd,R) is a core, i.e. is dense for the norm induced by L (see
[5] §3.1.8 and thereafter for more precise informations).

Finally, let us recall the definition of the logarithmic Sobolev inequality we will refer
to.

Definition 2.1. The measure µ is said to satisfy a Logarithmic Sobolev Inequality (in
short LSI) with constant c > 0 if for any f ∈ C∞c (Rd,R) one has

Entµ(f2) ≤ c
∫
Rd

|∇f |2dµ.

We let cLSI(µ) denote the optimal constant in the latter inequality, which we may as well
refer as the logarithmic Sobolev constant.
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Remark 2.2 (Embeddings and integrability). The integration by parts formula entails
that the bilinear form (f, g) 7→ −

∫
Rd fLg dµ extends likewise on some domain in which

D(L) is dense for the H1(µ) norm (see [5] §3.3.2 for more detailed statements). Hence,
in some way, the LSI may be seen as a continuous embedding of H1(µ) into some Orlicz
space (see [25]), in quite a similar way as Sobolev inequalities provide a continuous
(and compact, with Rellich-Kondrachov theorem) embedding of H1(µ) into some Lp(µ)

spaces (see for example [5] §6.4). Similarly, through Herbst’s argument, LSI implies that
the square of 1-Lipschitz functions is exponentially integrable (see [5] §5.4), and thus
Gaussian concentration for µ, whereas a Sobolev inequality implies that such functions
are actually bounded in H1(µ) (see [5] §6.6). One may as well compare both Sobolev
and logarithmic Sobolev inequalities to the (weaker) Poincaré inequality, we refer the
interested reader to [5] §4.4 for further information.

We end this setting section with some details and references about diffusion pro-
cesses.

Remark 2.3 (Diffusion processes: non-explosion). The explosion time of the process
(Xt)t≥0 is defined as τe = inf{t ≥ 0 : lim sups→t |Xs| = +∞} (the definition is quite similar
to the classical ODE one, except that τe is here a stopping time w.r.t. (Ft)t≥0). The
process is said to be non-explosive (in finite time) as soon as τe is almost surely infinite.
This is actually equivalent to the mass preservation for (Pt)t≥0, that is, Pt1 = 1 for any
t ≥ 0, with 1 the constant function equal to 1 (understood as the increasing limit of a
sequence of compactly supported C∞ functions). Indeed, for any t ≥ 0, Pt1 = P(t ≤ τe),
so that Pt1 = 1 for any t ≥ 0 if and only if τe = +∞ almost surely. This property is
somewhat easier to handle, and Bakry inferred in [3] the following criterion: (Xt)t≥0 is
non-explosive as soon as there is ρ ∈ R such that ∇2V (x) ≥ ρId for any x ∈ Rd. Note that
ρ is not required to be positive, making it a very general condition. Roughly speaking, it
states that V should not be “too concave”.

From now on, we will assume that the latter is satisfied. This is for example true for
V (x) ∝ |x|α for α > 1, as shall be made clear in Section 4.

Remark 2.4 (Diffusion processes: initial condition). As quickly mentioned above, as long
as the process (Xt)t≥0 is non-explosive and∇V is smooth enough, the function x 7→ Xx

t (ω)

(for any fixed t ≥ 0 and almost any fixed ω ∈ Ω) is differentiable on Rd. Actually, as
mentioned in [5] §B.4, this application is as smooth as ∇V is (up to the explosion time).
In the following, we may only focus on the first order derivative (also know as tangent
process or tangent flow), but general results for any order of differentiation can be found
in [24] §V.7 (Theorems 39 and 40).

2.2 Intertwinings

We now focus on intertwinings (for a comprehensive introduction, see [10, 2]). Ba-
sically, we are interested in commutation relations between gradients and Markov
generators, which give rise to the so-called Feynman-Kac semigroups. In the following
proposition, we introduce some notations related to tensor operators and recall a chain
rule commutation formula.

Proposition-definition 2.5. In the following, we let L denote the tensorized operator
L⊗d and (Pt)t≥0 be the associated Markov semigroup, that both act on vector fields. For
F = (F1, . . . , Fd) ∈ C∞(Rd,Rd), they write as

LF = (LF1, . . . ,LFd) and PtF = (PtF1, . . . ,PtFd).

For f ∈ C∞(Rd,R), we recall the intertwining relation:

∇Lf = (L −∇2V )(∇f),
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where ∇2V∇f is the standard matrix-vector product. Similarly, the Feynman-Kac semi-
group (P∇2V

t )t≥0 associated to L −∇2V satisfies the following identity:

∇Ptf = P∇
2V

t (∇f), t ≥ 0,

provided that f has compact support.

This idea takes roots in various works in differential geometry and operators analysis,
and relates (in some more general setting) to the Bochner-Lichnerowicz-Weitzenböck
formula (see [13] for an enthusiast introduction). See also the works around Witten
Laplacians arising in statistical mecanics, for which we refer to Helffer’s monograph
[18].

Remark 2.6. We can still define the Feynman-Kac semigroup associated to L and a
general smooth map M : Rd →Md(R) as the flow of the following PDE system:{

∂tu = (L −M)u

u(0, ·) = u0,

denoted by (PMt )t≥0, provided that solutions to this system exist at any time. Such an
extension will be implicitly used later.

Remark 2.7. The original Feynman-Kac formula, that arises in quantum mechanics, is
stated for scalar-valued functions f and m and writes as follows (see [5] §1.15.6):

Pmt f = E
[
f(Xt)e

−
∫ t
0
m(Xs)ds

]
.

We call (P∇2V
t )t≥0 a Feynman-Kac semigroup by analogy with this case (which shall

clearly appear in the following), yet the representation of (P∇2V
t )t≥0 does not write as

simply as the above. This is the object of the next section.

3 Main results

In this section, we state and prove our main results in two steps: we first provide a
representation theorem, related to Feynman-Kac semigroups, then apply it to estimates
on the logarithmic Sobolev constant.

In [28], Wang developed a somehow similar approach in the framework of manifolds
with boundaries, based on the Girsanov’s theorem for reflected processes. Yet in our
case, we take advantages of some properties of the semigroup, namely invariance and
ergodicity.

3.1 Representation of Feynman–Kac semigroups

This first part is devoted to the main representation theorem we shall make use of. It
is presented for Feynman-Kac semigroups acting on gradients, but still holds for more
general vector fields (in which case the proof relies on a classical martingale argument).

The perturbation technique that will be set up in the next section strongly relies on a
Girsanov representation of the semigroup (Pt)t≥0. To this end, we introduce a smooth
perturbation function in V and study the relation between (Xt)t≥0 and the process
obtained from this new potential.

Definition 3.1. Let a ∈ C∞+ (Rd,R). We let (Xt,a)t≥0 denote the solution of the SDE

dXt,a =
√

2dBt −∇Va(Xt,a) dt,

where Va = V + log(a2).
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Straightforward computations show that the generator of this process writes down

La = L− 2
∇a
a
· ∇,

and we let (Pt,a)t≥0 denote the associated Markov semigroup (in particular, for any
f ∈ C∞c (Rd,R), Pt,af = E[f(Xt,a)]). Moreover, if µa is defined such that dµa/dµ = 1/a2,
then (Pt,a)t≥0 is µa-invariant and La is (essentially) self-adjoint in L2(µa) (see as well [5]
§3.1.8). Note that µa is not a probability (or even finite) measure a priori.

Provided that everything is well-defined, the intertwining relation of Proposition-
definition 2.5 for semigroups is also available for Pt,af , and writes as follows:

∇Pt,af = P∇
2Va

t,a (∇f).

Before we state the main theorem of this section, let us define a condition on the
perturbation function that naturally arises in the computations involving Girsanov’s
theorem.

Definition 3.2. A function a ∈ C∞+ (Rd,R) is said to satisfy the (G) condition whenever
|∇a|/a is bounded.

We can now turn to the representation result (the first theorem stated in the in-
troduction). To fix the ideas, we may write down the initial condition in the following
statements, and omit it in the proofs.

Theorem 3.3. Let f ∈ C∞c (Rd,R) and a ∈ C∞+ (Rd,R) satisfying (G). Then for any t ≥ 0,
x ∈ Rd,

P∇
2V

t (∇f)(x) = E[Rxt,aJ
Xxa
t ∇f(Xx

t,a)],

where (Rxt,a)t≥0 is a martingale with respect to (Ft)t≥0 defined as

Rxt,a =
a(Xx

t,a)

a(x)
exp

(
−
∫ t

0

Laa(x)

a(x)
(Xx

s,a) ds

)
, t ≥ 0,

and (J
Xxa
t )t≥0 is a matrix-valued process that solves{

dJ
Xxa
t = −JX

x
a

t ∇2V (Xx
t,a)dt, t > 0

J
Xxa
0 = Id.

As mentioned before, this result is based on Girsanov’s theorem (see [24] §III.8 Theo-
rem 46 for a proper statement). Hence, before we turn to its proof, we need the following
lemma, that establishes a relation between the Markov semigroups (Pt)t≥0 and (Pt,a)t≥0.

Lemma 3.4. Let a ∈ C∞+ (Rd,R) satisfying the (G) condition. Then for any function
f ∈ C∞c (Rd,R), any t ≥ 0, x ∈ Rd:

Ptf(x) = E[f(Xx
t )] = E

[
Rxt,af(Xx

t,a)
]
,

where (Rxt,a)t≥0 is the (Ft)t≥0-martingale defined above.

Proof. We first set up a suitable exponential martingale before we identify the involved
probability distributions with Girsanov’s theorem. For the sake of legibility, the initial
condition shall be omitted in the following.

We first apply Itō’s formula to log(a(Xt,a)):

log a(Xt,a) = log a+
√

2

∫ t

0

∇(log a(Xs,a)) · dBs +

∫ t

0

La(log a)(Xs,a) ds.
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Note that this decomposition is fairly general and is related to the martingale problem
of Stroock and Varadhan, see [26] Chap. 6.

Expanding the right-hand side and taking exponential lead to the following expression
for Rt,a:

Rt,a = exp

(
√

2

∫ t

0

∇a
a

(Xs,a) · dBs −
∫ t

0

∣∣∣∣∇aa
∣∣∣∣2 (Xs,a) ds

)
.

The (G) condition ensures through standard arguments that the right-hand side is a true
(Ft)t≥0-martingale, thus so is (Rt,a)t≥0. From now on, we set Yt,a =

√
2∇aa (Xt,a).

We let Qa be the probability measure defined as

dQa

dP

∣∣∣∣
Ft

= Rt,a.

According to Girsanov’s theorem, the process (B̃t)t≥0 defined as

B̃t = Bt −
∫ t

0

Ys,a ds,

is a Qa-Brownian motion. Furthermore, the process (Xt,a)t≥0 solves the SDE

dXt,a =
√

2dB̃t −∇V (Xt,a) dt,

hence the law of Xt,a under Qa coincides with the one of Xt under P. In particular, for
any f ∈ C∞c (Rd,R),

Ptf = E[f(Xt)] = E[Rt,af(Xt,a)],

and the proof is complete.

We can now prove Theorem 3.3.

Proof. Recall that under the aforementioned non-explosion assumptions, the diffusion
process defined by Equation (E) is differentiable with respect to its initial condition (see
Remarks 2.3 and 2.4), so that for any t ≥ 0:

P∇
2V

t (∇f) = ∇Ptf
= E[∇(f(Xt))]

= E[JXt ∇f(Xt)],

where (JXt )t≥0 denotes the (matrix-valued) tangent process to (Xt)t≥0 (that is, the
Jacobian matrix of Xt with respect to the initial condition). Differentiating with respect
to the initial condition in the SDE (E) provides the following formula for JXt :

JXt = Id −
∫ t

0

JXs ∇2V (Xs) ds.

One can replace Xs by Xs,a in the previous expression, to define as well

JXat = Id −
∫ t

0

JXas ∇2V (Xs,a) ds.

Note that the potential V is unchanged in the equation. Lemma 3.4 implies then, since
Rt,a is scalar-valued,

E[JXt ∇f(Xt)] = E[Rt,aJ
Xa
t ∇f(Xt,a)],

and the proof is complete.
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Remark 3.5. Note that the statement of Lemma 3.4 generalises to functionals of the
trajectory X[0,t] := (Xs, 0 ≤ s ≤ t). More precisely, for t > 0 and F : C0([0, t],R) → R a
continuous map, Girsanov’s theorem yields as well:

E[F (X[0,t])] = E[Rt,aF (X[0,t],a)].

This extension is implicitly used in the previous proof, taking F (X[0,t]) = JXt ∇f(Xt).

Remark 3.6. In dimension d = 1, since gradients and functions are both 1-dimensional
objects, Theorem 3.3 rewrites in a more standard way:

(Ptf)′ = PV
′′

t (f ′) = E

[
Rt,af

′(Xt,a) exp

(
−
∫ t

0

V ′′(Xs,a) ds

)]
.

This writing shall be useful when dealing with monotonic functions in dimension 1, as
briefly discussed at the end of the next section.

3.2 Logarithmic Sobolev inequalities

In this section, we provide a Feynman-Kac-based proof of the logarithmic Sobolev
inequality, stated for a scalar perturbation. The method can easily be refined to improve
the bound on cLSI(µ), for example when finer informations on the spectrum of the the
generator are available or for a restricted set of test functions. For instance, we adapt
the proof to derive estimates in restriction to monotonic (positive) functions.

3.2.1 General case

Notation. The proof of the following theorem requires some matrix analysis. Hencefor-
ward, if A is a symmetric matrix, we let ρ−(A) denote its smallest eigenvalue. We may
also use MT and uT to denote the usual transpose of a matrix M or a vector u.

The following result states the Bakry-Émery-like criterion mentioned in the introduc-
tion.

Theorem 3.7. Let a ∈ C∞+ (Rd,R). Define

κa = inf
x∈Rd

{
2ρ−(∇2V (x))− aL(a−1)(x)

}
.

If a, a−1 and |∇a| are bounded and κa > 0, then for any f ∈ C∞c (Rd,R),

Entµ(f2) ≤ 4‖a‖∞‖a−1‖∞
κa

∫
Rd

|∇f |2 dµ.

Proof. Let f ∈ C∞c (Rd,R) be a non-negative function. Ergodicity and µ-invariance of
(Pt)t≥0 give:

Entµ(f) = −
∫
Rd

∫ +∞

0

∂t (Ptf logPtf) dt dµ = −
∫
Rd

∫ +∞

0

L[Ptf ] logPtf dt dµ.

The integration by parts formula and the intertwining relation yield then:

Entµ(f) =

∫
Rd

∫ +∞

0

|∇Ptf |2

Ptf
dµ dt =

∫
Rd

∫ +∞

0

∣∣∣P∇2V
t (∇f)

∣∣∣2
Ptf

dt dµ.

We focus on the numerator of the right-hand side. More precisely, we aim to cancel out
Ptf at the denominator, which is made possible by Girsanov’s theorem. Indeed, the
assumptions on a ensure that it satisfies the (G) condition, and Theorem 3.3 leads to

P∇
2V

t (∇f) = E[Rt,aJ
Xa
t ∇f(Xt,a)],
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which rewrites

P∇
2V

t (∇f) = 2E
[
R

1/2
t,a J

Xa
t ∇

√
f(Xt,a)R

1/2
t,a

√
f(Xt,a)

]
.

Cauchy-Schwarz’ inequality with Lemma 3.4 finally entail∣∣∣P∇2V
t (∇f)

∣∣∣2 ≤ 4E

[∣∣∣R1/2
t,a J

Xa
t ∇

√
f(Xt,a)

∣∣∣2]E [Rt,af(Xt,a)]

= 4E
[
∇
√
f(Xt,a)TJXat Rt,a(JXat )T∇

√
f(Xt,a)

]
Ptf.

This implies then for the entropy:

Entµ(f) ≤ 4

∫
Rd

∫ +∞

0

E
[
∇
√
f(Xt,a)TJXat Rt,a(JXat )T∇

√
f(Xt,a)

]
dt dµ.

In order to recover the energy term in the LSI, one should provide some spectral
estimates for JXat Rt,a(JXat )T . Define then

Jat = JXat exp

(
−1

2

∫ t

0

Laa

a
(Xs,a) ds

)
,

which solves the following equation:

dJat = −Jat
(
∇2V (Xt,a)− 1

2
aL(a−1)(Xt,a)Id

)
dt.

Indeed, we have on the one hand:

dJXat = −JXat ∇2V (Xt,a) dt,

and on the other hand:

d

[
exp

(
−1

2

∫ t

0

Laa

a
(Xs,a) ds

)]
= −1

2

Laa

a
(Xt,a) exp

(
−1

2

∫ t

0

Laa

a
(Xs,a) ds

)
dt.

Moreover, La(a)/a = −aL(a−1), so that both previous points and a chain rule give the

expected formula. Since JXat Rt,a(JXat )T =
a(Xt,a)
a(x) Jat (Jat )T , one should focus on spectral

estimates for the latter term.
Therefore, if we let ϕ(t) = yTJat (Jat )T y, for some y ∈ Rd, symmetry of ∇2V entails

dϕ(t) = yT dJat (Jat )T y + yTJat (dJat )T y

= −yTJat
(
∇2V (Xt,a)− 1

2
aL(a−1)(Xt,a)Id

)
(Jat )T y dt

− yTJat
(
∇2V (Xt,a)− 1

2
aL(a−1)(Xt,a)Id

)T
(Jat )T y dt

= −yTJat
(
2∇2V (Xt,a)− aL(a−1)(Xt,a)Id

)
(Jat )T y dt

≤ −κayTJat (Jat )T y dt = −κaϕ(t) dt,

by definition of κa. Hence, ϕ(t) ≤ e−κatϕ(0) for any t ≥ 0, which yields

yTJat (Jat )T y ≤ e−κat|y|2.

We can apply the previous inequality to y =
√

a(Xt,a)
a(x) ∇

√
f(Xt,a) to get

Entµ(f) ≤ 4

∫
Rd

∫ +∞

0

e−κatE

[
a(Xt,a)

a(x)
|∇
√
f(Xt,a)|2

]
dt dµ,
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which rewrites

Entµ(f) ≤ 4

∫ +∞

0

e−κat
∫
Rd

1

a
Pt,a

(
a|∇

√
f |2
)
dµ dt.

Recall that dµa/dµ = 1/a2. Then, since a is bounded,

Entµ(f) ≤ 4‖a‖∞
∫ +∞

0

e−κat
∫
Rd

Pt,a

(
a|∇

√
f |2
)
dµa dt.

One can use invariance of Pt,a with respect to µa, then assumption on κa to get

Entµ(f) ≤ 4‖a‖∞
κa

∫
Rd

a|∇
√
f |2 dµa.

Finally, boundedness of a−1 entails

Entµ(f) ≤ 4‖a‖∞‖a−1‖∞
κa

∫
Rd

|∇
√
f |2 dµ,

and the proof is complete replacing f by f2.

Remark 3.8. In terms of perturbation matrices (as presented in [2] through weighted
intertwinings) one has here A = aId. To take into account the geometry of∇2V , a natural
extension to this result would be to consider non-homothetic perturbations, for instance
of the form A = diag(a1, . . . , ad), where a1, . . . , ad ∈ C∞+ (Rd,R) are distinct functions.
In spite of many attempts, the above proof does not transpose to this case, and more
general spectral estimates are besides much harder to derive. Generalisation of the
representation theorem and Grönwall-like estimates for such perturbations would then
allow an interesting extension to this result.

Remark 3.9 (Holley-Stroock criterion). One may wish to compare this technique to
the well-known Holley-Stroock method (introduced in [19] for the Ising model). As a
reminder, if ν is a probability measure that satisfies a LSI and there exists Φ : Rd → R

a bounded continuous function such that dµ ∝ eΦdν, then µ satisfies a LSI and

cLSI(µ) ≤ e2osc(Φ)cLSI(ν),

where osc(Φ) = sup(Φ)− inf(Φ). Note that osc(Φ) can poorly depend on the dimension,
for example if Φ(x) =

∑d
i=1 ϕ(xi), in which case osc(Φ) = d · osc(ϕ). To stick to our

framework, one might choose Φ = log(a2) for some bounded perturbation function
a ∈ C∞+ (Rd,R). The above inequality becomes

cLSI(µ) ≤ ‖a‖4∞‖a−1‖4∞cLSI(µa),

so that Holley-Stroock method leads to show that µa satisfies a LSI. This is conveniently
ensured as soon as µa satisfies the Bakry-Émery criterion, namely

inf
x∈Rd

{ρ−(∇2Va(x))} > 0.

In terms of a and V , the above condition rewrites explicitly:

inf
Rd

{
ρ−

(
∇2V +

2

a
∇2a− 2

a2
∇a(∇a)T

)}
> 0,

which shall be compared to the spectral estimates involved in κa, that can be expressed
as:

inf
Rd

{
ρ−(∇2V ) +

∆a

a
−∇V · ∇a− 2

a2
|∇a|2

}
> 0.

Both expressions do not compare to each other, yet the second one seems to be far more
tractable, as it could be illustrated on various examples.
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As mentioned before, the above proof can be adapted in some particular cases to
improve the estimate on cLSI(µ). In the following, we thus study the restriction of the
latter to monotonic (positive) functions.

3.2.2 Monotonic functions

Definition 3.10. A measurable function f : Rd → R is said to be monotonic (in each
direction) if for any i = 1, . . . , d, for any fixed (x1, . . . , xi−1, xi+1, . . . , xd) ∈ Rd−1, fi : xi 7→
f(x1, . . . , xd) is monotonic.

In particular, if f is differentiable, then f is monotonic if and only if ∂if has a constant
sign on Rd for any i.

Remark 3.11. In the following, we shall focus on smooth functions f such that all fi
are non-decreasing (resp. non-increasing). In such cases, f will be said to be itself
non-decreasing (resp. non-increasing).

Definition 3.12 ((BM) condition). Given the potential V , a function a ∈ C∞+ (Rd,R) is
said to satisfy the Bakry-Michel condition (in short (BM)) if:

1. for any i, j ∈ J1, dK, i 6= j, ∂2
ijVa ≤ 0;

2. for any i ∈ J1, dK,
∑d
j=1 ∂

2
ijVa is upper bounded,

The following proposition is one of the main arguments that allows to improve the
estimate on cLSI(µ) for monotonic functions.

Proposition 3.13. Let f ∈ C∞+ (Rd,R) and a ∈ C∞+ (Rd,R) satisfying (BM). Assume
furthermore that f and a are both non-decreasing. Then

Pt,af ≤ Ptf, t ≥ 0.

This proposition is based on a lemma provided by Bakry and Michel in [7], used
initially to infer some FKG inequalities in Rd.

Lemma 3.14. Let M : Rd → Md(R) be a measurable map such that Mij ≤ 0 for any

i 6= j and
∑d
j=1Mij is upper bounded for any i, and let F be a smooth vector field on Rd.

Then all components of PMt F are non-negative whenever all components of F are so.

We refer the reader to [7] for the proof. We can now provide a proof of Proposi-
tion 3.13.

Proof. The proof relies on very classical techniques. Let t ≥ 0 be fixed and take
f ∈ C∞+ (Rd,R) a non-decreasing function. Define, for any s ∈ [0, t],

Ψ(s) = Ps(Pt−s,af).

Since Ψ(0) = Pt,af and Ψ(t) = Ptf , we aim to prove that Ψ is non-decreasing. One has,
for any s ∈ [0, t],

Ψ′(s) = Ps[(L− La)Pt−s,af ],

which rewrites accordingly

Ψ′(s) = Ps

[
∇a
a
· ∇Pt−s,af

]
= Ps

[
∇a
a
· P∇

2Va
t−s,a (∇f)

]
.

Since f is non-decreasing, all entries of ∇f are non-negative, and since a satisfies (BM),

Lemma 3.14 implies that all entries of P∇
2Va

t−s,a (∇f) are non-negative. Moreover, a is
positive and non decreasing, so that

∇a
a
· P∇

2Va
t−s,a (∇f) ≥ 0.

Hence, since Ps preserves the positivity, Ψ′(s) ≥ 0 and the proof is over.
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Remark 3.15. In dimension d = 1, due to the particular form of the Feynman-Kac

semigroup (P∇
2Va

t,a )t≥0, Proposition 3.13 still holds if one only assumes that a is positive
and a and f are both non-decreasing.

Proposition 3.13 enables us to adapt the proof of Theorem 3.7 and improve the
estimate on cLSI(µ). Moreover, the proof allows to handle unbounded perturbation
functions (as long as the (G) condition is satisfied).

Theorem 3.16. Let a ∈ C∞+ (Rd,R) be non-decreasing. Define

κ̃a = inf
x∈Rd

{
ρ−(∇2V (x))− aL(a−1)(x)

}
.

If a satisfies (BM), (G) and κ̃a > 0, then for any non-decreasing f ∈ C∞+ (Rd,R),

Entµ(f2) ≤ 2

κ̃a

∫
Rd

|∇f |2 dµ.

Proof. Let f ∈ C∞+ (Rd,R) be non-decreasing. The beginning of the proof is very similar
to the one of Theorem 3.7. Indeed, the entropy rewrites

Entµ(f) =

∫
Rd

∫ +∞

0

∣∣∣P∇2V
t (∇f)

∣∣∣2
Ptf

dt dµ,

with the representation

P∇
2V

t (∇f) = 2E
[
Rt,aJ

Xa
t ∇

√
f(Xt,a)

√
f(Xt,a)

]
,

since a satisfies (G). Theorem 3.3 and Cauchy-Schwartz’ inequality imply here

∣∣∣P∇2V
t (∇f)

∣∣∣2 ≤ 4E
[
R2
t,a|J

Xa
t ∇

√
f(Xt,a)|2

] Pt,af︷ ︸︸ ︷
E[f(Xt,a)]

≤ 4E
[
R2
t,a|J

Xa
t ∇

√
f(Xt,a)|2

]
Ptf,

using Proposition 3.13. Plugged into the entropy, this yields

Entµ(f) ≤ 4

∫
Rd

∫ +∞

0

E
[
∇
√
f(Xt,a)TJXat R2

t,a(JXat )T∇
√
f(Xt,a)

]
dt dµ.

Here we let

Jat = JXat exp

(
−
∫ t

0

Laa

a
(Xs,a) ds

)
,

and the same reasoning as in the proof of Theorem 3.7 gives then

Entµ(f) ≤ 4

∫
Rd

∫ +∞

0

e−2κ̃atE

[
a(Xt,a)2

a(x)2
|∇
√
f(Xt,a)|2

]
dt dµ.

Hence, using µa-invariance of (Pt,a)t≥0,

Entµ(f) ≤ 4

∫ +∞

0

e−2κ̃at

∫
Rd

Pt,a

(
a2|∇

√
f |2
)
dµa dt

= 4

∫ +∞

0

e−2κ̃at

∫
Rd

|∇
√
f |2 dµ dt =

2

κ̃a

∫
Rd

|∇
√
f |2 dµ,

and the proof is achieved replacing f by f2.
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4 Examples

In this section, we illustrate the Feynman-Kac approach on some examples. Since
the perturbation function we introduce is scalar-valued, the method will be particularly
suitable for potentials whose Hessian matrix admits many symmetries, for instance
radial potentials. The examples we focus on shall then pertain to this class of potentials,
namely here Subbotin and double-well potentials. Let us mention that, using other
techniques, similar results for compactly supported radial measures were recently
derived by Cattiaux, Guillin and Wu in [15].

For the sake of concision, we restrain ourselves to the illustration of Theorem 3.7.
We eventually briefly resume the comparison to Holley-Stroock method.

4.1 Subbotin potentials

The first example we focus on is the general Subbotin1 distribution [27]. We take then
V (x) = |x|α/α for α > 2, to ensure that V is at least twice continuously differentiable, but
Bakry-Émery criterion does not apply (see the following proof and remark thereafter).

Lemma 4.1. Let a ∈ C∞+ (Rd,R). Then for any x ∈ Rd,

ρ−(2∇2V (x))− aL(a−1)(x) = 2|x|α−2 − aL(a−1)(x).

Proof. First, notice that for any fixed x ∈ Rd,

∇2V (x) = (α− 2)|x|α−4xxT + |x|α−2Id.

Hence, Tx := 2∇2V (x)− aL(a−1)(x)Id (seen as an element of L(Rd)), can be written as
the sum of a rank 1 operator (projection on Rx) and a full-rank operator (multiple of the
identity). One can then write Rd = Rx⊕ (Rx)⊥. Let λ be a non-zero eigenvalue of Tx
and y be an associated eigenvector. Then

• either y ∈ Rx, that is, y = βx for some β ∈ R∗, and one can write

λy = Txy = 2β(α− 2)|x|α−2x+ 2β|x|α−2x− βaL(a−1)(x)x,

which leads to

λ = 2(α− 1)|x|α−2 − aL(a−1)(x);

• either y ∈ (Rx)⊥, in which case

λy = Txy = 2|x|α−2y − aL(a−1)(x)y,

which entails

λ = 2|x|α−2 − aL(a−1)(x).

Hence for any x ∈ Rd, since α > 2,

ρ−(2∇2V (x))− aL(a−1)(x) = ρ−(Tx) = 2|x|α−2 − aL(a−1)(x).

In the following, we may focus on the α = 4 (quadric) case. Indeed, computations turn
out to be particularly difficult in full generality, as well as keeping track of dependency in
both parameters d and α. Bakry-Émery criterion clearly does not apply to this particular
potential, since ρ−(∇2V (x)) vanishes at point x = 0.

1after Mikhail Fedorovich Subbotin, 1893–1966, Soviet mathematician
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Theorem 4.2. Let µ(dx) ∝ exp(−|x|4/4)dx. There exists a universal explicit constant
c > 0 such that for any f ∈ C∞c (Rd,R), one has

Entµ(f2) ≤ c
∫
Rd

|∇f |2dµ.

In particular, c does not depend on the dimension.

From the proof, one infers that c = 3e
√

3 is a suitable constant, yet highly dependent
on the way computations are handled.

Proof. The first concern about making use of Theorem 3.7 stands in the choice of the
perturbation function a. In practice, a should correct a lack of convexity of V where it
occurs (namely where ∇2V (x) ≤ 0, here at x = 0). One of the first choices turns out to
be the function

a(x) = exp
(ε

2
arctan(|x|2)

)
, x ∈ Rd.

Indeed, the arctangent function behaves like the identity near zero (where lies the lack
of convexity of V ) and like a constant at infinity (ensuring that a is bounded above and
below). Furthermore, the square function is uniformly convex on Rd, so that the Hessian
matrix of the above is positive definite near the origin. Finally, taking exponential, a is
indeed positive and computations are easier. Note that this choice is motivated by some
results on the spectral gap, in which case the choice of a perturbation function that is
close to non-integrability can provide relevant estimates on the Poincaré constant (see
for example [10, 2]).

The next step in the method consists in the explicit computation of κa. With this
definition of a, one has

−aL(a−1)(x) = ε
d+ |x|4(d− 4)

(1 + |x|4)2
− ε |x|4

1 + |x|4
− ε2 |x|2

(1 + |x|4)2
, x ∈ Rd,

and shall then minimize in x ∈ Rd:

2|x|2 + ε
d+ |x|4(d− 4)

(1 + |x|4)2
− ε |x|4

1 + |x|4
− ε2 |x|2

(1 + |x|4)2
,

which rewrites, setting t = |x|2,

κa = inf
t≥0

(
2t+ ε

d+ t2(d− 4)

(1 + t2)2
− ε t2

1 + t2
− ε2 t

(1 + t2)2

)
.

Optimization of polynomials is hardly explicit in most cases, especially when one
must keep track of all parameters (namely ε and d). We shall then focus here on the case
where the infimum is reached for t = 0, that is, for any t ≥ 0,

2t4 − ε(d+ 1)t3 + 4t2 − ε(d+ 5)t+ 2− ε2 ≥ 0.

Let us denote by g the above polynomial function. Clearly, ε ≤
√

2 is a necessary, yet
not sufficient condition for g to be non negative. In order to make computations more
tractable, let us assume that g′′ is positive. This is true as soon as

ε <
8√

3(d+ 1)
.

Consider then ε ≤ 8

3
√

3(d+ 1)
. With this choice of ε, given that d ≥ 1, one has for any

t ≥ 0

g(t) ≥ 2t4 − 8t3

3
√

3
+ 4t2 − 8t√

3
+ 2− 16

27
.

EJP 26 (2021), paper 93.
Page 15/19

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP656
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Feynman-Kac for logarithmic Sobolev inequalities

It is easy to see that the above right-hand side is non-negative, so that g is non-negative
either over R+. We can then take κa = εd, and Theorem 3.7 entails the following
estimate:

cLSI(µ) ≤ 4eεπ/4

εd
,

with ε ≤ 8

3
√

3(d+ 1)
(which implies that ε ≤

√
2). We finally minimize this bound with

respect to ε ∈
(

0, 8
3
√

3(d+1)

]
to get

cLSI(µ) ≤ 3
√

3(d+ 1)

2d
e2π/3

√
3(d+1).

The above is uniformly bounded with respect to d ∈ N?, and one can take c = 3e
√

3 as
the universal constant mentioned in the theorem.

Remark 4.3. This proof points out the main concerns about Theorem 3.7. Indeed, the
choice of the function (or family of functions) a is a key point. Nevertheless, the most
important, yet technical, part of the proof is the explicit computation of κa, given that
track should be kept of all parameters.

Note that, up to some numerical constant, the bound on ε in the previous proof is
optimal (with this optimization method). Recall that the problem reduces to the prove
that the function g defined on R+ as

g(t) = 2t4 − ε(d+ 1)t3 + 4t2 − ε(d+ 5)t+ 2− ε2, t ≥ 0,

is non-negative. If we assume that ε is of order (d+ 1)−r for some r ∈ (0, 1), then when d
is large, for any fixed positive t,

g(t) ∼ 2t4 − d1−rt3 + 4t2 − d1−rt+ 2− d−2r,

and taking t = 3/d1−r leads to

g(3/(d+ 1)r) ∼ 162

d4(1−r) +
9

d2(1−r) −
1

22r
− 1 < 0

when d increases, which prevents the infimum of t 7→ εd+ tg(t) to be reached at t = 0.
We do not know if the constant we inferred is optimal (in terms of the dimension). Yet,

one can note that, for example from [12], since the spectral gap for the quadric Subbotin
distribution is of order

√
d, it is reasonable to expect cLSI(µ) to be of order 1/

√
d (since

µ satisfies a Poincaré inequality with constant c (which is the inverse of the spectral gap)
as soon as it satisfies a LSI with constant 2c, see [5] §5.1.2). It is then unclear that we
can reach optimality with this very optimization procedure. More reliable optimization
techniques would be then a good improvement regarding explicit estimates using this
result.

Remark 4.4. The Holley-Stroock method as developed in Remark 3.9 leads, in the
present case and after tedious computations, to a conclusion somewhat comparable to
ours. Nevertheless, the involved constants are not fully explicit and leave less room for
improvement than our above approach.

4.2 Double-well potentials

The following example is a perturbation of the previous one, known as the double-well
potential. Consider V (x) = |x|4/4− β|x|2/2, where β > 0 controls the size of the concave
region. Although V is convex at infinity, its Hessian matrix is negative definite near the
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origin, and Bakry-Émery criterion does not apply. Still, one can expect to recover the
behaviour inferred in Theorem 4.2 when β is small.

Similarly to the Subbotin case, one can explicitly compute the Hessian matrix of V to
get the following lemma.

Lemma 4.5. Let a ∈ C∞+ (Rd,R). Then for any x ∈ Rd,

ρ−(2∇2V (x)− aL(a−1)(x)Id) = 2|x|2 − 2β − aL(a−1)(x).

Proof. The proof is identical to the one of Lemma 4.1.

Theorem 4.6. Let µ(dx) ∝ exp(−|x|4/4 + β|x|2/2)dx, β ∈ (0, 1/2). There exists cβ > 0 a
universal constant such that, for any function f ∈ C∞c (Rd,R), one has

Entµ(f2) ≤ cβ
∫
Rd

|∇f |2dµ.

Again, cβ does not depend on the dimension.

A suitable constant is here cβ = 4e
1−2β , the blow-up when β → 1/2 is a computation

artefact and has, to our knowledge, no qualitative significance.

Proof. This proof is very similar to the previous one. In particular, we set for any x ∈ Rd

a(x) = exp
(ε

2
arctan(|x|2)

)
,

so that, for t = |x|2,

κa = inf
t≥0

(
2t− 2β + ε

d+ t2(d− 4)

(1 + t2)2
− ε(t− β)

t

1 + t2
− ε2 t

(1 + t2)2

)
.

Again, we aim to show that this infimum is equal to εd − 2β, reached for t = 0, which
amounts to prove that, for any t ≥ 0,

g(t) := 2t4 − ε(d+ 1)t3 + (4 + β)t2 − ε(d+ 5)t+ 2− ε2 + β ≥ 0,

along with, to ensure positivity of κa, ε > 2β/d.
The first necessary condition that arises is ε ≤

√
β + 2. Moreover, in light of both

previous proof and remark, ε should be of order 1
d+1 . To make computations easier, we

take ε = 2
d+1 . Plugging this into both conditions ε > 2β/d and ε ≤

√
β + 2 imply that β

should not exceed d/d+ 1 for any d, which equates to β < 1/2. To summarize, we have

ε =
2

d+ 1
and 0 ≤ β < 1

2
.

Under those assumptions, g can be bounded from below as follows

g(t) ≥ 2t4 − 2t3 + 4t2 − 2t+ 1 + β, t ≥ 0.

The right-hand term is positive on R+, so that with this choice of ε, one has

κa =
2d

d+ 1
− 2β.

This amounts, using Theorem 3.7, to

cLSI(µ) ≤ 4(d+ 1)

2d(1− β)− 2β
e

π
2(d+1) .

The above is uniformly bounded with respect to d ∈ N?, and one can take cβ =
4e

1− 2β
as

the aforementioned universal constant.
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Remark 4.7. Note that the restriction on β is a computation artefact, and one has more
cβ −−−−→

β→ 1
2
−

+∞. Nevertheless, the behaviour in term of the dimension is similar to what

was derived for the Subbotin distribution in Theorem 4.2.

Remark 4.8. As for the quadric distribution, the Holley-Stroock method provides some-
what similar results, yet computations are far more tedious in this case, particularly in
keeping track of the dependency in β.
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