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Abstract

We consider reflected backward stochastic differential equations with two optional
barriers of class (D) satisfying Mokobodzki’s separation condition, and coefficient
which is only continuous and non-increasing. We assume that data are merely inte-
grable and the terminal time is an arbitrary (possibly infinite) stopping time. We study
the problem of the existence and uniqueness of solutions to the mentioned equations,
and their connections with the value process in nonlinear Dynkin games.
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1 Introduction

Let F = (Ft)t≥0 be a filtration satisfying the usual conditions and T (terminal time)
be an arbitrary (possibly infinite) F-stopping time. We also consider as given an FT -
measurable random variable ξ (terminal condition), a real function f (coefficient) defined
on Ω×R+×R, which is F-progressively measurable with respect to the first two variables,
and F-optional processes L,U (barriers) of class (D) satisfying some separation condition.
In the present paper, we consider reflected backward stochastic differential equations
(RBSDE for short) which informally can be written in the form

dYt = −f(t, Yt) dt− dRt + dMt on [0, T ], lima→∞ YT∧a = ξ,

(Y,M,R) ∈ O ×Mloc × Vp ,
L ≤ Y ≤ U on [0, T ], dR is “minimal”.

(1.1)

In (1.1),O (resp. Mloc,Vp) is the space of F-optional processes (resp. local F-martingales,
finite variation F-predictable processes). We study the problem of the existence and
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Reflected BSDEs with two optional barriers

uniqueness of solutions to (1.1) – also in case of one barrier, i.e. U ≡ ∞ – and their
connections with nonlinear optimal stopping problem and nonlinear Dynkin games.

The notion of nonlinear RBSDEs was introduced by El Karoui et al. in [12] (one
reflecting barrier) and by Cvitanic and Karatzas in [7] (two reflecting barriers). In both
pioneering papers the authors considered bounded terminal time T , continuous barriers
L,U and filtration F generated by a given Brownian motion. In that case (1.1) may be
formulated rigorously as follows:

Yt = ξ +
∫ T
t
f(r, Yr, Zr) dr +

∫ T
t
dRr −

∫ T
t
Zr dBr, t ∈ [0, T ],

(Y, Z,R) ∈ Oc ×O × Vc,
Lt ≤ Yt ≤ Ut, t ∈ [0, T ],

∫ T
0

(Yr − Lr) dR+
r =

∫ T
0

(Ur − Yr) dR−r = 0,

(1.2)

where Oc (resp. Vc) is the subspace of O (resp. Vp) consisting of continuous processes.
In [7, 12] it is assumed that the generator f is Lipschitz continuous with respect to y, z
and the data are in L2, that is ξ, f(·, 0, 0), supt≤T |Lt|, and supt≤T |Ut| (in the case of two
barriers), are square-integrable. Note that in the special case of Brownian filtration
each local F-martingale M is of the form M = Z dB, which allows one to consider f
depending also on Z.

In [7] an existence and uniqueness result for (1.2) is proved. Moreover, it is shown
there that the solution is linked with Dynkin games via the formula

Yα = ess sup
σ≥α

ess inf
τ≥α

E
(∫ τ∧σ

α

f(r, Yr, Zr) dr + Lσ1σ<τ + Uτ1τ≤σ<T + ξ1σ=τ=T |Fα
)

(1.3)

holding for any stopping time α ∈ [0, T ]. When U ≡ ∞, the above formula reduces to the
optimal stopping problem which was proved to be related to RBSDEs with one reflecting
barrier in [12].

The theory of RBSDEs has been significantly developed over the last two decades and
assumptions from the papers by Cvitanic and Karatzas [7] and by El Karoui et al. [12]
were successively weakened. We shall provide a brief overview of the literature to show
the main directions of relaxing of the standard assumptions considered in the pioneering
papers. The case of càdlàg barriers is considered in [17, 22, 29]. RBSDEs with monotone
generator satisfying weak growth condition are studied in [22, 28, 34] and we refer
the reader to [5, 21, 22, 34] for equations with Lp-data for p ∈ [1, 2]. Equations with
Brownian-Poisson filtration and càdlàg barriers were studied in [16, 18, 19, 20, 36]. The
case of general, right-continuous filtration F, monotone generator f and L1-data was
studied in [23]. Equations with T being an arbitrary stopping time were studied in [35]
(Brownian filtration), in [1] (Brownian-Poisson filtration) and [24] (general filtration).

In most of the existing papers on RBSDEs càdlàg barriers are considered, and there
are only few papers dealing with non-càdlàg case. Such equations with L2-data and
Lipschitz continuous generator were studied in [30] (Brownian filtration), in [13, 14, 31]
(Brownian-Poisson filtration) and [3, 4, 15] (general filtration). RBSDEs with L1-data
and optional barriers were considered only in [25, 26] in case of Brownian filtration and
bounded terminal time.

As already mentioned, in the present paper we study the existence and uniqueness
of solutions of class (D) to RBSDEs (1.1) with general filtration F and possibly infinite
terminal time T . We also assume that L and U are F-optional processes of class (D)
satisfying Mokobodzki’s condition – existence of a special semimartingale between the
barriers – and such that

lim sup
a→∞

LT∧a ≤ ξ ≤ lim inf
a→∞

UT∧a. (1.4)

As for f and V , we will assume that they satisfy the following conditions.
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(H1) E(
∫ T

0
d|V |r +

∫ T
0
|f(r, 0)| dr) <∞,

(H2) for a.e. t ∈ [0, T ] the function y 7→ f(t, y) is non-increasing,

(H3) y 7→ f(t, y) is continuous for every t ∈ [0, T ],

(H4)
∫ T

0
|f(r, y)| dr <∞ for all y ∈ R.

One of the main novelty of the paper is that we study RBSDEs in the general frame-
work described above. Some of the above conditions on the data were considered in
the literature before in the context of RBSDEs, but here it is the first time that all these
conditions are taken into account as one framework. Such far reaching generalization, as
compared to the previous papers on RBSDEs, forces us to provide new proof techniques,
and this is our second main contribution in the paper. Now, we shall describe briefly the
new difficulties which appear in the paper and compare our methods with the already
existing literature.

When dealing with RBSDEs with optional barriers, one of the main difficulty is the
fact that the penalty method – one of the two known in the literature approaches to the
existence problem for RBSDEs – is not applicable. Thus we are left with the second
method, considered in [7, 12] and commonly used in case of optional barriers. This
method consists of two steps: a) solving linear RBSDE by using the Snell envelope theory
(in case of one barrier) or by using the Snell envelope theory combined with a decoupling
method (in case of two barriers), b) applying a fixed point theorem (Banach contraction
principle). In our framework part a) presents no difficulties and its proof proceeds
analogously to the case of more regular data (see e.g. [14, 26]). The problems begin
when we proceed to the nonlinear case since we can not apply fixed point argument –
the reason is twofold: T may be infinite and f is assumed to be merely non-decreasing
with respect to y. To overcome this difficulty, we employ a natural method, coming out
from PDEs, which is based on the iteration of equation in (1.1) admitting the following
generic form

dY nt = −fn(t, Y n−1
t ) dt− dRn + dMn

t . (1.5)

However, since we do not assume any growth condition on f with respect to y, in general,
it is not true for solutions of (1.1) that E

∫ T
0
|f(r, Yr)| dr <∞ or E|R|T <∞, and even if

this is true, it is very hard to show uniform integrability of the sequence (fn(·, Y n−1))n≥1.
Thus, it is by no means clear how to pass to the limit in (1.5) and in the Dynkin game
formula (1.3) for the value process Y n. In fact, by the comments in the foregoing, in
general (1.3) is not even well defined, and we shall use an alternative formulation of (1.3)
based on the nonlinear expectation (cf. (1.6)). The method we propose in the present
paper for proving an existence result for (1.1) is based on a suitable localization (by
means of a sequence of stopping times) of a particular iteration of the form (1.5), in
case of one barrier, and a certain iteration of nonlinear decoupling system in case of
two barriers (cf. (1.8)). Note here that one has to be very careful when choosing the
proper localization because somehow we have to control uniformly in n behavior of Y n

at T (possible infinite).

Now, we shall describe the content of the paper in more details. In Section 3, for f
satisfying (H1)–(H4) we introduce the notion of nonlinear f -expectation

Efα,β : L1(Ω,Fβ , P )→ L1(Ω,Fα, P ),

associated with BSDE (1.1) with no reflection, and we prove its basic properties. Here
α ≤ β are stopping times.
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In Section 4, we give a definition of a solution to (1.1). We are looking for a triple
(Y,M,R) ∈ O ×Mloc × Vp such that Y is a regulated (làdlàg) process such that

Yt = YT∧a +

∫ T∧a

t

f(r, Yr) dr +

∫ T∧a

t

dRr −
∫ T∧a

t

dMr, t ∈ [0, T ∧ a]

for every a ≥ 0, and moreover, Y satisfies the terminal condition of the form

YT∧a → ξ, a→∞.

We also require that R is minimal in the sense that for every a ≥ 0,∫ T∧a

0

(Yr− −
−→
L r) dR

∗,+
r +

∑
0≤r<T∧a

(Yr − Lr)∆+R+
r

+

∫ T∧a

0

(U−→r − Yr−) dR∗,−r +
∑

0≤r<T∧a

(Ur − Yr)∆+R−r = 0,

where R = R+ − R− is the Jordan decomposition of R,
−→
L r = lim sups↑rXs, U−→r =

lim infs↑rXs, and R∗,+ (resp. R∗,−) is the càdlàg part of the process R+ (resp. R−). We
prove that there exists at most one solution (Y,M,R) to RBSDE (1.1) such that Y is of
class (D).

In Section 5, we prove that under (H1)–(H4) and E|ξ| < ∞, there exists a solution
(Y,M,R) to RBSDE (1.1) with one reflecting lower barrier L such that Y is of class (D).
In this case R is an increasing process. We also show that for every stopping time α ≤ T ,

Yα = ess sup
τ≥α

Efα,τ (Lτ1τ<T + ξ1τ=T ).

Let us stress here that in general ERT and E
∫ T

0
|f(r, Yr)| dr are infinite. We give

necessary and sufficient condition for which these integrals are finite. We show that if
this is the case, then

Yα = ess sup
τ≥α

E(

∫ τ

α

f(r, Yr) dr + Lτ1τ<T + ξ1τ=T |Fα).

In Section 6, we are focused on our main goal, i.e. problem (1.1) (with two reflecting
barriers). We first show that each solution to (1.1) such that Y is of class (D) admits the
representation

Yα = ess sup
ρ=(τ,H)∈Sα

ess inf
δ=(σ,G)∈Sα

Efα,τ∧σ(Luρ1{τ≤σ<T} + U lδ1{σ<τ} + ξ1{τ=σ=T}), (1.6)

where ρ, δ are the so called stopping systems (see Section 6), and

Luρ = Lτ1H +
←−
L τ1Hc , U lρ = Uτ1G + U←−τ1Gc .

Using this representation, we prove a stability result for (1.1). To prove the existence of
a solution, we consider the nonlinear decoupling system{

Y 1
t = ess supt≤τ≤T E(Y 2

τ +
∫ τ
t
f(r, Y 1

r − Y 2
r ) dr + Lτ1τ<T + ξ1τ=T |Ft),

Y 2
t = ess supt≤τ≤T E(Y 1

τ 1τ<T − Uτ1τ<T |Ft)
(1.7)

introduced in the linear case (f ≡ 0) by Bismut [6]. Since, as we mentioned before, the
integral in (1.7) may be infinite, we reformulate (1.7) as the following system of RBSDEs
with one reflecting lower barrier:

dY 1
t = −f(t, Y 1

t − Y 2
t ) dr − dR1

t + dM1
t on [0, T ], Y 1

T = ξ,

dY 2
t = − dR2

t + dM2
t on [0, T ], Y 2

T = 0,

Y 2 + L ≤ Y 1, Y 1 − U ≤ Y 2.

(1.8)
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Using the results of Section 5, we prove that under (H1)–(H4), (1.4) and Mokobodzki’s
condition (the existence of a special semimartingale between the barriers) there exists
a solution (Y 1,M1, R1), (Y 2,M2, R2) to (1.8) such that Y 1, Y 2 are of class (D). Next we
show that the triple

(Y,M,R) := (Y 1,M1, R1)− (Y 2,M2, R2)

is a solution to (1.1). We also give a necessary and sufficient condition under which
E|R|T and E

∫ T
0
|f(r, Yr)| dr are finite. Finally, using our existence and stability result,

we show that there exists a solution (Y,M,R) to (1.1) such that Y is of class (D) even if
f, V do not satisfy (H1). It is worth mentioning here that in general, without (H1) there
is no solution to equation of type (1.1) with no reflection. In other words, we show that
for the existence of solutions to reflected BSDEs weaker assumptions on f are needed
than for the existence of solutions to related BSDEs.

2 Notation and standing assumptions

Let a ≥ 0. We say that a function y : [0, a]→ R is regulated if the limit yt+ = limu↓t yu
exists for every t ∈ [0, a), and the limit ys− = limu↑s yu exists for every s ∈ (0, a]. For any
regulated function y on [0, a] we set ∆+yt = yt+ − yt if 0 ≤ t < a, and ∆ys = ys − ys−
if 0 < s ≤ a. It is known that each regulated function is bounded and has at most
countably many discontinuities (see, e.g., [10, Chapter 2, Corollary 2.2]). For x ∈ R, we
set sgn(x) = 1x 6=0 x/|x|.

Let (Ω,F , P ) be a probability space, F = (Ft)t≥0 be a filtration satisfying the usual
conditions and let T be an F-stopping time. For a ≥ 0, we set Ta = T ∧ a. For fixed
stopping times σ, τ we denote by Tσ,τ the set of all F- stopping times taking values in
[σ, τ ]. We also set Tτ = Tτ,T , T τ = T0,τ , and T = T T . For given β ∈ T , we let L1(Ω,Fβ , P )

denote a space of Fβ measurable random variables ξ satisfying E|ξ| <∞. An increasing
sequence {τk} ⊂ T is called a chain (on [0, T ]) if

∀ω ∈ Ω ∃n ∈ N ∀k ≥ n τk(ω) = T.

We say that an F-progressively measurable process X is of class (D) (on [0, T ]) if the
family {Xτ , τ ∈ T , τ < ∞} is uniformly integrable. We equip the space of processes
of class (D) with the norm ‖X‖1 = supτ∈T , τ<∞E|Xτ |. In the sequel, in case X∞ is not
defined, we set X∞ = 0.

We denote byM (resp. Mloc) the set of all F- martingales (resp. local martingales)
such that M0 = 0, and by V (resp. V+) the space of all F- progressively measurable
processes of finite variation (resp. increasing) such that V0 = 0. V1 (resp. V1,+) is the
set of processes V ∈ V (resp. V ∈ V+) such that E|V |T <∞, where |V |T stands for the
total variation of V on [0, T ]. Vp (resp. V+

p ) is the space of all predictable V ∈ V (resp.
V ∈ V+). For V ∈ V, by V ∗ we denote the càdlàg part of the process V , and by V d its
purely jumping part consisting of right jumps, i.e.

V dt =
∑
s<t

∆+Vs, V ∗t = Vt − V dt , t ∈ [0, T ].

In the whole paper all relations between random variables are understood to hold
P -a.s. For processes X and Y , we write X ≤ Y if Xt ≤ Yt, t ∈ [0, Ta], a ≥ 0. For

a process X, we set
−→
X s = lim supr↑sXr,

←−
X s = lim supr↓sXr, X−→s = lim infr↑sXr and

X←−s = lim infr↓sXr, s ∈ [0, Ta], a ≥ 0. By [8, Theorem 90, page 143], if X is an optional

process of class (D), then
←−
X, X←− are progressively measurable, and

−→
X, X−→ are predictable

processes.
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Throughout the paper, L and U are F-adapted optional processes of class (D), and ξ
is FT -measurable random variable. We always assume (except Section 5) that (1.4) is
satisfied which implies that E|ξ| <∞. The generator (coefficient, driver) is a map

Ω× [0, T ]×R 3 (ω, t, y) 7→ f(ω, t, y) ∈ R,

which is F-progressively measurable for fixed y. For an F-adapted regulated process Y ,
we set

fY (t) = f(t, Yt), t ∈ [0, T ].

As for V , we always assume that V ∈ V.

3 BSDEs and nonlinear expectation

Definition 3.1. We say that a pair (Y,M) of F-adapted processes is a solution of the
backward stochastic differential equation on the interval [0, T ] with right-hand side
f + dV and terminal value ξ (BSDET (ξ, f + dV ) for short) if

(a) Y is regulated and M ∈Mloc,

(b)
∫ Ta

0
|f(r, Yr)| dr < +∞ for any a ≥ 0,

(c) for every a ≥ 0,

Yt = YTa +

∫ Ta

t

f(r, Yr) dr +

∫ Ta

t

dVr −
∫ Ta

t

dMr, t ∈ [0, Ta],

(d) lima→∞ YTa = ξ a.s.

Remark 3.2. Existence, uniqueness and some other properties of solutions to equation
BSDET (ξ, f + dV ) we will use later on follow from [24] (see also [27]). In these papers
it is assumed that V is càdlàg but the results of [24, 27] may be applied to the case
when V is regulated by a simple change of variables. Indeed, if (Ȳ , M̄) is a solution to
BSDET (ξ, f∗ + dV ∗) with

f∗(t, y) = f(t, y + V dt ),

then (Y, M̄) with Y = Ȳ + V d is a solution to BSDET (ξ, f + dV ).

We now introduce the notion of nonlinear expectation in our general framework.

Definition 3.3 (Nonlinear expectation). Assume (H1)–(H4). Let α, β ∈ T , α ≤ β. We say
that an operator

Efα,β : L1(Ω,Fβ , P )→ L1(Ω,Fα, P )

is a nonlinear f -expectation if for any ξ ∈ L1(Ω,Fβ , P ), we have Efα,β(ξ) = Yα, where

(Y,M) is the unique solution of BSDEβ(ξ, f).

We say that a càdlàg process X of class (D) is an Ef -supermartingale (resp. Ef -
submartingale) on [α, β] if Efσ,τ (Xτ ) ≤ Xσ (resp. Efσ,τ (Xτ ) ≥ Xσ) for all τ, σ ∈ T such that
α ≤ σ ≤ τ ≤ β. X is called an Ef -martingale on [α, β] if it is both Ef -supermartingale
and Ef -submartingale on [α, β].

For a given finite variation process V and stopping times α, β (α ≤ β) we denote by
|V |α,β the total variation of the process V on [α, β]. By BSDEα,β(ξ, f + dV ) we denote the
problem (a)–(d) of Definition 3.1 but with 0, T replaced by α, β, respectively.

In Proposition 3.4 we gather some properties of nonlinear f -expectation which will be
needed later on. These properties are direct consequences of the existence, uniqueness,
stability, and comparison theorems for BSDEs proved in [24]. Properties (i)-(iii) below
were proved in [27, Proposition 5.6].
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Proposition 3.4 (Basic properties of nonlinear expectation). Assume that f satisfies
(H1)–(H4) and α, β ∈ T , α ≤ β.

(i) Let ξ ∈ L1(Ω,Fβ , P ) and V be an F-adapted finite variation process such that Vα = 0

and E|V |α,β <∞. Then there exists a unique solution (X,N) of BSDEα,β(ξ, f +dV ).
Moreover, if V (resp. −V ) is an increasing process, thenX is an Ef -supermartingale
(resp. Ef -submartingale) on [α, β].

(ii) If ξ1, ξ2 ∈ L1(Ω,Fβ , P ) and ξ1 ≤ ξ2, then Efα,β(ξ1) ≤ Efα,β(ξ2).

(iii) If f1, f2 satisfy (H1)–(H4), α, β1, β2 ∈ T , α ≤ β1 ≤ β2, ξ1 ∈ L1(Ω,Fβ1
, P ), ξ2 ∈

L1(Ω,Fβ2
, P ), then

|Ef1α,β1
(ξ1)− Ef2α,β2

(ξ2)| ≤ E
(
|ξ1 − ξ2|+

∫ β1

α

|f1(r, Y 1
r )− f2(r, Y 1

r )| dr

+

∫ β2

β1

|f2(r, Y 2
r )| dr|Fα

)
,

where Y 1
t = Ef

1

t∧β1,β1
(ξ1), Y 2

t = Ef
2

t∧β2,β2
(ξ2),

(iv) Let ξ ∈ L1(Ω,Fβ , P ). For every A ∈ Fα,

1AEfα,β(ξ) = EfAα,β(1Aξ),

where fA(t, y) = f(t, y)1A1t≥α,

(v) Let ξ ∈ L1(Ω,Fβ , P ). For every γ ∈ T such that γ ≥ β,

Efα,β(ξ) = Ef
β

α,γ(ξ),

where fβ(t, y) = f(t, y)1t≤β .

4 Definition of a solution and a comparison result

Definition 4.1 (BSDEs with one reflecting barrier). We say that a triple (Y,M,K) of
F-adapted processes is a solution of a reflected backward stochastic differential equation
on the interval [0, T ] with right-hand side f + dV , terminal value ξ and lower barrier L
(RBSDET (ξ, f + dV, L) for short) if

(a) Y is regulated and M ∈Mloc,

(b) K ∈ V+
p , Lt ≤ Yt, t ∈ [0, Ta], a ≥ 0, and∫ Ta

0

(Yr− −
−→
L r) dK

∗
r +

∑
0≤r<Ta

(Yr − Lr)∆+Kr = 0, a ≥ 0,

(c)
∫ Ta

0
|f(r, Yr)| dr < +∞ for every a ≥ 0,

(d) for any a ≥ 0,

Yt = YTa +

∫ Ta

t

f(r, Yr) dr +

∫ Ta

t

dVr +

∫ Ta

t

dKr −
∫ Ta

t

dMr, t ∈ [0, Ta],

(e) lima→∞ YTa = ξ a.s.
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Definition 4.2 (BSDEs with two reflecting barriers). We say that a triple (Y,M,R) of
F-adapted processes is a solution of a reflected backward stochastic differential equation
on the interval [0, T ] with right-hand side f + dV , terminal value ξ, lower barrier L and
upper barrier U (RBSDET (ξ, f + dV, L, U) for short) if

(a) Y is regulated and M ∈Mloc,

(b) R ∈ Vp, Lt ≤ Yt ≤ Ut, t ∈ [0, Ta], a ≥ 0, and∫ Ta

0

(Yr− −
−→
L r) dR

∗,+
r +

∑
0≤r<Ta

(Yr − Lr)∆+R+
r

+

∫ Ta

0

(U−→r − Yr−) dR∗,−r +
∑

0≤r<Ta

(Ur − Yr)∆+R−r = 0, a ≥ 0,

where R = R+ −R− is the Jordan decomposition of R,

(c)
∫ Ta

0
|f(r, Yr)| dr < +∞ for every a ≥ 0,

(d) for any a ≥ 0,

Yt = YTa +

∫ Ta

t

f(r, Yr) dr +

∫ Ta

t

dVr +

∫ Ta

t

dRr −
∫ Ta

t

dMr, t ∈ [0, Ta],

(e) lima→∞ YTa = ξ a.s.

Proposition 4.3 (Comparison result). Let (Y i,M i, Ri) be a solution of RBSDET (ξi, f i +

dV i, Li, U i), i = 1, 2. Assume that f1 satisfies (H2) and ξ1 ≤ ξ2, f1(·, Y 2) ≤ f2(·, Y 2)

dt⊗ dP -a.s., dV 1 ≤ dV 2, L1 ≤ L2, U1 ≤ U2. If (Y 1 − Y 2)+ is of class (D), then Y 1 ≤ Y 2.

Proof. By (H2) and the fact that f1(·, Y 2) ≤ f2(·, Y 2) dt⊗ dP -a.s. we have

1{Y 1
r >Y

2
r }(f

1(r, Y 1
r )− f2(r, Y 2

r )) ≤ 1{Y 1
r >Y

2
r }(f

1(r, Y 1
r )− f1(r, Y 2

r )) ≤ 0. (4.1)

By the minimality condition for R1, R2 and the assumption that L1 ≤ L2 and U1 ≤ U2,

1{Y 1
r−>Y

2
r−}d(R1

r −R2
r)
∗ ≤ 1{Y 1

r−>Y
2
r−} dR

1,∗,+ + 1{Y 1
r−>Y

2
r−} dR

2,−,∗ = 0 (4.2)

and
1{Y 1

r >Y
2
r }∆

+(R1
r −R2

r) ≤ 1{Y 1
r >Y

2
r }∆

+R1,+
r + 1{Y 1

r >Y
2
r }∆

+R2,−
r = 0. (4.3)

By [25, Corollary A.5], for all a ≥ 0 and stopping times σ, τ ∈ T Ta such that σ ≤ τ we
have

(Y 1
σ − Y 2

σ )+ ≤ (Y 1
τ − Y 2

τ )+ +

∫ τ

σ

1{Y 1
r >Y

2
r }(f

1(r, Y 1
r )− f2(r, Y 2

r )) dr

+

∫ τ

σ

1{Y 1
r−>Y

2
r−} d(V 1

r − V 2
r )∗ +

∑
σ≤r<τ

∫ τ

σ

1{Y 1
r >Y

2
r }∆

+(V 1
r − V 2

r )

+

∫ τ

σ

1{Y 1
r−>Y

2
r−} d(R1

r −R2
r)
∗ +

∑
σ≤r<τ

∫ τ

σ

1{Y 1
r >Y

2
r }∆

+(R1
r −R2

r)

−
∫ τ

σ

1{Y 1
r−>Y

2
r−} d(M1

r −M2
r ).

By the above inequality, (4.1)–(4.3) and the assumption that dV1 ≤ dV2, we have

(Y 1
σ − Y 2

σ )+ ≤ (Y 1
τ − Y 2

τ )+ −
∫ τ

σ

1{Y 1
r−>Y

2
r−} d(M1

r −M2
r ) (4.4)
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Reflected BSDEs with two optional barriers

Let {τk} be a fundamental sequence, on [0, Ta], for the local martingale M1 −M2. By
(4.4) with τ replaced by τk ≥ σ, we get

(Y 1
σ − Y 2

σ )+ ≤ (Y 1
τk
− Y 2

τk
)+ −

∫ τk

σ

1{Y 1
r−>Y

2
r−} d(M1

r −M2
r ), k ∈ N.

Taking the expectation and then letting k →∞ we obtain E(Y 1
σ − Y 2

σ )+ ≤ E(Y 1
Ta
− Y 2

Ta
)+

for a ≥ 0. Letting a→∞ yields E(Y 1
σ − Y 2

σ )+ = E(ξ1 − ξ2)+ = 0. In both limits we used
the fact that (Y 1 − Y 2)+ is of class (D). Therefore, by the Section Theorem (see, e.g., [8,
Chapter IV, Theorem 86]), (Y 1

t − Y 2
t )+ = 0, t ∈ [0, T ]. Hence Y 1 ≤ Y 2.

5 Existence of a solution for BSDEs with one reflecting barrier

In this section, we focus on the existence problem for nonlinear RBSDEs with one
reflecting barrier. Therefore, exceptionally, in this chapter, we assume that, instead of
(1.4), it holds

lim sup
a→∞

LT∧a ≤ ξ. (5.1)

First, we prove that the process Y defined by means of the Snell envelope is the
first component of the solution to linear RBSDE. The proof is relatively standard and
analogous to that in [15] with one exception that some extra effort is needed to prove
behavior of Y at T (we allow infinity). After a priori estimates (Section 5.2) we proceed
to the proof of an existence result for nonlinear RBSDEs. We divide the proof into three
steps which we formulate as three separate results. In Proposition 5.3 we assume that f
is Lipschitz continuous in y with Lipschitz constant depending on time. In Proposition
5.4, we assume that f is merely bounded from below. Finally, in Theorem 5.5, which
is the main result of this section, we consider the problem in full generality, i.e. under
assumptions (H1)–(H4). We close the section by showing that the first component of the
solution to nonlinear RBSDE is the value process in nonlinear optimal stopping problem.

5.1 Existence results for linear equations

Recall (see e.g. [9, page 417]) that if we set for any α ∈ T ,

Y (α) = ess sup
τ≥α

E(Lτ |Fα),

then there exists a positive supermartingale Y of class (D) on [0, T ] such that for every
α ∈ T , Y (α) = Yα. Moreover, for any α, σ ∈ T such that α ≤ σ,

Yα = ess sup
τ∈Tα,σ

E(Lτ1τ<σ + Yσ1τ=σ|Fα). (5.2)

Proposition 5.1 (Linear equations and Snell envelope representation). Assume that
ξ ∈ L1(Ω,FT , P ) and V ∈ V1. Then there exists a unique solution (Y,M,K) of the
problem RBSDET (ξ, dV, L), such that Y is of class (D). Moreover,

Yα = ess sup
τ∈Tα

E
(∫ τ

α

dVr + Lτ1{τ<T} + ξ1{τ=T}|Fα
)
, α ∈ T . (5.3)

Proof. Observe that (Y,M,K) is a solution to RBSDET (ξ, dV, L) if and only if (Y +V,M,K)

is a solution to RBSDET (ξ + VT , 0, L+ V ). Therefore, without loss of generality, we may
assume that V ≡ 0. Defining Y by the right-hand side of (5.3), and using (5.2) and the
Mertens decomposition theorem (see [32]), we get that there exist K ∈ V+

p ,M ∈ Mloc

such that for any a > 0,

Yt = YTa +

∫ Ta

t

dKr −
∫ Ta

t

dMr, t ∈ [0, Ta].
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Reflected BSDEs with two optional barriers

Clearly, conditions (a) and (c) of Definition 4.1 are satisfied. Now, we shall prove that
conditions (b) and (d) of Definition 4.1 are satisfied. Once this is done the existence part
of the proof is complete. Applying [15, Lemma 3.2, Lemma 3.3] on each interval [0, Ta]

we get that K satisfies (b). By [24, Lemma 3.8], we have

lim
a→∞

YTa ≤ ξ. (5.4)

On the other hand, taking τ = T in (5.3), we have Yα ≥ E(ξ|Fα). Hence lima→∞ YTa ≥ ξ.
From this and (5.4), we deduce that lima→∞ YTa = ξ. Uniqueness follows from Proposition
4.3.

5.2 A priori estimates for solutions to one barrier RBSDEs

We shall need the following additional assumption.

(H5) There exists a process X such that L ≤ X, E
∫ T

0
f−(r,Xr) dr < ∞ and X is a

difference of two supermartingales of class (D) on [0, T ].

Proposition 5.2 (A priori estimate). Assume that (H1),(H2),(H5) are satisfied and E|ξ| <
∞. Then there exists c > 0 such that for any solution (Y,M,K) of RBSDET (ξ, f + dV, L)

such that Y is of class (D),

‖Y ‖1 + E

∫ T

0

|f(r, Yr)| dr + EKT ≤ c
(
‖X‖1 + E

∫ T

0

|f(r, 0)| dr + E

∫ T

0

d|V |r

+ E

∫ T

0

f−(r,Xr) dr + E

∫ T

0

d|C|r
)
,

where Xt = X0 + Ct + Ht, t ≥ 0, is the Doob-Meyer decomposition of the process X
appearing in (H5). Moreover, M is a uniformly integrable martingale and

Mt = E
(∫ T

0

f(r, Yr) dr +

∫ T

0

dVr +

∫ T

0

dKr|Ft
)
− Y0, t ∈ [0, T ].

Proof. Let X be as in condition (H5), and H ∈Mloc, C ∈ V1
p be as in the assertion of the

proposition. Observe that

Xt = XTa +

∫ Ta

t

f(r,Xr) dr +

∫ Ta

t

dVr +

∫ Ta

t

dC̄r −
∫ Ta

t

dHr, t ∈ [0, Ta],

where C̄t = −
∫ t

0
f(r,Xr) dr−Vt+Ct. Thus, (X,H) is a solution to BSDET (XT , f+dV +dC̄)

(note that XT is well defined by (H5)). By [24, Proposition 2.7] there exists a solution
(X̄, H̄) of BSDET (ξ ∨XT , f + dV + + dC̄+) such that X̄ is of class (D). By Proposition 4.3,
X̄ ≥ X, so X̄ ≥ L. Observe that the triple (X̄, H̄, 0) is a solution of RBSDET (ξ, f + dV + +

dC̄+, X̄). Therefore, by Proposition 4.3, X̄ ≥ Y . By [22, Proposition 4.3],

‖Y·∧Ta‖1 + EKTa ≤ E
(
|YTa |+ 2‖X‖1 +

∫ T

0

|f(r, 0)| dr +

∫ T

0

f−(r, X̄r) dr +

∫ T

0

d|V |r
)
.

Letting a→∞ and using the fact that Y is of class (D) on [0, T ], we get

‖Y ‖1 + EKT ≤ E
(
|ξ|+ 2‖X‖1 +

∫ T

0

|f(r, 0)| dr +

∫ T

0

f−(r, X̄r) dr +

∫ T

0

d|V |r
)
.

From this inequality, [24, Theorem 2.9] applied to (Y,M) (as a solution to BSDET (ξ, f +

dK + dV )) and (X̄, H̄), we infer the desired inequality. The second part of the assertion
now follows easily from equation (d) of Definition 4.1.
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Reflected BSDEs with two optional barriers

5.3 Existence results for one barrier RBSDEs

Proposition 5.3 (Existence: Lipschitz continuous driver case). Assume that (H1), (H2),
(H4) are satisfied, E|ξ| <∞, and there is a Borel measurable function λ : [0,∞)→ R+

such that
∫∞

0
λ(r) dr <∞ and

|f(t, y1)− f(t, y2)| ≤ λ(t)|y1 − y2|, t ∈ [0, T ], y1, y2 ∈ R. (5.5)

Then there exists a unique solution (Y,M,K) of RBSDET (ξ, f + dV, L) such that Y is of
class (D).

Proof. Let (Y 0,M0) be a solution of BSDET (ξ,f + dV ) such that Y 0 is of class (D). The
existence of the solution follows from [24, Proposition 2.7]. Observe that by (5.5) and
(H1), for any process X of class (D), E

∫ T
0
|f(r,Xr)| dr < ∞. Therefore, by Proposition

5.1, for each n ≥ 1, there exists a solution (Y n,Mn,Kn) of RBSDET (ξ, fY n−1 + dV, L)

such that Y n is of class (D). Moreover,

Y nα = ess sup
τ∈Tα

E
(∫ τ

α

f(r, Y n−1
r ) dr +

∫ τ

α

dVr + Lτ1{τ<T} + ξ1{τ=T}|Fα
)
, α ∈ T . (5.6)

By Proposition 4.3,

Y 0 ≤ Y 2 ≤ Y 4 ≤ Y 6 ≤ · · · ≤ Y 5 ≤ Y 3 ≤ Y 1. (5.7)

Set Ȳ = limn→∞ Y 2n, Y = limn→∞ Y 2n+1. Clearly Ȳ , Y are of class (D). By (5.5)–(5.7)
and the Lebesgue dominated convergence theorem

Ȳα = ess sup
τ∈Tα

E
(∫ τ

α

f(r, Y r) dr +

∫ τ

α

dVr + Lτ1{τ<T} + ξ1{τ=T}|Fα
)
, α ∈ T ,

and

Y α = ess sup
τ∈Tα

E
(∫ τ

α

f(r, Ȳr) dr +

∫ τ

α

dVr + Lτ1{τ<T} + ξ1{τ=T}|Fα
)
, α ∈ T .

By Propositions 5.1, 5.2 there exist K̄,K ∈ V+,1
p and M̄,M ∈ M such that (Ȳ , M̄ , K̄) is

a solution of RBSDET (ξ, f̄ + dV, L), and (Y ,M,K) is a solution of RBSDET (ξ, f + dV, L).
The proof will be complete once we prove that Ȳt = Y t for a.e. t ≥ 0. By [25, Corollary
A.5] and (5.5), for any stopping time σ ∈ T ,

E|Ȳσ − Y σ| ≤ E
∫ T

σ

λ(r)|Ȳr − Y r| dr + E

∫ T

σ

sgn(Ȳr− − Y r−) d(K̄r −Kr)
∗

+ E
∑

σ≤r<T

sgn(Ȳr − Y r)∆+(K̄r −Kr). (5.8)

By the minimality condition for K̄,K and the fact that L ≤ Ȳ , Y , we have

sgn(Ȳr > Y r) d(K̄r −Kr)
∗ ≤ 1{Ȳr>Lr} dK̄

∗
r + 1{Y r>Lr} dK

∗
r = 0, (5.9)

and

sgn(Ȳr > Y r)∆
+(K̄r −Kr) ≤ 1{Ȳr>Lr}∆

+K̄r + 1{Y r>Lr}∆
+Kr = 0. (5.10)

By (5.8)–(5.10)

E|Ȳσ − Y σ| ≤
∫ ∞
σ

λ(r)E|Ȳr − Y r| dr, σ ∈ T .

Applying now Gronwall’s lemma yields the result.
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Proposition 5.4 (Existence: bounded from below driver case). Assume that (H1)–(H4)
are satisfied, E|ξ| <∞, and there exists a progressively measurable process g such that

E
∫ T

0
|g(r)| dr <∞ and f(t, y) ≥ g(t), t ∈ [0, T ], y ∈ R. Then there exists a unique solution

(Y,M,K) of RBSDET (ξ, f + dV, L) such that Y is of class (D). Moreover, K ∈ V1,+
p and

M ∈M.

Proof. For each n ≥ 1, we let

fn(r, y) = cn(r) inf
x∈R
{f(r, x) + n|y − x|},

where cn : [0,∞)→ [0, 1] is a Borel measurable function such that
∫∞

0
cn(r) dr <∞, and

cn(r)↗ 1 as n→∞ for every r ≥ 0. It is easy to check that for each n ≥ 1 the hypotheses
(H1), (H2) and (H4) are satisfied for data (ξ, fn, V ). Moreover, for any t ∈ [0, T ] and
y1, y2 ∈ R,

|fn(t, y1)− fn(t, y2)| ≤ cn(t)n |y1 − y2|.

Therefore, by Proposition 5.3, there exists a solution (Y n,Mn,Kn) of RBSDET (ξ, fn +

dV, L) such that Y n is of class (D). Observe that for each n ≥ 1, fn ≤ fn+1. Thus, by
Proposition 4.3, we have Y n ≤ Y n+1, n ≥ 1. Set Y = supn≥1 Y

n. We shall prove that
Y is of class (D) and lima→∞ YTa = ξ. By Propositions 5.1,5.2 and the assumptions
on f there exists a solution (X,N,A) of RBSDET (ξ, 0, L) such that X is of class (D),

E
∫ T

0
|f(r,Xr)| dr <∞, and EAT <∞. Observe that (X,N) is a solution of BSDET (ξ, f +

dV + dĀ), where Āt = −
∫ t

0
f(r,Xr) dr − Vt +At. By [24, Proposition 2.7] there exists a

solution (X̄, H̄) of BSDET (ξ,f + dV + + dĀ+) such that X̄ is of class (D). By Proposition
4.3, X̄ ≥ X, so X̄ ≥ L. Clearly, the triple (X̄, H̄, 0) also is a solution of RBSDET (ξ,f +

dV + + dĀ+,X̄). Therefore, by Proposition 4.3, X̄ ≥ Y n, n ≥ 1. Summarizing, we have

Y 1 ≤ Y n ≤ X̄, n ≥ 1. (5.11)

Thus, Y is of class (D) and lima→∞ YTa = ξ. By (H3), fn(r, Y nr ) → f(r, Yr) as n → ∞.
Since fn ≤ fn+1 we infer from (H2), (5.11) and the assumption on f that

g(r) ≤ fn(r, Y nr ) ≤ f(r, Y 1
r ). (5.12)

Set

τk = inf{t ≥ 0;

∫ t

0

|f(r, Y 1
r )| dr ≥ k} ∧ T.

By (H4), {τk} is a chain on [0, T ]. Observe that the triple (Y n,Mn,Kn) is a solution of
RBSDEτk(Y nτk ,fn + dV ,L). Hence, by Proposition 5.1, for every σ ∈ Tτk ,

Y nσ = ess sup
τ∈Tσ,τk

E
(∫ τ

σ

fn(r, Y nr ) dr +

∫ τ

σ

dVr + Lτ1{τ<τk} + Y nτk1{τ=τk}|Fσ
)
. (5.13)

By the definition of τk and (5.12),

E

∫ τk

0

|fn(r, Y nr )− f(r, Yr)| dr → 0 (5.14)

as n→∞. By (5.11), (5.13), (5.14) and [25, Lemma 3.19],

Yσ = ess sup
τ∈Tσ,τk

E
(∫ τ

σ

f(r, Yr) dr +

∫ τ

σ

dVr + Lτ1{τ<τk} + Yτk1{τ=τk}|Fσ
)

for σ ∈ T τk . By Proposition 5.1 there existKk ∈ V+
p andMk ∈Mloc such that (Y,Mk,Kk)

is a solution of RBSDEτk(Yτk ,f + dV ,L). By uniqueness, for any a ≥ 0, Kk
t = Kk+1

t and

EJP 26 (2021), paper 91.
Page 12/24

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP655
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Reflected BSDEs with two optional barriers

Mk
t = Mk+1

t , t ∈ [0, τk ∧ a]. Therefore, we may define processes K and M on [0, T ] \ {∞}
by putting Kt = Kk

t , Mt = Mk
t on [0, τk ∧ a], a ≥ 0. Since {τk} is a chain on [0, T ],

we get that (Y,M,K) is a solution of RBSDET (ξ, f + dV, L). Uniqueness follows from
Proposition 4.3. The second assertion of the proposition follows from Proposition 5.2
since f− ≤ |g|.

Theorem 5.5 (The existence result for one barrier RBSDE). Assume that (H1)–(H4) are
satisfied and E|ξ| <∞. Then there exists a solution (Y,M,K) of RBSDET (ξ, f + dV, L)

such that Y is of class (D).

Proof. Consider a strictly positive Borel measurable function g : [0,∞) → R such that∫∞
0
g(r) dr <∞. For each n ≥ 1, we let

fn(r, y) = f(r, y) ∨ (−n · g(r)), y ∈ R.

By Theorem 5.4 for each n ≥ 1 there exists a solution (Y n,Mn,Kn) of RBSDET (ξ, fn +

dV, L) such that Y n is of class (D). Since fn ≥ fn+1, we have by Proposition 4.3, Y n ≥
Y n+1. Set Y = infn≥1 Y

n. By [24, Proposition 2.7] there exists a solution (X,H) to
BSDET (ξ,f + dV ) such that X is of class (D). By Proposition 4.3,

X ≤ Y n ≤ Y 1, n ≥ 1, (5.15)

thus Y is of class (D) and lima→∞ YTa = ξ. By (H3), fn(r, Y nr ) → f(r, Yr) as n → ∞.
Moreover, since fn ≥ fn+1, it follows from (H2) and (5.15) that

f(r, Y 1
r ) ≤ fn(r, Y nr ) ≤ f1(r,Xr). (5.16)

Set

τk = inf{t ≥ 0 :

∫ t

0

|f(r, Y 1
r )|+ |f1(r,Xr)| dr ≥ k} ∧ T.

Then, by (H4), {τk} is a chain on [0, T ]. Observe that (Y n,Mn,Kn) is a solution to
RBSDEτk(Y nτk ,fn + dV ,L). Therefore, by Proposition 5.1, for every σ ∈ T τk ,

Y nσ = ess sup
τ∈Tσ,τk

E
(∫ τ

σ

f(r, Y nr ) dr +

∫ τ

σ

dVr + Lτ1{τ<τk} + Y nτk1{τ=τk}|Fσ
)
. (5.17)

By the definition of τk and (5.16),

E

∫ τk

0

|fn(r, Y nr )− f(r, Yr)| dr → 0. (5.18)

Now, repeating step by step the reasoning following (5.14), we get the desired result.

Remark 5.6. Instead of condition (H1) on f one can consider the following seemingly
more general condition: there exists a process S which is a difference of two supermartin-
gales of class (D) such that E

∫ T
0
|f(r, Sr)| dr < ∞. However, this hypothesis, in fact,

would not affect the generality of the results of the paper. Indeed, let S = S0 +C +N by
the Doob-Meyer decomposition of S (C ∈ V+,1

p , N ∈M). Observe that (Y,M,K) is a solu-

tion of RBSDET (ξ, f+dV, L) if and only if (Ỹ , M̃ ,K) is a solution to RBSDET (ξ̃, f̃+dṼ , L̃),
where Ỹ = Y −S, M̃ = M−N , ξ̃ = ξ−ST , f̃(r, y) = f(r, y+Sr), Ṽ = V +C and L̃ = L−S.
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5.4 Optimal stopping problem with nonlinear expectation

Repeating step by step the proofs of the results of Section 8 in [15] and [15, Theorem
6.1], with using Proposition 3.4 and Proposition 4.3, we get the following result.

Lemma 5.7. Assume that (H1)–(H4) are satisfied and E|ξ| <∞. For α ∈ T , let

Y (α) := ess sup
τ∈T

Efα,τ (Lξτ ),

where Lξt = Lt1t<T + ξ1t=T . Then

(i) There exists an optional process Y which aggregates the family (Y (α))α∈T , that is
Yα = Y (α) for every α ∈ T .

(ii) Y is the smallest Ef -supermartingale majorizing Lξ,

(iii) If L is u.s.c. from the right, then Y coincides with the first component of the
solution to RBSDET (ξ, f, L).

Theorem 5.8 (Nonlinear Snell envelope representation). Assume that (H1)–(H4) are
satisfied and E|ξ| <∞. Let (Y,M,K) be a solution of RBSDET (ξ, f + dV, L) such that Y
is of class (D). Then for every α ∈ T ,

Yα = ess sup
τ∈Tα

Efα,τ
(∫ τ

α

dVr + Lτ1τ<T + ξ1τ=T

)
.

Proof. Without loss of generality we may assume that V ≡ 0 (cf. the beginning of the
proof of Proposition 5.1). By Proposition 3.4(i), Y is an Ef -supermartingale. Of course,
Y ≥ Lξ. Let Y ′ be an Ef -supermartingale such that Y ′ ≥ Lξ and (Ȳ , M̄ , K̄) be a solution
to RBSDET (Y ′T , f, Y

′). Then, by Proposition 4.3, Ȳ ≥ Y . On the other hand, since Y ′

is an Ef -supermartingale, Y ′α = ess supτ≥α Efα,τ (Y ′τ ). Therefore, by Lemma 5.7(iii) and
Proposition 4.3, Ȳ = Y ′ (since Y ′ is u.s.c. from the right as an Ef -supermartingale).
Thus Y ′ ≤ Y , which implies that Y is the smallest Ef -supermartingale majorizing Lξ.
This when combined with Lemma 5.7(ii) gives the desired result.

6 Existence results for RBSDEs with two barriers and Dynkin
games

In this section, we shall prove existence results for reflected BSDEs with two optional
barriers that satisfy the following Mokobodzki’s condition:

(H6) There exists a special semimartingale X such that L ≤ X ≤ U .

First, we focus on the existence result which asserts additionally (see Theorem 6.1)
that variations of

∫ ·
0
f(r, Yr) dr and R on [0, T ] are integrable. For this we shall need a

stronger version of (H6) of the following form:

(H6*) There exists a process X being the difference of two supermartingales of class
(D) on [0, T ] such that L ≤ X ≤ U and E

∫ T
0
|f(r,Xr)| dr <∞.

We call (H6*) the strong Mokobodzki’s condition. Observe that (H6*) is also a
necessary condition for the mentioned integrability of

∫ ·
0
f(r, Yr) dr and R. To give

an existence result under general condition (H6), we first prove stability results for
RBSDEs (see Subsection 6.2), i.e. results concerning convergence of Y n to Y when
(ξn, fn, L

n, Un) converges to (ξ, f, L, U). In this regard, we prove Corollary 6.5 and
Proposition 6.7. Both results have different limitations. To apply Corollary 6.5, we
need integrability of

∫ T
0
|fn(r, Yr)| dr and

∫ T
0
|f(r, Yr)| dr (see Remark 6.6), while applying
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Proposition 6.7 requires monotone convergence of data. Finally, in Subsection 6.3, we
prove the main result (Theorem 6.8) of this section, i.e. the existence result for RBSDEs
under (H1)–(H4), (H6). We close the paper with an observation that the proof of Theorem
6.8 applies even if we dispense with integrability assumptions on f and V included in
(H1). Therefore, we get the existence result (Theorem 6.9) under (H2)–(H4), (H6). This
may seem strange, since (H1) is necessary for the existence of solutions to BSDEs with no
reflection. However, a moment’s consideration on the definition of a solution to reflected
BSDE makes it clear that additional condition on Y , as compared to non-reflected BSDEs,
of being between the barriers prevents Y from blowing up, and hence allows one to
consider weaker assumptions.

6.1 Existence for RBSDEs under strong Mokobodzki’s condition

Theorem 6.1 (Existence of integrable solutions of two barriers RBSDEs). Assume that
(H1)–(H4), (H6*) are satisfied. Then there exists a unique solution (Y,M,R) of the
problem RBSDET (ξ, f + dV, L, U) such that Y is of class (D). Moreover, R ∈ V1

p , M is a
martingale of class (D) on [0, T ], and

E

∫ T

0

|f(r, Yr)| dr <∞. (6.1)

Proof. Let (Y 1,0,M1,0) be a solution of BSDET (ξ,f + dV ) such that Y 1,0 is of class (D),
and let (Y 2,0, Z2,0) = (0, 0). Next, for each n ≥ 1, let (Y 1,n,M1,n,K1,n) be a solution of
RBSDET (ξ,fn + dV ,L+ Y 2,n−1) with

fn(r, y) = f(r, y − Y 2,n−1
r ),

and let (Y 2,n,M2,n,K2,n) be a solution of RBSDET (0,0,Y 1,n−1 − U ) such that Y 1,n, Y 2,n

are of class (D). In both cases the existence of required solutions follows from Theorem
5.5 (see also Remark 5.6). We shall prove by induction that the sequences (Y 1,n)n≥0,
(Y 2,n)n≥0 are non-decreasing. Clearly Y 1,1 ≥ Y 1,0 and Y 2,1 ≥ Y 2,0. Suppose that for fixed
n ∈ N, Y 1,n ≥ Y 1,n−1 and Y 2,n ≥ Y 2,n−1. Using this and (H2) we infer that fn+1 ≥ fn and
L+ Y 2,n ≥ L+ Y 2,n−1. Thus, by Proposition 4.3, Y 1,n+1 ≥ Y 1,n. By a similar argument,
Y 2,n+1 ≥ Y 2,n. Consequently, (Y 1,n)n≥0 and (Y 2,n)n≥0 are non-decreasing. Next we
show that Y 1 := supn≥1 Y

1,n and Y 2 := supn≥1 Y
2,n are of class (D). Let X be as in (H6*).

Then there exist processes H ∈M and C ∈ V1
p such that for every a ≥ 0,

Xt = XTa +

∫ Ta

t

dCr −
∫ Ta

t

dHr, t ∈ [0, Ta].

This equation may be rewritten in the form

Xt = XTa +

∫ Ta

t

f(r,Xr) dr +

∫ Ta

t

dVr +

∫ Ta

t

dC̄r −
∫ Ta

t

dHr,

where C̄t = −
∫ t

0
f(r,Xr) dr − Vt + Ct. Let (X2, H2) be a solution of BSDET (0, dC̄−) and

(X1, H1) be a solution of BSDET (XT ∨ ξ, f̃ + dV + dC̄+) such that X1, X2 are of class
(D) (cf. Theorem 5.5), where f̃(r, x) = f(r, x − X2

r ). Observe that X = X1 − X2. This
implies that X1 ≥ L + X2 and X2 ≥ X1 − U . Therefore, (X1, H1, 0) is a solution of
RBSDET (XT ∨ ξ, f̃ + dV + dC̄+, L+X2) and (X2, H2, 0) is a solution of RBSDET (0, dC̄−,
X1 − U ). We shall prove by induction that for each n ∈ N, X1 ≥ Y 1,n and X2 ≥ Y 2,n.
Let n = 0. Since X2 ≥ 0, it follows from (H2) that f̃ ≥ f . Thus, by Proposition 4.3,
X1 ≥ Y 1,0. Since Y 2,0 = 0, we have X2 ≥ Y 2,0. Suppose that for fixed n ∈ N, X1 ≥ Y 1,n

and X2 ≥ Y 2,n. Then L+X2 ≥ L+ Y 2,n and X1 − U ≥ Y 1,n − U , and by (H2) we have
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f̃ ≥ fn+1. Consequently, by Proposition 4.3, X1 ≥ Y 1,n+1, X2 ≥ Y 2,n+1, the induction is
complete. Summarizing, we have

Y 1,0 ≤ Y 1,n ≤ X1, 0 = Y 2,0 ≤ Y 2,n ≤ X2, n ≥ 0. (6.2)

Therefore, Y 1, Y 2 are of class (D) and

ξ ≤ lim
a→∞

Y 1
Ta lim

a→∞
Y 2
Ta = 0. (6.3)

We shall show that there exist M1,M2 ∈Mloc, K1,K2 ∈ V+ such that (Y 1,M1,K1) is a
solution of RBSDET (ξ, f̂ + dV, L+ Y 2) with

f̂(r, y) = f(r, y − Y 2
r )

and (Y 2,M2,K2) is a solution of RBSDET (0,0,Y 1 − U ). By (H3),

f(r, Y 1,n
r − Y 2,n−1

r )→ f(r, Y 1
r − Y 2

r ), as n→∞. (6.4)

Moreover, by (H2) and (6.2),

f(r,X1
r ) ≤ f(r, Y 1,n

r − Y 2,n−1
r ) ≤ f(r, Y 1,0

r −X2
r ). (6.5)

Set

τk = inf{t ≥ 0 :

∫ t

0

|f(r, Y 1,0
r −X2

r )|+ |f(r,X1
r )| dr ≥ k} ∧ T.

By (H4), {τk} is a chain on [0, T ]. By Proposition 5.1, and (5.2) for every σ ∈ T τk ,

Y 1,n
σ = ess sup

τ∈Tσ,τk
E
(∫ τ

σ

f(r, Y 1,n
r − Y 2,n−1

r ) dr +

∫ τ

σ

dVr

+ (Lτ + Y 2,n−1
τ )1{τ<τk} + Y 1,n

τk
1{τ=τk}|Fσ

)
. (6.6)

By the definition of τk, (H4), (6.4) and (6.5),

E

∫ τk

0

|f(r, Y 1,n
r − Y 2,n−1

r )− f(r, Y 1
r − Y 2

r )| dr → 0, as n→∞. (6.7)

By (6.2), (6.6), (6.7) and [25, Lemma 3.19],

Y 1
σ = ess sup

τ∈Tσ,τk
E
(∫ τ

σ

f(r, Y 1
r − Y 2

r ) dr +

∫ τ

σ

dVr

+ (Lτ + Y 2
τ )1{τ<τk} + Y 1

τk
1{τ=τk}|Fσ

)
.

for every σ ∈ T τk . By [24, Lemma 3.8], lima→∞ Y 1
τk∧a ≤ Y 1

τk
. From this, since {τk} is a

chain, we infer that lima→∞ Y 1
Ta
≤ ξ. Consequently, by (6.3), we get

lim
a→∞

YTa = ξ.

Next, by Proposition 5.1, for all n ≥ 1 and σ ∈ T ,

Y 2,n
σ = ess sup

τ∈Tσ
E
(

(Y 1,n−1
τ − Uτ )1{τ<T}|Fσ

)
.

Letting n→∞ and using (6.2) we get

Y 2
σ = ess sup

τ∈Tσ
E
(

(Y 1
τ − Uτ )1{τ<T}|Fσ

)
.
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By Proposition 5.1, for any k ≥ 0, there exist Kk ∈ V+
p and Mk ∈ Mloc such that

(Y 1,M1,k,K1,k) is a solution of RBSDEτk(Y 1
τk
, f̂+dV, L+Y 2). By the uniqueness argument,

K1,k
t = K1,k+1

t , M1,k
t = M1,k+1

t , t ∈ [0, τk ∧ a], a ≥ 0. Therefore, since {τk} is a chain,
we may define processes M1 and K1 on [0, T ] \ {∞} by putting M1

t = M1,k
t , K1

t = K1,k
t ,

t ∈ [0, τk ∧a], a ≥ 0. Clearly, the triple (Y 1,M1,K1) is a solution of RBSDET (ξ, f̂ +dV, L+

Y 2). By Proposition 5.1 again, there exist K2 ∈ V+
p ,M

2 ∈ Mloc such that the triple
(Y 2,M2,K2) is a solution of RBSDET (0, 0, Y 1 − U). Write Y = Y 1 − Y 2, M = M1 −M2,
R = K1−K2. We shall show that (Y,M,R) is a solution of RBSDET (ξ,f+dV ,L,U ). Directly
from the definition of a solution to RBSDET (0, 0, Y 1 − U) and RBSDET (ξ, f̂ + dV, L+ Y 2)

(cf. Definition 4.1), we deduce that Y is of class (D), lima→∞ YTa = ξ, L ≤ Y ≤ U , and for
any a ≥ 0,

Yt = YTa +

∫ Ta

t

f(r, Yr) dr +

∫ Ta

t

dVr +

∫ Ta

t

dRr −
∫ Ta

t

dMr, t ∈ [0, Ta].

Therefore, what is left is to prove that R satisfies the minimality condition (b) of Definition
4.2. For this observe that for any a ≥ 0,∫ Ta

0

(Yr− −
−→
L r) dR

+,∗
r +

∑
0≤r<Ta

(Yr − Lr)∆+R+
r

≤
∫ Ta

0

(Y 1
r− −

−−−−−→
Lr + Y 2

r ) dK1,∗
r +

∑
0≤r<Ta

(Y 1
r − (Lr + Y 2

r ))∆+K1
r = 0

and ∫ Ta

0

(U−→r − Yr−) dR−,∗r +
∑

0≤r<Ta

(Ur − Yr)∆+R−r

≤
∫ Ta

0

(Y 2
r− −

−−−−−→
Y 1
r − Ur) dK2,∗

r +
∑

0≤r<Ta

(Y 2
r − (Y 1

r − Ur))∆+K2
r = 0.

Uniqueness of the solution follows from Proposition 4.3. Finally, by Proposition 4.3,
Y ≤ Y ≤ Y , where Y (resp. Y ) is a solution to RBSDET (ξ, f+dV, L) (resp. RBSDET (ξ, f+

dV, U)). Therefore (6.1) follows from (H2) and Proposition 5.2.

6.2 Nonlinear Dynkin games and stability results for RBSDEs

Definition 6.2. Let τ ∈ T and H ∈ Fτ . Write Hc = Ω \H. If Hc ∩ {τ = T} = ∅, then the
pair ρ = (τ,H) is called a stopping system.

We denote by S the set of all stopping systems and for fixed stopping times σ, γ ∈ T
we denote by Sσ,γ the set of stopping systems ρ = (τ,H) such that σ ≤ τ ≤ γ. We put
Sσ := Sσ,T . Note that any stopping time τ ∈ T can be identified with a stopping system
(τ,Ω). Therefore we may write T ⊂ S.

For a stopping system ρ = (τ,H) and for an optional process X, we set

Xu
ρ = Xτ1H +

←−
X τ1Hc , X l

ρ = Xτ1H + X←−τ1Hc .

Repeating step by step the proofs of [14, Lemma 4.15, Lemma 4.17] with using
Propositions 3.4 and 4.3 we get the following result.

Theorem 6.3 (Dynkin games value process representation). Assume (H1)–(H4). Let
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(Y,M,R) be a solution to RBSDET (ξ, f + dV, L, U). Then for every α ∈ T ,

Yα = ess sup
ρ=(τ,H)∈Sα

ess inf
δ=(σ,G)∈Sα

Efα,τ∧σ
(∫ τ∧σ

α

dVr + Luρ1{τ≤σ<T} + U lδ1{σ<τ} + ξ1{τ=σ=T}

)
= ess inf
δ=(σ,G)∈Sα

ess sup
ρ=(τ,H)∈Sα

Efα,τ∧σ
(∫ τ∧σ

α

dVr + Luρ1{τ≤σ<T} + U lδ1{σ<τ} + ξ1{τ=σ=T}

)
.

(6.8)

Remark 6.4. The proof of (6.8) is much more simpler than the proof of the corresponding
result for one barrier (Theorem 5.8). This is due to the fact that in (6.8) we can always
indicate ε-optimal stopping systems regardless on the regularity of barriers L,U . These ε-
optimal stopping systems ρε = (τε, Hε), δε = (σε, Gε) are given by the following formulas
(see [14, (4.19)]),

τε = inf{t ≥ α; Yt ≤ Lt + ε} ∧ T, σε = inf{t ≥ α; Yt ≥ Ut − ε} ∧ T

and

Hε = {ω ∈ Ω; Yτε(ω)(ω) ≤ Lτε(ω)(ω) + ε}, Gε = {ω ∈ Ω; Yσε(ω)(ω) ≥ Uσε(ω)(ω) + ε}.

Note also that formulas of type (6.8) for linear RBSDEs (however without using the
notion of RBSDEs) were proved in [2].

As a corollary to the above theorem we obtain a stability result for solutions to
RBSDEs. Before stating it, we give some remarks about the process

←−
X . Assume that

X is positive. From the definition it follows easily that
←−
X is the smallest progressively

measurable process majorizing X which is u.s.c. from the right. Let

Sα = ess sup
τ≥α

E(Xτ |Fα), α ∈ T .

By [9, page 417], S is the smallest supermartingale majorizing X, so S is u.s.c. from the
right and X ≤ S. Thus

←−
X ≤ S. Therefore

←−
X is of class (D) and

‖
←−
X‖1 ≤ ‖S‖1 = ‖X‖1. (6.9)

Corollary 6.5 (Stability of solutions to RBSDEs: case I). Assume that (ξi, fi, L
i, U i), i =

1, 2, satisfy (H1)–(H4). Let (Y i,M i, Ri) be a solution to RBSDET (ξi, fi, L
i, U i), i = 1, 2.

Then

‖Y 1 − Y 2‖1 ≤ E|ξ1 − ξ2|+ 2‖L1 − L2‖1 + 2‖U1 − U2‖1

+ sup
ρ,δ∈S

E

∫ σ∧τ

0

|f1 − f2|(r, Ef1r,τ∧σ(Zρ,δ)) dr,

where
Zρ,δ = Luρ1{τ≤σ<T} + U lδ1{σ<τ} + ξ1{τ=σ=T}.

Proof. By Theorem 6.3, Y i, i = 1, 2, admits representation (6.8). Observe that

|L1,u
ρ − L2,u

ρ | ≤ |L1
τ − L2

τ |+
←−−−−−−
|L1 − L2|τ , |U1,l

δ − U
2,l
δ | ≤ |U

1
σ − U2

σ |+
←−−−−−−
|L1 − L2|σ.

By this, (6.8) and Proposition 3.4,

E|Y 1
α − Y 2

α | ≤ sup
τ,σ∈Tα

E
(
|ξ1 − ξ2|+ |L1

τ − L2
τ |+
←−−−−−−
|L1 − L2|τ + |U1

σ − U2
σ |+

←−−−−−−
|L1 − L2|σ

)
+ sup
ρ,δ∈Sα

E

∫ σ∧τ

α

|f1 − f2|(r, Ef1r,τ∧σ(Zρ,δ)) dr.

Now, using (6.9), we get the desired result.
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Remark 6.6. Maintain the notation and the assumptions of Corollary 6.5. In case
f1(·, Y 2), f2(·, Y 2) ∈ L1([0, T ]× Ω;P ), we infer from this corollary that

‖Y 1 − Y 2‖1 ≤ E|ξ1 − ξ2|+ 2‖L1 − L2‖1 + 2‖U1 − U2‖1 + E

∫ T

0

|f1 − f2|(r, Y 2
r ) dr.

This is a consequence of the fact that (Y 2,M2, R2) may be regarded as a solution to
RBSDET (ξ, g + f1, L, Y ) with g = f1(·, Y 2)− f2(·, Y 2). Thus, we get the analogue of [14,
Corollary 5.2] and [15, Proposition 11.2].

Proposition 6.7 (Stability of solutions to RBSDEs: case II). Assume that f, fn, n ≥ 1,
satisfy (H1)–(H4) and fn ↗ f as n→∞. Let {Ln} be a sequence of optional processes
of class (D) on [0, T ] such that Ln ↗ L.

(i) Let (Y,M,K) (resp. (Y n,Mn,Kn)) be a solution to RBSDET (ξ, f + dV, L) (resp.
RBSDET (ξ, f + dV, Ln)). Then Y n ↗ Y .

(ii) Let (Y,M,R) (resp. (Y n,Mn, Rn)) be a solution of RBSDET (ξ, f + dV, L, U) (resp.
RBSDET (ξ, fn+dV, L, U)) such that Y (resp. Y n) is of class (D). Then ‖Y −Y n‖1 → 0

as n→∞.

Proof. (i) By Theorem 5.8 and Proposition 3.4(ii), for every α ∈ T ,

Y nα = ess sup
τ∈Tα

Efα,τ
(∫ τ

α

dVr + Lnτ 1τ<T + ξ1τ=T

)
≤ ess sup

τ∈Tα
Efα,τ

(∫ τ

α

dVr + Lτ1τ<T + ξ1τ=T

)
= Yα.

By Proposition 3.4(ii), Y n ≤ Y n+1, n ≥ 1. Set X := supn≥1 Y
n. Then X ≤ Y . For the

opposite inequality first observe that for any α ∈ T , τ ∈ Tα and n ≥ 1,

Xα ≥ ess sup
τ∈Tα

Efα,τ
(∫ τ

α

dVr + Lnτ 1τ<T + ξ1τ=T

)
≥ Efα,τ

(∫ τ

α

dVr + Lnτ 1τ<T + ξ1τ=T

)
.

By Proposition 3.4(iii), Efα,τ (
∫ τ
α
dVr +Lnτ 1τ<T + ξ1τ=T )→ Efα,τ (

∫ τ
α
dVr +Lτ1τ<T + ξ1τ=T )

a.s. Hence

Xα ≥ Efα,τ
(∫ τ

α

dVr + Lτ1τ<T + ξ1τ=T

)
for any α ∈ T and τ ∈ Tα. Thus

Xα ≥ ess sup
τ∈Tα

Efα,τ
(∫ τ

α

dVr + Lτ1τ<T + ξ1τ=T

)
= Yα, α ∈ T .

(ii) For each n ≥ 1, fn ≤ fn+1, so by Proposition 4.3, Y n ≤ Y n+1. Set Ỹ := supn≥1 Y
n. By

Proposition 4.3
Y 1 ≤ Y n ≤ Y, n ≥ 1. (6.10)

Thus, Ỹ is of class (D) and lima→∞ ỸTa = ξ. We will show that Y = Ỹ . By (H2),

sgn(Yr − Y nr )(f(r, Yr)− fn(r, Y nr )) ≤ |f(r, Yr)− fn(r, Yr)|. (6.11)

By the minimality conditions for R and Rn (cf. Definition 4.2(b)),

sgn(Yr− − Y nr−)d(R1
r −R2

r)
∗ ≤ 1{Yr−>Y nr−} dR

∗,+ + 1{Yr−>Y nr−} dR
n,−,∗ = 0 (6.12)

and

sgn(Yr − Y nr )∆+(Rr −Rnr ) ≤ 1{Yr>Y nr }∆
+R+

r + 1{Yr>Y nr }∆
+Rn,−r = 0. (6.13)
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By [25, Corollary A.5], for all a ≥ 0 and stopping times σ, τ ∈ T Ta such that σ ≤ τ , we
have

|Yσ − Y nσ | ≤ |Yτ − Y nτ |+
∫ τ

σ

sgn(Yr − Y nr )(f(r, Yr)− fn(r, Y nr )) dr

+

∫ τ

σ

sgn(Yr− − Y nr−) d(R1
r −R2

r)
∗ +

∑
σ≤r<τ

sgn(Yr − Y nr )∆+(R1
r −R2

r)

−
∫ τ

σ

sgn(Yr− − Y nr−) d(Mr −Mn
r ).

By the above inequality and (6.11)-(6.13),

|Yσ − Y nσ | ≤ |Yτ − Y nτ |+
∫ τ

σ

|f(r, Yr)− fn(r, Yr)| dr

−
∫ τ

σ

sgn(Yr− − Y nr−) d(Mr −Mn
r ). (6.14)

By (H2), (6.10) and the fact that fn ≤ fn+1 and fn ≤ f we have

f1(r, Yr) ≤ fn(r, Yr) ≤ f(r, Y 1
r ). (6.15)

Let

σk = inf{t ≥ 0 :

∫ t

0

|f1(r, Yr)|+ |f(r, Y 1
r )| dr ≥ k} ∧ T.

Observe that by (H4), {σk} is a chain on [0, T ]. By the definition of {σk}, (H4) and (6.15),

E

∫ σk

0

|f(r, Yr)− fn(r, Yr)| dr → 0 (6.16)

as n → ∞. Let {γk} be a fundamental sequence on [0, Ta] for the local martingale∫ ·
0

sgn(Yr−− Y nr−) d(Mr −Mn
r ). By (6.14) with τ replaced by τk = σk ∧ γk, τk ≥ σ we have

|Yσ − Y nσ | ≤ |Yτk − Y nτk |+
∫ τk

σ

|f(r, Yr)− fn(r, Yr)| dr

−
∫ τk

σ

sgn(Yr− − Y nr−) d(Mr −Mn
r ). (6.17)

Since Y and Y n are of class (D) and (6.16) holds true, we get, by taking the expectation
in (6.17), letting n → ∞ and then k → ∞, that E|Yσ − Ỹσ| ≤ E|YTa − ỸTa | for a ≥ 0.
Now, letting a→∞, and using the fact that Y, Ỹ are of class (D), we get E|Yσ − Ỹσ| = 0.
Therefore, by the Section Theorem (see, e.g., [8, Chapter IV, Theorem 86]), |Yt − Ỹt| = 0,
t ∈ [0, T ], so Y = Ỹ .

6.3 Existence for RBSDEs under Mokobodzki’s condition

Theorem 6.8 (The existence result for two barrier RBSDEs: the general case). Assume
that (H1)–(H4), (H6) are satisfied. Then there exists a unique solution (Y,M,R) to
RBSDET (ξ, f + dV, L, U) such that Y is of class (D).

Proof. Let X be the process appearing in condition (H6). Since X is a special semi-
martingale, there exists an increasing sequence {γk} ⊂ T such that X is a difference of
supermartingales of class (D) on [0, γk] for every k ≥ 1. Let % be a strcitly positive Borel

measurable function on R+ such that
∫∞

0
%(t) dt <∞. Set %n(t) = n2%(t)

1+n%(t) . We let

fn,m(t, y) = max{min{f(t, y), %n(t)},−%m(t)}.
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Observe that fn,m is non-decreasing with respect to n and non-increasing with respect
to m. Moreover, fn,m(t, y) ↗ fm(t, y) := max{f(t, y),−%m(t)} as n → ∞ and fm(t, y) ↘
f(t, y) as m→∞. Let L̂, Û be regulated processes defined by

L̂α = ess inf
τ∈Tα

E(Lτ |Fα), Ûα = ess sup
τ∈Tα

E(Uτ |Fα), α ∈ T .

By Proposition 5.2, −L̂, Û are supermartingales of class (D) on [0, T ]. Clearly, L̂ ≤ L ≤
U ≤ Û . Since L̂, Û are of class (D) on [0, T ], we get, by using (H4), that there exists a
chain {τk} on [0, T ] such that

E

∫ τk

0

|f(r, L̂r)| dr + E

∫ τk

0

|f(r, Ûr)| dr ≤ k, k ≥ 1. (6.18)

By replacing γk by γk ∧ τk we may assume that γk ≤ τk. We define

Lnt = Lt1{t≤γn} + L̂t1{t>γn}, Unt = Ut1{t≤γn} + Ût1{t>γn}.

Observe that

L̂ ≤ Ln ≤ Ln+1 ≤ L ≤ U ≤ Un+1 ≤ Un ≤ Û , n ≥ 1. (6.19)

Moreover, Ln ↗ L and Un ↘ U . Finally, we set

Xn,m
t = Xt1{t≤γn∧γm} + L̂t1{t>γn≥γm} + Ût1{t>γm>γn}.

Observe that Ln ≤ Xn,m ≤ Um and that the process Xn,m is a difference of supermartin-
gales of class (D) on [0, T ]. Therefore, by the form of fn,m, (H6*) holds with Ln, Um,
Xn,m and fn,m. By Theorem 6.1, there exists a unique solution (Y n,m,Mn,m, Rn,m) of
RBSDET (ξ, fn,m, L

n, Um) such that Y n,m is of class (D). By Proposition 4.3, {Y n,m} is
non-decreasing with respect to n and non-increasing with respect to m. Set

Y m = sup
n≥1

Y n,m, Y = inf
m≥1

Y m. (6.20)

Since L̂ ≤ Y n,m ≤ Û , n,m ≥ 1 and L,U are of class (D), by the diagonal method we can
find a subsequence (mn) of (m) such that limn→∞E|Y n,mnγk

− Yγk | = 0 for every k ≥ 1.
Let k ≤ n ∧m. By Theorem 6.3, for any α ∈ T γk ,

Y n,mα = ess sup
ρ=(τ,H)∈Sα,γk

ess inf
δ=(σ,G)∈Sα,γk

Efn,mα,τ∧σ

(∫ τ∧σ

α

dVr

+ Luρ1{τ≤σ<γk} + U lδ1{σ<τ} + Y n,mγk
1{τ=σ=γk}

)
.

Set, for every α ∈ T γk ,

Y (k)(α) = ess sup
ρ=(τ,H)∈Sα,γk

ess inf
δ=(σ,G)∈Sα,γk

Efα,τ∧σ
(∫ τ∧σ

α

dVr

+ Luρ1{τ≤σ<γk} + U lδ1{σ<τ} + Yγk1{τ=σ=γk}

)
.

By Theorem 6.1 and Theorem 6.3, there exists a solution (Ỹ k, M̃k, R̃k) to the problem
RBSDEγk(Yγk , f, L, U) such that Y (k)(α) = Ỹα, α ∈ T γk . By Remark 6.6,

E|Y n,mnα − Ỹ kα | ≤ E|Y n,mnγk
− Yγk |+ E

∫ τ∧σ

α

|f − fn,mn |(r, Y n,mnr ) dr.
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By (6.18), (6.19), (H2) and the Lebesgue dominated convergence theorem,

E

∫ γk

0

|f − fn,mn |(r, Y n,mnr ) dr

≤ 2E

∫ τk

0

1{|f(r,L̂r)|+|f(r,Ûr)|≥%n(r)∧%mn (r)}(|f(r, L̂r)|+ |f(r, Ûr)|) dr → 0 (6.21)

as n → ∞. Thus, for any k ≥ 1, Y is the first component of a solution to the problem
RBSDEγk(Yγk , f, L, U). What is left is to show that YTa →∞ as a→∞. For this observe
that by Proposition 4.3,

Y
n,m ≤ Y n,m ≤ Y n,m, n,m ≥ 1,

where (Y n,m,Mn,m,Kn,m) is a solution to RBSDET (ξ, fm, L
n) and (Y

n,m
,M

n,m
,K

n,m
) is

a solution to RBSDET (ξ, fn, Um), where fn(t, y) := min{f(t, y), %n(t)}. By Proposition
6.7(ii), Y

n,m ↗ Y
m

, and by Proposition 6.7(i), Y n,m ↗ Y m, where (Y
m
,M

m
,K

m
) is

a solution to RBSDET (ξ, f, Um), and (Y m,Mm,Km) is a solution to RBSDET (ξ, fm, L).
Therefore Y

m ≤ Y m ≤ Y m. Letting m→∞ and using once again Proposition 6.7 yields

Y ≤ Y ≤ Y ,

where (Y ,M,K) is a solution to RBSDET (ξ, f, U), and (Y ,M,K) is a solution to the
problem RBSDET (ξ, f, L). From this we get the desired result.

Theorem 6.9 (Existence for RBSDEs with non-integrable driver). Assume that (H2)–(H4),
(H6) are satisfied. Furthermore, assume that |V |T <∞ a.s. Then there exists a unique
solution (Y,M,R) to RBSDET (ξ, f + dV, L, U) such that Y is of class (D).

Proof. By (H4) and the assumption that |V |T <∞ a.s., there exists a chain {δk} on [0, T ]

such that

E

∫ δk

0

|f(r, 0)| dr + E

∫ δk

0

d|V |r <∞, k ≥ 1.

Let fn,m be as in the proof of Theorem 6.8. Set V n,mt = V +
t ∧ n− V −t ∧m. By Theorem

6.8 there exists a solution (Y n,m,Mn,m, Rn,m) of RBSDET (ξ, fn,m + dVn,m, L, U) such
that Y n,m is of class (D). By Proposition 4.3, {Y n,m} is non-decreasing with respect to
n and non-increasing with respect to m. Now, repeating step by step the reasoning
(6.20)–(6.21) of the proof of Theorem 6.8 with γk replaced by δk, we get that Y defined
by (6.20) (but with Y n,m defined as above) is the first component of the solution to
RBSDEδk(Yδk , f, L, U) for any k ≥ 1. It remains to show that YTa → ξ as a→∞. We can
not argue as in the proof of Theorem 6.8, because in general, under the assumptions
of the present theorem, there are no solutions to RBSDET (ξ, f, U) and RBSDET (ξ, f, L).
To get the desired convergence, we shall utilize the fact that {δk} is a chain. By the
definition of a solution to RBSDET (Yδk , f, L, U), Yδk∧a → Yδk as a → ∞ for every k ≥ 1.
Since {δk} is a chain, for any ω ∈ Ω there exists kω ≥ 1 such that δk(ω) = T (ω), k ≥ kω.
Therefore YTa → ξ as a→∞ since by (6.20), YT = ξ.
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[26] Klimsiak, T., Rzymowski, M. and Słomiński, L.: Reflected backward stochastic differential
equations with two optional barriers. Bull. Sci. Math. 158, (2020), 102820, 49 pp. MR-
4030244

[27] Klimsiak, T.: Non-semimartingale solutions of reflected BSDEs and applications to Dynkin
games. Stochastic Process. Appl. 134, (2021), 208–239. MR-4206845

[28] Lepeltier, J.P., Matoussi, A. and Xu, M.: Reflected backward stochastic differential equations
under monotonicity and general increasing growth conditions. Adv. in Appl. Probab. 37,
(2005), 134–159. MR-2135157

[29] Lepeltier, J.P. and Xu, M.: Reflected BSDEs with two rcll barriers. ESAIM Probab. Stat. 11,
(2007), 3–22. MR-2299643

[30] Marzougue, M. and El Otmani, M.: BSDEs with right upper-semicontinuous reflecting
obstacle and stochastic Lipschitz coefficient. Random Oper. Stoch. Equ. 27, (2019), 27–41.
MR-3916509

[31] Marzougue, M. and El Otmani, M.: Non-continuous double barrier reflected BSDEs with
jumps under a stochastic Lipschitz coefficient. Commun. Stoch. Anal. 12, (2018), Article 1,
359–381. MR-3957705

[32] Mertens J.F.: Théorie des processus stochastiques généraux applications aux surmartingales.
Z. Wahr. verw. Geb. 22, (1972), 45–68. MR-0346895

[33] Peng, S.: Backward SDE and related g-expectation. Backward stochastic differential equa-
tions (Paris, 1995–1996). Pitman Res. Notes Math. Ser. 364, (1997), 141–159. Longman,
Harlow. MR-1752680
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