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Abstract

Let H := − 1
2
∆ + V be a one-dimensional continuum Schrödinger operator. Consider

Ĥ := H+ξ, where ξ is a translation invariant Gaussian noise. Under some assumptions
on ξ, we prove that if V is locally integrable, bounded below, and grows faster than
log at infinity, then the semigroup e−tĤ is trace class and admits a probabilistic
representation via a Feynman-Kac formula. Our result applies to operators acting on
the whole line R, the half line (0,∞), or a bounded interval (0, b), with a variety of
boundary conditions. Our method of proof consists of a comprehensive generalization
of techniques recently developed in the random matrix theory literature to tackle this
problem in the special case where Ĥ is the stochastic Airy operator.
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1 Introduction

Let I ⊂ R be an open interval (possibly unbounded) and V : I → R be a function.
Let H := − 1

2∆ + V denote a Schrödinger operator with potential V acting on functions
f : I → R with prescribed boundary conditions when I has a boundary. In this paper, we
are interested in random operators of the form

Ĥ := H + ξ, (1.1)

where ξ is a stationary Gaussian noise on R. Informally, we think of ξ as a centered
Gaussian process on R with a covariance of the form E[ξ(x)ξ(y)] = γ(x − y), where
γ is an even almost-everywhere-defined function or Schwartz distribution. In many
cases that we consider, γ is not an actual function, and thus ξ cannot be defined as a
random function on R; in such cases ξ can be defined rigorously as a random Schwarz
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Semigroups for 1D Schrödinger operators with Gaussian noise

distribution, i.e., a centered Gaussian process on an appropriate function space with
covariance

E
[
ξ(f)ξ(g)

]
=

∫
R

f(x)γ(x− y)g(y) dxdy, f, g : R→ R.

Among the most powerful tools used to study Schrödinger operators are their semi-
groups (e.g., [41]); we recall that the semigroup generated by H is the family of oper-
ators formally defined as e−tH for t > 0. Provided the potentials under consideration
are sufficiently well behaved, there is a remarkable connection between Schrödinger
semigroups and the theory of stochastic processes that can be expressed in the form of
the Feynman-Kac formula (e.g., [41, Theorem A.2.7]): Assuming I = R for simplicity, for
every f ∈ L2(R), t > 0, and x ∈ R, one has

e−tHf(x) = Ex
[
exp

(
−
∫ t

0

V
(
B(s)

)
ds

)
f
(
B(t)

)]
(1.2)

where B is a Brownian motion and Ex signifies that we are taking the expected value
with respect to B conditioned on the starting point B(0) = x. Apart from the obvious
benefit of making Schrödinger semigroups amenable to probabilistic methods, we note
that the Feynman-Kac formula can in fact form the basis of the definition of H itself, as
done, for instance, in [30].

Our purpose in this paper is to lay out the foundations of a general semigroup theory
(or Feynman-Kac formulas) for random Schrödinger operators of the form (1.1). We note
that, since we consider very irregular noises (i.e., in general ξ is not a proper function
that can be evaluated at points in R), this undertaking is not a direct application or a
trivial extension of the classical theory; see Section 1.1 for more details. As a first step
in this program, we show that a variety of tools recently developed in the random matrix
theory literature (e.g., [3, 20, 22, 28, 32, 36]) to tackle special cases of this problem can
be suitably extended to a rather general setting. The main restriction of our assumptions
is that we consider cases where the semigroup e−tĤ is trace class, which implies in
particular that Ĥ must have a purely discrete spectrum.

This paper is organized as follows. In the remainder of this introduction, we present
a brief outline of our main results and discuss some motivations and applications. In
Section 2, we give a precise statement of our results (our main result is Theorem 2.24,
and our second main result is Proposition 2.10). In Section 3, we provide an outline
of the proof of our main results. Finally, in Sections 4 and 5, we go over the technical
details of the proof of our results.

1.1 Overview of results

As mentioned earlier in this introduction, much of the challenge involved in our
program comes from the fact that, in general, Gaussian noises are Schwartz distributions.
This creates two main technical obstacles.

The first obstacle is that it is not immediately obvious how to define the operator Ĥ.
Indeed, if we interpret ξ as being part of the potential of Ĥ, then the action

Ĥf “ = ” − 1
2f
′′ + (V + ξ)f

of the operator on a function f includes the “pointwise product” ξf , which is not well
defined if ξ cannot be evaluated at single points in R. The second obstacle comes from
the definition of e−tĤ . Arguably, the most natural guess for this semigroup would be to
add ξ to the potential in the usual Feynman-Kac formula (1.2), which yields

e−tĤf(x) “ = ” Ex
[
exp

(
−
∫ t

0

V
(
B(s)

)
+ ξ
(
B(s)

)
ds

)
f
(
B(t)

)]
. (1.3)
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Semigroups for 1D Schrödinger operators with Gaussian noise

However, this again requires the ability to evaluate ξ at every point.
The key to overcoming these obstacles is to interpret ξ as the distributional derivative

of an actual Gaussian process. More precisely, let Ξ be the Gaussian process on R
defined as

Ξ(x) :=

{
ξ(1[0,x)), x ≥ 0

ξ(−1[x,0)), x ≤ 0.
(1.4)

Assuming Ξ has a version with measurable sample paths (and we neglect boundary
values for simplicity), a formal integration by parts yields

ξ(f) = 〈f,Ξ′〉 := −〈f ′,Ξ〉.

Following this line of thought, we may then settle on a “weak” definition of Ĥ through
the form

〈f, Ĥg〉 := 〈f,Hg〉+ ξ(fg) = 〈f,Hg〉 − 〈f ′g + fg′,Ξ〉. (1.5)

We note that this type of definition for Ĥ has previously appeared in the literature (e.g.,
[3, 17, 32, 36]) for various potentials V on the half line I = (0,∞) as well as V = 0 on a
bounded interval I = (0, L) (L > 0). We also note an alternative approach outlined by
Bloemendal in [2, Appendix A] that allows one (in principle) to recast Ĥ as the classical
Sturm-Liouville operator

Sf = −w−1(w2 f
′)′ + (V − 2Ξ2)f, where w(x) := exp

(
4

∫ x

0

Ξ(y) dy

)
(1.6)

through a suitable Hilbert space isomorphism. Our first result (namely, Proposition
2.10) is an extension of these statements: We provide a very succinct proof of the fact
that, under fairly general conditions on Ξ and V , the form (1.5) corresponds to a unique
self-adjoint operator with compact resolvent, including when I is the whole real line or a
bounded interval with a nonzero potential.

The interpretation ξ = Ξ′ also leads to a natural candidate for the semigroup gener-
ated by Ĥ: Let Lat (B) (a ∈ R, t ≥ 0) be the local time process of the Brownian motion B
so that for any measurable function f , we have∫ t

0

f
(
B(s)

)
ds =

∫
R

Lat (B)f(a) da.

Assuming a stochastic integral with respect to Ξ can meaningfully be defined, we may
then interpret the problematic term in e−tĤ ’s intuitive derivation (1.3) thusly:∫ t

0

V
(
B(s)

)
+ ξ
(
B(s)

)
ds :=

∫
R

Lat (B) dQ(a),

where Q is the process dQ(x) = V (x)dx+ dΞ(x), which we assume to be independent of
B. In the case where I = R, for example, this suggests that

e−tĤf(x) = Ex
[
exp

(
−
∫
R

Lat (B) dQ(a)

)
f
(
B(t)

)]
, (1.7)

where Ex now denotes the conditional expectation of
(
B|B(0) = x

)
given Ξ. This type of

random semigroup has appeared in [20, 22] in the special case where I is the positive
half line (0,∞), V (x) = x, and Ξ is a Brownian motion (so that ξ is a Gaussian white noise;
see Example 2.28 for more details). Our second and main result (namely, Theorem
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2.24) provides general sufficient conditions under which a Feynman-Kac formula of the
form (1.7) holds (we refer to (2.14) for a statement of our Feynman-Kac formula when
I is the half line or a bounded interval). This result can be seen as a comprehensive
generalization of [20, Proposition 1.8 (a)] and [22, Corollary 2.2]. We refer to Section
3.2 for a detailed exposition of our method of proof.

One interesting consequence of Theorem 2.24 is the following connection between
the random functional (1.7) and the spectrum of Ĥ: Let λ1(Ĥ) ≤ λ2(Ĥ) ≤ · · · be the
eigenvalues of Ĥ and ψ1(Ĥ), ψ2(Ĥ), . . . be the associated eigenfunctions, which are
defined by the variational principle (i.e., Courant-Fischer) associated with the form (1.5).
By Theorem 2.24, in many cases the spectral expansion

e−tĤf =

∞∑
k=1

e−tλk(Ĥ)〈ψk(Ĥ), f〉ψk(Ĥ), f ∈ L2(R)

admits an explicit probabilistic representation of the form (1.7). We expect this connec-
tion to be fruitful in two directions.

On the one hand, a good understanding of Ĥ’s spectrum could be used to study the
geometric properties of the function u(t, x) := e−tĤf(x), which we may interpret as the
solution of the SPDE with multiplicative noise

∂tu = −(Hu+ ξu), u(0, x) = f(x).

We refer to Section 1.2.1 below for more motivation in this direction.
On the other hand, the Feynman-Kac formula can be used to study the properties

of the eigenvalues and eigenfunctions of Ĥ (we refer to [41] for classical examples of
this involving the deterministic operator H). In particular, our Feynman-Kac formula
provides a means of computing the “Laplace transforms”

E

[∏̀
i=1

∞∑
k=1

e−tiλk(Ĥ)

]
= E

[∏̀
i=1

Tr
[
e−tiĤ

]]
, t1, . . . , t` > 0, (1.8)

which characterize the distribution of Ĥ’s eigenvalues. In Sections 1.2.2 and 1.2.3, we
discuss how the ability to compute (1.8) has led to applications in the study of operator
limits of random matrices and the occurence of number rigidity in the spectrum of
general random Schrödinger operators.

1.2 Motivating examples and applications

1.2.1 The Anderson Hamiltonian and parabolic Anderson model

The earliest occurrences of an operator of the form (1.1) in the literature appear to be
[16, 24]. The operator that is considered therein is the Anderson Hamiltonian, defined as
A := −∆ + ξ, where ξ is a Gaussian white noise. The first mathematically rigorous study
of this object appeared in [17]. Following this, there have been several investigations of
A’s spectral properties [5, 6, 31], culminating in a recent article of Dumaz and Labbé
[13], which provides a comprehensive description of eigenfunction localization and
eigenvalue Poisson statistics in the case where A acts on I = (0, L) for large L.

In this context, the Feynman-Kac formula proved in this paper in the case Ĥ =

A creates a rigorous connection between the study of localization in the Anderson
Hamiltonian and the study of intermittency for large times in the parabolic Anderson
model with continuous noise (c.f., [13, (5) and (6)] and [27, Sections 2.2.3–2.2.4]). We
recall that the parabolic Anderson model is the SPDE

∂tu(t, x) = ∆u(t, x) + ξu(t, x), u(0, x) = u0(x)
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or, equivalently, u(t, x) := et(∆+ξ)u0(x). Although several previous works have featured
Feynman-Kac-type formulas for the continuum Anderson Hamiltonian or the parabolic
Anderson model in one dimension (e.g., [9, Sections 3–4 and Lemma A.1] or [25, Section
3]), ours appears to be the first to make an explicit connection between A’s full spectrum
and a Feynman-Kac functional of the form (1.7).

1.2.2 Operator limits of random matrices

One of the most widely studied example of an operator of the form (1.1) is the stochastic
Airy operator:

Aβ := −∆ + x+ ξβ , β > 0, (1.9)

where ξβ is a Gaussian white noise with variance 4/β, and Aβ acts on I = (0,∞) with
Dirichlet or Robin boundary condition at the origin. The interest of studying this operator
comes from the fact that its spectrum captures the asymptotic edge fluctuations of a
large class of random matrices and β-ensembles. This was first observed by Edelman
and Sutton in [15] and is based on the tridiagonal models of Dumitriu and Edelman [14].
The connection was later rigorously established by Ramírez, Rider, and Virág [36], and
these developments gave rise to a now very extensive literature concerning operator
limits of random matrices, in which general operators of the form (1.1) arise as the limits
of a large class of random tridiagonal matrices. We refer to [46] and references therein
for a somewhat recent survey.

In [22], Gorin and Shkolnikov introduced an alternative method of studying operator
limits of random matrices by proving that large powers of generalized Gaussian β-
ensembles admit an operator limit of the form (1.7) (see [22, (2.4)]). These results were
later extended to rank 1 additive perturbations of Gaussian β-ensembles in [20]. Since
the Gaussian β-ensembles converge to the stochastic Airy operator, these results imply a
Feynman-Kac formula of the form (1.7) for e−tAβ/2. This new Feynman-Kac formula was
then used to study the eigenvalues of Aβ (see [22, Corollary 2.3 and Proposition 2.6] and
[20, Theorem 1.11 and Corollary 1.13]).

In this context, our paper can be viewed as providing a streamlined and unified
treatment of trace class semigroups generated by general operators of the form (1.1). In
[18], this more general setting is used to extend the operator limit results in [20, 22]
to much more general random tridiagonal matrices, including some non-symmetric
matrices that could not be treated by any previous method.

1.2.3 Number rigidity in random Schrödinger operators

A point process is number rigid if the number of points inside any bounded set is
determined by the configuration of points outside that set. The earliest proof of number
rigidity appears to be the work of Aizenman and Martin in [1]. More recently, there has
been a notable increase of interest in this property stemming from the work of Ghosh
and Peres [21]. Therein, it is proved that the zero set of the planar Gaussian analytic
function and the Ginibre process are number rigid. Since then, number rigidity has been
shown to be connected to several other interesting properties of point processes (see,
e.g., [19, Section 1.2] and references therein).

Due to their ubiquity in mathematical physics, there is a strong incentive to under-
stand any structure that appears in the eigenvalues of random Schrödinger operators,
including number rigidity. Up until recently, the only random Schrödinger operator
whose eigenvalue point process was known to be number rigid was the stochastic Airy
operator Aβ in (1.9) with β = 2 [4], thanks to the special algebraic structure present
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in the eigenvalues of this particular object (i.e., A2’s eigenvalues generate the determi-
nantal Airy-2 point process). In [19], we use the Feynman-Kac formula proved in this
paper to show that number rigidity occurs in the spectrum of Ĥ under very general
assumptions on the domain I on which the operator is defined, the boundary conditions
on that domain, the regularity of the potential V , and the type of noise; thus providing
the first method capable of proving rigidity for general random Schrödinger operators.

2 Main results

In this section, we provide detailed statements of our main results. Throughout this
paper, we make the following assumption regarding the interval I on which the operator
is defined and its boundary conditions.

Assumption 2.1. We consider three different types of domains: The full space I = R

(Case 1), the positive half line I = (0,∞) (Case 2), and the bounded interval I = (0, b)

for some b > 0 (Case 3).
In Case 2, we consider Dirichlet and Robin boundary conditions at the origin:{

f(0) = 0 (Case 2-D)

f ′(0) + αf(0) = 0 (Case 2-R)
(2.1)

where α ∈ R is fixed.
In Case 3, we consider the Dirichlet, Robin, and mixed boundary conditions at the

endpoints 0 and b:
f(0) = f(b) = 0 (Case 3-D)

f ′(0) + αf(0) = −f ′(b) + βf(b) = 0 (Case 3-R)

f ′(0) + αf(0) = f(b) = 0 (Case 3-M)

(2.2)

where α, β ∈ R are fixed.

Remark 2.2. Case 3-M should technically also include the mixed boundary conditions
of the form f(0) = −f ′(b) + βf(b) = 0. However, the latter can easily be obtained from
Case 3-M by considering the transformation x 7→ f(b− x).

Throughout the paper, we make the following assumption on the potential V .

Assumption 2.3. Suppose that V : I 7→ R is nonnegative and locally integrable on I’s
closure. If I is unbounded, then we also assume that

lim inf
x→±∞

V (x)

log |x|
=∞. (2.3)

Remark 2.4. As is usual in the theory of Schrödinger operators and semigroups, the
assumption that V ≥ 0 is made for technical ease, and all of our results also apply in the
case where V is merely bounded from below on I.

2.1 Self-adjoint operator

Our first result concerns the realization of Ĥ as a self-adjoint operator. As explained
in the passage following equation (1.5), this is done through a sesquilinear form. We
begin by introducing the sesquilinear form associated with H:

Definition 2.5. Let L2 = L2(I) denote the set of square integrable functions (equiva-
lence classes up to measure zero) on I, with its usual inner product and norm

〈f, g〉 :=

∫
I

f(x)g(x) dx, ‖f‖2 :=
√
〈f, f〉.
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Let AC = AC(I) denote the set of functions that are locally absolutely continuous on I’s
closure, and let

H1
V = H1

V (I) :=
{
f ∈ AC : ‖f‖2, ‖f ′‖2, ‖V 1/2f‖2 <∞

}
.

We define the following inner product and norm on H1
V :

〈f, g〉∗ := 〈f ′, g′〉+ 〈fg, V + 1〉, ‖f‖2∗ := ‖f ′‖22 + ‖V 1/2f‖22 + ‖f‖22.

We define H’s sesquilinear form E as well as its form domain D(E) ⊂ H1
V for every case

in Assumption 2.1 as follows:

Case 1:

{
D(E) := H1

V

E(f, g) := 1
2 〈f
′, g′〉+ 〈fg, V 〉

Case 2-D:

{
D(E) :=

{
f ∈ H1

V : f(0) = 0
}

E(f, g) := 1
2 〈f
′, g′〉+ 〈fg, V 〉

Case 2-R:

{
D(E) := H1

V

E(f, g) := 1
2 〈f
′, g′〉 − α

2 f(0)g(0) + 〈fg, V 〉

Case 3-D:

{
D(E) :=

{
f ∈ H1

V : f(0) = f(b) = 0
}

E(f, g) := 1
2 〈f
′, g′〉+ 〈fg, V 〉

Case 3-R:

{
D(E) := H1

V

E(f, g) := 1
2 〈f
′, g′〉 − α

2 f(0)g(0)− β
2 f(b)g(b) + 〈fg, V 〉

Case 3-M:

{
D(E) :=

{
f ∈ H1

V : f(b) = 0
}

E(f, g) := 1
2 〈f
′, g′〉 − α

2 f(0)g(0) + 〈fg, V 〉

Remark 2.6. As noted by Bloemendal and Virág in [3, Remark 2.5 and (2.11)], the
Dirichlet boundary conditions can be specified in the form domain D(E), but the Robin
conditions must be enforced by the form itself, since the derivative of an absolutely
continuous function is only defined almost everywhere. Taking Case 3-R as an example,
by a formal integration by parts we have

−
∫ b

0

f(x)g′′(x) dx = f(b)
(
− g′(b)

)
+ f(0)g′(0) + 〈f ′, g′〉.

Substituting g′(0) = −αg(0) and −g′(b) = −βg(0) then yields E(f, g).

We now define the form associated with Ĥ as a random perturbation of E coming
from the noise. We assume that the Gaussian process Ξ driving the noise is as follows:

Assumption 2.7. Ξ : R→ R is a centered Gaussian process such that:

1. Almost surely, Ξ(0) = 0 and Ξ has continuous sample paths.

2. Ξ has stationary increments, that is, for every x1, . . . , x`, y1, . . . , y` ∈ R (` ∈ N) such
that xi ≤ yi for all 1 ≤ i ≤ ` and h ∈ R, the increments

Ξ(y1)− Ξ(x1),Ξ(y2)− Ξ(x2), . . . ,Ξ(y`)− Ξ(x`)

have the same joint distribution as the shifted increments

Ξ(y1 + h)− Ξ(x1 + h),Ξ(y2 + h)− Ξ(x2 + h), . . . ,Ξ(y` + h)− Ξ(x` + h).

We may now define ξ as the distributional derivative of Ξ:
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Definition 2.8. Let C∞0 = C∞0 (I) denote the set of functions that are smooth and
compactly supported on I’s closure. For every f ∈ C∞0 , we define ξ(f) = 〈f,Ξ′〉 by a
formal integration by parts:

ξ(f) :=

{
−〈f ′,Ξ〉 (Cases 1 and 2)

f(b)Ξ(b)− 〈f ′,Ξ〉 (Case 3)
(2.4)

(note that we omit the boundary term −f(0)Ξ(0) in the formal integration by parts for
Cases 2 and 3, since we assume that Ξ(0) = 0).

Our first result is that the sesquilinear form (f, g) 7→ ξ(fg) for f, g ∈ C∞0 can be
continuously extended to H1

V , and thus can be added to the form E as hinted at in (1.5):

Proposition 2.9. Suppose that Assumptions 2.1, 2.3, and 2.7 hold. There exists a finite
random variable c > 0 such that, almost surely,

|ξ(f2)| ≤ c‖f‖2∗, f ∈ C∞0 . (2.5)

Hence f 7→ ξ(f2) extends uniquely to a continuous quadratic form on H1
V that satisfies

(2.5) for all f ∈ H1
V , which we can then also extend to a sesquilinear form by the

polarization identity:

ξ(fg) :=
ξ
(
(f + g)2

)
− ξ
(
(f − g)2

)
4

, f, g ∈ H1
V .

In particular, almost surely, we can define the sesquilinear form

Ê(f, g) := E(f, g) + ξ(fg) (2.6)

on the same form domain as E , that is, for all for all f, g ∈ D(E).

We may now state our main result regarding our definition of Ĥ as the self-adjoint
operator associated with the form (2.6) on the form domain D(E):

Proposition 2.10. Suppose that Assumptions 2.1, 2.3, and 2.7 hold. Almost surely,
there exists a unique self-adjoint operator Ĥ with dense domain D(Ĥ) ⊂ L2 such that

1. D(Ĥ) ⊂ D(E);

2. For every f, g ∈ D(Ĥ), one has 〈f, Ĥg〉 = Ê(f, g); and

3. Ĥ has compact resolvent.

Remark 2.11. In Case 1, the statement of Proposition 2.10 is to the best of our knowl-
edge completely new. In Case 2, the closest results are [32, Theorem 2], which assumes
that I = (0,∞) with Dirichlet boundary condition, that V is continuous, and that Ξ is a
fractional Brownian motion. In Case 3, the closest result seems to be [17, §2], which only
considers the case V = 0 with Dirichlet boundary conditions and Ξ a Brownian motion.
Proposition 2.9 is a generalization of similar results in [3, Lemma 2.3], [32, Proposition
1-(i)], and [36, Proposition 2.4].

An immediate corollary of Proposition 2.10 is the ability to study the spectrum of Ĥ
using the variational characterization coming from the form Ê:

Definition 2.12. Let A be a semi-bounded self-adjoint operator with discrete spectrum.
We use λ1(A) ≤ λ2(A) ≤ · · · to denote the eigenvalues of A in increasing order, and we
use ψ1(A), ψ2(A), . . . to denote the associated eigenfunctions.

Corollary 2.13. Under the assumptions of Proposition 2.10, almost surely,

1. −∞ < λ1(Ĥ) ≤ λ2(Ĥ) ≤ · · · ↗ +∞;
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2. the ψk(Ĥ) form an orthonormal basis of L2; and

3. for every k ∈ N,

λk(Ĥ) = inf
ψ∈D(E), ψ⊥ψ1(Ĥ),...,ψk−1(Ĥ)

Ê(ψ,ψ)

‖ψ‖22
,

with ψk(Ĥ) being the minimizer of the above infimum with unit L2 norm.

2.2 Semigroup

We now state our main result regarding the Feynman-Kac formula for the semigroup
generated by Ĥ. Thanks to Proposition 2.10 and Corollary 2.13, we know that under
Assumptions 2.1, 2.3, and 2.7, the semigroup of Ĥ is the family of bounded self-adjoint
operators with spectral expansions

e−tĤf =

∞∑
k=1

e−tλk(Ĥ)〈ψk(Ĥ), f〉ψk(Ĥ), t > 0, f ∈ L2. (2.7)

In order to state our Feynman-Kac formula for e−tĤ , we introduce some notations and
further assumptions.

2.2.1 Preliminary definitions

We begin with some preliminary definitions regarding the covariance of the noise ξ and
the stochastic processes required to define our Feynman-Kac kernels.

Definition 2.14 (Covariance). Let us denote by PCc = PCc(I) the set of functions
f : I 7→ R that are càdlàg and compactly supported on I’s closure. We say that f ∈ PCc
is a step function if it can be written as

f =

k∑
i=1

ci1[xi,xi+1) ci ∈ R, −∞ < x1 < x2 < · · · < xk+1 <∞. (2.8)

To simplify forthcoming definitions and statements, we often extend the domain of
f ∈ PCc to R, with the convention that f(x) = 0 for all x outside of I’s closure (noting,
however, that f ’s extension need not be càdlàg on all of R).

Let γ : PCc → R be an even almost-everywhere-defined function or Schwartz distri-
bution (even in the sense that 〈f, γ〉 = 〈rf, γ〉 for every f , where rf(x) = f(−x) denotes
the reflection map), such that the bilinear map

〈f, g〉γ :=

∫
R2

f(x)γ(x− y)g(y) dxdy, f, g ∈ PCc (2.9)

is a semi-inner-product. We denote the seminorm induced by (2.9) as

‖f‖γ :=
√
〈f, f〉γ , f ∈ PCc.

Remark 2.15. If γ is not an almost-everywhere-defined function, then the integral over
γ(x− y) in (2.9) may not be well defined. In such cases, we rigorously interpret (2.9) as
〈f ∗ rg, γ〉 = 〈rf ∗ g, γ〉.
Definition 2.16 (Stochastic Processes, etc.). We use B to denote a standard Brownian
motion on R, X to denote a reflected standard Brownian motion on (0,∞), and Y to
denote a reflected standard Brownian motion on (0, b).

Let Z = B, X, or Y . For every t > 0 and x, y ∈ I, we define the conditioned processes

Zx :=
(
Z|Z(0) = x

)
and Zx,yt :=

(
Z|Z(0) = x and Z(t) = y

)
,
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and we use Ex and Ex,yt to denote the expected value with respect to the law of Zx and
Zx,yt , respectively.

We denote the Gaussian kernel by

Gt(x) :=
e−x

2/2t

√
2πt

, t > 0, x ∈ R.

We denote the transition kernels of B, X, and Y as ΠB, ΠX , and ΠY , respectively. That
is, for every t > 0,

ΠB(t;x, y) := Gt(x− y) x, y ∈ R,
ΠX(t;x, y) := Gt(x− y) + Gt(x+ y) x, y ∈ (0,∞),

ΠY (t;x, y) :=
∑

z∈2bZ±y

Gt(x− z) x, y ∈ (0, b).

Let Z = B, X, or Y . For any time interval [u, v] ⊂ [0,∞), we let a 7→ La[u,v](Z) (a ∈ I)
denote the continuous version of the local time of Z (or its conditioned versions) on [u, v],
that is, ∫ v

u

f
(
Z(s)

)
ds =

∫
I

La[u,v](Z)f(a) da = 〈L[u,v](Z), f〉 (2.10)

for any measurable function f : I → R. In the special case where u = 0 and v = t, we
use the shorthand Lt(Z) := L[0,t](Z). When there may be ambiguity regarding which
conditioning of Z is under consideration, we use L[u,v](Z

x) and L[u,v](Z
x,y
t ).

As a matter of convention, if Z = X or Y , then we distinguish the boundary local
time from the above, which we define as

Lc[u,v](Z) := lim
ε→0

1

2ε

∫ v

u

1{c−ε<Z(s)<c+ε} ds

for c ∈ ∂I (i.e., c = 0 if Z = X or c ∈ {0, b} if Z = Y ), with Lct(Z) := Lc[0,t](Z).

Remark 2.17. Since we use the continuous version of local time, a 7→ La[u,v](Z) is
continuous and compactly supported on I’s closure; in particular, L[u,v](Z) ∈ PCc.

2.2.2 Noise

We now articulate the assumptions that the noise ξ must satisfy for our Feynman-Kac
formula to hold. We recall from the introduction that we think of ξ as a centered Gaussian
process with covariance E[ξ(x)ξ(y)] = γ(x− y), with γ as in Definition 2.14. Interpreting
ξ(f)“ = ”

∫
R
f(x)ξ(x) dx for a function f , this suggests that, as a random Schwartz

distribution, ξ is a centered Gaussian process with covariance E [ξ(f)ξ(g)] = 〈f, g〉γ . In
similar fashion to Assumption 2.7, we want to interpret ξ as the distributional derivative
of some continuous process Ξ, that is, corresponding to (1.4). If ξ’s covariance is given
by the semi-inner-product 〈·, ·〉γ , then this suggests that Ξ’s covariance is equal to

E[Ξ(x)Ξ(y)] =


〈1[0,x),1[0,y)〉γ if 0 ≤ x, y
〈1[0,x),−1[y,0)〉γ if y ≤ 0 ≤ x
〈−1[x,0),1[0,y)〉γ if x ≤ 0 ≤ y
〈1[x,0),1[y,0)〉γ if x, y ≤ 0.

(2.11)

This leads us to the following Assumption:
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Assumption 2.18. The centered Gaussian process Ξ : R→ R satisfies Assumption 2.7.
Moreover, there exists a γ : PCc → R as in Definition 2.14 that satisfies the following
conditions.

1. Ξ’s covariance is given by (2.11).

2. There exists cγ > 0 and 1 ≤ q1, . . . , q` ≤ 2 (for some ` ∈ N) such that

‖f‖2γ ≤ cγ
(
‖f‖2q1 + · · ·+ ‖f‖2q`

)
, f ∈ PCc, (2.12)

where ‖f‖q :=
(∫
R
|f(x)|q dx

)1/q
denotes the usual Lq norm.

Then, for every f ∈ PCc, we define

ξ(f) :=

∫
R

f(x) dΞ(x), (2.13)

where dΞ denotes stochastic integration with respect to Ξ interpreted in the pathwise
sense of Karandikar [26] (see Section 3.2.1 for the details of this construction).

Remark 2.19. Though this is not immediately obvious from the above definition, the
pathwise stochastic integral (2.13) actually coincides with (2.4) for every f ∈ C∞0 . We
note, however, that the extension of ξ to PCc need not be linear on all of PCc, and
thus may not be a Schwartz distribution in the proper sense on that larger domain.
Our interest in defining the stochastic integral in a pathwise sense is that it allows to
construct ξ as a random map from PCc to R that satisfies the following properties.

1. We can consider the conditional distribution of ξ
(
Lt(Z)

)
given a fixed realization of

Ξ, assuming independence between Z and Ξ.

2. f 7→ ξ(f) is a centered Gaussian process on PCc with covariance 〈·, ·〉γ .

In fact, any other pathwise stochastic integral that is an extension of (2.4) and satisfies
these two properties leads to the same statement in Theorem 2.24 below. We point to
Section 3.2.1 and Appendix A for the details of the proof that ξ has these two properties,
and to Section 3.2.2 for an explanation of why any stochastic integral having these two
properties gives rise to our main result.

Remark 2.20. The requirement that Ξ be a continuous process with stationary incre-
ments in Assumption 2.18 is redundant: Firstly, the covariance (2.11) implies that
Ξ(x) − Ξ(y) corresponds to ξ(1[x,y)), which is stationary since the semi-inner-product
〈·, ·〉γ is translation invariant. Secondly, if we construct Ξ using abstract existence theo-
rems for Gaussian processes (which is possible since 〈·, ·〉γ is a semi-inner-product), then
the assumption (2.12) implies that Ξ has a continuous version by Kolmogorov’s theorem
for path continuity (see Section 3.3 for details). We nevertheless state these properties
as assumptions for clarity.

2.2.3 Feynman-Kac kernels

We now introduce the Feynman-Kac kernels that describe Ĥ’s semigroup.

Definition 2.21. In Cases 2 and 3, let us define the quantities

ᾱ :=

{
−∞ (Case 2-D)

α (Case 2-R)
(ᾱ, β̄) :=


(−∞,−∞) (Case 3-D)

(α, β) (Case 3-R)

(α,−∞) (Case 3-M)
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where α, β ∈ R are as in (2.1) and (2.2). For every t > 0, we define the (random) kernel
K̂(t) : I2 → R as

K̂(t;x, y) :=


ΠB(t;x, y)Ex,yt

[
e−〈Lt(B),V 〉−ξ(Lt(B))

]
(Case 1)

ΠX(t;x, y)Ex,yt

[
e−〈Lt(X),V 〉−ξ(Lt(X))+ᾱL0

t (X)
]

(Case 2)

ΠY (t;x, y)Ex,yt

[
e−〈Lt(Y ),V 〉−ξ(Lt(Y ))+ᾱL0

t (Y )+β̄Lbt(Y )
]

(Case 3)

(2.14)

where we assume that Ξ is independent of B, X, or Y , and Ex,yt denotes the expected
value conditional on Ξ.

Remark 2.22. Let Z = X or Y . In the above definition, we use the convention

−∞ · Lct(Z) =

{
0 if Lct(Z) = 0

−∞ if Lct(Z) > 0

for any c ∈ ∂I as well as e−∞ = 0. Thus, if we let τc(Z) := inf{t ≥ 0 : Z(t) = c} denote
the first hitting time of c, then we can interpret e−∞·L

c
t(Z) = 1{τc(Z)>t}. In particular,

if we remove the term ξ(Lt(Z)) from the kernel (2.14), then we recover the classical
Feynman-Kac formula for the semigroup of H. See Section 5.1 for more details.

Notation 2.23. Given a Kernel J : I2 → R (such as K̂(t)), we also use J to denote the
integral operator induced by the kernel, that is,

Jf(x) :=

∫
I

J(x, y)f(y) dy.

We say that J is Hilbert-Schmidt if ‖J‖2 <∞, and trace class if Tr[|J |] <∞.

2.2.4 Main result

Our main result is as follows.

Theorem 2.24 (Feynman-Kac Formula). Suppose that Assumptions 2.1, 2.3, and 2.18
hold. Almost surely, e−tĤ is a Hilbert-Schmidt/trace class integral operator for every
t > 0. Moreover, for every t > 0, the following holds with probability one.

1. e−tĤ = K̂(t).

2. Tr
[
e−tĤ

]
=

∫
I

K̂(t;x, x) dx <∞.

Remark 2.25. We point to Section 3.2.1 and Appendix A for a justification of the well-
posedness of the conditional expectation in (2.14) and that the kernel K̂(t) is Borel
measurable, thus making quantities such as∫

I

K̂(t;x, y)f(y) dy,

∫
I2

K̂(t;x, y)2 dxdy, and

∫
I

K̂(t;x, x) dx

(where f ∈ L2) well defined.

Remark 2.26. The closest analogs of Theorem 2.24 in the literature are [20, Proposition
1.8 (a)] and [22, Corollary 2.2], which concern Case 2 in the special case where V (x) = x

and Ξ is a Brownian motion. All other cases are new.

Remark 2.27. Though this direction is not explored in this paper, we expect that one
could prove (in similar fashion to, e.g., [25, Theorem 4.12]) that the kernels K̂(t;x, y)

admit continuous modifications in t, x, and y.
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2.3 Optimality and examples

We finish Section 2 by discussing the optimality of the growth condition (2.3) in our
results and by providing examples of covariance functions/distributions γ that satisfy
Assumption 2.18.

2.3.1 Optimality of potential growth

On the one hand, one of the key aspects of our proof of Proposition 2.10 for unbounded
domains I is to show that the growth rate of the squared increment process

x 7→
(
Ξ(x+ 1)− Ξ(x)

)2
is dominated by V as |x| → ∞ (see (4.2), (4.3), and the passage that follows). Given
that the growth rate of stationary Gaussian processes (such as Ξ(x + 1) − Ξ(x)) is at
most of order

√
log |x| (e.g., Corollary B.2), and that in many cases there is also a

matching lower bound (e.g., Remark B.4), the growth condition (2.3) appears to be the
best one can hope for with the method we use to prove Proposition 2.10. It would be
interesting to see if this condition is necessary for Ĥ to have compact resolvent (perhaps
by using the Sturm-Liouville interpretation (1.6)). That being said, for the deterministic
operator H = − 1

2∆ +V on I = (0,∞), it is well known that having a spectrum of discrete

eigenvalues that are bounded below is equivalent to
∫ x+δ

x
V (y) dy →∞ as x→∞ for all

δ > 0; hence it is natural to expect that V must have some kind logarithmic growth to
balance the Gaussian potential.

On the other hand, condition (2.3) is necessary to have that that E
[
‖K̂(t)‖22

]
< ∞

for t > 0 close to zero, which is crucial in our proof of Theorem 2.24. Given that the
deterministic semigroup e−tH is not trace class for small t > 0 when (2.3) does not hold,
we do not expect it is possible to improve Theorem 2.24 in that regard. We refer to
Remark 5.22 for more details.

2.3.2 Examples

Given the simplicity of Assumption 2.7, it is straightforward to come up with examples
of Gaussian noises to which Proposition 2.10 can be applied. In contrast, Assump-
tion 2.18 is a bit more involved. In what follows, we provide examples of covariance
functions/distributions γ that satisfy Assumption 2.18.

Example 2.28. Let γ : PCc → R be an even almost-everywhere-defined function or
Schwartz distribution.

1. (Bounded) If γ ∈ L∞(R), then we call ξ a bounded noise. Depending on the
regularity of γ, in many such cases ξ can actually be realized as a continuous
Gaussian process on R with covariance E[ξ(x)ξ(y)] = γ(x− y).

2. (White) If γ = σ2δ0 for some σ > 0, where δ0 denotes the delta Dirac distribution,
then ξ is a Gaussian white noise with variance σ2. This corresponds to stochastic
integration with respect to a two-sided Brownian motion W with variance σ2:

ξ(f) =

∫
R

f(x) dW (x).

3. (Fractional) If γ(x) := σ2H(2H − 1)|x|2H−2 for σ > 0 and H ∈ (1/2, 1), then ξ is a
fractional noise with variance σ2 and Hurst parameter H. This noise corresponds
to stochastic integration with respect to a two-sided fractional Brownian motion
WH with variance σ2 and Hurst parameter H:

ξ(f) =

∫
R

f(x) dWH(x).
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4. (Lp-Singular) Let ` ∈ N and 1 ≤ p1, . . . , p` < ∞. As a generalization of bounded
and fractional noise, we say that ξ is an Lp-singular noise if

γ = γ1 + · · ·+ γ` + γ∞,

where γi ∈ Lpi(R) for 1 ≤ i ≤ ` and γ∞ ∈ L∞(R). Indeed, the γi may have one or
several pi-integrable point singularities, such as γi(x) ∼ |x|−e as x → 0 for some
e ∈ (0, 1/pi), or γi(x) ∼ (− log |x|)e as x→ 0 for e > 0.

Our last result in this Section is the following.

Proposition 2.29. For every covariance γ in Example 2.28, there exists a centered
Gaussian process Ξ that satisfies Assumption 2.18.

3 Proof outline

In this section, we provide an outline of the proofs of our main results. Most of the
more technical results, which we state here as a string of propositions, are accounted
for in Sections 4 and 5. Throughout Section 3, we assume that Assumptions 2.1 and 2.3
are met.

3.1 Outline for Propositions 2.9 and 2.10

In this outline, we assume that Assumption 2.7 holds. Let FC ⊂ C∞0 be the set of
real-valued smooth functions ϕ : I → R such that

1. supp(ϕ) is a compact subset of I in Cases 1, 2-D, and 3-D;

2. supp(ϕ) is a compact subset of I’s closure in Cases 2-R and 3-R; and

3. supp(ϕ) is a compact subset of [0, b) in Case 3-M.

We begin with two classical results in the theory of Schrödinger operators. (For defini-
tions of the functional analysis terminology used in this section, we refer to [39, Section
VIII.6], [42, Section 7.5], or [44, Section 2.3].)

Lemma 3.1. For every κ > 0, there exists c = c(κ) > 0 such that for every f ∈ AC ∩ L2,
one has f(x)2 ≤ κ‖f ′‖22 + c‖f‖22 for all x ∈ I.
Proposition 3.2. E is closed and semibounded on D(E), and FC is a form core for E .
H is the unique self-adjoint operator on L2 whose sesquilinear form is E , and H has
compact resolvent. Lastly, ‖ · ‖∗ is equivalent to the “+1 norm” induced by the form E ,
where we recall that the latter is defined as

‖f‖2+1 := E(f, f) + (c+ 1)‖f‖22, f ∈ D(E),

with c > 0 being a constant large enough so that E(f, f) + c‖f‖2 ≥ 0 for every f ∈ D(E).

Although Lemma 3.1 and Proposition 3.2 can be proved using standard functional-
analytic arguments, we were not able to locate an exact statement in the literature that
covers every case considered in this paper. For the sake of completeness, we provide a
proof and references in Appendix C.

Remark 3.3. Since ‖ · ‖∗ and ‖ · ‖+1 are equivalent, the claim that E is closed on D(E)

and that FC is a form core is equivalent to the claim that
(
D(E), 〈·, ·〉∗

)
is a Hilbert space

in which FC is dense.

The following proposition, which we prove in Section 4, is a generalization of a result
that first appeared in [36], and also uses Lemma 3.1 as a crucial input:
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Proposition 3.4. The inequality (2.5) holds almost surely, and thus f 7→ ξ(f2) extends
uniquely to a continuous quadratic form on H1

V that satisfies (2.5) for all f ∈ H1
V .

Moreover, almost surely, for every θ > 0, there exists c = c(θ) > 0 such that

|ξ(f2)| ≤ θE(f, f) + c‖f‖22, f ∈ D(E). (3.1)

Thanks to (3.1), almost surely, ξ is an infinitesimally form-bounded perturbation of E .
Therefore, according to the KLMN theorem (e.g., [37, Theorem X.17] or [42, Theorem
7.5.7]), Ê = E + ξ is closed and semibounded on D(E), and FC is a form core for Ê .
Thus, by [39, Theorem VIII.15], there exists a unique self-adjoint operator Ĥ satisfying
conditions (1) and (2) in the statement of Proposition 2.10. Since H has compact
resolvent and Ĥ is infinitesimally form-bounded by H, the fact that Ĥ has compact
resolvent follows from standard variational estimates (e.g., [38, Theorem XIII.68]).

3.2 Outline for Theorem 2.24

We now go over the outline of the proof of our main result. Throughout, we assume
that Assumption 2.18 holds. The outline presented here is separated into five steps. In
the first step we provide details on the construction of the pathwise stochastic integral
(2.13). In the second step, we introduce smooth-noise approximations of Ĥ and K̂(t)

that serve as the basis of our proof of Theorem 2.24. Then, in the last three steps we
prove Theorem 2.24 using these smooth approximations.

3.2.1 Step 1. Stochastic integral

If f ∈ PCc is a step function of the form (2.8), then we can define a pathwise stochastic
integral in the usual way:

ξ(f) =

∫
R

f(x) dΞ(x) :=

k∑
i=1

ci
(
Ξ(xi+1)− Ξ(xi)

)
.

Thanks to (2.11), straightforward computations reveal that for such f we have the
isometry E

[
ξ(f)2

]
= ‖f‖2γ . According to (2.12), step functions are dense in PCc with

respect to ‖f‖2γ , and thus we may then uniquely define a stochastic integral ξ∗(f) for
arbitrary f ∈ PCc as the L2(Ω) limit of ξ(fn), where fn is a sequence of step functions
that converges to f in ‖ · ‖γ and L2(Ω) denotes the space of square-integrable random
variables on the same probability space on which Ξ is defined.

We now discuss how ξ(f) for general f ∈ PCc can be defined in a pathwise sense

as per Karandikar [26]. Given f ∈ PCc, for every n ∈ N, define k(n) and −∞ < τ
(n)
1 ≤

τ
(n)
2 ≤ · · · ≤ τ (n)

k(n)+1 <∞ as the quantities

τ
(n)
1 := inf

{
x ∈ R : f(x) 6= 0

}
, τ

(n)
k(n)+1 := sup

{
x ∈ R : f(x) 6= 0

}
and

τ
(n)
k := inf

{
x ≥ τ (n)

k−1 :
∣∣f(x)− f(τ (n)

k−1

)∣∣ ≥ 2−n
}
, 1 < k ≤ k(n).

Then, we define the approximate step function

f (n) :=

k(n)∑
k=1

f
(
τ

(n)
k

)
1

[τ
(n)
k ,τ

(n)
k+1)

as well as the pathwise stochastic integral

ξ(f) =

∫
R

f(x) dΞ(x) :=

{
lim
n→∞

ξ(f (n)) if the limit exists

0 otherwise.
(3.2)
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On the one hand, as argued in Appendix A (see also [26, Section 1]), the pathwise
definition of f 7→ ξ(f) in (3.2) enables K̂(t)’s definition as a conditional expectation of
ξ
(
Lt(Z)

)
given Ξ. On the other hand, ξ(f) retains its meaning as a stochastic integral,

since for every f ∈ PCc, it holds that ξ(f) = ξ∗(f) almost surely. Indeed, by combining

the L2(Ω)-‖ · ‖γ isometry of ξ∗, the definition of τ (n)
k , and (2.12), we get that

E
[(
ξ(f (n))− ξ∗(f)

)2]
= ‖f (n) − f‖2γ

≤ cγ

(∑̀
i=1

‖f (n) − f‖2qi

)
≤ cγ2−2n

(∑̀
i=1

|supp(f)|2/qi
)

;

since this is summable in n we conclude that ξ(f (n))→ ξ∗(f) almost surely, as desired.

Remark 3.5. Let f ∈ C∞0 (I), and suppose that we restrict our attention to the almost-
sure event on which Ξ is continuous. By a summation by parts, we note that

ξ(f (n)) =

k(n)∑
k=1

f
(
τ

(n)
k

)(
Ξ
(
τ

(n)
k+1

)
− Ξ

(
τ

(n)
k

))

= f
(
τ

(n)
k(n)

)
Ξ
(
τ

(n)
k(n)+1

)
− f

(
τ

(n)
1

)
Ξ
(
τ

(n)
1

)
−
k(n)∑
k=2

Ξ
(
τ

(n)
k

)(
f
(
τ

(n)
k

)
− f

(
τ

(n)
k−1

))
for all n ∈ N. On the one hand, in Cases 1 and 2, we invariably have that

f
(
τ

(n)
k(n)

)
Ξ
(
τ

(n)
k(n)+1

)
− f

(
τ

(n)
1

)
Ξ
(
τ

(n)
1

)
= 0

since Ξ(0) = 0 and f is compactly supported on I’s closure; similarly, in Case 3,

f
(
τ

(n)
k(n)

)
Ξ
(
τ

(n)
k(n)+1

)
− f

(
τ

(n)
1

)
Ξ
(
τ

(n)
1

)
= f(b)Ξ(b).

On the other hand, since f is of bounded variation, we have convergence to the usual
Riemann-Stieltjes integral:

lim
n→∞

k(n)∑
k=2

Ξ
(
τ

(n)
k

)(
f
(
τ

(n)
k

)
− f

(
τ

(n)
k−1

))
= −

∫
I

Ξ(x) df(x) = −〈f ′,Ξ〉.

In particular, the pathwise stochastic integral defined in (3.2) can be seen as an extension
of the Schwartz distribution Ξ′ as defined in Definition 2.8 to all of PCc. However, as
noted in an earlier remark, ξ need not preserve its linearity on all of PCc.

3.2.2 Step 2. Smooth approximations

A key ingredient in the proof of Theorem 2.24 consists of using smooth approximations
of Ξ′ for which the classical Feynman-Kac formula can be applied, thus creating a
connection between Ĥ as defined via a quadratic form and the kernels K̂(t).

Definition 3.6. Let % : R→ R be a mollifier, that is,

1. % is smooth, compactly supported, nonnegative, even (i.e., %(x) = %(−x)), and such
that

∫
%(x) dx = 1; and

2. if we define %ε(x) := ε−1%(x/ε) for every ε > 0, then %ε → δ0 as ε→ 0 in the space
of Schwartz distributions, where δ0 denotes the delta Dirac distribution.

For every ε > 0, we define the stochastic process Ξε := Ξ ∗ %ε(x), where ∗ denotes the
convolution.
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Remark 3.7. Since %ε is smooth, the process Ξ′ε = (Ξ∗%ε)′ = Ξ∗%′ε has continuous sample
paths. Thanks to (2.11), straightforward computations reveal that Ξ′ε is a stationary
Gaussian process with mean zero and covariance

E[Ξ′ε(x)Ξ′ε(y)] = E[(Ξ ∗ %′ε)(x)(Ξ ∗ %′ε)(y)]

=

∫
R2

E
[
Ξ(a)Ξ(b)

]
%′ε(a− x)%′ε(b− y) dadb =

(
γ ∗ %∗2ε

)
(x− y) (3.3)

for every x, y ∈ R, where the last equality follows from integration by parts.
Moreover, following-up on Remark 3.5, we note that the pathwise stochastic integral

ξ is coupled to the random Schwartz distribution

f 7→
∫
R

f(x)Ξ′ε(x) dx, f ∈ PCc

in the following way: For every f ∈ PCc, the function f ∗ %ε is smooth and compactly
supported on I + supp(%ε) ⊂ R, and thus by Remark 3.5 we have that∫

I

f(x)Ξ′ε(x) dx =

∫
I

f(x)(Ξ ∗ %ε)′(x) dx =

∫
I

f(x)(Ξ ∗ %′ε)(x) dx

= −
∫
R

(f ∗ %′ε)(x)Ξ(x) dx = −
∫
R

(f ∗ %ε)′(x)Ξ(x) dx = ξ(f ∗ %ε). (3.4)

Definition 3.8. For every ε > 0, let us define the sesquilinear form

Êε(f, g) := E(f, g) + 〈fg,Ξ′ε〉

on the form domain D(E), and the random kernel

K̂ε(t;x, y) :=


ΠB(t;x, y)Ex,yt

[
e−〈Lt(B),V+Ξ′ε〉

]
(Case 1)

ΠX(t;x, y)Ex,yt

[
e−〈Lt(X),V+Ξ′ε〉+ᾱL

0
t (X)

]
(Case 2)

ΠY (t;x, y)Ex,yt

[
e−〈Lt(Y ),V+Ξ′ε〉+ᾱL

0
t (Y )+β̄Lbt(Y )

]
(Case 3)

Since Ξ′ε has regular sample paths, applying classical operator theory to Ĥε yields
the following result:

Proposition 3.9. For every ε > 0, the following holds almost surely: There exists a
unique self-adjoint operator Ĥε with dense domain D(Ĥε) ⊂ L2 such that

1. D(Ĥε) ⊂ D(E);

2. For every f, g ∈ D(Ĥε), one has 〈f, Ĥεg〉 = Êε(f, g); and

3. Ĥε has compact resolvent.

For every t > 0, e−tĤε is a self-adjoint Hilbert-Schmidt/trace class operator, and we have
the Feynman-Kac formula e−tĤε = K̂ε(t). In particular,

K̂ε(t;x, y) = K̂ε(t; y, x), t > 0, x, y ∈ I; (3.5)∫
I

K̂ε(t;x, z)K̂ε(t̄; z, y) dz = K̂ε(t+ t̄;x, y), t, t̄ > 0, x, y ∈ I; (3.6)

K̂ε(t)f =

k∑
i=1

e−tλk(Ĥε)〈ψk(Ĥε), f〉ψk(Ĥε), f ∈ L2. (3.7)
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Moreover, as a direct consequence of the coupling (3.4) and the fact that ξ is a
Gaussian process with covariance 〈·, ·〉γ , we can show that the objects introduced in
Definition 3.8 serve as good approximations of Ĥ and K̂(t) in the following sense:

Proposition 3.10. Almost surely, every vanishing sequence in (0, 1] has a further subse-
quence (εn)n∈N along which

lim
n→∞

λk(Ĥεn) = λk(Ĥ) and lim
n→∞

‖ψk(Ĥεn)− ψk(Ĥ)‖2 = 0 (3.8)

for all k ∈ N, up to possibly relabeling the eigenfunctions of Ĥ if it has repeated
eigenvalues.

Proposition 3.11. For every t > 0, it holds that

lim
ε→0

E
[
‖K̂ε(t)− K̂(t)‖22

]
= 0 (3.9)

and

lim
ε→0

E

[(∫
I

K̂ε(t;x, x)− K̂(t;x, x) dx

)2]
= 0. (3.10)

3.2.3 Step 3. Feynman-Kac formula

We are now in a position to prove Theorem 2.24. We begin by proving that for every
t > 0, e−tĤ = K̂(t) almost surely. Let us fix some t > 0. By Propositions 3.9–3.11, almost
surely, there exists a vanishing sequence (εn)n∈N such that (3.5)–(3.7) holds for every
εn, and along which the limits (3.8) and

lim
n→∞

‖K̂εn(t)− K̂(t)‖2 = 0 (3.11)

hold. For the remainder of this step, we assume that we are working with an outcome in
this probability-one event.

Since the space L2(I × I) of Hilbert-Schmidt integral operators on L2 is complete,
(3.11) means that ‖K̂(t)‖2 <∞. In particular, K̂(t) is compact. Furthermore, given that
convergence in Hilbert-Schmidt norm implies weak operator convergence and every
K̂εn(t) = e−tĤεn is nonnegative and symmetric, this implies that K̂(t) is nonnegative
and symmetric, hence self-adjoint (e.g., [47, Theorems 4.28 and 6.11]). By the spectral
theorem for compact self-adjoint operators (e.g., [45, Theorems 5.4 and 5.6]), we then
know that there exists an orthonormal basis (Ψk)k∈N ⊂ L2 and nonnegative numbers
Λ1 ≥ Λ2 ≥ Λ3 ≥ · · · ≥ 0 such that K̂(t) satisfies

K̂(t)f =

∞∑
k=1

Λk〈Ψk, f〉Ψk, f ∈ L2.

Consequently, to prove that e−tĤ = K̂(t), we need only show that K̂(t)’s spectral
expansion is equivalent to (2.7).

On the one hand, since the Hilbert-Schmidt norm dominates the operator norm, it
follows from (3.11) that ‖K̂εn(t)− K̂(t)‖op → 0; hence e−tλk(Ĥεn ) → Λk for all k ∈ N by

(3.7). Given that λk(Ĥεn)→ λk(Ĥ) by (3.8), we conclude that Λk = e−tλk(Ĥ) for all k ∈ N.
On the other hand, we note that

‖K̂εn(t)ψk(Ĥεn)− K̂(t)ψk(Ĥ)‖2
≤ ‖K̂εn(t)ψk(Ĥεn)− K̂εn(t)ψk(Ĥ)‖2 + ‖K̂εn(t)ψk(Ĥ)− K̂(t)ψk(Ĥ)‖2
≤ ‖K̂εn(t)‖op‖ψk(Ĥεn)− ψk(Ĥ)‖2 + ‖K̂εn(t)− K̂(t)‖op.
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This vanishes as n → ∞ for all k ∈ N. Moreover, the spectral expansion (3.7) and the
limit (3.8) imply that

lim
n→∞

K̂εn(t)ψk(Ĥεn) = lim
n→∞

e−tλk(Ĥεn )ψk(Ĥεn) = e−tλk(Ĥ)ψk(Ĥ)

in L2; hence K̂(t)ψk(Ĥ) = e−tλk(Ĥ)ψk(Ĥ). Thus
(
e−tλk(Ĥ), ψk(Ĥ)

)
k∈N can be taken as

the eigenvalue-eigenfunction pairs for K̂(t), concluding the proof that K̂(t) = e−tĤ .

3.2.4 Step 4. Trace formula

Next, we prove Theorem 2.24 (2), that is, for every t > 0, Tr[e−tĤ ] =
∫
I
K̂(t;x, x) dx <∞

almost surely. Let t > 0 be fixed. By Propositions 3.9 and 3.11, we can find a vanishing
sequence (εn)n∈N such that (3.5)–(3.7) hold for all εn and along which

lim
n→∞

‖K̂εn(t/2)− K̂(t/2)‖2 = 0 and lim
n→∞

∣∣∣∣∫
I

K̂εn(t;x, x)− K̂(t;x, x) dx

∣∣∣∣ = 0 (3.12)

almost surely. Since e−tĤ is by definition a semigroup, we have that

Tr[e−tĤ ] =

∞∑
k=1

(
e−(t/2)λk(Ĥ)

)2

= ‖e−(t/2)Ĥ‖22. (3.13)

Then, by combining the symmetry and semigroup properties (3.5) and (3.6), the almost
sure convergences (3.12), and the almost sure equality K̂(t/2) = e−(t/2)Ĥ established in
the previous step of this proof, we obtain that

‖e−(t/2)Ĥ‖22 = ‖K̂(t/2)‖22 = lim
n→∞

‖K̂εn(t/2)‖22

= lim
n→∞

∫
I2

K̂εn(t/2;x, y)2 dydx = lim
n→∞

∫
I

(∫
I

K̂εn(t/2;x, y)K̂εn(t/2; y, x) dy

)
dx

= lim
n→∞

∫
I

K̂εn(t;x, x) dx =

∫
I

K̂(t;x, x) dx

almost surely. Since we know that ‖K̂(t/2)‖2 <∞ almost surely from the previous step,
this concludes the proof of Theorem 2.24 (2).

3.2.5 Step 5. Last properties

We now conclude the proof of Theorem 2.24 by showing that, almost surely, e−tĤ is a
Hilbert-Schmidt/trace class integral operator for every t > 0. By combining (3.13) with
the fact that every Hilbert-Schmidt operator on L2 has an integral kernel in L2(I × I)

(e.g., [47, Theorem 6.11]), we need only prove that, almost surely, e−tĤ is trace class for
all t > 0.

In the previous step of this proof, we have already shown the weaker statement that,
for every t > 0, Tr[e−tĤ ] <∞ almost surely. By a countable intersection we can extend

this to the statement that there exists a probability-one event on which Tr[e−tĤ ] <∞ for
every t ∈ Q ∩ (0,∞). Since λk(Ĥ) → ∞ as k → ∞, there exists some k0 ∈ N such that

λk(Ĥ) > 0 for every k > k0. Since
∑k0

k=1 e−tλk(Ĥ) is finite for every t and
∑∞
k=k0+1 e−tλk(Ĥ)

is monotone decreasing in t, the fact that Tr[e−tĤ ] <∞ holds for t ∈ Q ∩ (0,∞) implies
that it holds for all t > 0, concluding the proof of Theorem 2.24.

Remark 3.12. In contrast to the proofs of [20, Proposition 1.8 (a)] and [22, Corollary
2.2] (which we recall apply to Case 2 with V (x) = x), the argument presented here uses
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smooth approximations of K̂(t) rather than random matrix approximations. Since the
present paper does not deal with convergence of random matrices, this choice is natural,
and it allows to sidestep several technical difficulties involved with discrete models. With
this said, the proof of (3.8) is inspired by the convergence result for the spectrum of
random matrices in [3, Section 2] and [36, Section 5]. We refer to Section 5 for the
details.

3.3 Proof of Proposition 2.29

The main technical result in the proof of Proposition 2.29 is the following estimate,
which is a direct consequence of [19, Lemma 4.2] (as shown in [19], (3.14) is a straight-
forward consequence of Young’s convolution inequality).

Proposition 3.13. Using the notations of Example 2.28, there exists a constant cγ > 0

such that for every f ∈ PCc, it holds that

‖f‖2γ ≤


cγ‖f‖21 (bounded noise)

cγ‖f‖22 (white noise)

cγ
(
‖f‖22 + ‖f‖21

)
(fractional noise with H ∈ ( 1

2 , 1))

cγ
(∑`

i=1 ‖f‖21/(1−1/2pi)
+ ‖f‖21

)
(Lp-singular noise with pi ≥ 1).

(3.14)

Whenever γ is such that 〈·, ·〉γ is a semi-inner-product, we know from standard
existence theorems that there exists a Gaussian process Ξ on R with covariance (2.11).
As argued in Remark 2.20, such a process must have stationary increments. To see that
such Ξ have continuous versions, we note that for any 1 ≤ q ≤ 2 and and x < y such that
y−x ≤ 1, one has ‖1[x,y)‖4q = (y−x)4/q with 4/q > 1. Thus, given that 1/(1−1/2p) ∈ (1, 2]

for every p ≥ 1, it follows from Proposition 3.13 that there exists some constants c, r > 0

such that
E
[(

Ξ(x)− Ξ(y)
)4]

= 3! ‖1[x,y)‖4γ ≤ c|x− y|1+r

for every x < y ∈ R. The existence of a continuous version then follows from the classical
Kolmogorov criterion (e.g., [29, Section 14.1]).

4 Proof of Propositions 2.9 and 2.10

In this section, we complete the proof of Propositions 2.9 and 2.10. Following-up on
the outline in Section 3.1, it only remains to prove Proposition 3.4.

4.1 Step 1. Reduction to a simple inequality

We begin by showing that Proposition 3.4 can be entirely reduced to the following
claim: Almost surely, for every θ > 0, there exists c = c(θ) > 0 such that

|ξ(f2)| ≤ θ
(

1
2‖f

′‖22 + ‖V 1/2f‖22
)

+ c‖f‖22 (4.1)

for every f ∈ C∞0 .
This is easiest to see in Cases 1, 2-D, and 3-D: On the one hand, in those cases (4.1)

directly implies (3.1) for all f ∈ FC, which we can then extend to every f ∈ D(E) since
FC is a form core for E . On the other hand, (4.1) implies that |ξ(f2)| ≤ max{θ, c}‖f‖2∗,
which yields (2.5). With (2.5) established, the unique continuous extension of ξ(f2) to
H1
V then follows from the fact that C∞0 is dense in the Hilbert space (H1

V , 〈·, ·〉∗).
To see how (4.1) implies the desired estimate in other cases, let us consider for

example Case 2-R: By (4.1), almost surely, for every θ̄ > 0 there exists c̄ > 0 such that

|ξ(f2)| ≤ θ̄
(

1
2‖f

′‖22 + ‖V 1/2f‖22
)

+ c̄‖f‖22 = θ̄E(f, f) + θ̄α
2 f(0)2 + c̄‖f‖22.
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At this point, controlling f(0)2 with Lemma 3.1 yields the desired estimate (with the
straightforward substitution θ := θ̄(1 + ακ

2 )). Cases 3-R and 3-M can be dealt with in the
same way.

4.2 Step 2. Proof of (4.1)

We now complete the proof of Proposition 3.4 by proving (4.1). We begin with Cases
1 and 2. Following [32, 36], we define the integrated process

Ξ̃(x) :=

∫ x+1

x

Ξ(y) dy, x ∈ R

so that we can write Ξ(x) = Ξ̃(x) +
(
Ξ(x)− Ξ̃(x)

)
; hence for every f ∈ C∞0 , one has

ξ(f2) = −〈2f ′f, Ξ̃〉 − 〈2f ′f,Ξ− Ξ̃〉 = f2(0)Ξ̃(0) + 〈f2, Ξ̃′〉+ 2〈f ′f, Ξ̃− Ξ〉

by Definition 2.8 and an integration by parts. By applying Lemma 3.1 to the term
f2(0)Ξ̃(0) (since |Ξ̃(0)| < ∞ whenever Ξ’s path is continuous), it suffices to prove that
almost surely, for every θ > 0, there exists c > 0 such that

|〈f2, Ξ̃′〉|+ 2|〈f ′f, Ξ̃− Ξ〉| ≤ θ
(

1
2‖f

′‖22 + ‖V 1/2f‖22
)

+ c‖f‖22

for all f ∈ C∞0 . Thanks to Assumption 2.7, the processes x 7→ Ξ̃′(x) and x 7→ Ξ̃(x)− Ξ(x)

are continuous stationary centered Gaussian processes on R, and thus it follows from
standard Gaussian suprema estimates (e.g., Corollary B.2) that there exists a finite
random variable C > 0 such that, almost surely,

|Ξ̃′(x)|,
(
Ξ(x)− Ξ̃(x)

)2 ≤ C log(2 + |x|) (4.2)

for all x ∈ I. Since V (x) � log |x| as |x| → ∞, for every θ > 0, there exists c̃1, c̃2 > 0

depending on θ such that

C log(2 + |x|) ≤ θ
2

(
c̃1 + V (x)

)
,

√
C log(2 + |x|) ≤ θ

2

√
c̃2 + V (x) (4.3)

for all x ∈ I. On the one hand, (4.2) and the above inequality imply that∫
I

f(x)2|Ξ̃′(x)| dx ≤ θ
2‖V

1/2f‖22 + θc̃1
2 ‖f‖

2
2.

On the other hand, the same inequalities and |zz̄| ≤ 1
2 (z2 + z̄2) imply∫

I

|f ′(x)f(x)|
∣∣Ξ̃(x)− Ξ(x)

∣∣ dx ≤ θ

2

∫
I

|f ′(x)f(x)|
√
c̃2 + V (x) dx

≤ θ

2

(∫
I

f ′(x)2 dx+

∫
I

f(x)2
(
c̃2 + V (x)

)
dx

)
≤ θ

2

(
‖f ′‖22 + ‖V 1/2f‖22

)
+ θc̃2

2 ‖f‖
2
2,

concluding the proof.
Suppose then that we are in Case 3. Since Ξ is almost surely continuous by Assump-

tion 2.7, the random variable C := sup0≤x≤b |Ξ(x)| is finite, and thus

|ξ(f2)| ≤ 2C

∫ b

0

|f ′(x)| |f(x)| dx+ |Ξ(b)|f(b)2.

An application of the bound |f ′| |f | ≤ κ
2 (f ′)2 + 1

2κf
2 for arbitrary κ > 0 followed by Lemma

3.1 to f(b)2 then yield an upper bound of the form |ξ(f2)| ≤ θ
2‖f

′‖22 + c‖f‖22, which is
better than (4.1).
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5 Proof of Theorem 2.24

In this section, we complete the outline for the proof of Theorem 2.24 provided in
Section 3.2 by proving Propositions 3.9–3.11. This is done in Sections 5.6–5.9 below.
Before we do this, however, we need several technical results regarding the deterministic
semigroup e−tH and the behaviour of the local times Lt(Z) and Lt(Z). This is done in
Sections 5.1–5.5.

5.1 Feynman-Kac formula for deterministic operators

We begin by recording some standard results in semigroup theory. By the Feynman-
Kac formula, we expect that e−tH = K(t) for the kernels K(t) defined as follows:

Definition 5.1. With the same notations as in Definitions 2.16 and 2.21, for every t > 0,
we define the kernel K(t) : I2 → R as

K(t;x, y) :=


ΠB(t;x, y)Ex,yt

[
e−〈Lt(B),V 〉

]
(Case 1)

ΠX(t;x, y)Ex,yt

[
e−〈Lt(X),V 〉+ᾱL0

t (X)
]

(Case 2)

ΠY (t;x, y)Ex,yt

[
e−〈Lt(Y ),V 〉+ᾱL0

t (Y )+β̄Lbt(Y )
]

(Case 3)

(5.1)

To prove this, we begin with a reminder regarding the Kato class of potentials.

Definition 5.2. We define the Kato class, which we denote by K = K(I), as the collection
of nonnegative functions f : I → R such that

sup
x∈I

∫
{y∈I:|x−y|≤1}

f(y) dy <∞. (5.2)

We use Kloc = Kloc(I) to denote the class of f ’s such that f1K ∈ K for every compact
subset K of I’s closure.

Remark 5.3. There is a large diversity of equivalent definitions of the Kato class, some
of which are probabilistic. See, for instance, [41, Section A.2].

Theorem 5.4. If V ∈ Kloc, then e−tH = K(t) for all t > 0. Moreover,

K(t;x, y) = K(t; y, x), t > 0, x, y ∈ I; (5.3)∫
I

K(t;x, z)K(t̄; z, y) dz = K(t+ t̄;x, y), t, t̄ > 0, x, y ∈ I. (5.4)

While Theorem 5.4 follows from standard functional-analytic methods (e.g., [11]), we
were not able to locate an exact statement in the literature that covers Cases 2-R and
3-M. We provide a full proof and references in Appendix D.

It is easy to see from (5.2) that locally integrable functions are in Kloc so that, by
Assumption 2.3, V ∈ Kloc. Therefore, we have the following immediate consequence of
Theorem 5.4:

Corollary 5.5. Theorem 5.4 holds under Assumptions 2.1 and 2.3.

5.2 Reflected Brownian motion couplings

The local time process of the Brownian motion B is much more well studied than that
of its reflected versions X or Y . Thus, it is convenient to reduce statements regarding
the local times of the latter into statements concerning the local time of B. In order to
achieve this, we use the following couplings of B with X and Y .
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5.2.1 Half-line

For any x > 0, we can couple B and X in such a way that Xx(t) = |Bx(t)| for every t ≥ 0.
In particular, for any functional F of Brownian paths, one has

Ex[F (X)] = Ex[F (|B|)]. (5.5)

Under the same coupling, we observe that for every positive x, y, and t, one has

Xx,y
t

d
=
(
|Bx|

∣∣Bx(t) ∈ {−y, y}
)
.

Note that

P
[
Bx(t) = y

∣∣Bx(t) ∈ {−y, y}
]

=
Gt(x− y)

Gt(x− y) + Gt(x+ y)
=

ΠB(t;x, y)

ΠX(t;x, y)
,

and similarly,

P
[
Bx(t) = −y

∣∣Bx(t) ∈ {−y, y}
]

=
ΠB(t;x,−y)

ΠX(t;x, y)
.

Therefore, for any path functional F , it holds that

ΠX(t;x, y)Ex,yt [F (X)] = ΠX(t;x, y)E
[
F (|Bx|)|Bx(t) ∈ {−y, y}

]
= ΠB(t;x, y)Ex,yt

[
F (|B|)

]
+ ΠB(t;x,−y)Ex,−yt

[
F (|B|)

]
. (5.6)

According to the strong Markov property and the symmetry about 0 of Brownian
motion, we note the equivalence of conditionings(

|Bx|
∣∣Bx(t) = −y

) d
=
(
|Bx|

∣∣ τ0(Bx) < t and Bx(t) = y
)
, (5.7)

where we define the hitting time τ0 as in Remark 2.22. Indeed, we can obtain the
left-hand side of (5.7) from the right-hand side by reflecting (Bx|Bx(t) = −y) after it first
hits zero and then taking an absolute value (see Figure 1 below for an illustration). Since

P[τ0(Bx) < t|Bx(t) = y]−1 ΠB(t;x,−y) = e2xy/t ΠB(t;x,−y) = ΠB(t;x, y)

(this is easily computed from the joint density of the running maximum and current value
of a Brownian motion [40, Chapter III, Exercise 3.14]), we see that

ΠB(t;x,−y)Ex,−yt

[
F (|B|)

]
= ΠB(t, x, y)Ex,yt

[
1{τ0(B)<t}F (|B|)

]
.

Thus (5.6) becomes

ΠX(t;x, y)Ex,yt [F (X)] = ΠB(t;x, y)Ex,yt
[
(1 + 1{τ0(B)<t})F (|B|)

]
. (5.8)

Finally, given that ΠB(t;x, y)/ΠX(t;x, y) ≤ 1, if F ≥ 0, then (5.8) yields the inequality

Ex,yt [F (X)] ≤ 2Ex,yt [F (|B|)]. (5.9)

5.2.2 Bounded interval

For any x ∈ (0, b), we can couple Y x and Bx by reflecting the path of the latter on the
boundary of (0, b), that is,

Y x(t) :=

{
Bx(t)− 2kb if Bx(t) ∈ [2kb, (2k + 1)b], k ∈ Z,
|Bx(t)− 2kb| if Bx(t) ∈ [(2k − 1)b, 2kb], k ∈ Z.

(5.10)

(See Figure 2 below for an illustration of this coupling.) Under this coupling, it is clear
that for any z ∈ (0, b), we have

Lzt (Y
x) =

∑
a∈2bZ±z

Lat (Bx). (5.11)
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0

x y

−y

Figure 1: Reflection Principle: The path of Bx,−yt (black) and its reflection after the first
passage to zero (red).

0

b

2b

3b

4b

5b

Figure 2: Path of Bx (black) and its reflection on the boundary of (0, b) (red).

5.3 Boundary local time

In this section, we control the exponential moments of the boundary local time of the
reflected paths X and Y .

Lemma 5.6. For every θ, t > 0 and c ∈ {0, b}, it holds that

sup
x∈(0,∞)

Ex
[
eθL

0
t (X)

]
, sup
x∈(0,b)

Ex
[
eθL

c
t(Y )

]
<∞. (5.12)

Proof. We begin by proving (5.12) in Case 2 (i.e., the process X). By (5.5) it suffices to
prove that

sup
x∈(0,∞)

Ex
[
eθL

0
t (B)

]
<∞

for every θ, t > 0, where

L0
t (B) := lim

ε→0

1

2ε

∫ t

0

1{−ε<B(s)<ε} ds.

On the one hand, by Brownian scaling, we have the equality in law

L0
t (B

x
t )

d
= t1/2L0

1(Bt
−1/2x

1 ). (5.13)

EJP 26 (2021), paper 107.
Page 24/47

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP654
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Semigroups for 1D Schrödinger operators with Gaussian noise

On the other hand, according to [35, (1)], for every x, y ∈ R and ` > 0, one has

P[L0
1(Bx) ∈ d`, Bx(1) ∈ dy] =

(|x|+ |y|+ `)e−(|x|+|y|+`)2/2

√
2π

d`dy;

integrating out the y variable then yields

P[L0
1(Bx) ∈ d`] =

2e−(|x|+`)2/2

√
2π

. (5.14)

Thanks to (5.13) and (5.14), we see that

sup
x∈(0,∞)

Ext
[
eθL

0
t (B)

]
≤ E0

1

[
eθt

1/2L0
1(B)

]
<∞

for every θ, t > 0; hence (5.12) holds in Case 2.
The proof of (5.12) for Case 3 (i.e., the process Y ) follows directly from [34, (2.18)

and (3.11’)], which states that there exists constants K,K ′ > 0 (depending on θ) such
that Ex

[
eθL

c
t(Y )

]
≤ K ′eKt for all t > 0 and x ∈ (0, b).

Next, we aim to extend the result of Lemma 5.6 to the local time of the bridge
processes Zx,xt . Before we can do this, we need the following estimate on ΠZ .

Lemma 5.7. For every t > 0, it holds that

st(Z) := sup
x,y∈I

ΠZ(t/2;x, y)

ΠZ(t;x, x)
<∞. (5.15)

Proof. In all three cases, ΠZ(t;x, x) ≥ 1/
√

2πt, and thus it suffices to prove that

sup
(x,y)∈I2

ΠZ(t;x, y) <∞. (5.16)

In Cases 1 & 2, this is trivial. In Case 3, we recall that, by definition,

ΠY (t;x, y) :=
∑

z∈2bZ±y

Gt(x− z) =
1√
2πt

(∑
k∈Z

e−(x+y−2bk)2/2t + e−(x−y−2bk)2/2t

)
.

According to the integral test for series convergence, we note that for every b, t > 0 and
z ∈ R, it holds that

∞∑
k=d−z/2be

e−(z+2bk)2/2t

√
2πt

≤ e−(z+2bd−z/2be)2/2t

√
2πt

+

∫ ∞
d−z/2be

e−(z+2bu)2/2t

√
2πt

du ≤ 1√
2πt

+
1

b
,

and similarly for the sum from k = −∞ to b−z/2bc; hence (5.16) holds.

We finish this section with the following.

Lemma 5.8. For every θ, t > 0 and c ∈ {0, b}, it holds that

sup
x∈(0,∞)

Ex,xt
[
eθL

0
t (X)

]
, sup
x∈(0,b)

Ex,xt
[
eθL

c
t(Y )

]
<∞. (5.17)

Proof. As it turns out, (5.17) follows from Lemma 5.6. The trick that we use to prove
this makes several other appearances in this paper: Since the exponential function
is nonnegative, for every θ > 0, an application of the tower property and the Doob
h-transform yields

Ex,xt

[
eθL

c
t(Z)

]
= E

[
Ex,xt

[
eθL

c
t(Z)

∣∣Zx,xt (t/2)
]]

=

∫
I

Ex,xt

[
eθL

c
t(Z)

∣∣Zx,xt (t/2) = y
]ΠZ(t/2;x, y)ΠZ(t/2; y, x)

ΠZ(t;x, x)
dy. (5.18)

EJP 26 (2021), paper 107.
Page 25/47

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP654
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Semigroups for 1D Schrödinger operators with Gaussian noise

If we condition on Zx,xt (t/2) = y, then the path segments(
Zx,xt (s) : 0 ≤ s ≤ t/2

)
and

(
Zx,xt (t/2 + s) : 0 ≤ s ≤ t/2

)
are independent of each other and have respective distributions Zx,yt/2 and Zy,xt/2 . Since

ΠZ(t/2; ·, ·) is symmetric for every t > 0, the time-reversed process s 7→ Zy,xt/2 (t/2 − s)
(with 0 ≤ s ≤ t/2) is equal in distribution to Zx,yt/2 . Thus,

Ex,xt

[
eθL

c
t(Z)

∣∣Zx,xt (t/2) = y
]

= Ex,xt

[
eθ(L

c
[0,t/2](Z)+Lc[t/2,t](Z))

∣∣Zx,xt (t/2) = y
]

= Ex,yt/2

[
eθL

c
t/2(Z)

]2
≤ Ex,yt/2

[
e2θLct/2(Z)

]
, (5.19)

where the equality in (5.19) follows from independence and the fact that local time is
invariant with respect to time reversal, and the last term in (5.19) follows from Jensen’s
inequality.

Let us define the constant st(Z) <∞ as in (5.15). According to (5.18) and (5.19), we
then have that for t > 0,

Ex,xt

[
eθL

c
t(Z)

]
≤ st(Z)

∫
I

Ex,yt/2

[
e2θLct/2(Z)

]
ΠZ(t/2;x, y) dy

= st(Z)Ext/2

[
e2θLct/2(Z)

]
. (5.20)

Hence the present result is a direct consequence of Lemma 5.6.

5.4 Lq norms of local time

In this section, we obtain bounds on the exponential moments of the Lq norms of the
local times of B, X, and Y . Such results for Bx are well known (see, for instance, [8,
Section 4.2]). For X and Y and the bridge processes, we rely on the couplings introduced
in Section 5.2 and the midpoint sampling trick used in the proof Lemma 5.8, respectively.
Before we state our result, we need the following.

Lemma 5.9. For every θ, u, v > 0 and q ≥ 1, it holds that

sup
x∈I

Ex
[
eθ‖Lu+v(Z)‖2q

]
≤
(

sup
x∈I

Ex
[
e2θ‖Lu(Z)‖2q

])(
sup
x∈I

Ex
[
e2θ‖Lv(Z)‖2q

])
Proof. Let x, y ∈ I be fixed. Conditional on Zx(u) = y, the path segments(

Zx(s) : 0 ≤ s ≤ u
)

and
(
Zx(u+ t) : 0 ≤ t ≤ ∞

)
are independent of each other and have respective distributions Zx,yu and Zy. Therefore,
by the tower property, we have that

Ex
[
eθ‖Lu+v(Z)‖2q

]
=

∫
I

Ex
[
eθ‖Lu+v(Z)‖2q

∣∣∣Zx(u) = y
]

ΠZ(u;x, y) dy

≤
∫
I

Ex
[
e2θ‖Lu(Z)‖2q+2θ‖L[u,u+v](Z)‖2q

∣∣∣Zx(u) = y
]

ΠZ(u;x, y) dy

=

∫
I

Ex,yu

[
e2θ‖Lu(Z)‖2q

]
Ey
[
e2θ‖Lv(Z)‖2q

]
ΠZ(u;x, y) dy

≤
(

sup
y∈I

Ey
[
e2θ‖Lv(Z)‖2q

])∫
I

Ex,yu

[
e2θ‖Lu(Z)‖2q

]
ΠZ(u;x, y) dy

=

(
sup
y∈I

Ey
[
e2θ‖Lv(Z)‖2q

])
Ex
[
e2θ‖Lu(Z)‖2q

]
,
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where the second line follows from Minkowski’s inequality and (z + z̄)2 ≤ 2(z2 + z̄2), and
the third line follows from conditional independence of the path segments. The result
then follows by taking a supremum over x ∈ I.

Lemma 5.10. Let 1 ≤ q ≤ 2. For every θ, t > 0, one has

sup
x∈I

Ex
[
eθ‖Lt(Z)‖2q

]
<∞. (5.21)

Proof. We begin by noting that ‖Lt(Z)‖1 = t by (2.10), and thus the result is trivial if
q = 1. To prove the result for 1 < q ≤ 2, we claim that it suffices to show that there
exists nonnegative random variables R1, R2 ≥ 0 with finite exponential moments in some
neighbourhood of zero, as well as constants κ1, κ2 > 1 such that

sup
x∈I

Ex
[
eθ‖Lt(Z)‖2q

]
≤ E

[
eθt

κ1R1

]
(5.22)

or

sup
x∈I

Ex
[
eθ‖Lt(Z)‖2q

]
≤ E

[
eθt

κ1R1

]1/2
E
[
eθt

κ2R2

]1/2
(5.23)

for all t > 0. To see this, suppose (5.22) holds, and let θ0 > 0 be such that E[eθR1 ] <∞
for all θ < θ0. Then, for any fixed θ > 0,

sup
x∈I

Ex
[
eθ‖Lt(Z)‖2q

]
≤ E

[
eθt

κ1R1

]
<∞

for every t < (θ0/θ)
1/κ1 . In particular, if u, v ≤ (θ0/2θ)

1/κ1 , we get from Lemma 5.9 that

sup
x∈I

Ex
[
eθ‖Lu+v(Z)‖2q

]
≤
(

sup
x∈I

Ex
[
e2θ‖Lu(Z)‖2q

])(
sup
x∈I

Ex
[
e2θ‖Lv(Z)‖2q

])
<∞.

Thus, (5.21) now holds for t < 2(θ0/2θ)
1/κ1 = 21−1/κ1(θ0/θ)

1/κ1 . Since κ1 > 1, 21−1/κ1 > 1,
and thus by repeating this procedure infinitely often, we obtain by induction that (5.21)
holds for all t > 0, as desired. Essentially the same argument gives the result if we
instead have (5.23).

We then prove (5.22)/(5.23). We argue on a case-by-case basis. Let us begin with
Case 1. If we couple Bx = x+B0 for all x, then changes of variables with a Brownian
scaling imply that

‖Lt(Bx)‖2q = ‖Lt(B0)‖2q
d
= t

(∫
R

Lt
−1/2a

1 (B0)q da

)2/q

= t1+1/q‖L1(B0)‖2q

for every q > 1. Thanks to the large deviation result [8, Theorem 4.2.1], we know that
for every q > 1, there exists some cq > 0 such that

P
[
‖L1(B0)‖2q > u

]
= e−cqu

q/(q−1)(1+o(1)), u→∞.

Thus, in Case 1 (5.22) holds with R1 = ‖L1(B0)‖2q and κ1 = 1 + 1/q.
Consider now Case 2. By coupling Xx(t) = |Bx(t)| for all t > 0, we note that for every

a > 0, one has Lat (Xx) = Lat (|Bx|) = Lat (Bx) + L−at (Bx). Therefore,

‖Lt(Xx)‖2q =

(∫ ∞
0

Lat (Xx)q da

)2/q

≤ 22(q−1)/q

(∫ ∞
0

Lat (Bx)q + L−at (Bx)q da

)2/q

= 22(q−1)/2‖Lt(Bx)‖2q.
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Thus, the proof in Case 2 follows from Case 1.
Finally, consider Case 3. Recall the coupling of Y x and Bx in (5.10), which yields the

local time identity (5.11). The argument that follows is inspired from the proof of [10,
Lemma 2.1]: Under the coupling (5.11),

(∫ b

0

Lzt (Y
x)q dz

)1/q

=

(∫ b

0

( ∑
k∈2bZ

Lk+z
t (Bx) + Lk−zt (Bx)

)q
dz

)1/q

≤ 2(q−1)/q
∑
k∈2bZ

(∫ b

−b
Lk+z
t (Bx)q dz

)1/q

.

Let us denote the maximum and minimum of Bx as

Mx(t) := sup
s∈[0,t]

Bx(s) and mx(t) := inf
s∈[0,t]

Bx(s).

In order for the integral
∫ b
−b L

k+z
t (Bx)2 dz to be different from zero, it is necessary that

Mx(t) ≥ k − b and mx(t) ≤ k + b, that is, Mx(t) + b ≥ k ≥ mx(t) − b. Consequently, for
every q > 1, one has

∑
k∈2bZ

(∫ b

−b
Lk+z
t (Bx)q dz

)1/q

=
∑
k∈2bZ

(∫ b

−b
Lk+z
t (Bx)q dz

)1/q

1{Mx(t)+b≥k≥mx(t)−b}

≤
( ∑
k∈2bZ

∫ b

−b
Lk+z
t (Bx)q dz

)1/q( ∑
k∈2bZ

1{Mx(t)+b≥k≥mx(t)−b}

) q−1
q

=
(∫

R

Lat (Bx)q da
)1/q( ∑

k∈2bZ

1{Mx(t)+b≥k≥mx(t)−b}

) q−1
q

≤ c1t1/q
(

sup
a∈R

Lat (Bx)
) q−1

q (
Mx(t)−mx(t) + c2

) q−1
q

≤ c1t1/q
(
c
q−1
q

2

(
sup
a∈R

Lat (Bx)
) q−1

q +
(

sup
a∈R

Lat (Bx) ·
(
Mx(t)−mx(t)

)) q−1
q

)

where c1, c2 > 0 only depend on b and q: The inequality on the third line follows
from Hölder’s inequality; the equality on the fourth line follows from the fact that∑
k∈2bZ

∫ b
−b L

a
t (Bx)q da is equal to

∫
R
Lat (Bx)q da; the inequality on the fifth line follows

from the fact that
∫
R
Lat (Bx)q da is bounded by (supa∈R L

a
t (Bx))q−1‖Lt(Bx)‖1, where

‖Lt(Bx)‖1 = t; and the inequality on the last line follows from the fact that(
Mx(t)−mx(t) + c2

) q−1
q ≤

(
Mx(t)−mx(t)

) q−1
q + c

q−1
q

2 .

By Brownian scaling and translation invariance, we have that

t1/q
(

sup
a∈R

Lat (Bx)
) q−1

q d
= t1/2+1/2q

(
sup
a∈R

La1(B0)
) q−1

q

and

t1/q
(

sup
a∈R

Lat (Bx) ·
(
Mx(t)−mx(t)

)) q−1
q

d
= t

(
sup
a∈R

La1(B0) ·
(
M0(1)−m0(1)

)) q−1
q

.
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Given that 4( q−1
q ) ≤ 2 for all q ∈ (1, 2] and that there exists θ0 > 0 small enough so that

E

[
exp

(
θ0 sup

a∈R
La1(B0)2

)]
,E
[
eθ0(M0(1)−m0(1))2

]
<∞,

(e.g., the proof of [10, Lemma 2.1] and references therein) we finally conclude by
Hölder’s inequality that (5.23) holds in Case 3 with

R1 = 4c21
(
c2 sup
a∈R

La1(B0)
)2 q−1

q , R2 = 4

(
sup
a∈R

La1(B0) ·
(
M0(1)−m0(1)

))2 q−1
q

,

and κ1 = 1 + 1/q and κ2 = 2.

Lemma 5.11. Let 1 ≤ q ≤ 2. For every θ, t > 0, one has

sup
x∈I

Ex,xt

[
eθ‖Lt(Z)‖2q

]
<∞.

Proof. Once again, the present result follows from Lemma 5.10. To see this, we use the
same trick employed in the proof of Lemma 5.8: For every θ > 0, the tower property and
the Doob h-transform yields

Ex,xt

[
eθ‖Lt(Z)‖2q

]
=

∫
I

Ex,xt

[
eθ‖Lt(Z)‖2q

∣∣Zx,xt (t/2) = y
]ΠZ(t/2;x, y)ΠZ(t/2; y, x)

ΠZ(t;x, x)
dy.

Arguing as in the passage following (5.18),

Ex,xt

[
eθ‖Lt(Z)‖2q

∣∣Zx,xt (t/2) = y
]

= Ex,xt

[
eθ‖Lt/2(Z)+L[t/2,t](Z)‖2q

∣∣Zx,xt (t/2) = y
]

≤ Ex,xt

[
e2θ(‖Lt/2(Z)‖2q+‖L[t/2,t](Z)‖2q)

∣∣Zx,xt (t/2) = y
]

= Ex,yt/2

[
e2θ‖Lt/2(Z)‖2q

]2
≤ Ex,yt/2

[
e4θ‖Lt/2(Z)‖2q

]
,

where the inequality on the second line follows from a combination the triangle inequality
and (z + z̄)2 ≤ 2(z2 + z̄2), the equality on the third line follows from independence and
invariance of local time under time reversal, and the inequality on the third line follows
from Jensen’s inequality.

With st(Z) as in (5.15), similarly to (5.20) we then have the upper bound

Ex,xt

[
eθ‖Lt(Z)‖2q

]
≤ st(Z)Ex

[
e4θ‖Lt/2(Z)‖2q

]
for every t > 0; whence the present result readily follows from Lemma 5.10.

5.5 Compactness properties of deterministic kernels

We now conclude the proofs of our technical results with some estimates regarding
the integrability/compactness of the deterministic kernels (5.1). In this section and
several others, to alleviate notation, we introduce the following shorthand.

Notation 5.12. For every t > 0, we define the path functional

At(Z) :=


−〈Lt(B), V 〉 (Case 1)

−〈Lt(X), V 〉+ ᾱL0
t (X) (Case 2)

−〈Lt(Y ), V 〉+ ᾱL0
t (Y ) + β̄Lbt(Y ) (Case 3)

(5.24)

Lemma 5.13. For every p ≥ 1 and t > 0,∫
I

ΠZ(t;x, x)Ex,xt

[
epAt(Z)

]1/p
dx <∞.
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Proof. Let us begin with Case 1. By Assumption 2.3, for every c1 > 0, there exists c2 > 0

large enough so that V (x) ≥ c1 log(1 + |x|)− c2 for every x ∈ R. Therefore, we have

ΠZ(t;x, x)Ex,xt

[
epAt(B)

]1/p
≤ ec2t√

2πt
Ex,xt

[
exp

(
−pc1

∫ t

0

log
(
1 + |B(s)|

)
ds

)]1/p

=
ec2t√
2πt

E0,0
t

[
exp

(
−pc1

∫ t

0

log
(
1 + |x+B(s)|

)
ds

)]1/p

.

By using the inequalities

log(1 + |x+ z|) ≥ log(1 + |x|)− log(1 + |z|) ≥ log(1 + |x|)− |z|, (5.25)

which are valid for all z ∈ R, we get the further upper bound

ec2t−c1t log(1+|x|)
√

2πt
E0,0
t

[
exp

(
pc1

∫ t

0

|B(s)| ds
)]1/p

.

On the one hand, a Brownian scaling implies that

E0,0
t

[
exp

(
pc1

∫ t

0

|B(s)| ds
)]

= E0,0
1

[
exp

(
t3/2pc1

∫ 1

0

|B(s)| ds
)]
≤ E

[
exp

(
t3/2pc1S

)]
, (5.26)

where S = sups∈[0,1] |B
0,0
1 (s)|. Note that s 7→ |B0,0

1 (s)| is a Bessel bridge of dimension one
(see, for instance, [40, Chapter XI]). Consequently, we know that (5.26) is finite for any
t, p, c1 > 0 thanks to the tail asymptotic for S in [23, Remark 3.1] (the Bessel bridge is
denoted by % in that paper). On the other hand, for any t > 0, we can choose c1 > 0 large
enough so that ∫

R

e−c1t log(1+|x|) dx =

∫
R

(1 + |x|)−c1t dx <∞,

concluding the proof in Case 1.
For Case 2, by Hölder’s inequality, we have that

ΠX(t;x, x)Ex,xt

[
epAt(X)

]1/p
≤ ΠX(t;x, x)Ex,xt

[
e−〈Lt(X),2pV 〉

]1/2p
sup

x∈(0,∞)

Ex,xt

[
e2pᾱL0

t (X)
]1/2p

.

The supremum of exponential moments of local time can be bounded by a direct applica-
tion of Lemma 5.8. Then, by (5.9), we have that∫ ∞

0

ΠX(t;x, x)Ex,xt

[
e−〈Lt(X),2pV 〉

]1/2p
dx ≤ 2

√
2√
πt

∫ ∞
0

Ex,xt

[
e−〈Lt(|B|),2pV 〉

]1/2p
dx.

This term can be controlled in the same way as Case 1.
For Case 3, since I = (0, b) is finite and V ≥ 0 (hence e−〈Lt(Y ),pV 〉 ≤ 1),∫ b

0

ΠY (t;x, x)Ex,xt

[
e−〈Lt(Y ),pV 〉+pᾱL0

t (Y )+pβ̄Lbt(Y )
]1/p

dx

≤ b

(
sup

x∈(0,b)

ΠY (t;x, x)

)(
sup

x∈(0,b)

Ex,xt

[
epᾱL

0
t (Y )+pβ̄Lbt(Y )

]1/p)
.

This is finite by Lemmas 5.7 and 5.8.
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5.6 Proof of Proposition 3.9

Suppose we can prove that for every ε > 0, the potential V + Ξ′ε satisfies Assumption
2.3 with probability one (up to a random additive constant, making it nonnegative).
Then, by Proposition 3.2, the Ĥε are self-adjoint with compact resolvent. Moreover,
K̂ε(t) = e−tĤε and the properties (3.5)–(3.7) then follow from Corollary 5.5, and the fact

that e−tĤ is trace class follows from Lemma 5.13 in the case p = 1. Thus, it only remains
to prove the following:

Lemma 5.14. For every ε > 0, there exists a random c = c(ε) ≥ 0 such that the potential
V + Ξ′ε + c satisfies Assumption 2.3 with probability one.

Proof. Since Ξ′ε is continuous, V + Ξ′ε is locally integrable on I’s closure. Moreover, if
we prove that |Ξ′ε(x)| � log |x| as x → ±∞, then the continuity of Ξ′ε also implies that
V + Ξ′ε is bounded below and is such that

lim
x→±∞

V (x) + Ξ′ε(x)

log |x|
=∞;

hence we can take

c(ε) := max

{
0,− inf

x∈I

(
V (x) + Ξ′ε(x)

)}
<∞.

The fact that |Ξ′ε(x)| � log |x| follows from Corollary B.2, since Ξ′ε is stationary.

5.7 Proof of Proposition 3.10

Our proof of this result is similar to [3, Section 2] and [36, Section 5], save for the fact
that we use smooth approximations instead of discrete ones. We provide the argument in
full. Following [3, Fact 2.2] and [36, Fact 2.2], we begin by recording some compactness
properties of ‖ · ‖∗.
Lemma 5.15. If (fn)n∈N ⊂ D(E) is such that supn ‖fn‖∗ <∞, then there exists f ∈ D(E)

and a subsequence (ni)i∈N along which

1. lim
i→∞

‖fni − f‖2 = 0;

2. lim
i→∞
〈g, f ′ni〉 = 〈g, f ′〉 for every g ∈ L2;

3. lim
i→∞

fni = f uniformly on compact sets; and

4. lim
i→∞
〈g, fni〉∗ = 〈g, f〉∗ for every g ∈ D(E).

Proof. (2) and (4) follow from the Banach-Alaoglu theorem. Next, by combining Lemma
3.1 with the estimate

|fn(x)− fn(y)| ≤
∫ y

x

|f ′n(x)| dx ≤ ‖f ′n‖2
√
|y − x|, (5.27)

we may extract a further subsequence along which (3) holds by the Arzelà-Ascoli theorem.
Finally, in Case 3, (3) immediately implies (1), whereas in Cases 1 and 2, by combining
(3) with the Vitali convergence theorem, to prove (1) it suffices to show that for every
ε > 0, there exists K > 0 large enough and δ > 0 small enough so that∫

I\[−K,K]

fni(x)2 dx ≤ ε2 and sup
x∈I

∫
I∩[x−δ,x+δ]

fni(x)2 dx ≤ ε2.

The first of these conditions follows from the fact that supn ‖V 1/2fn‖2 < ∞ and that
V (x)� log |x|; the second follows from the uniform bound in Lemma 3.1.
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Remark 5.16. It is easy to see by definition of 〈·, ·〉∗ that if fn → f in the sense of Lemma
5.15 (1)–(4), then for every g ∈ FC, one has

lim
n→∞

E(g, fn) = E(g, f).

We can reformulate Proposition 3.4 in terms of ‖ · ‖∗ thusly:

Lemma 5.17. There exist finite random variables c1, c2, c3 > 0 such that

c1‖f‖2∗ − c2‖f‖22 ≤ Ê(f, f) ≤ c3‖f‖2∗, f ∈ D(E).

We also have the following finite ε variant:

Lemma 5.18. There exist finite random variables c̃1, c̃2, c̃3 > 0 such that for every
ε ∈ (0, 1],

c̃1‖f‖2∗ − c̃2‖f‖22 ≤ Êε(f, f) ≤ c̃3‖f‖2∗, f ∈ D(E).

Proof. By repeating the proof of Proposition 3.4, we only need to prove that for every
θ > 0, there exists c > 0 large enough so that

|〈f2,Ξ′ε〉| ≤ θ
(

1
2‖f

′‖22 + ‖V 1/2f‖22
)

+ c‖f‖22
for every ε ∈ (0, 1] and f ∈ C∞0 . Let us define

Ξ̃ε(x) :=

∫ x+1

x

Ξε(y) dy.

Arguing as in the proof of Proposition 3.4, it suffices to show that

sup
ε∈(0,1]

sup
0≤x≤b

|Ξε(x)| <∞

almost surely and that there exist finite random variables C > 0 and u > 1 independent
of ε ∈ (0, 1] such that for every x ∈ R,

sup
y∈[0,1]

|Ξε(x+ y)− Ξε(x)| ≤ C
√

log(u+ |x|).

Let K > 0 be such that supp(%) ⊂ [−K,K] so that supp(%ε) ⊂ [−K,K] for all ε ∈ (0, 1].
On the one hand, since the %ε integrate to one,

sup
ε∈(0,1]

sup
0≤x≤b

∣∣∣∣∫
R

Ξ(x− y)%ε(y) dy

∣∣∣∣ ≤ sup
−K≤x≤b+K

|Ξ(x)| <∞.

On the other hand, by Corollary B.2 and Remark B.3, for every x ∈ I and ε ∈ (0, 1], one
has

sup
y∈[0,1]

∣∣∣∣∫
R

(
Ξ(x+ y − z)− Ξ(x− z)

)
%ε(z) dy

∣∣∣∣
≤ sup
w∈[x−K,x+K]

sup
y∈[0,1]

|Ξ(w + y)− Ξ(w)| ≤ sup
w∈[x−K,x+K]

C
√

log(2 + |w|),

which yields the desired estimate.

Remark 5.19. We see from Lemma 5.18 that the forms (f, g) 7→ 〈fg,Ξ′ε〉 are uniformly
form-bounded in ε ∈ (0, 1] by E , in the sense that there exists a 0 < θ < 1 and a random
c > 0 independent of ε such that

|〈f2,Ξ′ε〉| ≤ θE(f, f) + c‖f‖22, f ∈ D(E), ε ∈ (0, 1].

Among other things, this implies by the variational principle (see, for example, the
estimate in [38, Theorem XIII.68]) that for every k ∈ N and ε ∈ (0, 1], one has

(1− θ)λk(H)− c ≤ λk(Ĥε) ≤ (1 + θ)λk(H) + c. (5.28)
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Finally, we need the following convergence result.

Lemma 5.20. Almost surely, for every f, g ∈ FC, it holds that

lim
ε→0
〈fg,Ξ′ε〉 = ξ(fg). (5.29)

Moreover, if (εn)n∈N ⊂ (0, 1] converges to zero, supn ‖fn‖∗ <∞, and fn → f in the sense
of Lemma 5.15 (1)–(4), then almost surely,

lim
n→∞

〈fng,Ξ′εn〉 = ξ(fg) (5.30)

for every g ∈ FC.

Proof. Clearly Ξε → Ξ pointwise, hence for (5.29) it suffices to prove that

lim
ε→0

∫
R

(
(f ′g + fg′) ∗ %ε

)
(x)Ξ(x) dx = 〈f ′g + fg′,Ξ〉.

Since f ′g+fg′ is compactly supported and Ξ is continuous (hence bounded on compacts),
the result follows by dominated convergence.

Let us now prove (5.30). Using again the fact that g and g′ are compactly supported,
we know that there exists a compact K ⊂ R (in Case 3 we may simply take K = [0, b])
such that

〈f ′ng + fng
′,Ξ ∗ %εn〉 =

∫
K

(
f ′n(x)g(x) + fn(x)g′(x)

)
(Ξ ∗ %εn)(x) dx

and similarly with fn replaced by f and Ξ ∗ %εn replaced by Ξ. Given that, as n → ∞,
Ξ ∗ %εn1K → Ξ1K in L2, f ′ng+ fng

′ → f ′g+ fg′ weakly in L2, and supn ‖f ′ng+ fng
′‖2 <∞,

we conclude that

lim
n→∞

〈f ′ng + fng
′,Ξ ∗ %εn〉 = 〈f ′g + fg′,Ξ〉.

Hence (5.30) holds.

We finally have all the necessary ingredients to prove the spectral convergence. We
first prove that there exists a subsequence (εn)n∈N such that

lim inf
n→∞

λk(Ĥεn) ≥ λk(Ĥ) (5.31)

for every k ∈ N.

Remark 5.21. For the sake of readability, we henceforth denote any subsequence and
further subsequences of (εn)n∈N as (εn)n∈N itself.

According to (5.28), the λk(Ĥε) are uniformly bounded, and thus it follows from the
Bolzano-Weierstrass theorem that, along a subsequence εn, the limits

lim
n→∞

λk(Ĥεn) =: lk

exist and are finite for every k ∈ N, where −∞ < l1 ≤ l2 ≤ · · · . Since the eigenvalues
are bounded, it follows from Lemma 5.18 that the eigenfunctions ψk(Ĥε) are bounded in
‖ · ‖∗-norm uniformly in ε ∈ [0, 1), and thus there exist functions f1, f2, . . . and a further
subsequence along which ψk(Ĥεn)→ fk for every k in the sense of Lemma 5.15 (1)–(4).
By combining Remark 5.16 and (5.30), this means that

lk〈g, fk〉 = lim
n→∞

λk(Ĥεn)〈g, ψk(Ĥεn)〉 = lim
n→∞

Êεn(g, ψk(Ĥεn)) = Ê(g, fk)
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for all k ∈ N and g ∈ FC. That is, (lk, fk)k∈N consists of eigenvalue-eigenfunction pairs
of Ĥ, though these pairs may not exhaust the full spectrum. Since the lk are arranged in
increasing order, this implies that lk ≥ λk(Ĥ) for every k ∈ N, which proves (5.31).

We now prove that we can take Ĥ ′s eigenfunctions in such a way that, along a further
subsequence,

lim sup
n→∞

λk(Ĥεn) ≤ λk(Ĥ) and lim
n→∞

‖ψk(Ĥεn)− ψk(Ĥ)‖2 = 0 (5.32)

for every k ∈ N. We proceed by induction. Suppose that (5.32) holds up to k − 1 (if
k = 1 then we consider the base case). Let ψ be an eigenfunction of λk(Ĥ) orthogonal to
ψ1(Ĥ), . . . , ψk−1(Ĥ), and for every θ > 0, let ϕθ ∈ FC be such that ‖ϕθ − ψ‖∗ < θ. Let us
define the projections

πεn(ϕθ) := ϕθ −
k−1∑
`=1

〈ψ`(Ĥεn), ϕθ〉ψ`(Ĥεn)

of ϕθ onto the orthogonal of ψ1(Ĥεn), . . . , ψk−1(Ĥεn) (if k = 1, then we simply have
πεn(ϕθ) = ϕθ). Then, by the variational principle, for any θ > 0,

lim sup
n→∞

λk(Ĥεn) ≤ lim sup
n→∞

Êεn(πεn(ϕθ), πεn(ϕθ))

‖πεn(ϕθ)‖22
. (5.33)

Given that ‖ψ`(Ĥεn)− ψ`(Ĥ)‖2 → 0 for every ` ≤ k − 1, one has

lim
θ→0

lim
n→∞

πεn(ϕθ) = ψ

in L2. Moreover, the convergence of the λ`(Ĥεn) and Lemma 5.18 imply that the
(ψ`(Ĥεn))`=1,...,k−1 are uniformly bounded in ‖ · ‖∗-norm, and thus

lim
θ→0

lim sup
n→∞

∥∥∥∥∥
k−1∑
`=1

〈ψ`(Ĥεn), ϕθ〉ψ`(Ĥεn)

∥∥∥∥∥
∗

= 0.

We recall that, by Lemma 5.18, the maps f 7→ Êε(f, f) are continuous with respect to
‖ · ‖∗ uniformly in ε ∈ (0, 1]. Consequently,

lim sup
n→∞

λk(Ĥεn) ≤ lim sup
θ→0

lim sup
n→∞

Êεn(πεn(ϕθ), πεn(ϕθ))

‖πεn(ϕθ)‖22
,

since (5.33) holds for any θ > 0. Then, if we use (5.29) to compute the supremum limit
in n, followed by Lemma 5.17 for the limit in θ (recall that ‖ϕθ − ψ‖∗ → 0 as θ → 0), we
conclude that

lim sup
n→∞

λk(Ĥεn) ≤ Ê
(
ψ,ψ

)
= λk(Ĥ).

Since lim infn→∞ λk(Ĥεn) ≥ λk(Ĥ) by the previous step, we now know that λk(Ĥεn)→
λk(Ĥ) as n→∞. Thus, according to Lemma 5.18, the eigenfunctions (ψk(Ĥεn))n∈N are
uniformly bounded in ‖ · ‖∗-norm. Thus, there exists ψ̄ ∈ D(E) such that ψk(Ĥεn) → ψ̄

in the sense of Lemma 5.15 along a further subsequence. Combining this with Remark
5.16 and (5.30), and the fact that λk(Ĥεn)→ λk(Ĥ), we then also have

Ê(g, ψ̄) = lim
n→∞

Êεn(g, ψk(Ĥεn)) = lim
n→∞

λk(Ĥεn)〈g, ψk(Ĥεn)〉 = λk(Ĥ)〈g, ψ̄〉

for all g ∈ FC. In particular, ψ̄ must be an eigenfunction for λk(Ĥ), which is orthogonal
to ψ1(Ĥ), . . . , ψk−1(Ĥ). Thus we may take ψk(Ĥ) := ψ̄, concluding the proof of the
proposition since Lemma 5.15 includes L2 convergence.
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5.8 Proof of Proposition 3.11 Part 1

We begin by proving (3.9).

5.8.1 Step 1. Computation of expected L2 norm

Our first step in the proof of (3.9) is to obtain a formula for E
[
‖K̂ε(t)− K̂(t)‖22

]
that is

amenable to analysis, namely:

E
[
‖K̂ε(t)− K̂(t)‖22

]
(5.34)

=

∫
I

ΠZ(2t;x, x)Ex,x2t

[
eA2t(Z)

(
e

1
2‖L2t(Z)∗%ε‖2γ − 2e

1
2‖Lt(Z)∗%ε+L[t,2t](Z)‖2γ + e

1
2‖L2t(Z)‖2γ

)]
dx,

where we recall the notation of At(Z) from (5.24). We now prove (5.34).
By Fubini’s theorem,

E
[
‖K̂ε(t)− K̂(t)‖22

]
=

∫
I2

E[K̂ε(t;x, y)2]− 2E[K̂ε(t;x, y)K̂(t;x, y)] + E[K̂(t;x, y)2] dydx

=

∫
I2

ΠZ(t;x, y)2 E

[
eAt(Z

1;x,y
t )+At(Z

2;x,y
t )

(
EΞ

[
e−〈Lt(Z

1;x,y
t )+Lt(Z

2;x,y
t ),Ξ′ε〉

]
− 2EΞ

[
e−〈Lt(Z

1;x,y
t ),Ξ′ε〉−ξ(Lt(Z

2;x,y
t ))

]
+ EΞ

[
e−ξ(Lt(Z

1;x,y
t ))−ξ(Lt(Z2;x,y

t ))

])]
dydx,

where Zi;x,yt (i = 1, 2) are i.i.d. copies of Zx,yt that are independent of Ξ, and EΞ denotes
the expected value with respect to Ξ conditional on Zi;x,yt . For every f1, f2 ∈ PCc, the
sum ξ(f1) + ξ(f2) is Gaussian with mean zero and variance

∑2
i,j=1〈fi, fj〉γ = ‖f1 + f2‖2γ .

Thanks to (3.4), a straightforward Gaussian moment generating function computation
then yields that E

[
‖K̂ε(t)− K̂(t)‖22

]
is equal to

∫
I2

ΠZ(t;x, y)2E

[
eAt(Z

1;x,y
t )+At(Z

2;x,y
t )

(
e

1
2‖Lt(Z

1;x,y
t )∗%ε+Lt(Z2;x,y

t )∗%ε‖2γ

− 2e
1
2‖Lt(Z

1;x,y
t )∗%ε+Lt(Z2;x,y

t )‖2γ + e
1
2‖Lt(Z

1;x,y
t )+Lt(Z

2;x,y
t )‖2γ

)]
dydx.

By symmetry of ΠZ(t), the time-reversed process s 7→ Z2;x,y
t (t− s) is equal in distribution

to Z2;y,x
t ; since local time is invariant under time-reversal, E

[
‖K̂ε(t)−K̂(t)‖22

]
now equals

∫
I2

ΠZ(t;x, y)ΠZ(t; y, x)E

[
eAt(Z

1;x,y
t )+At(Z

2;y,x
t )

(
e

1
2‖Lt(Z

1;x,y
t )∗%ε+Lt(Z2;y,x

t )∗%ε‖2γ

− 2e
1
2‖Lt(Z

1;x,y
t )∗%ε+Lt(Z2;y,x

t )‖2γ + e
1
2‖Lt(Z

1;x,y
t )+Lt(Z

2;y,x
t )‖2γ

)]
dydx. (5.35)

As noted in the proof of Lemma 5.8, for every x, y ∈ I and t > 0, if we condition the
path Zx,x2t on Zx,x2t (t) = y, then the path segments(

Zx,x2t (s) : 0 ≤ s ≤ t
)

and
(
Zx,x2t (t+ s) : 0 ≤ s ≤ t

)
have the same joint distribution as Z1;x,y

t and Z2;y,x
t . Moreover, Zx,x2t (t) has density

y 7→ ΠZ(t;x, y)ΠZ(t; y, x)

ΠZ(2t;x, x)
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by the Doob h-transform. Given that the functions f 7→ 〈f, V 〉, f 7→ ᾱf and f 7→ β̄f are
all linear in f , and that local time is additive in the sense that

L[u,v](Z) + L[v,w](Z) = L[u,w](Z) and Lc[u,v](Z) + Lc[v,w](Z) = Lc[u,w](Z)

for all 0 < u < v < w, (5.34) is then a consequence of applying Fubini’s theorem to (5.35)
with the rearrangement

ΠZ(t;x, y)ΠZ(t; y, x) = ΠZ(2t;x, x)
ΠZ(t;x, y)ΠZ(t; y, x)

ΠZ(2t;x, x)
.

Indeed, we note for instance that∫
I

ΠZ(2t;x, x)

(∫
I

ΠZ(t;x, y)ΠZ(t; y, x)

ΠZ(2t;x, x)

·E
[
eAt(Z

1;x,y
t )+At(Z

2;y,x
t )+ 1

2‖Lt(Z
1;x,y
t )∗%ε+Lt(Z2;y,x

t )∗%ε‖2γ

]
dy

)
dx

=

∫
I

ΠZ(2t;x, x)

(∫
I

E

[
eA2t(Z

x,x
2t )+ 1

2‖L2t(Z
x,x
2t )∗%ε‖2γ

∣∣∣∣Zx,x2t (t) = y

]
P[Zx,x2t (t) ∈ dy] dy

)
dx

=

∫
I

ΠZ(2t;x, x)E

[
eA2t(Z

x,x
2t )+ 1

2‖L2t(Z
x,x
2t )∗%ε‖2γ

]
dx;

a similar argument applied to the terms on the second line of (5.35) then yields (5.34).

5.8.2 Step 2. Convergence inside expectation

With (5.34) in hand, our second step to prove (3.9) is to show that, for every x ∈ I, we
have the almost sure limit

lim
ε→0

e
1
2‖Lt(Z

x,x
2t )∗%ε‖2γ − 2e

1
2‖Lt(Z

x,x
2t )∗%ε+L[t,2t](Z

x,x
2t )‖2γ + e

1
2‖L2t(Z

x,x
2t )‖2γ = 0. (5.36)

This is a simple consequence of (2.12) coupled with the fact that if f ∈ Lq for some q ≥ 1,
then ‖f ∗ %ε − f‖q → 0 as ε→ 0.

5.8.3 Step 3. Convergence inside integral

Our next step is to prove that for every x ∈ I, we have the limit in expectation

lim
ε→0

Ex,x2t

[
eA2t(Z)

(
e

1
2‖L2t(Z)∗%ε‖2γ − 2e

1
2‖Lt(Z)∗%ε+L[t,2t](Z)‖2γ + e

1
2‖L2t(Z)‖2γ

)]
= 0. (5.37)

Thanks to (5.36), for this it suffices to prove that the prelimit variables in (5.37) are
uniformly integrable in ε > 0, which itself can be reduced to the claim that

sup
ε>0

Ex,x2t

[
e2A2t(Z)

(
e

1
2‖L2t(Z)∗%ε‖2γ − 2e

1
2‖Lt(Z)∗%ε+L[t,2t](Z)‖2γ + e

1
2‖L2t(Z)‖2γ

)2]
<∞.

By combining Hölder’s inequality with (z − 2z̄ + z̃)2 ≤ 16(z2 + z̄2 + z̃2), it is enough to
prove that

Ex,x2t

[
e4A2t(Z)

]
<∞ (5.38)
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and

sup
ε>0

Ex,x2t

[
e‖L2t(Z)∗%ε‖2γ

]
, sup
ε>0

Ex,x2t

[
e‖Lt(Z)∗%ε+L[t,2t](Z)‖2γ

]
,

Ex,x2t

[
e‖L2t(Z)‖2γ

]
<∞. (5.39)

By combining the assumption V ≥ 0 (hence e−4〈L2t(Z),V 〉 ≤ 1) and Lemma 5.8, we
immediately obtain (5.38). Next, it follows from (2.12) that

Ex,x2t

[
e‖L2t(Z)‖2γ

]
≤ Ex,x2t

[
ecγ

∑`
i=1 ‖L2t(Z)‖2qi

]
.

This is finite by Lemma 5.11 since 1 ≤ qi ≤ 2 for all 1 ≤ i ≤ `. According to Young’s
convolution inequality, the fact that the %ε integrate to one implies that ‖f ∗ %ε‖q ≤
‖f‖q‖%ε‖1 ≤ ‖f‖q. Thus, it follows from (2.12) that

sup
ε>0

Ex,x2t

[
e‖L2t(Z)∗%ε‖2γ

]
≤ Ex,x2t

[
ecγ

∑`
i=1 ‖L2t(Z)‖2qi

]
<∞.

Since ‖ · ‖γ is a seminorm, it satisfies the triangle inequality, and thus

‖Lt(Zx,x2t ) ∗ %ε + L[t,2t](Z
x,x
2t )‖2γ ≤ 2‖Lt(Zx,x2t ) ∗ %ε‖2γ + 2‖L[t,2t](Z

x,x
2t )‖2γ .

Given that Lt(Z
x,x
2t ) and L[t,2t](Z

x,x
2t ) are both smaller than L2t(Z

x,x
2t ), applying once again

(2.12) and Young’s inequality yields

sup
ε>0

Ex,x2t

[
e‖Lt(Z)∗%ε+L[t,2t](Z)‖2γ

]
≤ Ex,x2t

[
e4cγ

∑`
i=1 ‖L2t(Z)‖2qi

]
,

which is finite by Lemma 5.11. We therefore conclude that (5.39) holds, and thus (5.37)
as well.

5.8.4 Step 4. Convergence of the integral

Our final step in the proof of (3.9) is to show that (5.34) converges to zero. Given (5.37),
by applying the dominated convergence theorem, it suffices to find an integrable function
that dominates

ΠZ(2t;x, x)Ex,x2t

[
eA2t(Z)

(
e

1
2‖L2t(Z)∗%ε‖2γ − 2e

1
2‖Lt(Z)∗%ε+L[t,2t](Z)‖2γ + e

1
2‖L2t(Z)‖2γ

)]
(5.40)

for every ε > 0. By Holder’s inequality, this is bounded by

ΠZ(2t;x, x)Ex,x2t

[
e2A2t(Z)

]1/2

· sup
ε>0, x∈I

Ex,x2t

[(
e

1
2‖L2t(Z)∗%ε‖2γ − 2e

1
2‖Lt(Z)∗%ε+L[t,2t](Z)‖2γ + e

1
2‖L2t(Z)‖2γ

)2]1/2

. (5.41)

uniformly in ε > 0. Thanks to Lemma 5.13 with p = 2, the first line of (5.41) is integrable.
Then, by arguing in exactly the same way as in Section 5.8.3 (i.e., Young’s convolution
inequality, (2.12), etc.), the term on the second line of (5.41) is bounded by

sup
x∈I

CEx,x2t

[
eθcγ

∑`
i=1 ‖L2t(Z)‖2qi

]1/2
for some constants C, θ > 0. This is finite by Lemma 5.11. We therefore conclude that
(5.40) is dominated by an integrable function for all ε > 0; hence (3.9) holds.
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Remark 5.22. Arguing as in (5.34), we have the formula

E[‖K̂(t)‖22] =

∫
I

ΠZ(2t;x, x)Ex,x2t

[
eA2t(Z)+ 1

2‖L2t(Z)‖2γ
]

dx.

Considering Case 1 for simplicity, it follows from (the reverse) Hölder’s inequality that
for every p > 1, the above is bounded below by∫

R

1√
4πt

Ex,x2t

[
e−〈L2t(B),V/p〉

]p
E0,0

2t

[
e−

1
2(p−1)

‖La2t(B)‖2γ
]−(p−1)

dx

for every x ∈ R. If V (x) ≤ c1 log(1 + |x|) + c2 for some c1 > 0 and large enough c2 > 0,
then an argument similar to the proof of Lemma 5.13 (using the bound log(1 + |z + z̄|) ≤
log(1 + |z|) + |z̄| instead of (5.25)) yields the further lower bound

ζt

∫
R

(1 + |x|)−c1t dx

for some finite ζt > 0 that only depends on t; this blows up whenever t ≤ 1/c1. Thus, if
we do not assume (2.3), then there is always some t0 > 0 such that E[‖K̂(t)‖22] =∞ for
all t ≤ t0. Essentially the same argument implies that ‖e−tH‖2 =∞ for all t ≤ t0 for the
deterministic operator H as well.

5.9 Proof of Proposition 3.11 Part 2

We now prove (3.10). By Fubini,

E

[(∫
I

K̂ε(t;x, x)− K̂(t;x, x) dx

)2]
=

∫
I2

E[K̂ε(t;x, x)K̂ε(t; y, y)]

− 2E[K̂ε(t;x, x)K̂(t; y, y)] + E[K̂(t;x, x)K̂(t; y, y)] dxdy.

Arguing as in the previous section, the above is seen to be equal to∫
I2

ΠZ(t;x, x)Π(t; y, y)E

[
eAt(Z

1;x,x
t )+At(Z

2;y,y
t )

(
e

1
2‖Lt(Z

1;x,x
t )∗%ε+Lt(Z2;y,y

t )∗%ε‖2γ

− 2e
1
2‖Lt(Z

1;x,x
t )∗%ε+Lt(Z2;y,y

t )‖2γ + e
1
2‖Lt(Z

1;x,x
t )+Lt(Z

2;y,y
t )‖2γ

)]
dxdy,

where Z1;x,x
t and Z2;y,y

t are independent processes with respective distributions Zx,xt and
Zy,yt . At this point, essentially the same argument that we used to prove (3.9) in the
previous section yields (3.10).

A Measurability of kernel

We begin by proving that, in Case 1, for every realization of Ξ as a continuous function,
(x, y) 7→ K̂(t;x, y) can be made a Borel measurable function on R2.

Notation A.1. Let C[0,t] be the set of continuous functions f : [0, t]→ R, which we equip
with the uniform topology. Let C = C(R) be the space of continuous functions f : R→ R,
equipped with the uniform-on-compacts topology; and let C0 = C0(R) be the space of
continuous and compactly supported functions f : R→ R, equipped with the uniform
topology. We use P0,0

t to denote the probability measure of the Brownian bridge on C[0,t],
and assume that C is equipped with the probability measure of Ξ.

By Fubini’s theorem, it suffices to prove that there exists a measurable map

F : R2 ⊗ C[0,t] ⊗ C→ R
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such that for every (x, y) ∈ R2, ω ∈ C[0,t], and ω̄ ∈ C, we can interpret

e−〈Lt(B
x,y
t ),V 〉−ξ(Lt(Bx,yt )) = F

(
(x, y), ω, ω̄

)
(A.1)

(here, ω̄ ∈ C corresponds to a realization of Ξ, and
(
(x, y), ω

)
∈ R2 ⊗ C[0,t] corresponds

to a realization of the Brownian bridge Bx,yt with deterministic endpoints x and y and
random dynamics given by the Brownian path B0,0

t ). Indeed, if this holds, then for every
realization of the noise ω̄ ∈ C, we can define the Borel measurable function

K̂(t;x, y) :=

∫
C[0,t]

ΠB(t;x, y)F
(
(x, y), ω, ω̄

)
dP0,0

t (ω), x, y ∈ R,

which corresponds to the expected value of ΠB(t;x, y) e−〈Lt(B
x,y
t ),V 〉−ξ(Lt(Bx,yt )) given Ξ.

Given a realization ω ∈ C[0,t] of B0,0
t and x, y ∈ R, we can construct a realization of

Bx,yt by using the measurable map F1 := R2 ⊗ C[0,t] → C[0,t] defined as

F1

(
(x, y), ω

)
:=
(
ω(s) + (t−s)x

t + sy
t : 0 ≤ s ≤ t

)
.

Next, we let F2 : C[0,t] → C0 be the measurable function that maps ω to its (continuous)
local time. More precisely, let E ⊂ C[0,t] be the event on which the limit

Lat (ω) := lim
ε→0

1

ε

∫ t

0

1{a≤ω(s)<a+ε} ds

exists and is finite for all a ∈ R, and the resulting function a 7→ Lat (ω) is an element of
C0. (We know from [40, Chapter VI, Corollaries 1.8 and 1.9] that E has probability one
under the law of Bx,yt .) Then, for every ω ∈ C[0,t], we define the function F2(ω) ∈ C0 as(

F2(ω)
)
(a) := Lat (ω)1{ω∈E}, a ∈ R.

(To see that this is measurable, note that ω 7→ Lat (ω)1{ω∈E} is measurable for every fixed
a ∈ R, and that the Borel σ-algebra on C0 is generated by evaluation maps.)

Finally, let

F3(f, ω̄) =

∫
R

f(x) dω̄(x) :=

{
lim
n→∞

F
(n)
3 (f, ω̄) if the limit exists

0 otherwise

be the limit of the measurable maps F (n)
3 : C0 ⊗ C→ R defined as

F
(n)
3 (f, ω̄) :=

k(n)∑
k=1

f
(
τ

(n)
k

)(
ω̄
(
τ

(n)
k+1

)
− ω̄

(
τ

(n)
k

))
,

as per Section 3.2.1/Karandikar [26]. We may then define (A.1) using the compositions
of measurable maps

F
(
(x, y), ω, ω̄

)
:= e−〈F2◦F1((x,y),ω),V 〉−F3◦F2◦F1((x,y),ω,ω̄).

In order to prove that the diagonal x 7→ K(t;x, x) is Borel measurable, we apply the
same argument, except that x = y. Then, in order to prove the measurability in Cases
2 and 3, we can use the same argument, except that we add a few additional steps to
construct the conditioned processes(

Bx
∣∣ Bx(t) ∈ {y,−y}

)
or

(
Bx

∣∣ Bx(t) ∈ 2bZ± y
)
,

and then use the couplings discussed in Section 5.2 to construct Xx,y
t and Y x,yt and their

local times from the latter in the space of continuous and compactly supported functions
on [0,∞) and [0, b], respectively.
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B Tails of Gaussian suprema

Throughout this section, we assume that
(
X(x)

)
x∈T is a continuous centered Gaussian

process on some index space T. We have the following result regarding the behaviour of
the tails of X’s supremum.

Theorem B.1 ([29, (5.151)]). Let us define

v2 := sup
x∈T

E
[
X(x)2

]
and m := Med

[
sup
x∈T

X(x)

]
,

where Med denotes the median. It holds that

P

[
sup
x∈T

X(x) ≥ t
]
≤ 1− Φ

(
(t−m)/v

)
≤ e−(t−m)2/2v2

, t ≥ 0,

where Φ denotes the standard Gaussian CDF.

Using this Gaussian tails result, we can control the asymptotic growth of functions
involving Gaussian Suprema.

Corollary B.2. Let T = R, and suppose that X is stationary. There exists a finite random
variable C > 0 such that, almost surely,

|X(x)| ≤ C
√

log(2 + |x|), x ∈ R.

Proof. For every n ∈ Z \ {0} and c > 0, define the events

E(c)
n :=

{
sup

x∈[n,n+1]

|X(x)| ≥ c
√

log |n|

}

=

{
sup

x∈[n,n+1]

X(x) ≥ c
√

log |n|

}
∪

{
sup

x∈[n,n+1]

−X(x) ≥ c
√

log |n|

}
.

By the Borel-Cantelli lemma, it suffices to prove that
∑
nP[E

(c)
n ] <∞ for a large enough

c > 0. Since X is stationary, for every n, it holds that

sup
x∈[n,n+1]

E
[
X(x)2

]
= E[X(0)2] =: σ2

and

Med

[
sup

x∈[n,n+1]

X(x)

]
= Med

[
sup
x∈[0,1]

X(x)

]
=: µ;

the same holds true for −X. Thus, by applying Theorem B.1 to the suprema of X and
−X on [n, n+ 1] and a union bound, P[E

(c)
n ] ≤ 2 exp

(
(c
√

log |n| − µ)2/2σ2
)
. Since this is

summable in n for large enough c > 0, the result is proved.

Remark B.3. By examining the proof of Corollary B.2, we note that we can easily also
prove the stronger statement that, almost surely,

sup
y∈[x,x+1]

|X(y)| ≤ C
√

log(2 + |x|),

since

sup
y∈[x,x+1]

|X(y)| ≤ sup
y∈[bxc,bxc+1]

|X(y)|+ sup
y∈[bxc+1,bxc+2]

|X(y)|.
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Remark B.4. In the setting of Corollary B.2, if we also assume that

lim
|x|→∞

E
[
X(0)X(x)

]
= 0,

then we can prove that the upper bound in Corollary B.2 is optimal, in the sense that we
also have a matching lower bound of the form

sup
|y|≤x

|X(y)| ≥ C̃
√

log(2 + |x|), x ∈ R

for some 0 < C̃ < C (see, e.g., [7, Section 2.1] and references therein).

C Schrödinger operator theory

C.1 Proof of Lemma 3.1

Consider first Cases 1 and 2. Since f is continuous and square-integrable, f(x)→ 0

as x→∞, and thus

f(x)2 ≤
∫ ∞
x

∣∣(f(y)2
)′∣∣ dy ≤ 2

∫
I

|f(y)| |f ′(y)| dy.

The result then follows from the fact that for every κ > 0, we have the inequality
|zz̄| ≤ κ

2 z
2 + 1

2κ z̄
2. Suppose then that we are in Case 3. Define the function

h(x) :=

{
1 if x ∈ [0, b/2],

1− x−b/2
b/2 if x ∈ (b/2, b].

Then, for every x ∈ [0, b/2], one has

f(x)2 = f(x)2h(x) ≤
∫ b

x

∣∣(f(y)2h(y)
)′∣∣ dy

≤ 2

∫
I

|f(y)f ′(y)|h(y) dy +

∫
I

f(y)2|h′(y)| dy.

Since h ≤ 1 and |h′| ≤ 2/b, the same inequality used in Cases 1 and 2 yields the result.
To prove the bound for x ∈ (b/2, b], we apply the same method with the function

h(x) :=

{
2x
b if x ∈ [0, b/2],

1 if x ∈ (b/2, b].

C.2 Proof of Proposition 3.2

C.2.1 Step 1. Norm equivalence and E is semibounded

We begin by proving that ‖ · ‖+1 and ‖ · ‖∗ are equivalent and that E is semibounded. In
Cases 1, 2-D, and 3-D, it suffices to observe that, because V ≥ 0, one has

E(f, f) = 1
2‖f

′‖22 + ‖V 1/2f‖22 ≥ 0.

In the other cases, where E(f, f) contains boundary terms of the form −αf(0)2 and
−βf(b)2, we get that E is semibounded and the equivalence of norms from Lemma 3.1.

C.2.2 Step 2. E is closed

Knowing that ‖ · ‖+1 and ‖ · ‖∗ are equivalent, to prove that E is closed, it suffices to show
that

(
D(E), 〈·, ·〉∗

)
is a Hilbert space. This follows from the fact that Sobolev spaces and

the L2 space with measure V (x)dx are complete, noting further that ‖g′n − g′‖2 → 0 as
n→∞ for a sequence (gn)n∈N ⊂ D(E) and g ∈ H1

V implies by the fundamental theorem
of calculus that gn → g pointwise. Hence in cases 2-D, 3-D, and 3-M, boundary conditions
of the form gn(0) = 0 and gn(b) = 0 are preserved in the limit g.
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C.2.3 Step 3. Form core

By equivalence of ‖ · ‖+1 and ‖ · ‖∗, to prove that FC is a form core for E , it suffices to
show that FC is dense in

(
D(E), 〈·, ·〉∗

)
.

We begin by noting that it suffices to prove the result in Cases 1, 2-D, and 3-D. To
illustrate this, consider Case 2-R: Let Ĩ := (−1,∞), and define Ṽ : Ĩ → [0,∞) as Ṽ (x) = 0

for x ∈ (−1, 0] and Ṽ (x) = V (x) for x ∈ (0,∞). If the result is proved in Case 2-D, then
we know that for every locally absolutely continuous f̃ : Ĩ → R such that

f̃(−1) = 0 and

∫ ∞
−1

f̃ ′(x)2 +
(
Ṽ (x) + 1

)
f̃(x)2 dx <∞, (C.1)

there exists a sequence (ϕ̃n)n∈N of smooth functions compactly supported in Ĩ such that

lim
n→∞

∫ ∞
−1

(
f̃ ′(x)− ϕ̃′n(x)

)2
+
(
Ṽ (x) + 1

)(
f̃(x)− ϕ̃n(x)

)2
dx = 0.

We then get the result for Case 2-R by noting that the restriction of ϕ̃n to (0,∞) is an
element of FC, and that every function f ∈ D(E) can be extended to an f̃ of the form
(C.1). A similar extension argument can be used in Cases 3-R and 3-M.

Next, we argue that it suffices to prove the result in Case 3-D. We illustrate this
in Case 2-D: Let ψ be a smooth cutoff function such that ψ(x) = 1 for x ∈ (0, 1/2]

and ψ(x) = 0 for x ≥ 1. Then, for every R > 0, we let ψR(x) := ψ(x/R). Given

that ψ′R(x)2 = (1/R)2ψ′(x/R)2 → 0 and
(
ψR(x) − 1

)2 → 0 pointwise in x ∈ (0,∞) as
R → ∞, for every f ∈ D(E), it is easy to check that ‖ψRf − f‖∗ → 0 as R → 0 by
dominated convergence. Next, since supp(ψRf) is compact, if the result holds in Case
3-D, then we can find a smooth ϕR : (0,∞) → R with supp(ϕR) ⊂ supp(ψRf) such that
‖ϕR − ψRf‖∗ < 1/R. Taking R→∞ then yields the result in Case 2-D; a similar cutoff
argument holds for Case 1.

It now only remains to prove the result in Case 3-D. By [12, Lemma 7.1.1], we
know that, in Case 3-D, for every f ∈ D(E), there exists a sequence (ϕn)n∈N ⊂ FC

such that ‖ϕ′n − f ′‖2 → 0 and ‖ϕn − f‖2 → 0 as n → ∞. Since supn ‖ϕ′n‖2 < ∞ and
supn ‖ϕn‖2 <∞, it follows from Lemma 3.1 and (5.27) that (ϕn)n∈N is uniformly bounded
and equicontinuous, hence we get ‖(ϕni−f)V 1/2‖2 → 0 along some subsequence (ni)i∈N
by Arzelà-Ascoli. Therefore, ‖ϕni − f‖∗ → 0 as i→∞, concluding the proof.

C.2.4 Step 4. Unique form for H and compact resolvent

Since E is closed and semibounded on D(E), the fact that H is the unique operator with
form E follows from [39, Theorem VIII.15]. It only remains to prove that H has compact
resolvent: In Case 3, this follows from the fact that H is in this case a regular Sturm-
Liouville operator, and in Cases 1 and 2, from the fact that V (x) � log |x| as x → ±∞:
Indeed, H is in those cases limit point (e.g., [48, Chapter 7.3 and Theorem 7.4.3]),
and compactness of the resolvent is given by [38, Theorem XIII.67] or the Molchanov
criterion as stated in [48, Page 213].

D Proof of Theorem 5.4

D.1 Proof of (5.3)

On the one hand, since the Gaussian kernel Gt is even, the transition kernels satisfy
ΠZ(t;x, y) = ΠZ(t; y, x) for every t > 0 and x, y ∈ I. On the other hand, given that(

Zx,yt (t− s) : 0 ≤ s ≤ t
) d

=
(
Zy,xt (s) : 0 ≤ s ≤ t

)
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Ex,yt [F (Z)] = Ey,xt [F (Z)] for any path functional F that is invariant under time reversal.
In particular, since local time is invariant under time reversal, we have (5.3).

D.2 Proof of (5.4)

For every x, y, z ∈ I and t, t̄ > 0, if we condition the path Zx,yt+t̄ on Zx,yt+t̄(t) = z, then the
path segments (

Zx,yt+t̄(s) : 0 ≤ s ≤ t
)

and
(
Zx,yt+t̄(t+ s) : 0 ≤ s ≤ t̄

)
(D.1)

are independent and have respective distributions Zx,zt and Zz,yt̄ . Moreover, by Doob’s
h-transform, Zx,yt+t̄(t) has density

z 7→ ΠZ(t;x, z)ΠZ(t̄; z, y)

ΠZ(t+ t̄;x, y)
.

(5.4) is then a consequence of Fubini’s theorem and additivity of local time: Letting
Z1;x,z
t and Z2;z,y

t̄ denote independent processes with respective distributions Zx,zt and
Zz,yt̄ for all z, we have that

∫
I
K(t;x, z)K(t̄; z, y) dz is equal to (recall the notation At from

(5.24))

ΠZ(t+ t̄;x, y)

∫
I

E

[
eAt(Z

1;x,z
t )+At̄(Z

2;z,y
t̄

)

]
ΠZ(t;x, z)ΠZ(t̄; z, y)

ΠZ(t+ t̄;x, y)
dz

= ΠZ(t+ t̄;x, y)

∫
I

E

[
eAt+t̄(Z

x,y
t+t̄

)

∣∣∣∣Zx,yt+t̄(t) = z

]
P
[
Zx,yt+t̄(t) ∈ dz

]
dz

= K(t+ t̄;x, y),

as desired.

D.3 Feynman-Kac formula

We now complete the proof of Theorem 5.4 by showing that e−tH = K(t) for all t > 0.
The proof of this in Case 1 can be found in [43, Theorem 4.9]. For Cases 2-D and 3-D,
we refer to [11, (34) and Theorem 3.27]. For Case 3-R, we have [33, (3.3’) and (3.4),
Theorem 3.4 (b), and Lemmas 4.6 and 4.7]. It now only remains to prove the result in
cases Cases 3-M and 2-R:

D.3.1 Case 3-M

Let us assume that we are considering Case 3-M, that is, the operator H = − 1
2∆ + V is

acting on (0, b) with mixed boundary conditions (as in Assumption 2.1) and

K(t;x, y) = ΠY (t;x, y)Ex,yt

[
e−〈Lt(Y ),V 〉+αL0

t (Y )−∞·Lbt(Y )
]
.

As argued in [33, Pages 62 and 63], it can be shown that

1. K(t) is a strongly continuous semigroup on L2; and

2. if, for every n ∈ N, we define

Kn(t;x, y) = ΠY (t;x, y)Ex,yt

[
e−〈Lt(Y ),V 〉+αL0

t (Y )−nLbt(Y )
]
,

then for every t > 0, ‖Kn(t)−K(t)‖op → 0 as n→∞.

Item (1) above implies that K(t) has a generator, so it only remains to prove that this
generator is in fact H. By Lemma 5.13 in the case p = 1, we know that the Kn(t) and
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K(t) are compact. Therefore, if we let Hn be the operator − 1
2∆ + V on (0, b) with Robin

boundary
f ′(0) + αf(0) = −f ′(b)− nf(0) = 0,

then by repeating the argument in Section 3.2.3, we need only prove that Hn → H in
the sense of convergence of eigenvalues and L2-convergence of eigenfunctions.

If we define the matrices

A :=

[
1 α

0 0

]
and B :=

[
0 0

0 1

]
and the vector function F (x) := [f ′(x), f(x)]>, then we can represent H’s boundary
conditions in matrix form as AF (0) +BF (b) = 0. Similarly, if we let

Cn :=

[
0 0

1/n 1

]
,

then Hn’s boundary conditions are represented as AF (0) + CnF (b) = 0. Given that
‖B − Cn‖ → 0 as n→∞, it follows from [48, Theorems 3.5.1 and 3.5.2] that for every
k ∈ N, λk(Hn) → λk(H) and ψk(Hn) → ψk(H) uniformly on compacts. Since (0, b) is
bounded, this implies L2-convergence of the eigenfunctions, concluding the proof.

D.3.2 Case 2-R

Let us now assume that H acts on (0,∞) with Robin boundary at the origin and that

K(t;x, y) = ΠX(t;x, y)Ex,yt

[
e−〈Lt(X),V 〉+αL0

t (X)
]
.

The same arguments used in [33, Theorem 3.4 (b)] imply that this semigroup is strongly
continuous on L2, and we know it is compact by Lemma 5.13.

For every n ∈ N, let Hn = − 1
2∆ + V , acting on (0, n) with mixed boundary conditions

f(0) + αf ′(0) = f(n) = 0.

By the previous section, the semigroup generated by this operator is given by

Kn(t;x, y) = ΠYn(t;x, y)Ex,yt

[
e−〈Lt(Yn),V 〉+αL0

t (Yn)−∞·Lnt (Yn)
]
,

where Yn is a reflected Brownian motion on (0, n). Arguing as in the previous section,
it suffices to prove that Kn(t) → K(t) in operator norm and Hn → H in the sense of
eigenvalues and eigenfunctions.

We begin with the semigroup convergence. We first note that ‖Kn(t) −K(t)‖op is
ambiguous, since Kn(t) and K(t) do not act on the same space. However, by using an
argument similar to (5.6), we can extend the kernel Kn(t) to (0,∞)2 by defining

K̃n(t;x, y) = ΠX(t;x, y)Ex,yt

[
1{τ[n,∞)(X)>t}e

−〈Lt(X),V 〉+αL0
t (X)

]
,

where τ[n,∞) is the first hitting time of [n,∞). This transformation does not affect the
eigenvalues, and the eigenfunctions are similarly extended from functions on (0, n)

vanishing on the boundary to functions on (0,∞) that are supported on (0, n). One has

‖K̃n(t)−K(t)‖22 =

∫ ∞
0

K̃n(2t;x, x)− 2K̃n,0(2t;x, x) +K(2t;x, x) dx,

where
K̃n,0(2t;x, x) = ΠX(2t;x, x)Ex,x2t

[
1{τ[n,∞)(X)>t}e

−〈L2t(X),V 〉+αL0
2t(X)

]
.
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Thus it suffices to prove that

lim
n→∞

∫ ∞
0

K̃n,0(2t;x, x) dx, lim
n→∞

∫ ∞
0

K̃n(2t;x, x) dx =

∫ ∞
0

K(2t;x, x) dx.

Since Xx,x
2t is almost surely continuous, hence bounded, the result is a straightforward

application of monotone convergence (both with Ex,x and the dx integral).
We now prove convergence of eigenvalues and eigenvectors. Let E denote the form

of H and D(E) its domain, as defined in Definition 2.5 for Case 2-R. We note that we can
think of Hn as the operator with the same form E but acting on the smaller domain

Dn :=
{
f ∈ H1

V

(
(0,∞)

)
: f(x) = 0 for every x ≥ n

}
⊂ D(E).

These domains are increasing, in that D1 ⊂ D2 ⊂ · · · ⊂ D(E). A straightforward
modification of the convergence argument presented in Section 5.6 gives the desired
result (at least through a subsequence).
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