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Abstract

We construct the Φ4
3 measure on a periodic three dimensional box as an absolutely

continuous perturbation of a random translation of the Gaussian free field. The shifted
measure is constructed via Girsanov’s theorem and the relevant filtration is the one
generated by a scale parameter. As a byproduct we give a self-contained proof that
the Φ4

3 measure is singular wrt. the Gaussian free field.
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1 Introduction

The Φ4
3 measure on the three dimensional torus Λ = T3 = (R/2πZ)3 is the probability

measure ν on distributions S ′(Λ) corresponding to the formal functional integral

ν(dϕ) = 88 1
Z exp

[
−λ
∫

Λ
(ϕ4 −∞ϕ2)dx

]
µ(dϕ) ′′ (1.1)

where µ is the law of the Gaussian free field with covariance (1 − ∆)−1 on Λ, Z a
normalization constant and λ the coupling constant. The∞ appearing in this expression
reminds us that many things are wrong with this recipe. The key difficulty can be traced
to the fact that the measure we are looking for it is not absolutely continuous wrt. the
reference measure µ. This fact seems part of the folklore even if we could not find
a rigorous proof for it in the available literature apart from a work of Albeverio and
Liang [1], which however refers to the Euclidean fields at time zero, and the work of
Feldman and Osterwalder [11] in infinite volume. The singularity of the Φ4

3 measure is
indeed a major technical difficulty in a rigorous study of (1.1). Obtaining a complete
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construction of this formal object (both in finite and infinite volume) has been one of the
main achievements of the constructive quantum field theory program [12, 10, 26, 11, 22,
5, 8].

In recent years the rigorous study of the Φ4
3 model has been pursued from the

point of view of stochastic quantization. In the original formulation of Parisi–Wu [25],
stochastic quantization is a way to introduce additional degrees of freedom (in particular
a dependence on a fictious time) in order to obtain an equation whose solutions describe
a measure of interest, in this case the Φ4

3 measure on Λ as in (1.1) or its counterpart
in the full space. Rigorous analysis of stochastic quantization for simpler models like
Φ4

2 (the two-dimensional analog of eq. (1.1)) started with the work [20]. It has been
only with the fundamental work of Hairer on regularity structures [19] that the three
dimensional model could be successfully attacked, see also [9, 21]. This new perspective
on this and related problems led to a series of new results on the global space-time
control of the stochastic dynamics [24, 15, 2, 23] and to a novel proof of the construction
of non-Gaussian Euclidean quantum field theories in three dimensions [14].

A conceptual advantage of stochastic quantization is that it is a method which is
insensitive to questions of absolute continuity wrt. to a reference measure. This, on
the other hand, is the main difficulty of the Gibbisan point of view as expressed in
eq. (1.1). In order to explore further the tradeoffs of different approaches we have
recently developed a variational method [4] for the construction and description of Φ4

3.
We were able to provide an explicit formula for the Laplace transform of Φ4

3 in terms of a
stochastic control problem in which the controlled process represents the scale-by-scale
evolution of the interacting random field.

The present paper is the occasion to explore further this point of view by constructing
a novel measure via a random translation of the Gaussian free field and by proving
that the Φ4

3 measure can be obtained as an absolutely continuous perturbation thereof.
Without entering into technical details right now, let us give the broad outline of this
construction. We consider a Brownian martingale (Wt)t>0 with values in S ′(Λ) and such
that Wt is a regularization of the Gaussian free field µ at (Fourier) scale t. Let us denote
P its law and E the corresponding expectation. In particular, Wt →W∞ in law as t→∞
and W∞ has law µ. We can identify the Φ4

3 measure ν as the weak limit νT → ν as T →∞
of the family of probability measures (νT )T>0 on S ′(Λ) defined as

νT (·) = PT (WT ∈ ·),

where PT is the measure on paths (Wt)t>0 with density

dPT

dP
=

1

ZT
e−VT (WT ),

and

VT (ϕ) := λ

∫
Λ

(ϕ(x)4 − aTϕ(x)2 + bT )dx,

is a quartic polynomial in the field ϕ with (aT , bT )T a family of (suitably diverging)
renormalization constants. The scale parameter t ∈ R+ allows to introduce a filtration
and a measure Qv defined as the Girsanov transformation

dQv

dP

∣∣∣∣
FT

= exp

(
LvT −

1

2
〈Lv〉T

)
, Lvt =

∫ t

0

〈vs,dWs〉L2(Λ) (1.2)

where (〈Lv〉t)t>0 is the quadratic variation of the (scalar) local martingale (Lvt )t>0 and
(vt)t>0 is a progressively measurable process with values in L2(Λ). Let

DT :=
1

ZT
e−VT (WT )

(
dQv

dP

)−1

,
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be the density of PT wrt. Qv. We will show that it is possible to choose v in such a way
that the family (DT )T>0 is uniformly integrable under Qv and that DT → D∞ weakly in
L1(Qv). With particular choice of v we call Qv the drift measure: it is the central object
of this paper. By Girsanov’s theorem the canonical process (Wt)t>0 satisfies the equation

dWt = vtdt+ dW̃t, t > 0,

where (W̃t)t>0 is a Gaussian martingale under Qv (and has law equal to that of (Wt)t>0

under P, i.e. it is a regularized Gaussian free field). We will show also that the drift
vt can be written as a (polynomial) function of (W̃s)s∈[0,t], that is vt = Ṽt((W̃s)s∈[0,t]).
Therefore we have an explicit description of the process (Wt)t>0 under the drift measure
Qv as the unique solution of the path-dependent SDE

dWt = Ṽt((W̃s)s∈[0,t])dt+ dW̃t, t > 0. (1.3)

Let us note that this formula expresses the “interacting” random field (Wt)t as a function
of the “free” field (W̃t)t. It is a formula which shares very similar technical merits with
the stochastic quantization approach.

The drift measure Qv is half way between the variational description in [4] and the
(formal) Gibbsian description of eq. (1.1). It constitutes a measure which is relatively
explicit, easy to construct and analyze and which can be used as reference measure
for Φ4

3, very much like the Gaussian free field can be used as reference measure for
Φ4

2 [13, 17].
Let us remark that from eq. (1.3), after specifying Ṽt, (see equations (3.1) and (3.2)

below) we can deduce a decomposition of the form

WT = W̃T + W̃
[3]
T +RT . (1.4)

Here R ∈ C
(
[0,∞],C 1−δ) Qv-almost surely and W̃[3] ∈ C

(
[0,∞],C 1/2−δ)Qv-almost

surely, can both be constructed form W̃ , and have given law under Qv. This decomposi-
tion allows one to reduce many almost sure properer ties of Qv and so of Φ4

3 to properties
of the “free field” W̃ . For the slightly less singular Hartree nonlinearity this has been
exploited in [6, 7] to prove local wellposedness almost surely for initial data distributed
according to the Gibbs measure. Let us briefly sketch another application of (1.4): we
can use it prove that the Wick square is well defined almost surely with respect to the
Φ4

3 measure. Indeed we can write

JW 2
∞K := lim

T→∞
(W 2

T − EP[W 2
T (0)])

= lim
T→∞

(W̃ 2
T − EQv [W̃ 2

T (0)]) + W̃TW̃
[3]
T + W̃TRT .

Now it is well known that W̃ 2
T −EQv [W̃ 2

T (0)] converges to a well defined random distribu-
tion as T →∞, which is the Wick square of W̃T . It has been shown in [4] Lemma 4 and
Lemma 25 that W̃TW̃

[3]
T converges to a well defined random distribution. Finally since

R ∈ C
(
[0,∞],C 1−δ) and W̃ ∈ C

(
[0,∞],C−1/2−δ)we can deduce that also limT→∞ W̃TRT

is well defined.
As another application of (1.4) we provide also a self-contained proof of the singularity

of the Φ4
3 measure ν wrt. the Gaussian free field µ. We have already remarked that

the singularity of Φ4
3 seems to belongs to the folklore and we were not able to trace

any written proof of that. However, M. Hairer, during a conference at Imperial College
in 2019, showed us an unpublished proof of his of singularity using the stochastic
quantization equation. Our proof and his are very similar and we do not claim any
essential novelty in this respect. Albeit the proof is quite straightforward we wrote down
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all the details in order to provide a reference for this fact. The basic idea is to consider
the observable

∫
Λ
JW 4

T K where the brackets denotes Wick products and prove that it
diverge with different speed as T → ∞ under the measure P and Qv because in the
first case the process (Wt)t is a Brownian martingale and therefore by the properties of
Wick products also the process

(∫
Λ
JW 4

t K
)
t

is a martingale with variance growing like T .
Under the measure Qv however the presence of the drift (Vt)t>0 produces a deterministic
contribution whose size is also T and which dominates the fluctuations of the observable.
Therefore the singularity of Φ4

3 can be directly linked with the pathwise properties of
the scale-by-scale process (Wt)t>0 in the ultraviolet region and our proof of singularity
shows also that the drift measure Qv is singular wrt. P. Intuitively, the drift (Vt)t>0 in
the SDE (1.3) is not regular enough (as t→∞) to be along Cameron–Martin directions
for the law P of the process (Wt)t>0 and therefore the Girsanov transform (1.2) gives a
singular measure when extended all the way to T = +∞.

Let us stress that the main contribution of the present paper remains that of describ-
ing the drift measure as a novel object in the context of Φ4

3 and similar measures and
pursuing the study of Euclidean quantum fields from the point of view of stochastic
analysis.

Notations. Let us fix some notations and objects.

• For a ∈ Rd we let 〈a〉 := (1 + |a|2)1/2. B(x, r) ⊆ R denotes the open ball of center
x ∈ R and radius r > 0. We write A . B for A 6 CB for some constant C and
A � B for A . B and B . A.

• The constant κ > 0 represents a small positive number which can be different from
line to line.

• Denote with S (Λ) the space of Schwartz functions on Λ and with S ′(Λ) the dual
space of tempered distributions. The notation f̂ or Ff stands for the space Fourier
transform of f and we will write g(D) to denote the Fourier multiplier operator
with symbol g : Rn → R, i.e. F (g(D)f) = gFf .

• Bαp,q = Bαp,q(Λ) denotes the Besov spaces of regularity α and integrability indices p, q
as usual. C α = C α(Λ) is the Hölder–Besov space Bα∞,∞, Wα,p = Wα,p(Λ) denote
the standard fractional Sobolev spaces defined by the norm ‖f‖W s,q := ‖〈D〉sf‖Lq
and Hα = Wα,2. The symbols ≺,�, ◦ denotes spatial paraproducts wrt. a standard
Littlewood–Paley decomposition. The reader is referred to Appendix A for an
overview of the various functional spaces and paraproducts.

2 The setting

The setting of this paper is the same of that in our variational study [4]. In this section
we will briefly recall it and also state some results from that paper which will be needed
below. They concern the Boué–Dupuis formula and certain estimates which are relevant
to the analysis of absolute continuity.

Let Ω := C
(
R+; C−3/2−κ(Λ)

)
and F be the Borel σ–algebra of Ω. On (Ω,F ) consider

the probability measure P which makes the canonical process (Xt)t>0 a cylindrical
Brownian motion on L2(Λ) and let (Ft)t>0 the associated filtration completed with
respect to sets of P-measure 0. In the following E without any qualifiers will denote
expectations wrt. P and EQ will denote expectations wrt. some other measure Q.

On the probability space (Ω,F ,P) there exists a collection (Bnt )n∈Z3 of complex (2-
dimensional) Brownian motions, such that Bnt = B−nt , Bnt , B

m
t independent for m 6= ±n

and Xt =
∑
n∈Z3 ei〈n,·〉Bnt , for example in S ′(Λ).
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Fix some decreasing ρ ∈ C∞c (R+,R+) such that ρ = 1 on B(0, 9/10) and supp ρ ⊂
B(0, 1). For x ∈ R3 let ρt(x) := ρ(〈x〉/t) and

σt(x) :=

[
d

dt
(ρ2
t (x))

]1/2

= (−2(〈x〉/t)ρ(〈x〉/t)ρ′(〈x〉/t))1/2/t1/2.

Denote Js = σs(D)〈D〉−1 and consider the process (Wt)t>0 defined by

Wt :=

∫ t

0

JsdXs =
∑
n∈Z3

ei〈n,·〉
∫ t

0

σs(n)

〈n〉
dBns , t > 0. (2.1)

It is a centered Gaussian process with covariance

E[〈Wt, ϕ〉〈Ws, ψ〉] =
∑
n∈Z3

ρ2
min(s,t)(n)

〈n〉2
ϕ̂(n)ψ̂(n),

for any ϕ,ψ ∈ S (Λ) and t, s > 0, by Fubini theorem and Ito isometry. By dominated

convergence limt→∞E[〈Wt, ϕ〉〈Wt, ψ〉] =
∑
n∈Z3〈n〉−2ϕ̂(n)ψ̂(n) for any ϕ,ψ ∈ L2(Λ). For

any finite “time” T the random field WT on Λ has a bounded spectral support and the
stopped process WT

t = Wt∧T for any fixed T > 0, is in C(R+, C
∞(Λ)). Furthermore

(WT
t )t only depends on a finite subset of the Brownian motions (Bn)n∈Z3 .
Observe that Jt satisfies the following bound

‖Jtf‖Bs+1−α
p,p

. 〈t〉−α−1/2‖f‖Bsp,p

for any function f ∈ Bsp,p or f ∈W s,p with p ∈ [1,∞] and s ∈ R and for any α ∈ R.
We will denote by JWn

t K, n = 1, 2, 3, the n-th Wick-power of the Gaussian random
variable Wt (under P) and introduce the convenient notations W2

t := 12JW 2
t K, W3

t :=

4JW 3
t K. Furthermore we will write J(〈D〉−1/2Wt)

nK, n ∈ N for the n-th Wick-power of
〈D〉−1/2Wt. It exists for any 0 < t < ∞ and any n > 1 since it is easy to see that
〈D〉−1/2Wt has a covariance with a diagonal behavior which can be controlled by log〈t〉.
These Wick powers converge as T →∞ in spaces of distributions with regularities given
in the following table:

Table 1: Regularities of the various stochastic objects. The domain of the time variable
is understood to be [0,∞], CC α = C ([0,∞]; C α) and L2C α = L2 (R+; C α). Estimates in
these norms holds a.s. and in Lp(P) for all p > 1 (see [4]).

W W2 s 7→ JsW
3
s J(〈D〉−1/2W )nK

CC−1/2− CC−1− CC−1/2− ∩ L2C−1/2− CC 0−

We denote by Ha the space of (Ft)t>0-progressively measurable processes which are
P-almost surely in H := L2(R+ × Λ). We say that an element v of Ha is a drift. Below we
will also need drifts belonging to Hα := L2(R+;Hα(Λ)) for some α ∈ R where Hα(Λ) is
the Sobolev space of regularity α ∈ R and we will denote the corresponding space with
Hαa . For any v ∈ Ha define the measure Qv on Ω by

dQv

dP
= exp

[∫ ∞
0

vsdXs −
1

2

∫ ∞
0

‖vs‖2L2ds

]
.

Denote withHc ⊆ Ha the set of drifts v ∈ Ha for whichQv(Ω) = 1, and setW v := W−I(v),
where

It(v) =

∫ t

0

Jsvsds.
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We will need also the following objects. For all t > 0 let θt : R3 → [0, 1] be a smooth
function such that

θt(ξ)σs(ξ) = 0 for s > t,
θt(ξ) = 1 for |ξ| 6 t/2 provided that t > T0

(2.2)

for some T0 > 0. For example one can fix smooth functions θ̃, η : R3 → R+ such that
θ̃(ξ) = 1 if |ξ| 6 1/2 and θ̃(ξ) = 0 if |ξ| > 2/3, η(ξ) = 1 if |ξ| 6 1 and η(ξ) = 0 if |ξ| > 2.
Then let θ̃t(ξ) := θ̃(ξ/t) and define

θt(ξ) := (1− η(ξ))θ̃t(ξ) + ζ(t)η(ξ)θ̃t(ξ)

where ζ(t) : R+ → R is a smooth function such that ζ(t) = 0 for t 6 10 and ζ(t) = 1 for
t > 3. Then eq. (2.2) holds with T0 = 3. Let

f [ := θ(D)f (2.3)

for any f ∈ S ′(Λ).
Our aim here to study the measures µT defined on C−1/2−κ as

dµT
dP

= e−VT (WT ),

with

VT (ϕ) := λ

∫
Λ

(ϕ4 − aTϕ2 + bT )dx, ϕ ∈ C∞(Λ), (2.4)

and suitable aT , bT →∞. For convenience the measure µT is not normalized and, wrt.
to the notations in the introduction we have

dPT

dµT
=

1

µT (Ω)
.

Recall the following results of [4].

Theorem 2.1. For any aT , bT ∈ R, and f : C−1/2−κ(Λ)→ R with linear growth let

V fT (ϕ) := f(ϕ) + VT (ϕ),

where VT is given by (2.4). Then the variational formula

− log
∫

S ′(Λ)
e−V

f
T (ϕ)µT (dϕ)

= − logE[e−V
f
T (WT )]

= infu∈Ha E
[
V fT (WT + IT (u)) + 1

2

∫ T
0
‖ut‖2L2(Λ)dt

] (2.5)

holds for any finite T .

This is a consequence of the more general Boué–Dupuis formula.

Theorem 2.2 (BD formula). Assume F : C([0, T ], C∞(Λ))→ R, be Borel measurable and
such that there exist p, q ∈ (1,∞), with 1/p+1/q = 1, E[|F (W )|p] <∞ and E[|e−F (W )|q] <
∞ (where we can regard W as an element of C([0, T ], C∞(Λ)) by restricting to [0, T ]).
Then

− logE[e−F (W )] = inf
u∈Ha

E

[
F (W + I(u)) +

1

2

∫ T

0

‖us‖2L2(Λ)

]
. (2.6)

We will use several times below eq. (2.6) in order to control exponential integrability
of various functionals. By a suitable choice of renormalization and a change of variables
in the control problem (2.5) we were able in [4] to control the functional in Theorem 2.1
uniformly up to infinity.
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Theorem 2.3. There exist a sequence (aT , bT )T with aT , bT →∞ as T →∞, such that

E

[
V fT (WT + IT (u)) +

1

2

∫ T

0

‖ut‖L2(Λ)dt

]

= E

[
Ψf
T (W, I(u)) + λ

∫
(IT (u))4 +

1

2
‖lT (u)‖2H

]
where (recall that I[t (u) = θ(D)It(u) by (2.3))

lTt (u) := ut + λ1t6TW
〈3〉
t + λ1t6TJt(W

2
t � I[t (u)) (2.7)

and the functionals Ψf
T : C([0, T ], C∞(Λ)) × C([0, T ], C∞(Λ)) → R satisfy the following

bound

|Ψf
T (W, I(u))| 6 QT (W ) +

1

4
(‖IT (u)‖4L4 + ‖lT (u)‖2H)

where QT (W ) is a function of W independent of u and such that supT E[|QT (W )|] <∞.

As a consequence we obtain the following corollary (cfr. Corollary 1 and Lemma 6
in [4])

Corollary 2.4. For f : C−1/2−κ(Λ)→ R with linear growth the bound

−C 6 EµT [ef ] 6 C,

holds, with a constant C independent of T . In particular µT is tight on C−1/2−κ.

3 Construction of the drift measure

We start now to implement the strategy discussed in the introduction: identify a
translated measure sufficiently similar to Φ4

3. Intuitively the Φ4
3 measure should give

rise to a canonical process which is a shift of the Gaussian free field with a drift of the
form given by eq. (2.7). Indeed this drift u should be the optimal drift in the variational
formula. A small twist is given by the fact that the relevant Gaussian free field entering
these considerations is not the process W = W (X) but that obtained from the shifted
canonical process Xu

t = Xt −
∫ t

0
usds which we denote by

Wu := W (Xu) = W − I(u).

Moreover, to prevent explosion at finite time, we have to modify the drift in large scales
and add a coercive term. This will also allow later to prove some useful estimates. As a
consequence, we define the functional

Ξs(W,u := −λJsW3
s − λ1{s>T̄}Js(W2

s � I[s(u)) + Js〈D〉−1/2(J(〈D〉−1/2Ws)
nK) (3.1)

where T̄ > 0, n ∈ N are constants which will be fixed later on and where we understand
all the Wick renormalizations to be given functions of W , i.e. polynomials in W where
the constants are determined according to the law of W under P. We look now for the
solution u of the equation

u = Ξ(Wu, u) = Ξ(W − I(u), u). (3.2)

Expanding the Wick polynomials appearing in Ξ(W − I(u), u) we obtain the equation

us = Ξ(W − I(u), u)

= −λJs[W3
s −W2

sIs(u) + 12Ws(Is(u))2 − 4(Is(u))3]

−λ1{s>T̄}Js[((W2
s − 24WsIs(u) + 12(Is(u))2)) � I[s(u)]

+
∑n
i=0

(
n
i

)
Js〈D〉−1/2[J(〈D〉−1/2Ws)

iK(−〈D〉−1/2Is(u))n−i]

(3.3)
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for all s > 0. This is an integral equation for t 7→ ut with smooth coefficients depending
smoothly on W and can be solved via standard methods. Since the coefficients are of
polynomial growth the solution could explode in finite time. Note that for any finite
time the process (us)s>0 has bounded spectral support. As a consequence we can solve
the equation in L2 and as long as

∫ t
0
‖u‖2L2ds is finite we can see from the equation that

sups6t ‖us‖2L2 is finite. By the existence of local solutions we have that, for all N > 0, the
stopping time

τN := inf

{
t > 0

∣∣∣∣∫ t

0

‖us‖2L2ds > N

}
,

is strictly positive P-almost surely and u exists up to the (explosion) time Texp :=

supN∈N τN . The following lemma will help to show that P-almost surely Texp = +∞ and
will also be very useful below.

Lemma 3.1. Let

Auxs(W,w) :=

n∑
i=0

(
n

i

)
Js〈D〉−1/2(J(〈D〉−1/2Ws)

iK(〈D〉−1/2Is(w))n−i).

then we have

E

∫ t

0

‖ws‖2L2ds+ sup
s6t

E‖Is(w)‖n+1
W−1/2,n+1

.1 +

∫ t

0

(2E‖ws + gs‖2L2 + 4E‖gs −Auxs(W,w)‖2L2)ds,

uniformly in t > 0, for any pair of adapted processes w, g ∈ L2(P,H) such that

E

∫ t

0

‖gs −Auxs(W,w)‖2L2ds <∞.

Proof. Take ιn = inf
{
t > 0 :

∫ t
0
‖ws‖2L2ds > N

}
. By Ito’s formula we have∫ t∧ιN

0

∫
Λ

Auxs(W,w)ws ds = Auxt∧ιN (W,w) + martingale

where

Auxt(W,w) :=

n∑
i=0

1

n+ 1− i

(
n

i

)∫
Λ

(J(〈D〉−1/2Wt)
iK(〈D〉−1/2It(w))n+1−i). (3.4)

Integrating over the probability space and using Cauchy–Schwarz inequality, we obtain

d
dtE

(∫ t∧ιN
0

‖ws‖2ds+ 4Auxt∧ιN (W,w)
)

= E
[∫

Λ
1{t6ιN}(w

2
t + 4 Auxt(W,w)wt)

]
6 E

[
1{t6ιN}

(
2‖wt + gt‖2L2 + 4

∫
Λ

(Auxt(W,w)− gt)wt − ‖wt‖2L2

)]
6 2E1{t6ιN}‖wt + gt‖2L2 + 4E1{t6ιN}‖gt −Auxt(W,w)‖2L2 .

where gt is an arbitrary function. By Lemma 3.7 below, we have constants c, C and a
random variable QT (W ) such that

sup
t∈R

sup
N∈N

E[|Qt∧ιN (W )|] <∞,

and

c

∫ t

0

‖ws‖2L2ds+ c‖It(w)‖n+1
W−1/2,n+1 −Qt(W ) 6

∫ t

0

‖ws‖2L2ds+ Auxt(W,w)
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6 C‖It(w)‖n+1
W−1/2,n+1 + C

∫ t

0

‖ws‖2L2ds+Qt(W ).

As a consequence, we deduce

E

∫ t

0

1{s6ιN}‖ws‖
2
L2ds+ E1{s6ιN}‖Is(w)‖n+1

W−1/2,n+1

. 1 +

∫ t

0

(2E1{s6ιN}‖ws + gs‖2L2 + 41{s6ιN}E‖gs −Auxs(W,w)‖2L2)ds.

6 1 +

∫ t

0

(2E‖ws + gs‖2L2 + 4E‖gs −Auxs(W,w)‖2L2)ds.

And we can conclude by sending N →∞ and using monotone convergence.

In particular, taking w = −1t6τNu and g = −w, we have

E

∫ t

0

‖1s6τNus‖2L2ds+ sup
s6t

E‖Is(1·6τNu)‖n+1
W−1/2,n+1

.1 +

∫ t

0

E(1s6τN ‖us −Auxs(W,−u)‖2L2)ds,

for all t 6 T , where, using (3.3),

us −Auxs(W,−u) = −λJs[W3
s −W2

sIs(u) + 12Ws(Is(u))2 − 4(Is(u))3]

−λ1{s>T̄}Js[((W2
s − 24WsIs(u) + 12(Is(u))2)) � I[s(u)].

(3.5)

Then, for any s 6 T we have

E(1s6τN ‖us −Auxs(W,−u)‖2L2) 6 CT + E‖Is(1s6τNu)‖n+1
W−1/2,n+1 ,

provided n is chosen sufficiently large. Using Gronwall’s inequality this gives

E

∫ T

0

‖1s6τNus‖2L2ds . CT ,

and we can let N →∞ to obtain

E

∫ T

0

‖us‖2L2ds . CT ,

which implies Texp = +∞. In addition and by construction, the process uNt := 1{t6τN}ut
satisfies Novikov’s condition, so it is in Hc and Girsanov’s transformation allows us to
define the probability measure Qu

N

on C
(
R+,C−1/2−κ(Λ)

)
given by

dQu
N

:= exp

[∫ ∞
0

uNs dXs −
1

2

∫ ∞
0

‖uNs ‖2L2(Λ)ds

]
dP,

under which XuN

t = Xt−
∫ t

0
uNs ds is a cylindrical Brownian motion. Moreover, under Qu

N

the process
(
WuN

t :=
∫ t

0
JsdX

uN

s

)
t>0

has the same law as (Wt)t>0 under P. We observe

also that WuN

s = Wu
s for 0 6 s 6 τN and that u satisfies the equation

us = −λJsWu,3
s − λ1{s>T̄}Js(Wu,2

s � I[t (u)) + Js〈D〉−1/2(J(〈D〉−1/2Wu
s )nK), (3.6)

where we introduced the notations Wu,3
s := 4J(Wu

s )3K and Wu,2
s := 12J(Wu

s )2K. Note that
here the Wick powers are still taken to be given functions of W , i.e we are still taking
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the Wick ordering with respect to the law of W under P (or, equivalently, the law of WuN

under Qu
N

).

If we think of the terms containing Wu as given (that is, we ignore their dependence
on u), eq. (3.6) is a linear integral equation in u which can be estimated via Gronwall-type
arguments. In order to do so, let us denote by U : H 7→ û the solution map of the equation

û = Ξ(H, û). (3.7)

This last equation is linear and therefore has nice global solutions (let’s say in C(R+, L
2))

and by uniqueness and eq. (3.6) we have ut = Ut(W
u) for t ∈ [0, Texp). From this

perspective the residual dependence on u will not play any role since under the shifted
measure the law of the process Wu does not depend on u. By standard paraproduct
estimates (see Appendix A) we have

‖It(u)‖L∞ . H̃t +

∫ t

0

1{s>T̄}‖J2
s (Wu,2

s � I[s(u))‖L∞ds

. H̃t + T̄−κ
∫ t

0

〈s〉−3/2‖Wu,2
s ‖C−1−κ‖I[s(u)‖L∞ds,

where we have crucially exploited the presence of the cutoff 1{s>T̄} to introduce the
small factor T̄−κ and we have employed the notation

H̃t :=

∫ t

0

[‖J2
sW

u,3
s ‖L∞ + ‖Js〈D〉−1/2(J(〈D〉−1/2Wu

s )nK)‖L∞ ]ds

.
∫ t

0

1

〈s〉1/2+κ
‖JsWu,3

s ‖C−1/2−κds+

∫ t

0

1

〈s〉3/2
‖J(〈D〉−1/2Wu

s )nK‖H−1/2ds.

By Gronwall’s lemma,

supt6τN ‖It(u)‖L∞ . H̃τN exp
[
CT̄−κ

∫ τN
0
‖Wu,2

s ‖C−1−κ
ds
〈s〉1+κ

]
. (3.8)

Under Qu
N

, the terms in H̃τN are in all the Lp spaces by hypercontractivity and moreover
for any p > 1 one can choose T̄ large enough so that also the exponential term is in Lp.
Using eq. (3.6) it is then not difficult to show that E

Qu
N1 [‖uN2‖pH−1/2−κ ] <∞ for any p > 1

(again provided we take T̄ large enough depending on p) as long as N1 > N2. By the
spectral properties of J and the equation for u, the process t 7→ 1{t6T}ut is spectrally
supported in a ball of radius T , so we get in particular that

E
Qu

N1

[∫ τN2
∧T

0

‖us‖2L2ds

]
. T 1+κ,

uniformly for any choice of N1 > N2 > 0.

Lemma 3.2. The family (Qu
N

)N weakly converges to a limit Qu on C
(
R+,C−3/2−κ).

Under Qu it holds Texp =∞ almost surely and LawQu(Xu) = LawP(X). Moreover for any
finite T

dQu|FT

dP|FT

= exp

[∫ T

0

usdXs −
1

2

∫ T

0

‖us‖2L2ds

]
.

Proof. Consider the filtration (GN = FτN )N and observe that
(
Qu

N |GN
)
N

is a consistent

family of inner regular probability distributions and therefore there exists a unique
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extension Qu to G∞ = ∨NGN . Next observe that {Texp < ∞} =
⋃
T∈N{Texp < T} ⊂⋃

T∈N
⋂
N∈N{τN < T} and that for any N,T <∞, we have

EQu

[∫ τN∧T

0

‖us‖2L2ds

]
= E

Qu
N

[∫ τN∧T

0

‖us‖2L2ds

]
. T 1+κ.

On the event {τN 6 T} we have ∫ τN∧T

0

‖us‖2L2ds = N,

and therefore we also have Qu({τN 6 T}) 6 CT 1+κN−1 which in turn implies Qu(Texp <

T ) = 0. This proves that Texp = +∞ under Qu, almost surely. As a consequence we can
extend Qu to all of F = ∨T CFT since for any A ∈ FT we can set

Qu(A) =Qu(A ∩ {Texp = +∞})
= lim

N
Qu(A ∩ {Texp = +∞, τN > T})

= lim
N
Qu

N

(A ∩ {τN > T}).

If A ∈ FT then by monotone convergence

EQu [1A(Xu)] = limN→∞EQu [1A∩{T6τN}(X
u)] = limN→∞EQuN [1A∩{T6τN}(X

uN )]

= limN→∞EP[1A∩{T6τN}(X)] = EP[1A(X)].

This establishes that LawQu(Xu) = LawP(X). On the other hand if A ∈ FT we have,
using the martingale property of the Girsanov density,

EQu [1A] = lim
N→∞

EQu [1A∩{T6τN}] = lim
N→∞

E
Qu

N [1A∩{T6τN}]

= lim
N→∞

E
[
1A∩{T6τN}e

∫ τN
0 usdXs− 1

2

∫ τN
0 ‖us‖2L2ds

]
= lim
N→∞

E
[
1A∩{T6τN}e

∫ T
0
usdXs− 1

2

∫ T
0
‖us‖2L2ds

]
.

= E
[
1Ae

∫ T
0
usdXs− 1

2

∫ T
0
‖us‖2L2ds

]
by monotone convergence and the fact that Texp = +∞ P-almost surely. Therefore

dQu|FT

dP|FT

= e
∫ T
0
usdXs− 1

2

∫ T
0
‖us‖2L2ds,

as claimed.

The following lemma will also be useful in the sequel and it is a consequence of the
above discussion:

Lemma 3.3. For any p > 1 there exists a suitable choice of T̄ such that

EQu [sup
t>0
‖It(u)‖pL∞ ] <∞.

Proof. This follows from the bound (3.8), after choosing T̄ large enough, where we recall
that T̄ has been introduce in the definition of the drift through eq. (3.1).
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3.1 Proof of absolute continuity

In this section we prove that the measure µT is absolutely continuous with respect to
the measure Qu which we constructed in Lemma 3.2. First recall that the measures µT
defined on Ω as

dµT
dP

= e−VT (WT )

can be described, using Lemma 3.2, as a perturbation of Qu with density DT given by

DT :=
dµT
dQu

∣∣∣∣
FT

=
dµT
dP

∣∣∣∣
FT

dP

dQu

∣∣∣∣
FT

= e−VT (WT )−
∫ T
0
udX+ 1

2

∫ T
0
‖ut‖2L2dt,

at least on FT .

Lemma 3.4. There exists a p > 1, such that for any K > 0,

sup
T
EQu

[
|DT |p1{‖W∞‖C−1/2−κ6K}

]
<∞. (3.9)

in particular, the family (DT )T is uniformly integrable under Qu.

Proof. The proof eq. (3.9) is given in Section 3.2 below. For the uniform integrability
fix ε > 0. Our aim is to show that there there exists δ > 0 such that Qu(A) < δ implies∫
A
DTdQu < ε. From Corollary 2.4, for any ε > 0 there exists a K > 0 such that

ε/2 > µT ({‖W∞‖C−1/2−κ > K}) =

∫
{‖W∞‖C−1/2−κ>K}

DTdQu.

Then for any A ∈ F such that Qu(A)(p−1)/p < ε/
(

2 supT EQu
[
|DT |p1{‖W∞‖C−1/2−κ6K}

])
∫
A

DTdQu =

∫
A∩{‖W∞‖C−1/2−κ>K}

DTdQu +

∫
A∩{‖W∞‖C−1/2−κ6K}

DTdQu

6 ε/2 + sup
T
EQu

[
|DT |p1{‖W∞‖C−1/2−κ6K}

]
Qu(A)(p−1)/p

6 ε

Corollary 3.5. The family of measures (µT )T>0 is sequentially compact w.r.t. strong
convergence on (Ω,F ). Furthermore any accumulation point is absolutely continuous
with respect to Qu.

Proof. We choose a sub-sequence (not relabeled) such that DT → D∞ weakly in L1(Qu),
for some D∞ ∈ L1(Qu). It always exists by uniform integrability. We now claim that for
any A ∈ F

lim
T→∞

µT (A) =

∫
A

D∞dQu.

It is enough to check this for A ∈ FS for any S ∈ R+ since these generate F . But there
we have for T > S,

µT (A) =

∫
A

DTdQu →
∫
A

D∞dQu

by weak L1 convergence.

Recall that the Φ4
3 measure can be defined as a weak limit of the measures µ̃T on

C−1/2−κ given by∫
f(ϕ)µ̃T (dϕ) =

∫
f(ϕ)e−VT (ϕ)θT (dϕ) = EP[f(WT )e−VT (WT )]
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where θT is the Gaussian measure with covariance ρ2
T (D)〈D〉−2. From this, together with

the above considerations, we see that any accumulation point µ̃∞ of µ̃T satisfies

µ̃∞(A) = EQu [1A(W∞)D∞], (3.10)

for some D∞ ∈ L1(Qu).

3.2 Lp bounds

Now we will prove local Lp-bounds on the density DT . In the sequel we will denote
W̃ = Wu, with u satisfying (3.3), namely u = U(W̃ ). Before we proceed let us study how
the functional U(W̃ ) behaves under shifts of W̃ , since later we will want to apply the
Boué–Dupuis formula and this kind of behavior will be crucial. Let w ∈ L2([0,∞) × Λ)

and denote

uw := U(W̃ + I(w)) and hw := U(W̃ + I(w)) + w = uw + w.

The process hw satisfies

hw − w = uw = Ξ(W̃ + I(w), uw).

More explicitly, for all s > 0 we have

hws − ws = −4λJsJW̃ 3
s K− 12λJsJW̃ 2

s KIs(w)− 12λJsW̃s(Is(w))2 − 4λJs(Is(w))3

−12λ1{s>T̄}Js(JW̃ 2
s K � I[s(uw))− 24λ1{s>T̄}(Js(W̃sIs(w) � I[s(uw)))

−12λ1{s>T̄}Js((Is(w))2 � I[s(uw))

+
∑n
i=0

(
n
i

)
JsJ(〈D〉−1/2W̃s)

iK(〈D〉−1/2Is(w))n−i.

Decomposing

JW̃ 2
s KIs(w) = JW̃ 2

s K � θsIs(w) + JW̃ 2
s K � (1− θs)Is(w) + JW̃ 2

s K ◦ Is(w) + JW̃ 2
s K ≺ Is(w),

we can write

uw = U(W̃ + I(w)) = −4λJsJW̃ 3
s K− 12λJs(JW̃ 2

s K � I[s(hw)) + rws , (3.11)

with

rws = −12λJsJW̃ 2
s K � (1− θs)Is(w)− 12λJs(JW̃ 2

s K ◦ Is(w))− 12λJsJW̃ 2
s K ≺ Is(w)

−12λJsW̃s(Is(w))2 − 4λJs(Is(w))3 − 24λ1{s>T̄}(Js(W̃sIs(w) � θsI[s(uw)))

−12λ1{s>T̄}Js((Is(w))2 � I[s(uw)) + 12λ1{s<T̄}Js(JW̃ 2
s K � I[s(uw))

+
∑n
i=0

(
n
i

)
Js〈D〉−1/2[J(〈D〉−1/2Ws)

iK(〈D〉−1/2Is(w))n−i].
(3.12)

The first two terms in (3.11) will be used for renormalization while the remainder rw

contains terms of higher regularity which will have to be estimated in the sequel.

Proof. Proof of eq. (3.9) Observe that

1{‖W∞‖C−1/2−κ6K} .K,n exp
(
−‖W∞‖nC−1/2−κ

)
= exp

(
−‖W̃∞ + I∞(U(W̃ ))‖nC−1/2−κ

)
and

|DT |p = e−p[VT (W̃T+I(U(W̃ )))+
∫ T
0
U(W̃ )dX̃+ 1

2

∫ T
0
‖Ut(W̃ )‖2

L2dt].

Combining these two facts we have

EQu
[
|DT |p1{‖W‖C−1/2−κ6K}

]
. EQu

[
exp

(
−p
(
VT (W̃T + IT (U(W̃ ))) +

∫ T
0
Ut(W̃ )dX̃t + 1

2

∫ T
0
‖Ut(W̃ )‖2L2dt

)
−‖W̃∞ + I∞(U(W̃ ))‖n

C−1/2−κ

)]
= E

[
exp

(
−p
(
VT (WT + IT (U(W ))) +

∫ T
0
Ut(W )dXt + 1

2

∫ T
0
‖Ut(W )‖2L2dt

)
−‖W∞ + I∞(U(W ))‖n

C−1/2−κ

)]
.
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The Boué–Dupuis formula (2.6) provides the variational bound

− logEQu
[
|DT |p1{‖W‖C−1/2−κ6K}

]
& infw∈Ha E

[
p
(
VT (WT + IT (hw)) + 1

2

∫ T
0
‖hw‖2L2dt

)
+ 1−p

2

∫ T
0
‖wt‖2L2dt+ ‖W∞ + I∞(hw)‖n

C−1/2−κ + 1
2

∫∞
T
‖wt‖2L2dt

]
where we have set hw = w + U(W + I(w)) as above. Recall now that from Theorem 2.3
there exists a constant C, independent of T , such that for each hw,

E

[
p

(
VT (WT + IT (hw)) +

1

2

∫ T

0

‖hw‖2L2dt

)]

>− C +
1

4
EP

[
λ‖IT (hw)‖4L4 +

∫ T

0

‖lT (hw)‖2L2

]
where

lTt (hw) = hwt + λ1t6TW
〈3〉
t + λ1t6TJt(W

2
t � I[t (hw)).

Using eq. (3.11) we compute

1t6T l
T
t (hw) = 1t6Th

w
t + λ1t6TW

〈3〉
t + λ1t6TJt(W

2
t � I[t (hw))

= 1t6T (uwt + wt) + λ1t6TW
〈3〉
t + λ1t6TJt(W

2
t � I[t (hw))

= 1t6T (rwt + wt).

At this point we need a lower bound for

E
[

1
4

(
λ‖IT (hw)‖4L4 +

∫ T
0
‖rwt + wt‖2L2dt

)
+ 1−p

2

∫ T
0
‖wt‖2L2dt

+‖W∞ + I∞(hw)‖n
C−1/2−κ + 1

2

∫∞
T
‖wt‖2L2dt

]
− C.

Given that we need to take p > 1, this expression present a difficulty in the fact that the
term

∫ T
0
‖wt‖2L2dt appears with a negative coefficient. Note that this term cannot easily

be controlled via
∫ T

0
‖rwt + wt‖2L2dt since the contribution rw, see eq. (3.12), contains

factors which are homogeneous in w of order up to 3. This is the reason we had to
localize the estimate, introduce the “good” term ‖W∞ + I∞(hw)‖n

C−1/2−κ , and introduce

the term Js〈D〉−1/2(J(〈D〉−1/2Ws)
nK) in (3.1) which will help us to control the growth

of rw. Indeed in Lemma 3.6 below, a Gronwall argument will allow us to show that∫ T
0
‖wt‖2L2dt can be bounded by a combination of the other “good” terms as

E

[∫ T

0

‖w‖2L2dt

]
. E

[
‖I[T (h)‖4L4 + ‖I[T (h)‖nC−1/2−κ +

∫ T

0

‖wt + rwt ‖2L2dt+ 1

]
.

This implies that for 1 < p� 2,

− logEQu
[
|DT |p1{‖W‖C−1/2−κ6K}

]
> infw∈Ha E

{
1
4

[
λ‖IT (hw)‖4L4 +

∫ T
0
‖lTt (hw)‖2L2dt

]
+(1− p)C

[
‖I[T (hw)‖4L4 + ‖I[T (hw)‖n

C−1/2−κ +
∫ T

0
‖lTt (hw)‖2L2dt

]
+‖W∞ + I∞(hw)‖n

C−1/2−κ

}
− C

> −C

which gives the claim. Note that here we used the bound

E‖I∞(hw)‖nC−1/2−κ . E‖W∞‖nC−1/2−κ + E‖W∞ + I∞(hw)‖nC−1/2−κ

. C + E‖W∞ + I∞(hw)‖nC−1/2−κ

as well as the fact that ‖I[t (hw)‖C−1/2−κ . ‖I∞(hw)‖C−1/2−κ to conclude.
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The following lemmas complete the proof.

Lemma 3.6. For n ∈ N odd and large enough

E

∫ T

0

‖ws‖2L2ds . E
∫ T

0

‖ws + rws ‖2ds+ E‖I[T (hw)‖n+1
C−1/2−κ + ‖I[T (hw)‖4L4 + 1.

Proof. Let us recall the notation

Auxs(W,w) :=

n∑
i=0

(
n

i

)
Js〈D〉−1/2(J(〈D〉−1/2Ws)

iK(〈D〉−1/2Is(w))n−i).

Write rws = r̃ws + Auxs(W,w) and observe that by Lemma 3.1 we with g = rw we have

E

∫ t

0

‖ws‖2L2ds+ sup
s6t

E‖Is(w)‖n+1
W−1/2,n+1 . 1 +

∫ t

0

(2E‖ws + rs‖2L2 + 4E‖r̃ws ‖2L2)ds,

Now by Lemma 3.8 below

〈t〉1+κ‖r̃wt ‖2L2

.
∫ t

0

‖ws‖2L2ds+ ‖It(w)‖n+1
W−1/2,n+1 + ‖I[t (hw)‖n+1

C−1/2−κ + ‖I[t (hw)‖4L4 +Qt(W )

for a random variable Qt(W ) such that supt∈RE[Qt(W )] <∞. Gronwall inequality allows
to conclude.

Lemma 3.7. There exists constants c, C and a random variable QT (W ) such that for any
stopping time τ

sup
T
E[|Qτ∧T (W )|] <∞,

and

−QT (W ) + c

∫ T

0

‖ws‖2L2ds+ c‖IT (w)‖n+1
W−1/2,n+1

6
∫ T

0

‖ws‖2L2ds+ AuxT (W,w)

6 C‖IT (w)‖n+1
W−1/2,n+1 + C

∫ T

0

‖ws‖2L2ds+QT (W )

Proof. We recall that (see eq. (3.4))

AuxT (W,w) =

n∑
i=0

1

n+ 1− i

(
n

i

)∫
(J(〈D〉−1/2WT )iK(〈D〉−1/2IT (w))n+1−i)

=

n∑
i=1

1

n+ 1− i

(
n

i

)∫
(J(〈D〉−1/2WT )iK(〈D〉−1/2IT (w))n+1−i)

+
1

n+ 1
‖IT (w)‖n+1

W−1/2,n+1

and since E
[
supT<∞ ‖J(〈D〉−1/2WT )iK‖pC−κ

]
<∞ for any p <∞ and any ε > 0 it is enough

to bound ‖(〈D〉−1/2IT (w))n+1−i‖qBε1,1 for some q > 1 by the terms ‖IT (w)‖n+1
W−1/2,n+1 and

‖IT (w)‖2H1 .
∫ T

0
‖ws‖2L2ds. By interpolation we can estimate, for i > 1,

‖(〈D〉−1/2IT (w))n+1−i‖Bε1,1 . ‖〈D〉−1/2IT (w)‖nBεn,1 + C

. ‖IT (w)‖
n− 1

(n−1)

W−1/2,n+1‖IT (w)‖
1

n−1

H1 + C (let ε = 1
n(n−1) )
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The Φ4
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Choosing q = n/
(
n− 1

(n−1)

)
> 1, we have(

‖IT (w)‖
n− 1

(n−1)

W−1/2,n+1‖IT (w)‖
1

n−1

H1

)q
= ‖IT (w)‖nW−1/2,n+1‖IT (w)‖

n
(n−1)n−1

H1 .

Now for n large enough n
(n−1)n−1 6 2

n+1 and using Young’s inequality we can estimate

‖IT (w)‖nW−1/2,n+1‖IT (w)‖
n

(n−1)n−1

H1 . ‖IT (w)‖nW−1/2,n+1

(
‖IT (w)‖

2
n+1

H1 + 1

)
. ‖IT (w)‖n+1

W−1/2,n+1 + ‖IT (w)‖2H1 + 1

Lemma 3.8. Let

r̃ws = −12λJsJW 2
s K � (1− θs)Is(w) + 12λJs(JW 2

s K ◦ Is(w)) + 12λJsJW 2
s K ≺ Is(w)

−12λJsWs(Is(w))2 − 4λJs(Is(w))3 − 24λ(Js(WsIs(w) � θsI[s(uw)))

−12λJs((Is(w))2 � θsI[s(uw)) + λ1{s<T̄}Js(W
2
s � I[s(uw)).

Setting hw = u+w, there exists a random variable Qt(W ) such that suptE[|Qt(W )|] <∞
and

〈t〉1+κ‖r̃wt ‖2 .
∫ t

0

‖ws‖2L2ds+ ‖It(w)‖n+1
W−1/2,n+1 + ‖I[t (hw)‖n+1

C−1/2−κ + ‖I[t (hw)‖4L4 +Qt(W ).

Proof. Note that

‖1{s<T̄}Js(W2
s � I[s(uw))‖2L2 .T̄

1
〈s〉2 ‖W

2
s‖2C−1−κ‖I[s(uw)‖2L4

. 1
〈s〉2

(
‖W2

s‖4C−1−κ + ‖I[s(uw)‖4L4

)
.

Moreover hw = uw + w implies

‖I[t (uw)‖n+1
C−1/2−κ . ‖I[t (w)‖n+1

C−1/2−κ + ‖I[t (hw)‖n+1
C−1/2−κ ,

and ‖I[t (uw)‖4L4 . ‖I[t (hw)‖4L4 + ‖I[t (w)‖4L4 . From Lemma 5.2 we get

‖I[t (w)‖4L4 . C +

∫ t

0

‖ws‖2L2ds+ ‖It(w)‖n+1
W−1/2,n+1 .

The estimation for the other terms is easy but technical and postponed until Section 5.

4 Singularity of Φ4
3 w.r.t. the free field

The goal of this section is to prove that the Φ4
3 measure is singular with respect

to the Gaussian free field. For this we have to find a set S ⊆ C−1/2−κ(Λ) such that
P(W∞ ∈ S) = 1 and Qu(W∞ ∈ S) = 0. Together with (3.10), this will imply singularity.
We claim that setting

S :=

{
f ∈ C−1/2−κ(Λ) :

1

T
1/2+δ
n

∫
Λ

J(θTnf)4K→ 0

}
for some suitable sequence (Tn)n such that Tn →∞, does the job. Here

J(θT f)4K = (θT f)4 − 6E[(θTW∞(0))2](θT f)2 + 3E[(θTW∞(0))2]2

denotes the Wick ordering with respect to the Gaussian free field. For later use we
define

W
θT ,3
t = 4(θTWt)

3 − 12E[(θTWt(0))2](θTWt)
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The Φ4
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and

W
θT ,2
t = 12((θTWt)

2 − E[(θTWt(0))2]).

Before we proceed with the proof let us briefly motivate the choice of the event S and
give a sketch of the proof below. By Ito’s formula one can show that∫

Λ

JθTW 4
∞K =

∫ ∞
0

∫
Λ

θTJtW
θT ,3
t dXt (4.1)

where we recall that under P Xt is a cylindrical Wiener process. From this formula using
the properties of WθT ,3

t and Ito isometry we will deduce that

E

[∣∣∣∣∫ ∞
0

∫
Λ

θTJtW
θT ,3
t dXt

∣∣∣∣2
]
� T, (4.2)

and extracting a subsequence we get P(W∞ ∈ S) = 1. On the other hand with R denoting
a regular remainder we have∫

Λ

JθTW 4
∞K =

∫ ∞
0

∫
Λ

θTJtW
θT ,3
t dXu

t −
∫ ∞

0

∫
Λ

θTJtW
θT ,3
t JtW

u,3
t dt+R, (4.3)

and under Qu the process Xu is a again a cylindrical Wiener process. Therefore, as
in (4.2) we have a martingale whose variance is estimated as

EQu

[∣∣∣∣∫ ∞
0

∫
Λ

θTJtW
θT ,3
t dXu

t

∣∣∣∣2
]
� T.

However now the additional drift term in (4.3) grows faster than T 1/2+δ since it behaves
as the positive term ∫ ∞

0

∫
Λ

(θTJtW
θT ,3
t )2dt,

whose average can be estimated exactly as in (4.3), that is proportional to T . To make the
argument rigorous we need only to show that all the neglected terms cannot compensate
for this divergence, this will be done by estimating their average size and then using
Borel–Cantelli.

Let us start by proving that P(W∞ ∈ S) = 1 for some sequence (Tn)n.

Lemma 4.1. For any δ > 0

lim
T→∞

E

[(
1

T (1+δ)/2

∫
Λ

J(θTW∞)4K
)2
]

= 0.

Proof. Wick products corresponds to iterated Ito integrals. Introducing the notation

dwθTt = θTJtdXt,

we can verify by Ito formula that∫
Λ

JθTW 4
∞K =

∫ ∞
0

∫
Λ

W
θT ,3
t dwθTt =

∫ ∞
0

∫
Λ

θTJtW
θT ,3
t dXt.

Since θTJt = 0 for t > T , Ito isometry gives

E

∣∣∣∣∫ ∞
0

∫
Λ

θTJtW
θT ,3
t dXt

∣∣∣∣2 = E

∫ T

0

∫
Λ

(θTJtW
θT ,3
t )2dt.
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Then, again by Ito formula the expectation on the r.h.s. can be estimated as

E

[∫
Λ

(WθT ,3
t )2

]

= 4E


∣∣∣∣∣∣
∑

k1,k2,k3

∫ t

0

∫ s1

0

∫ s2

0

dwθTs1 (k1)dwθTs2 (k2)dwθTs3 (k3)

∣∣∣∣∣∣
2


= 24E

 ∑
k1,k2,k3

∫ t

0

∫ s1

0

∫ s2

0

θ2
T (k1)σ2

s1(k1)

〈k1〉2
θ2
T (k2)σ2

s2(k2)

〈k2〉2
θ2
T (k3)σ2

s3(k3)

〈k3〉2
ds1ds2ds3


6 24E

 ∑
k1,k2,k3

∫ t

0

∫ t

0

∫ t

0

σ2
s1(k1)

〈k1〉2
σ2
s2(k2)

〈k2〉2
σ2
s3(k3)

〈k3〉2
ds1ds2ds3


. t3

Now recall that ‖Jtf‖L2(Λ) . 〈t〉−3/2‖f‖L2(Λ) to conclude:

E

[
1

T 1+δ

∫ T

0

∫
Λ

(θTJtW
θT ,3
t )2dt

]
6

1

T 1+δ

∫ T

0

1

t3
E[‖(θTWθT ,3

t )‖2L2(Λ)]dt→ 0.

The lemma implies that T−(1+δ)/2
∫

Λ
J(θTW∞)4K → 0 in L2(P). So there exists a

sequence (Tn)n such that T−(1+δ)/2
n

∫
Λ
J(θTnW∞)4K→ 0 almost surely.

The next step of the proof is to check that Qu(W∞ ∈ S) = 0. More concretely we will
show that for a sub-sequence of (Tn)n (not relabeled)

1

T 1−δ
n

∫
Λ

J(θTnW∞)4K→ −∞,

Qu almost surely. Observe that∫
Λ
J(θTW∞)4K =

∫∞
0

∫
Λ
θTJtW

θT ,3
t dXt

=
∫∞

0

∫
Λ
θTJtW

θT ,3
t dXu

t +
∫∞

0

∫
Λ
θTJtW

θT ,3
t utdt

=
∫∞

0

∫
Λ
θTJtW

θT ,3
t dXu

t − λ
∫∞

0

∫
Λ

(θTJtW
θT ,3
t )JtW

u,3
t dt

−λ
∫∞
T̄

∫
Λ

(θTJtW
θT ,3
t )Jt(W

u,2
t � I[t (u))dt

+
∫∞

0

∫
Λ

(θTJtW
θT ,3
t )Jt〈D〉−1/2J(〈D〉−1/2Wu

t )nKdt.

We expect the term ∫ ∞
0

∫
Λ

(θTJtW
θT ,3
t )JtW

u,3
t dt

to go to infinity faster than T 1−δ, Qu-almost surely. To actually prove it, we start by a
computation in average.

Lemma 4.2. It holds

E

[∫ ∞
0

∫
Λ

(θTJtW
θT ,3
t )JtW

3
tdt

]
� T.

Proof. Recall that dwθTt = θTJtdXt. With a slight abuse of notation we can write

∫∞
0

∫
Λ

(θTJtW
θT ,3
t )JtW

3
tdt

= 16
∫∞

0

∑
k
θT (k)σ2

t (k)
〈k〉2

(∑
k1+k2+k3=k

∫ t
0

∫ s1
0

∫ s2
0

dwθTs1 (k1)dwθTs2 (k2)dwθTs3 (k3)

×
∑
k1+k2+k3=k

∫ t
0

∫ s1
0

∫ s2
0

dws1(k1)dws2(k2)dws3(k3)
)

dt
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and by Ito isometry

E

[∑
k1+k2+k3=k

∫ t
0

∫ s1
0

∫ s2
0

dwθTs1 (k1)dwθTs2 (k2)dwθTs3 (k3)

×
∑
k1+k2+k3=k

∫ t
0

∫ s1
0

∫ s2
0

dws1(k1)dws2(k2)dws3(k3)
]

= 6
∑
k1+k2+k3=k

∫ t
0

∫ s1
0

∫ s2
0

θT (k1)σ2
s1

(k1)

〈k1〉2
θT (k2)σ2

s2
(k2)

〈k2〉2
θT (k3)σ2

s3
(k3)

〈k3〉2 ds1ds2ds3

For T large enough and since σ2 and θ are positive, we have denoting σ̃s = θTσ
2
s∫ ∞

0

∑
k

θT (k)σ2
t (k)

〈k〉2
∑

k1+k2+k3=k

∫ t

0

∫ s1

0

∫ s2

0

σ̃s1(k1)

〈k1〉2
σ̃s2(k2)

〈k2〉2
σ̃s3(k3)

〈k3〉2
ds1ds2ds3dt

>
∫ T/2

T/8

∑
k

σ2
t (k)

〈k〉2
∑

k1+k2+k3=k

∫ T/8

0

∫ s1

0

∫ s2

0

σ2
s1(k1)

〈k1〉2
σ2
s2(k2)

〈k2〉2
σ2
s3(k3)

〈k3〉2
ds1ds2ds3dt

Introduce the notation Z3
+ = {n ∈ Z3 : n = (n1, n2, n3) withni > 0}. Furthermore we

denote ρ̃T (k) = ρT/2(k)− ρT/8(k) After restricting the sum to (Z3
+)3 we get the bound

>
∫ T/2
T/8

∑
k
σ2
t (k)
〈k〉2

∑
k1, k2, k3 ∈ Z3

+

k1 + k2 + k3 = k

∫ T/8
3T/32

∫ s1
3T/32

∫ s2
3T/32

σ2
s1

(k1)

〈k1〉2
σ2
s2

(k2)

〈k2〉2
σ2
s3

(k3)

〈k3〉2 ds1ds2ds3dt

& 1
T 2

∑
k∈Z3

+
ρ̃T (k)

∑
k1, k2, k3 ∈ Z3

+

k1 + k2 + k3 = k

∫ T/8
3T/32

∫ s1
3T/32

∫ s2
3T/32

σ2
s1

(k1)

〈k1〉2
σ2
s2

(k2)

〈k2〉2
σ2
s3

(k3)

〈k3〉2 ds1ds2ds3

Now, for large enough T if k1 + k2 + k3 = k and 〈ki〉 6 T/8 then 〈k〉 6 T/2 × 0.9.
Furthermore if T large enough and k1, k2, k3 ∈ Z3

+ and k1 + k2 + k3 = k, while 〈ki〉 >
(3T/32)× 0.9 (recall that if 〈ki〉 < (3T/32)× 0.9 and s > 3T/32 then σs(k1) = 0) we have
〈k〉 > T/8. So for any k for which the integral is nonzero we have ρT/2(k)− ρT/8(k) = 1

(recall that ρ = 1 on B(0, 9/10) and ρ = 0 outside of B(0, 1)). This implies

1

T 2

∑
k∈Z3

+

ρ̃T (k)
∑

k1, k2, k3 ∈ Z3
+

k1 + k2 + k3 = k

∫ T/8

3T/32

∫ s1

3T/32

∫ s2

3T/32

σ2
s1(k1)

〈k1〉2
σ2
s2(k2)

〈k2〉2
σ2
s3(k3)

〈k3〉2
ds1ds2ds3

=
1

T 2

∑
k1, k2, k3 ∈ Z3

+

∫ T/8

3T/32

∫ s1

3T/32

∫ s2

3T/32

σ2
s1(k1)

〈k1〉2
σ2
s2(k2)

〈k2〉2
σ2
s3(k3)

〈k3〉2
ds1ds2ds3

& T

The upper bound . T it is easier to obtain, essentially as in Lemma 4.1.

Next we upgrade this average bound to almost sure divergence of the random variable
at least as T 1−δ for some δ small.

Lemma 4.3. There exists a δ0 > 0 such that for any δ0 > δ > 0, there exists a sequence
(Tn)n such that P− almost surely

1

T 1−δ
n

∫ ∞
0

∫
Λ

(
θTnJtW

θTn ,3
t

)
JtW

3
tdt→∞.

Proof. Define

GT :=
1

T 1−δ

∫ ∞
0

∫
Λ

(θTJtW
θT ,3
t )JtW

3
tdt+ sup

t<∞
‖Wt‖KC−1/2−κ .
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We will show that e−GT → 0 in L1(P), which implies that there exists a sub-sequence
(Tn)n such that e−GTn → 0 almost surely. From this our statement follows. By the
Boué–Dupuis formula

− logE[e−GT ] = inf
v∈Ha

E

[
1

T 1−δ

∫ ∞
0

∫
Λ

(θTJtJθT ((Wt + It(v))3)K)JtJ(Wt + It(v))3Kdt+

+ sup
t<∞
‖Wt + It(v)‖KC−1/2−κ +

1

2

∫ ∞
0

‖vt‖2L2dt

]
= inf

v∈Ha
E

[
1

T 1−δ

∫ ∞
0

∫
Λ

(θTJtW
θT ,3
t )JtW

3
tdt +

+
1

T 1−δ

∑
(i,j)∈{0,1,2,3}2\(0,0)

∫ T

0

∫
Λ

AitB
j
t dt

+ sup
t<∞
‖Wt + It(v)‖KC−1/2−κ +

1

2

∫ ∞
0

‖vt‖2L2dt

]
> inf

v∈Ha
E

[
1

T 1−δ

∫ ∞
0

∫
Λ

(θTJtW
θT ,3
t )JtW

3
tdt

+
1

T 1−δ

∑
(i,j)∈{0,1,2,3}2\(0,0)

∫ T

0

∫
Λ

AitB
j
t dt

+
1

2
sup
t<∞
‖It(v)‖KC−1/2−κ − C sup

t<∞
‖Wt‖KC−1/2−κ +

1

2

∫ ∞
0

‖vt‖2L2dt

]
where where have used that θTJt = 0 for t > T and introduced the notations, for
0 6 i 6 3,

Ait := 4

(
3

i

)
JtθT (J(θTWt)

3−iK(θT It(v))i),

and

Bit := 4

(
3

i

)
Jt(JW 3−i

t K(It(v))i).

Our aim now to prove that the last three terms are bounded below uniformly as T →∞
(while we already know that the first one diverges). For i ∈ {1, 2, 3}

‖Ait‖2L2 + ‖Bit‖2L2 . 〈t〉−1+δ
(
‖It(u)‖KC−1/2−κ + ‖It(u)‖2H1 +Qt(W )

)
,

by Lemmas 5.4 and 5.6. Here Qt(W ) is a random variable only depending on W such
that suptE[|Qt(W )|p] <∞ for any p <∞. Then

1
T 1−δ

∑
(i,j)∈{0,1,2,3}2\(0,0)

∫ T
0

∫
Λ
|AitB

j
t |dt

6 1
T 1−δ

∑
(i,j)∈{1,2,3}2

∫ T
0
‖Ait‖2L2 + ‖Bjt ‖2L2dt

+ 1
T 1−δ

∑
i∈{1,2,3}

∫ T
0
‖A0

t‖L2‖Bit‖L2dt+ 1
T 1−δ

∑
i∈{1,2,3}

∫ T
0
‖Ait‖L2‖B0

t ‖L2dt.

Now for the first term we obtain

E
[

1
T 1−δ

∑
(i,j)∈{1,2,3}2

∫ T
0
‖Ait‖2L2 + ‖Bjt ‖2L2dt

]
= E

[
1

T 1−δ

∑
(i,j)∈{1,2,3}2

∫ T
0
〈t〉−1+δ

(
‖It(v)‖K

C−1/2−κ + ‖It(v)‖2H1 +Qt(W )
)

dt
]

= C
T 1−2δE

[
supt

(
‖It(v)‖K

C−1/2−κ + ‖It(v)‖2H1

)]
+ C

T 1−2δ .
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For the second term we use that ‖A0
t‖L2 6 Qt(W ) so

1

T 1−δE

[∫ T

0

‖A0
t‖L2‖Bit‖L2dt

]

6
1

T 1−δE

[∫ T

0

〈t〉−1/2‖A0
t‖2L2dt+

∫ T

0

〈t〉1/2‖Bit‖2L2dt

]

.
1

T 1−δE

[∫ T

0

〈t〉−1/2‖A0
t‖2L2dt

]

+
1

T 1−δE

[∫ T

0

〈t〉−1/2+δ
(
‖It(v)‖KC−1/2−κ + ‖It(v)‖2H1 +Qt(W )

)
dt

]

.
C

T 1/2−2δ
E

[
sup
t

(
‖It(v)‖KC−1/2−κ + ‖It(v)‖2H1

)]
+

C

T 1/2−2δ

Since supt ‖It(v)‖2H1 .
∫∞

0
‖vt‖2L2dt in total we obtain for T large enough. The third term

is estimated analogously. Then

− logE[e−GT ]

> inf
v∈Ha

E

[
1

T 1−δ

∫ ∞
0

∫
Λ

(θTJtW
θT ,3
t )JtW

3
tdt+

(
1

2
− C

T 1/2−2δ

)
sup
t<∞
‖It(v)‖KC−1/2−κ

−C sup
t<∞
‖Wt‖KC−1/2−κ +

(
1

2
− C

T 1/2−2δ

)∫ ∞
0

‖vt‖2L2dt− C

T 1/2−2δ

]
> E

[
1

T 1−δ

∫ ∞
0

∫
Λ

(θTJtW
θT ,3
t )JtW

3
tdt

]
− C →∞

as claimed.

Next we obtain an estimate which will help with the proof of the main theorem.

Lemma 4.4. We have

sup
T
EQu

[∫ ∞
0

∫
Λ

1

t1+δ
(θTJtW

θT ,3
t )2dt

]
<∞.

Furthermore, there exists a (deterministic) sub-sequence (Tn)n such that

1

T
1/2+δ
n

∣∣∣∣∫ ∞
0

∫
Λ

θTnJtW
θTn ,3
t dXu

t

∣∣∣∣→ 0

Qu almost surely.

Proof. Recall that under Qu we have Wt = Wu
t + It(u) where u is defined above by (3.3)

and LawQu(Wu) = LawP(W ). With this in mind we compute∫ T

0

∫
Λ

1

t1+δ
(θTJtW

θT ,3
t )2dt =

∑
i,j63

∫ T

0

∫
Λ

1

t1+δ
AitA

j
tdt,

where, as above,

Ait = 4

(
3

i

)
JtθT (J(θTWu

t )3−iK(θT It(u))i).

By Lemmas 5.4 and 5.6 we have that EQu [‖Ait‖2L2 ] 6 C so the Cauchy–Schwartz inequality
gives the result.
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Theorem 4.5. There exists a sequence (Tn)n such that, Qu-almost surely,

1

T 1−δ
n

∫
Λ

J(θTnW∞)4K→ −∞.

Proof. We have ∫
Λ

J(θTW∞)4K =

∫ ∞
0

∫
Λ

θTJtW
θT ,3
t dXt.

Since dXt = dXu
t + utdt we have also

1
T 1−δ

∫∞
0

∫
Λ
θTJtW

θT ,3
t dXt

= 1
T 1−δ

∫∞
0

∫
Λ
θTJtW

θT ,3
t dXu

t + 1
T 1−δ

∫∞
0

∫
Λ
θTJtW

θT ,3
t utdt

= 1
T 1−δ

∫∞
0

∫
Λ
θTJtW

θT ,3
t dXu

t − λ
T 1−δ

∫∞
0

∫
Λ
θTJtW

θT ,3
t JtW

u,3
t dt

− λ
T 1−δ

∫∞
T̄

∫
Λ
θTJtW

θT ,3
t Jt(W

u,2
t � I[t (u))dt

+ 1
T 1−δ

∫∞
0

∫
Λ
θTJtW

θT ,3
t Jt〈D〉−1/2J(〈D〉−1/2Wu

t )nKdt.

The first term goes to 0 Qu-almost surely by Lemma 4.4. To analyze the third term we
estimate

1
T 1−δ

∫∞
T̄

∫
Λ
θTJtW

θT ,3
t Jt(W

u,2
t � I[t (u))dt

= 1
T 1−δ

∫ T
T̄

∫
Λ
θTJtW

θT ,3
t Jt(W

u,2
t � I[t (u))dt

6 1
T 1−δ

∫ T
T̄
‖θTJtWθT ,3

t ‖L2‖Jt(Wu,2
t � I[t (u))‖L2dt

. 1
T 1−δ

∫ T
T̄
t−1/2+δ/2‖θTJtWθT ,3

t ‖L2‖Wu,2
t ‖C−1−δ/2‖It(u)‖L2dt

6 T−1/2−2δ
(∫ T

T̄
‖θTJtWθT ,3

t ‖2L2dt
)1/2

×T−1/2+2δ
(∫ T

T̄
t−1+δ(‖Wu,2

t ‖C−1−δ/2‖It(u)‖L2)2
)1/2

.

(4.4)

By the computation from Lemma 4.4 we have then

EQu

T−1/2−2δ

(∫ T

T̄

‖θTJtWθT ,3
t ‖2L2dt

)1/2
→ 0,

and suptEQu [(‖Wu,2
t ‖C−1−δ/2‖It(u)‖L2)2] <∞. Therefore (4.4) converges to 0 in L1(Qu).

For the fourth term we proceed in the same way:∣∣∣∣∫ ∞
0

∫
Λ

θTJtW
θT ,3
t Jt〈D〉−1/2J(〈D〉−1/2Wu

t )nKdt
∣∣∣∣

=

∣∣∣∣∣
∫ T

0

∫
Λ

θTJtW
θT ,3
t Jt〈D〉−1/2J(〈D〉−1/2Wu

t )nKdt

∣∣∣∣∣
6

∫ T

0

‖θTJtWθT ,3
t ‖L2‖Jt〈D〉−1/2J(〈D〉−1/2Wu

t )nK‖L2dt

.
∫ T

0

(‖θTJtWθT ,3
t ‖L2)t−2+δ‖J(〈D〉−1/2Wu

t )nK‖H−δdt

6

(∫ T

0

t−2(1−δ)(‖θTJtWθT ,3
t ‖L2)2dt

)1/2(∫ T

0

t−2(1−δ)‖J(〈D〉−1/2Wu
t )nK‖2H−δdt

)1/2

which is bounded in expectation uniformly in T , so the fourth term goes to 0 in L1(Qu)

as well. It remains to analyze the second term. Again introducing the notation

Ait = 4

(
3

i

)
JtθT (J(θTWu

t )3−iK(θT It(u))i), W
θT ,u,3
t = 4J(θTWu

t )3K,
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we have

1

T 1−δ

∫ ∞
0

∫
Λ

θTJtW
θT ,3
t JtW

u,3
t dt

=
1

T 1−δ

∫ T

0

∫
Λ

θTJtW
θT ,u,3
t JtW

u,3
t dt+

∑
16i63

1

T 1−δ

∫ T

0

∫
Λ

AitJtW
u,3
t dt.

Now observe that

1

T 1−δ

∫ T

0

∫
Λ

θTJtW
θT ,u,3
t JtW

u,3
t dtQu ∼P

1

T 1−δ

∫ T

0

∫
Λ

θTJtW
θT ,3
t JtW

3
tdt,

so the lim sup of this is∞ almost surely. To estimate the sum we again observe that for
i > 3 EQu [‖Ait‖2L2 ] . 〈t〉−1+δ and by Young’s inequality∫ T

0

∫
Λ
AitJtW

u,3
t dt 6

∫ T
0

∫
Λ
‖Ait‖L2‖JtWu,3

t ‖L2dt

6
∫ T

0

∫
Λ
〈t〉1/3‖Ait‖L2〈t〉−1/3‖JtWu,3

t ‖L2dt

6
∫ T

0

∫
Λ
〈t〉2/3‖Ait‖2L2 +

∫ T
0

∫
Λ
〈t〉−2/3‖JtWu,3

t ‖2L2dt.

Taking expectation we obtain

1

T 1−δE

[∫ T

0

∫
Λ

AitJtW
u,3
t dt

]

6
1

T 1−δE

[∫ T

0

∫
Λ

〈t〉2/3‖Ait‖2L2

]
+

1

T 1−δE

[∫ T

0

∫
Λ

〈t〉−2/3‖JtWu,3
t ‖2L2dt

]

.
1

T 1−δ

∫ T

0

∫
Λ

〈t〉−1/3+δ +
1

T 1−δ

∫ T

0

∫
Λ

〈t〉−2/3dt→ 0.

We have deduced that

1

T 1−δ

∫
Λ

J(θTW∞)4K = − 1

T 1−δ

∫ T

0

∫
Λ

θTJtW
θT ,u,3
t JtW

u,3
t dt+RT ,

where RT → 0 in L1(Qu). We can conclude by selecting a sub-sequence (Tn)n such that

1

T 1−δ
n

∫ Tn

0

∫
Λ

θTJtW
θTn ,u,3
t JtW

u,3
t dt→∞

Qu-almost surely and RTn → 0, Qu-almost surely.

5 Some analytic estimates

We collect in this final section various technical estimates needed to complete the
proof of Lemma 3.8.

Proposition 5.1. Let 1 < p < ∞ and p1, p2, p
′
1, p
′
2 > 1 such that 1

p1
+ 1

p2
= 1

p′1
+ 1

p′2
= 1

p .
Then for every s, α > 0

‖〈D〉s(fg)‖Lp . ‖〈D〉s+αf‖Lp2 ‖〈D〉−αg‖Lp1 + ‖〈D〉s+αg‖
Lp
′
1
‖〈D〉−αf‖

Lp
′
2
.

Proof. See [18].

Lemma 5.2. There exists ε > 0, n ∈ N such that for any δ > 0 there exists Cδ < ∞ for
which the following inequality holds for any φ ∈ H1(Λ)

‖φ‖4+ε
L4 6 C‖φ‖n+1

W−1/2,n+1 + δ‖φ‖2H1 + Cδ.
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Proof. ∫
φ4dx 6 ‖〈D〉−1/2φ‖L8‖〈D〉1/2φ3‖L8/7

6 ‖〈D〉−1/2φ‖L8‖〈D〉1/2φ‖L8/3‖φ‖2L4

6 ‖〈D〉−1/2φ‖L8‖φ‖1/2H1 ‖φ‖5/2L4

So

(‖φ‖4L4)21/20 6 ‖〈D〉−1/2φ‖21/20
L8 ‖φ‖21/40

H1 ‖φ‖104/40
L4

and applying Young’s inequality with the exponents (32, 32/9, 32/22), we obtain

‖〈D〉−1/2φ‖21/20
L8 ‖φ‖21/40

H1 ‖φ‖104/40
L4 6 Cδ‖〈D〉−1/2φ‖168/5

L8 + δ‖φ‖16/9
H1 + δ‖φ‖208/55

L4

6 ‖〈D〉−1/2φ‖34
L8 + δ‖φ‖2H1 + δ(‖φ‖4L4)21/20 + Cδ

and subtracting δ(‖φ‖4L4)21/20 on both sides of the inequality gives the result.

Lemma 5.3. The following estimates hold with ε > 0 small enough

‖Jt(JW 2
t K � (1− θt)It(w))‖2L2 .

1

〈t〉1+ε

(∫ t

0

‖ws‖2ds+ ‖It(w)‖nW−1/2,n+1 + ‖JW 2
t K‖nC−1−ε

)

‖Jt(JW 2
t K ◦ It(w))‖2L2 .

1

〈t〉1+ε

(∫ t

0

‖ws‖2ds+ ‖It(w)‖nW−1/2,n+1 + ‖JW 2
t K‖nC−1−ε

)
‖JtJW 2

t K ≺ It(w)‖2L2 .
1

〈t〉1+ε

(∫ t

0

‖ws‖2ds+ ‖It(w)‖nW−1/2,n+1 + ‖JW 2
t K‖nC−1−ε

)
Proof. We observe that since JW 2

t K is spectrally supported in a ball or radius ∼ t

‖JW 2
t K‖C−1+ε . 〈t〉2ε‖JW 2

t K‖C−1−ε .

For the first estimate we know that (1− θt)It(w) is supported in an annulus of radius ∼ t,
so ‖(1−θt)It(w)‖L2 . 〈t〉−1+ε‖It(w)‖H1−ε and furthermore by interpolation ‖It(w)‖H1−ε .
‖It(w)‖1−εH1 ‖It(w)‖εL2 . ‖It(w)‖1−εH1 ‖It(w)‖εL4 . By definition 〈t〉1/2Jt is a uniformly bounded
Fourier multiplier regularizing by 1, and putting everything together, by paraproduct
estimates

‖Jt(JW 2
t K � (1− θt)It(w))‖2L2

. 〈t〉−1〈t〉2ε〈t〉−2+2ε‖JW 2
t K‖2C−1−ε‖It(w)‖2H1−ε

. 〈t〉−1〈t〉2ε〈t〉−2+2ε‖JW 2
t K‖2C−1−ε‖It(w)‖2−2ε

H1 ‖It(w)‖2εL4

(ε = 2/7) . 〈t〉−3/2
(
‖JW 2

t K‖14
C−1−ε + ‖It(w)‖2H1 + ‖It(w)‖4L4

)
. 〈t〉−3/2

(∫ t

0

‖w‖2ds+ ‖It(w)‖nW−1/2,n+1 + ‖JW 2
t K‖14

C−1−ε

)
For the second term in addition observe that the function 〈t〉1/2Jt is spectrally supported
in an annulus of radius ∼ t, and regularizes by 1 so again by estimates for the resonant
product

‖Jt(JW 2
t K ◦ It(w))‖2L2 . 〈t〉−3‖JW 2

t K‖2C−1+2ε‖It(w)‖2H1−ε

. 〈t〉−3〈t〉6ε‖JW 2
t K‖2C−1−ε‖It(w)‖2H1−ε

For the third estimate again applying paraproduct estimates and the properties of J ,

‖Jt(JW 2
s K ≺ It(w))‖2L2 . 〈t〉−3+4ε‖JW 2

s K‖2C−1−ε‖It(w)‖2H1−ε .
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Now, the claim follows from interpolation and Young’s inequality

‖JW 2
t K‖2C−1−ε‖It(w)‖2H1−ε

. ‖JW 2
t K‖2C−1−ε‖It(w)‖2−2ε

H1 ‖It(w)‖2εL4

(ε = 2/7) . ‖JW 2
t K‖14

C−1−ε + ‖It(w)‖2H1 + ‖It(w)‖4L4

.

(∫ t

0

‖ws‖2L2ds+ ‖It(w)‖nW−1/2,n+1 + ‖JW 2
t K‖14

C−1−ε

)
.

Lemma 5.4. Let f ∈ C
(
[0,∞],C−1/2−ε) and g ∈ C([0,∞], H1) such that ft, gt have

spectral support in a ball of radius proportional to t. There exists n ∈ N such that the
following estimates hold:

‖Jt(ftg2
t )‖2L2 . 〈t〉−3/2‖ft‖2C−1/2−δ‖gt‖4L4 ,

‖Jt(ftg2
t )‖2L2 . 〈t〉−3/2

(
‖ft‖nC−1/2−δ + ‖gt‖2H1 + ‖gt‖nW−1/2,n

)
,

and
‖Jt(g3

t )‖2L2 . 〈t〉−3/2(‖gt‖2H1 + ‖gt‖nW−1/2,n).

Proof. By the spectral properties of Jt,

‖Jt(ftg2
t )‖2L2 . 〈t〉−3‖ft‖2L∞‖gt‖4L4 . 〈t〉−3/2‖ft‖2C−1/2−δ‖gt‖4L4 .

Applying Young’s inequality with exponents
(
n
2 ,

n/2
(n/2−1)

)
with n such that 2n

(n/2−1) 6 4 + ε

where ε is chosen as in Lemma 5.2 we have

〈t〉−3/2‖ft‖2C−1/2−δ‖gt‖4L4 6 〈t〉−3/2
(
‖ft‖nC−1/2−δ + ‖gt‖4+ε

L4

)
6 〈t〉−3/2

(
‖ft‖nC−1/2−δ + ‖gt‖nW−1/2,n + ‖gt‖2H1

)
.

Now the second estimate follows from chosing n large enough (depending on δ) and
using Besov embedding after taking f = g.

Lemma 5.5. The following estimates hold

〈t〉1+κ‖Js(WsIt(w) � I[t (u))‖2L2 . ‖It(w)‖4+κ
L4 + ‖I[t (u)‖4L4 + ‖Wt‖nC−1/2−κ ,

〈t〉1+κ‖Js((Is(w))2 � I[s(u))‖2L2 . ‖It(w)‖4+κ
L4 + ‖I[t (u)‖nC−1/2−κ .

Proof. For the first estimate we again use the spectral properties of W, I, and J and
obtain by paraproduct estimate

‖Js(WtIt(w) � I[t (u))‖2L2 . 〈t〉−3‖Wt‖2L∞‖It(w)‖2L4‖I[t (u)‖2L4

. 〈t〉−3〈t〉1+4κ‖Wt‖2C−1/2−κ‖It(w)‖2L4‖I[t (u)‖2L4

and the claim follows by Young’s inequality. For the second

‖Js((Is(w))2 � I[s(u))‖2L2 . 〈t〉2−2κ‖(Is(w))‖4L4‖I[t (u)‖2C−1/2−κ ,

and the claim follows again by Young’s inequality.

Lemma 5.6. Let ft ∈ C
(
[0,∞],C−1/2−δ) and gt ∈ C([0,∞], H1) such that ft, gt have

spectral support in a ball of radius proportional to t. Then the following estimates hold

‖(Jt(ftgt))‖2L2 . 〈t〉−1+2δ‖ft‖2C−1−δ‖gt‖2L2

‖(Jt(ftgt))‖2L2 . 〈t〉−1+2δ
(
‖ft‖8C−1−δ + ‖gt‖4H−1 + ‖gt‖2H1

)
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Proof.
‖(Jt(ftgt))‖2L2 . 〈t〉−3‖ft‖2L∞‖gt‖2L2 . 〈t〉−1+2δ‖ft‖2C−1−δ‖gt‖2L2 .

This proves the first estimate. For the second we continue

〈t〉−1+2δ‖ft‖2C−1−δ‖gt‖2L2 . 〈t〉−1+2δ‖ft‖2C−1−δ‖gt‖H1‖gt‖H−1

. 〈t〉−1+2δ
(
‖ft‖8C−1−δ + ‖gt‖4H−1 + ‖gt‖2H−1

)
.

Lemma 5.7. It holds∫ T

0

∫
Λ

(Jt(W
2
t � I[t (w)))2 . T 3δ

(
sup
t
‖W2

t ‖2C−1−δ

)
(sup
t
‖It(w)‖2L2),

and∫ T

0

∫
Λ

(Jt(W
2
t � I[t (w)))2 . T 3δ

(
sup
t
‖It(w)‖4H−1 +

∫ T

0

‖wt‖2L2dt+ sup
t
‖W2

t ‖8C−1−δ

)
.

Proof. This follows in the same fashion as Lemma 5.6.

A Besov spaces and paraproducts

In this section we will recall some well known results about Besov spaces, embeddings,
Fourier multipliers and paraproducts. The reader can find full details and proofs in [3,
16].

First recall the definition of Littlewood–Paley blocks. Let χ, ϕ be smooth radial
functions Rd → R such that

• suppχ ⊆ B(0, R), suppϕ ⊆ B(0, 2R) \B(0, R);

• 0 6 χ, ϕ 6 1, χ(ξ) +
∑
j≥0 ϕ(2−jξ) = 1 for any ξ ∈ Rd;

• suppϕ(2−j ·) ∩ suppϕ(2−i·) = ∅ if |i− j| > 1.

Introduce the notations ϕ−1 = χ, ϕj = ϕ(2−j ·) for j > 0. For any f ∈ S ′(Λ) we define
the operators ∆jf := F−1

ξ (ϕj(ξ)f̂(ξ)), j > −1.

Definition A.1. Let s ∈ R, p, q ∈ [1,∞]. For a Schwarz distribution f ∈ S ′(Λ) define the
norm

‖f‖Bsp,q := ‖(2js‖∆jf‖Lp)j>−1‖`q .

Then the space Bsp,q is the closure of Schwarz distributions under this norm. We denote
C α = Bα∞,∞ the Besov–Hölder space and Hα = Bα2,2 the Sobolev spaces.

Proposition A.2. Let 1 6 p1 6 p2 6∞ and 1 6 q1 6 q2 6∞. Then Bsp1,q1 is continuously

embedded in B
s−d

(
1
p1
− 1
p2

)
p2,q2 .

Proposition A.3. For any s1, s2 ∈ R such that s1 < s2, any p, q ∈ [1,∞] the Besov space
Bs1p,q is compactly embedded into Bs2p,q.

Definition A.4. Let f, g ∈ S (Λ). We define the paraproducts

f � g :=
∑
j<i−1

∆if∆jg, and f ≺ g :=
∑
j>i+1

∆if∆jg = g � f.

Moreover we introduce the resonant product

f ◦ g :=
∑
|i−j|61

∆if∆jg.

Then fg = f ≺ g + f ◦ g + f � g.
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Proposition A.5. Let α < 0, β ∈ R. For f, g ∈ S (Λ) we have the estimates

‖f � g‖Hβ−δ . ‖f‖Cβ‖g‖L2 , ‖f � g‖Cβ . ‖f‖Cβ‖g‖L∞ ,
‖f � g‖Hβ−α . ‖f‖Cβ‖g‖Hα , ‖f � g‖Cβ . ‖f‖Cβ‖g‖Cα .

Let α, β ∈ R such that α+ β > 0. Then

‖f ◦ g‖Hα+β . ‖f‖Cβ‖g‖Hα , ‖f ◦ g‖Cα+β . ‖f‖Cβ‖g‖Cα .

By density the paraproduct and resonant product also extend to bilinear operators on
the respective spaces.

Proposition A.6. Let α ∈ (0, 1) β, γ ∈ R such that β + γ < 0, α + β + γ > 0. Then for
f, g, h ∈ S , and for any δ > 0,

‖(f � g) ◦ h− g(f ◦ h)‖Hα+β+γ−δ . ‖f‖Cγ‖h‖Cβ‖g‖Hα ,

‖(f � g) ◦ h− g(f ◦ h)‖Cα+β+γ . ‖f‖Cγ‖h‖Cβ‖g‖Cα .

Proposition A.7. Assume f ∈ C α, g ∈ Hβ , h ∈ Hγ and α+ β + γ = 0. Then∫
Td

[(f � g)h− (f ◦ h)g] . ‖f‖Cα‖g‖Hβ‖h‖Hγ .

Remark A.8. Proposition A.7 is not proven in the above references but is quite easy and
the reader can fill out a proof.

Definition A.9. A smooth function η : Rd → R is said to be an Sm-multiplier if for every
multi-index α there exists a constant Cα such that∣∣∣∣ ∂α∂ξα f(ξ)

∣∣∣∣ .α (1 + |ξ|)m−|α|, ∀ξ ∈ Rd. (A.1)

We say that a family (ηt)t>0 is a uniform Sm-multiplier if (A.1) is satisfied for every ηt
with Cα independent of t > 0.

Proposition A.10. Let η be an Sm-multiplier, s ∈ R, p, q ∈ [1,∞], and f ∈ Bsp,q(Td), then

‖η(D)f‖Bs−mp,q
. ‖f‖Bsp,q .

Furthermore the constant depends only on s, p, q, d and the constants Cα in (A.1).

Proposition A.11. Assume m 6 0, α ∈ (0, 1), β ∈ R. Let η be an Sm-multiplier, f ∈ C β,
g ∈ Hα. Then for any δ > 0.

‖η(D)(f � g)− (η(D)f � g)‖Hα+β−m−δ . ‖f‖Cβ‖g‖Hα .

Again the constant depends only on α, β, δ and the constants in (A.1).

Proposition A.12. Let δ > 0.We have for any q1, q2 ∈ [1,∞], q1 < q2

‖f‖Bsp,q2 6 ‖f‖Bsp,q1 6 ‖f‖Bs+δp,∞
.

Furthermore, if we denote by W s,p, s ∈ R, p ∈ [1,∞] the fractional Sobolev spaces defined
by the norm ‖f‖W s,q := ‖〈D〉sf‖Lq , then, for any q ∈ [1,∞],

‖f‖Bsp,q 6 ‖f‖W s+δ,p 6 ‖f‖Bs+2δ
p,∞

.

EJP 26 (2021), paper 81.
Page 27/29

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP635
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The Φ4
3 measure via Girsanov’s theorem

References

[1] S. Albeverio and S. Liang. A remark on the nonequivalence of the time-zero Φ4
3-measure

with the free field measure. Markov Processes and Related Fields, 14(1):159–164, 2008.
MR-2433300

[2] S. Albeverio and S. Kusuoka. The invariant measure and the flow associated to the Φ4
3-quantum

field model. Annali della Scuola Normale di Pisa - Classe di Scienze, 2018. 10.2422/2036-
2145.201809_008. MR-4201185

[3] H. Bahouri, J.-Y. Chemin, and R. Danchin. Fourier Analysis and Nonlinear Partial Differential
Equations. Springer, jan 2011. MR-2768550

[4] N. Barashkov and M. Gubinelli. A variational method for Φ4
3. Duke Mathematical Journal,

169(17):3339–3415, nov 2020. MR-4173157

[5] G. Benfatto, M. Cassandro, G. Gallavotti, F. Nicoló, E. Olivieri, E. Presutti, and E. Scacciatelli.
Ultraviolet stability in Euclidean scalar field theories. Communications in Mathematical
Physics, 71(2):95–130, jun 1980. 10.1007/BF01197916. MR-0560344

[6] B. Bringmann. Invariant Gibbs measures for the three-dimensional wave equation with a
Hartree nonlinearity I: measures. arXiv:2009.04609, 2020.

[7] B. Bringmann. Invariant Gibbs measures for the three-dimensional wave equation with a
Hartree nonlinearity II: dynamics. arXiv:2009.04616, 2020.

[8] D. C. Brydges, J. Fröhlich, and A. D. Sokal. A new proof of the existence and nontriviality of
the continuum φ4

2 and φ4
3 quantum field theories. Communications in Mathematical Physics,

91(2):141–186, 1983. MR-0723546

[9] R. Catellier and K. Chouk. Paracontrolled distributions and the 3-dimensional stochastic quan-
tization equation. The Annals of Probability, 46(5):2621–2679, 2018. 10.1214/17-AOP1235.
MR-3846835

[10] J. Feldman. The λϕ4
3 field theory in a finite volume. Communications in Mathematical Physics,

37:93–120, 1974. MR-0384003

[11] J. S. Feldman and K. Osterwalder. The Wightman axioms and the mass gap for weakly coupled
Φ4

3 quantum field theories. Annals of Physics, 97(1):80–135, 1976. MR-0416337

[12] J. Glimm and A. Jaffe. Positivity of the φ4
3 Hamiltonian. Fortschritte der Physik. Progress of

Physics, 21:327–376, 1973. MR0408581. MR-0408581

[13] J. Glimm and A. Jaffe. Quantum Physics: A Functional Integral Point of View. Springer-Verlag,
New York, 2 edition, 1987. MR-0887102

[14] M. Gubinelli and M. Hofmanová. A PDE construction of the Euclidean Φ4
3 quantum field

theory. Communications in Mathematical Physics, 384(1):1–75, 2021. MR-4252872

[15] M. Gubinelli and M. Hofmanová. Global Solutions to Elliptic and Parabolic Φ4 Models in
Euclidean Space. Communications in Mathematical Physics, 368(3):1201–1266, 2019. MR-
3951704

[16] M. Gubinelli, P. Imkeller, and N. Perkowski. Paracontrolled distributions and singular PDEs.
Forum of Mathematics. Pi, 3:0, 2015. 10.1017/fmp.2015.2. MR-3406823

[17] F. Guerra, L. Rosen, and B. Simon. The P (φ)2 Euclidean quantum field theory as classical
statistical mechanics. I, II. Ann. of Math. (2), 101:111–189, 1975. MR-0378670

[18] A. Gulisashvili and M. A. Kon. Exact Smoothing Properties of Schrödinger Semigroups.
American Journal of Mathematics, 118(6):1215–1248, 1996. JSTOR 25098514. MR-1420922

[19] M. Hairer. A theory of regularity structures. Inventiones mathematicae, 198(2):269–504,
2014. 10.1007/s00222-014-0505-4. MR-3274562

[20] G. Jona-Lasinio and P. K. Mitter. On the stochastic quantization of field theory. Communications
in Mathematical Physics (1965-1997), 101(3):409–436, 1985. MR-0815192

[21] A. Kupiainen. Renormalization Group and Stochastic PDEs. Annales Henri Poincaré,
17(3):497–535, 2016. 10.1007/s00023-015-0408-y. MR-3459120

[22] J. Magnen and R. Sénéor. The infinite volume limit of the φ4
3 model. Ann. Inst. H. Poincaré

Sect. A (N.S.), 24(2):95–159, 1976. . MR-0406217

EJP 26 (2021), paper 81.
Page 28/29

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=2433300
https://mathscinet.ams.org/mathscinet-getitem?mr=4201185
https://mathscinet.ams.org/mathscinet-getitem?mr=2768550
https://mathscinet.ams.org/mathscinet-getitem?mr=4173157
https://mathscinet.ams.org/mathscinet-getitem?mr=0560344
https://arXiv.org/abs/2009.04609
https://arXiv.org/abs/2009.04616
https://mathscinet.ams.org/mathscinet-getitem?mr=0723546
https://mathscinet.ams.org/mathscinet-getitem?mr=3846835
https://mathscinet.ams.org/mathscinet-getitem?mr=0384003
https://mathscinet.ams.org/mathscinet-getitem?mr=0416337
https://mathscinet.ams.org/mathscinet-getitem?mr=0408581
https://mathscinet.ams.org/mathscinet-getitem?mr=0887102
https://mathscinet.ams.org/mathscinet-getitem?mr=4252872
https://mathscinet.ams.org/mathscinet-getitem?mr=3951704
https://mathscinet.ams.org/mathscinet-getitem?mr=3951704
https://mathscinet.ams.org/mathscinet-getitem?mr=3406823
https://mathscinet.ams.org/mathscinet-getitem?mr=0378670
https://mathscinet.ams.org/mathscinet-getitem?mr=1420922
https://mathscinet.ams.org/mathscinet-getitem?mr=3274562
https://mathscinet.ams.org/mathscinet-getitem?mr=0815192
https://mathscinet.ams.org/mathscinet-getitem?mr=3459120
https://mathscinet.ams.org/mathscinet-getitem?mr=0406217
https://doi.org/10.1214/21-EJP635
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The Φ4
3 measure via Girsanov’s theorem

[23] A. Moinat and H. Weber. Space-time localisation for the dynamic Φ4
3 model. Communications

on Pure and Applied Mathematics, 73(12):2519–2555, 2020. MR-4164267

[24] J.-C. Mourrat and H. Weber. The dynamic Φ4
3 model comes down from infinity. Comm. Math.

Phys., 356(3):673–753, 2017. MR-3719541

[25] G. Parisi and Y. S. Wu. Perturbation theory without gauge fixing. Scientia Sinica. Zhongguo
Kexue, 24(4):483–496, 1981. MR-0626795

[26] Y. M. Park. The λϕ4
3 Euclidean quantum field theory in a periodic box. Journal of Mathematical

Physics, 16(11):2183–2188, 1975. 10.1063/1.522464. MR-0386524

Acknowledgments. M.G. would like to thank S. Albeverio, D. Brydges, C. Garban and
M. Hairer for interesting discussions on the topic of singularity of Φ4

3. N.B would like
to thank B. Bringmann for some helpful comments and for pointing out a mistake in an
earlier version of the paper. The authors would like to thank the Isaac Newton Institute
for Mathematical Sciences for support and hospitality during the program SRQ: Scaling
limits, Rough paths, Quantum field theory during which part of the work on this paper
was undertaken. This paper has been written with TeXmacs (www.texmacs.org).

EJP 26 (2021), paper 81.
Page 29/29

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=4164267
https://mathscinet.ams.org/mathscinet-getitem?mr=3719541
https://mathscinet.ams.org/mathscinet-getitem?mr=0626795
Https://doi.org/10.1063/1.522464
https://mathscinet.ams.org/mathscinet-getitem?mr=0386524
https://www.texmacs.org
https://doi.org/10.1214/21-EJP635
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Electronic Journal of Probability
Electronic Communications in Probability

Advantages of publishing in EJP-ECP

• Very high standards

• Free for authors, free for readers

• Quick publication (no backlog)

• Secure publication (LOCKSS1)

• Easy interface (EJMS2)

Economical model of EJP-ECP

• Non profit, sponsored by IMS3, BS4 , ProjectEuclid5

• Purely electronic

Help keep the journal free and vigorous

• Donate to the IMS open access fund6 (click here to donate!)

• Submit your best articles to EJP-ECP

• Choose EJP-ECP over for-profit journals

1LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
2EJMS: Electronic Journal Management System http://www.vtex.lt/en/ejms.html
3IMS: Institute of Mathematical Statistics http://www.imstat.org/
4BS: Bernoulli Society http://www.bernoulli-society.org/
5Project Euclid: https://projecteuclid.org/
6IMS Open Access Fund: http://www.imstat.org/publications/open.htm

http://en.wikipedia.org/wiki/LOCKSS
http://www.vtex.lt/en/ejms.html
http://en.wikipedia.org/wiki/Institute_of_Mathematical_Statistics
http://en.wikipedia.org/wiki/Bernoulli_Society
https://projecteuclid.org/
https://secure.imstat.org/secure/orders/donations.asp
http://www.lockss.org/
http://www.vtex.lt/en/ejms.html
http://www.imstat.org/
http://www.bernoulli-society.org/
https://projecteuclid.org/
http://www.imstat.org/publications/open.htm

	Introduction
	The setting
	Construction of the drift measure
	Proof of absolute continuity
	Lp bounds

	Singularity of 34 w.r.t. the free field
	Some analytic estimates
	Besov spaces and paraproducts
	References

