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Abstract

In the setting of reversible continuous-time Markov chains, the CDΥ condition has
been shown recently to be a consistent analogue to the Bakry-Émery condition in the
diffusive setting in terms of proving Li-Yau inequalities under a finite dimension term
and proving the modified logarithmic Sobolev inequality under a positive curvature
bound. In this article we examine the case where both is given, a finite dimension
term and a positive curvature bound. For this purpose we introduce the CDΥ(κ, F )

condition, where the dimension term is expressed by a so called CD-function F . We
derive functional inequalities relating the entropy to the Fisher information, which we
will call entropy-information inequalities. Further, we deduce applications of entropy-
information inequalities such as ultracontractivity bounds, exponential integrability of
Lipschitz functions, finite diameter bounds and a modified version of the celebrated
Nash inequality.
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1 Introduction

1.1 The curvature-dimension condition of Bakry-Émery

The origins of the Γ-calculus of Bakry and Émery date back to the seminal work [2].
Meanwhile, this theory, for which the monograph [3] is an excellent source, has been
proven itself as a beautiful link between probability theory, geometry and analysis.

For motivational purposes we briefly survey the setting of the Bakry-Émery theory
in the sequel. Denoting by L the infinitesimal generator of a Markov semigroup, the
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Entropy-information inequalities for Markov chains

carré-du-champ operator Γ and the iterated carré-du-champ operator Γ2 are defined as

Γ(f, g) =
1

2

(
L(fg)− f Lg − g Lf

)
,

Γ2(f, g) =
1

2

(
LΓ(f, g)− Γ(f, Lg)− Γ(g, Lf)

)
for f and g lying in a suitable algebra of real-valued functions. One defines Γ(f) := Γ(f, f)

and Γ2(f) := Γ2(f, f). Given a fixed invariant and reversible measure µ for the semigroup
generated by L, the operator L is said to satisfy the curvature-dimension condition
CD(κ, n) for κ ∈ R and n ∈ [1,∞], if

Γ2(f) ≥ κΓ(f) +
1

n

(
Lf
)2
, µ-a.e., (1.1)

holds in a sufficiently rich class of functions.
The classical theory is based on the key assumption that the chain rule

LH(f) = H ′(f)Lf +H ′′(f)Γ(f) (1.2)

is satisfied for every H ∈ C2(R) and f lying in a suitable class of functions. Typical
examples for operators fitting to the abstract framework of [3], in particular satisfy-
ing (1.2), are given by second-order differential operators with smooth coefficients
and without zero-th order term. For instance, consider the Laplace-Beltrami opera-
tor L = ∆g on a Riemannian manifold (M, g) with invariant and reversible measure
given by the canonical Riemannian measure µg. In this case one can show by means
of the Bochner-Lichnerowicz formula that CD(κ, n) is equivalent to Ricg(x) ≥ κg(x) for
almost every x ∈ M and dimM ≤ n, where Ricg denotes the Ricci-curvature tensor
and dimM the topological dimension of the manifold M . In this sense, calling (1.1) a
curvature-dimension condition is well motivated.

The curvature-dimension inequality (1.1) serves as a powerful tool to establish various
functional inequalities. In fact, if CD(κ,∞) holds with κ > 0, then the spectral gap
inequality and the logarithmic Sobolev inequality are both satisfied with constant κ (see
[3, Chapter 4 and 5]). In the case that CD(0, n) holds for n <∞, one can deduce the Li-
Yau inequality, which in turn leads to the parabolic Harnack inequality, cf. [3, Chapter 6].
Our main interest lies in the strongest case of having both, a positive curvature and a
finite dimension term. Assuming that CD(κ, n) holds with κ > 0 and n <∞, one obtains
Sobolev inequalities or, equivalently, the logarithmic entropy-energy inequality, which
reads as

Entµ(f2) ≤ n

2
log
(

1 +
4

κn
E(f)

)
, (1.3)

for f being in a sufficiently large class of functions with
∫
X
f2dµ = 1 (where Entµ denotes

the Boltzmann entropy and E the Dirichlet energy on L2(µ) associated with L and µ). The
functional inequality (1.3) is an important instance of what is called an entropy-energy
inequality, that is

Entµ(f2) ≤ Φ
(
E(f)

)
, (1.4)

where Φ : (0,∞) → R is a strictly increasing and concave C1-function. We refer to [3,
Chapter 7], where applications of entropy-energy inequalities, such as ultracontractivity
or diameter bounds, have been discussed.

1.2 Existing approaches for finding substitutes for curvature and dimension
in the discrete setting

The issue of finding suitable substitutes of Ricci curvature lower bounds in the
discrete setting has been a very vibrant topic of research in the last decade and a half,
see e.g. the recent book [24].
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Entropy-information inequalities for Markov chains

Based on the powerful approach of optimal transport, for which we refer to the
seminal works [20, 29, 30, 32], Erbar and Maas successfully developed the theory of
entropic Ricci curvature in the context of finite Markov chains in [13] and [21]. Another
important notion of discrete curvature that relies on ideas from optimal transport is due
to Ollivier (see [26]). The latter curvature notion has been studied in a variety of articles
concerning the case that the underlying state space is given by a locally finite graph, see
e.g. [15, 23].

With regard to the Bakry-Émery approach, it is apparently still possible to define
the operators Γ and Γ2 in the discrete setting, where L now denotes the generator of a
Markov chain. However, even though some positive results such as eigenvalue estimates
in [17] or diameter bounds in [18] can be deduced, the Bakry-Émery condition is not as
applicable as in the continuous setting, in particular with regard to Li-Yau inequalities
and (modified) logarithmic Sobolev inequalities. This is caused especially by the major
difficulty that the diffusion property (1.2) does not hold in the discrete setting. There
are several modified versions of curvature-dimension inequalities in the discrete setting
which are based on the approach of identifying certain discrete substitutes for the chain
rule, e.g. in the context of Li-Yau inequalities we refer to [4, 11, 22]. In particular, in [11]
the identity

L(log f) =
Lf

f
−ΨΥ(log f) (1.5)

has been used as the appropriate replacement for the case of H = log in (1.2). Here
the operator ΨΥ is defined as in (1.11) below, with H = Υ, where Υ : R → R is given
by Υ(r) = er − r − 1, r ∈ R. We will comment on regularity assumptions for f ensuring
the validity of (1.5) in the next subsection. One of the key ideas of [11] is to make use
of so called CD-functions in order to express the dimension term in their CD condition.
This in fact leads to significantly improved estimates regarding the corresponding Li-Yau
inequalities, which are even sharp in some instances. We will follow the approach of
using CD-functions in this article as well.

Regarding positive curvature bounds, based on the identity (1.5), it has been shown
very recently in [31] that the CDΥ(κ,∞) condition serves as a consistent analogue
to the classical curvature-dimension condition with regard to the strategy of proving
entropy decay of an exponential rate using the entropy method. The resulting functional
inequality, the modified logarithmic Sobolev inequality, holds with constant κ > 0

provided that CDΥ(κ,∞) is satisfied (see [31, Corollary 3.5]). In the sense of the
relation between curvature-dimension inequalities and related functional inequalities,
the modified logarithmic Sobolev inequality with regard to the CDΥ(κ,∞) condition in
the discrete setting serves as the appropriate counterpart to the logarithmic Sobolev
inequality with regard to the CD(κ,∞) condition in the diffusive setting.

Moreover, we refer to the discussion in [31, Remark 2.9] that shows that the CDΥ

condition with finite dimension term is strongly related to the articles [22] and [11] (see
also Remark 2.4 below) and in particular implies Li-Yau type inequalities. In this sense,
the CDΥ condition serves as a suitable analogue to the Bakry-Émery condition with
regard to both, positive curvature in terms of the entropy method and finite dimension
in terms of Li-Yau inequalities. The main motivation of this paper is to identify the
appropriate discrete counterpart to the logarithmic entropy-energy inequality (1.3) with
regard to the CD(κ, n) condition in the diffusive setting, or in other words, to investigate
the case where both is satisfied, a positive curvature bound and a finite dimension term.

1.3 Setting and main results

We consider a time-homogeneous, continuous-time Markov chain
(
Zt
)
t≥0

defined on

a probability space
(
Ω,F ,P

)
and with (finite or infinite) countable state space X. The
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generator L of the Markov chain is defined on a suitable class of functions f : X → R by

Lf(x) =
∑
y∈X

k(x, y)f(y) =
∑
y∈X

k(x, y)
(
f(y)− f(x)

)
. (1.6)

Here, we assume
∑
y∈X k(x, y) = 0, where k(x, y) ≥ 0 denotes the transition rate for

jumping from x to y if x 6= y. We remark that L determines naturally a graph structure
with vertex set X and edge weights given by k(x, y) for x, y ∈ X, x 6= y, to which we will
refer as the underlying graph to L. If k(x, y) ∈ {0, 1} for any x, y ∈ X with x 6= y, then
the underlying graph to L is an unweighted graph.

We denote the associated (sub-)Markov semigroup on the space of bounded functions
by
(
Pt
)
t≥0

, which is given by

Ptf(x) = E
(
f(Zt)|Z0 = x

)
. (1.7)

Further, we suppose that the Markov chain is irreducible and that a unique (up to
positive multiples) invariant measure µ exists such that the detailed balance condition

µ({x})k(x, y) = µ({y})k(y, x) (1.8)

is valid for any x, y ∈ X. Let π : X → (0,∞) denote the density for µ with respect to the
counting measure on X, i.e. dµ = πd#. It is a basic consequence of irreducibility and
reversibility that π(x) > 0 for any x ∈ X.

It is well known that the Markov chain is positive recurrent if and only if µ is finite
(and hence can be assumed to be a probability measure) and the Markov chain is
non-explosive (see e.g. [25]). In particular, provided that the Markov chain is positive
recurrent, stochastic completeness (that is Pt1 = 1) and ergodicity (by which we mean
what is sometimes called ordinary ergodicity, see e.g. [1]) hold true. In the recent work
[31], which is strongly related to this article, positive recurrence has been an important
assumption. If one allows for the Markov chain being explosive, then the semigroup
given by (1.7) is only submarkovian, which ensures still that Ptf is bounded provided
that f is bounded. For more details on the general theory of continuous-time Markov
chains we refer the reader to [1] and [25].

We denote by RX the space of real-valued functions on X and by `p(µ), 1 ≤ p <∞,
the elements of RX that are p-summable with respect to µ. Further, `∞(X) denotes
the space of bounded real-valued functions on X. Throughout this article the mapping
‖ · ‖p : `p(µ)→ [0,∞), 1 ≤ p <∞, denotes the `p(µ)-norm.

Moreover, we denote by P(X) the set of probability densities with respect to µ,
by P∗(X) the set of elements in P(X) that are strictly positive at any x ∈ X and
P+
∗ (X) := P∗(X) ∩ `∞,+(X), where

`∞,+(X) = {f ∈ `∞(X) : ∃c > 0 such that f(x) ≥ c,∀x ∈ X}.

We assume throughout this paper that at any x ∈ X

M1(x) :=
∑

y∈X\{x}

k(x, y) <∞ (1.9)

and
M2(x) :=

∑
y∈X\{x}

k(x, y)
∑

z∈X\{y}

k(y, z) <∞. (1.10)

Further, we define M1,inf := infx∈XM1(x) ∈ [0,∞) and M1,sup := supx∈XM1(x) ∈ (0,∞]

and introduce
N(x) :=

∑
y∈X\{x}

k(x, y)k(y, x) ≤M2(x) <∞.
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We recall from [31] the definition of the operators ΨH and Ψ2,H , where H : R→ R is
a continuous mapping. We define

ΨH(f)(x) =
∑
y∈X

k(x, y)H(f(y)− f(x)), x ∈ X, (1.11)

for any f ∈ `∞(X) and

BH(f, g)(x) =
∑
y∈X

k(x, y)H(f(y)− f(x))(g(y)− g(x)), x ∈ X, (1.12)

for suitable functions f and g. In particular, the conditions (1.9) and (1.10) ensure that
we can choose in (1.12) g = Lf for f ∈ `∞(X). This guarantees that for f ∈ `∞(X) and
x ∈ X the operator

Ψ2,H(f)(x) =
1

2

(
LΨH(f)(x)−BH′(f, Lf)(x)

)
is well defined. In the case of H(r) = 1

2r
2, ΨH(f) coincides with Γ(f) and Ψ2,H(f) with

Γ2(f). For our purposes, the mapping Υ(r) = er − r − 1, r ∈ R, will play a key role.
Indeed, the choice of H(r) = Υ(r), which is motivated by the identity (1.5), leads to the
operators ΨΥ(f) and Ψ2,Υ(f), which are the central objects of investigation in the recent
article [31]. Let us remark that in our setting the identity (1.5) holds true for any f ∈ RX
such that f, log f ∈ `1(k(x, ·)) for any x ∈ X (cf. [31, Lemma 2.2]), which is for instance
the case when f ∈ `∞,+(X).

We recall a representation formula for the operator Ψ2,Υ, which has been used
frequently in order to study a large class of examples in [31], and reads as

2Ψ2,Υ(f)(x) =
∑

y∈X\{x}

k(x, y)
∑
z∈X

k(y, z)
(

Υ
(
f(z)− f(y)

)
−Υ′

(
f(y)− f(x)

)(
f(z)− f(y)

))
+

∑
y∈X\{x}

k(x, y)Υ′
(
f(y)− f(x)

)∑
z∈X

k(x, z)
(
f(z)− f(x)

)
−

∑
y∈X\{x}

k(x, y)
∑
z∈X

k(x, z)Υ
(
f(z)− f(x)

)
. (1.13)

The detailed balance condition (1.8) ensures that the generator of the Dirichlet form
given by

E(f, g) =
1

2

∑
x∈X

∑
y∈X

k(x, y)
(
f(y)− f(x)

)(
g(y)− g(x)

)
π(x) (1.14)

for f, g being suitable functions, coincides with L given by (1.6) on bounded functions
which are contained in the domain of the form generator, see [16]. We will also denote
the `2(µ) operator by L in the sequel. Further, as the corresponding `2(µ)-semigroup
generated by L is an extension of the semigroup given by (1.7) restricted to `∞(X)∩`2(µ),
we will also use the notation (Pt)t≥0 for the corresponding `2(µ)-semigroup.

An eminent role will be played by the entropy, being given as

Entµ(f) =

∫
X

f log fdµ−
∫
X

fdµ log

∫
X

fdµ,

and the Fisher information I(f) = E(f, log f). We refer to the beginning of Section 3 for
more details on some elementary properties of the entropy resp. the Fisher information
and on corresponding admissible functions.

We say that L satisfies CDΥ(κ, F ) if

Ψ2,Υ(f) ≥ κΨΥ(f) + F0

(
− Lf

)
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holds on X for any f ∈ `∞(X), where κ ∈ R and F0 : R→ [0,∞) is the trivial extension of
a CD-function F : [0,∞)→ [0,∞) (see Definition 2.1 below), i.e. F0(r) = 0 if r < 0. Note
that the notation of the condition CDΥ(κ,∞), which states that Ψ2,Υ(f) ≥ κΨΥ(f) holds
on X for any f ∈ `∞(X), is a bit missleading since it really means that the dimension
term vanishes. This terminology is clearly motivated from the case of the quadratic
CD-functions F (r) = r2

n , n ∈ [1,∞), to which we will refer as the CDΥ(κ, n) condition
(motivated by the classical Bakry-Émery notation). Note that CDΥ(κ, n) has already
been mentioned in slightly different form in [31, Remark 2.9] and also in [22] in a rather
implicit form (cf. [31, Section 9]).

We now describe our main results. Assuming that the CD-function is convex, con-
tinuously differentiable and such that the mapping r 7→ F (r)

r1+δ
is increasing on (0,∞) for

some δ > 0, we will be able to show in Theorem 3.3 that CDΥ(κ, F ) (with κ > 0) implies
the bound

Entµ(f) ≤
∫ ∞

0

G
( κ

e2δκt
(
1 + κI(f)

F (I(f))

)
− 1

)
dt (1.15)

for any f ∈ P∗(X) with Entµ(f) < ∞ and I(f) ∈ (0,∞), where G : (0,∞) → (0,∞)

denotes the inverse function of the mapping r 7→ F (r)
r , r > 0. In particular, in the case of

CDΥ(κ, n) with κ > 0 and n <∞, (1.15) reads as

Entµ(f) ≤ n

2
log
(

1 +
I(f)

κn

)
, (1.16)

see Corollary 3.7. Consequently, (1.16) with regard to CDΥ(κ, n) is the natural discrete
analogue to (1.3) with regard to CD(κ, n) in the diffusive setting. Note that in the diffu-
sive setting the chain rule implies I(f2) = 4E(f) for suitable functions, which yields that
in the classical situation the inequalities (1.3) and (1.16) coincide. In particular, (1.16)
is an important example of what will be called an entropy-information inequality, i.e. a
functional inequality of the form Entµ(f) ≤ Φ(I(f)) for a strictly increasing and concave
C1
(
(0,∞)

)
-function Φ, to which we will refer as the growth function.

As the modified logarithmic Sobolev inequality differs from the logarithmic Sobolev
inequality in the discrete setting, hypercontractivity of the semigroup, which is equivalent
to the latter also in the discrete setting (see [9]), does not characterize the modified
logarithmic Sobolev inequality. In [5], Bobkov and Tetali established a hypercontractivity
formulation for ePtf being suitable for the modified logarithmic Sobolev inequality. In this
spirit, we show in Theorem 4.2 that certain ultracontractivity bounds for ePtf hold under
corresponding entropy-information inequalities. In particular, in case of the CDΥ(κ, n)

condition with κ > 0 and n <∞, we will be able to derive that

‖ePtf‖∞ ≤
(

1 +
1

2κt

)n
2 ‖ef‖1

holds for any f ∈ `∞(X) and any t > 0.
In Theorem 5.4 we prove that µ-integrable 1-Lipschitz functions, by which we mean

that ‖Γ(f)‖∞ ≤ 1, are exponentially integrable. Moreover, provided that the growth

function satisfies
∫∞

0
Φ(s2)
s2 ds <∞, we show that

‖f −
∫
X

fdµ‖∞ ≤
∫ ∞

0

Φ(s2)

s2
ds

holds for any 1-Lipschitz function f . This in turn implies a finite diameter bound, which
in the special case of CDΥ(κ, n) with κ > 0 and n <∞ reads as

diam% ≤ π
√
n

κ
, (1.17)
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see Corollary 5.5. Interestingly, (1.17) coincides with the diameter bound that has been
obtained by Liu, Münch and Peyerimhoff in [18] for the weaker CD(κ, n) condition but
under assumptions on the underlying graph to L which can be expected to be more
restrictive, see Remark 5.6.

Finally, we also show that a new modified version of the celebrated Nash inequality
holds under an entropy-information inequality with logarithmic growth function. In the
particular case of the CDΥ(κ, n) condition with κ > 0 and n < ∞, this modified Nash
inequality says that

‖f‖n+2
2 ≤

(
‖f‖22 +

I(f2)

κn

)n
2 ‖f‖21

holds for any non-vanishing f ∈ `2(µ), see Theorem 6.1 and Corollary 6.2.
The article is organized as follows. In Section 2 we introduce the curvature-dimension

condition CDΥ(κ, F ) and discuss several examples. Next, we define the notion of entropy-
information inequalities and investigate their relation to the CDΥ(κ, F ) condition in the
case of power-type CD-functions. In the remaining part of the paper, we discuss applica-
tions of entropy-information inequalities and hence also of the CDΥ(κ, F ) condition. We
derive ultracontractive bounds for ePtf in Section 4, exponential integrability of Lipschitz
functions and diameter bounds in Section 5 and, finally, a modified version of the Nash
inequality in Section 6.

2 The CDΥ condition with finite dimension and some examples

In this section we generalize the CDΥ(κ,∞) condition from the very recent work [31]
by adding a general dimension term involving a CD-function. We first recall the notion
of a CD-function that originates from the work of [11] and also has been mentioned in
[31, Remark 2.9].

Definition 2.1. A continuous function F : [0,∞) → [0,∞) is called CD-function, if
F (0) = 0, r 7→ F (r)

r is strictly increasing on (0,∞) and 1
F is integrable at∞.

For a given CD-function F , we will call the function F0 : R → [0,∞) given by
F0(r) = F (r) if r ≥ 0 and F0(r) = 0 otherwise the trivial extension of F .

Remark 2.2. If a function F : [0,∞)→ [0,∞) with F (0) = 0 is strictly convex on (0,∞),
the mapping r 7→ F (r)

r is strictly increasing on (0,∞), cf. [11, Remark 3.3]. However,
it can not be deduced in general that F is a CD-function as, for instance, the function
r 7→ Υ(−r), r ∈ [0,∞), serves as a counterexample.

If we impose instead that F (0) = 0 and r 7→ F (r)
r1+δ

is increasing on (0,∞) for some
δ > 0, as it will be done in Theorem 3.3 (cf. Remark 3.4), then it follows that F is a
CD-function. Indeed, it is obvious that r 7→ F (r)

r is strictly increasing on (0,∞) and
further we have ∫ ∞

c

1

F (r)
dr ≤ c1+δ

F (c)

∫ ∞
c

r−(1+δ)dr <∞,

where c > 0.

Definition 2.3. We say that the Markov generator L satisfies CDΥ(κ, F ) at x ∈ X for
κ ∈ R and a CD-function F : [0,∞)→ [0,∞) with trivial extension F0 if

Ψ2,Υ(f)(x) ≥ κΨΥ(f)(x) + F0

(
− Lf(x)

)
(2.1)

holds for all f ∈ `∞(X). If L satisfies CDΥ(κ, F ) at any x ∈ X, then we say that L
satisfies CDΥ(κ, F ).

In the special case of F (r) = 1
nr

2, r ≥ 0, for some n ∈ [1,∞), we say that L satisfies
CDΥ(κ, n).
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According to the ambiguity in the notation, we emphasize that throughout this
article a capital letter F in the condition CDΥ(κ, F ) always refers to a CD-function,
while a small letter n in the condition CDΥ(κ, n) refers to the constant of a quadratic
CD-function.

Remark 2.4. (i) It must be pointed out that the condition CDΥ(κ, n) has been introduced
in [31, Remark 2.9] in seemingly stricter form, as we only require the dimension term
in Definition 2.3 for functions f ∈ `∞(X) with −Lf(x) > 0. Further, the latter condition
is the only difference of CDΥ(κ, n) and the condition CDψ(n, κ) for the specific choice
of ψ = log, which has been introduced in the case of finite and unweighted graphs in
[22]. We refer to [31, Section 9] for a detailed account on the relation of the operators
appearing in (2.1) and those in [22]. The condition −Lf(x) > 0 also appears in the
formulation of other curvature-dimension conditions, such as for instance in the case of
the exponential curvature-dimension condition of [4] and the CD(F ; 0) condition in [11],
where F denotes a CD-function. We refer to [31, Remark 2.9(iii)], which shows that the
condition CDΥ(0, F ) suffices to deduce Li-Yau inequalities using the results of [11].

(ii) Importantly, the CDΥ(κ, n) condition (or more generally CDΥ(κ, F ) with F (r) ∼
1
nr

2 as r → 0+) implies the Bakry-Émery condition CD(κ, n). This fact relies on the
identities

lim
λ→0

Ψ2,Υ(λf)

λ2
= Γ2(f), lim

λ→0

ΨΥ(λf)

λ2
= Γ(f), (2.2)

holding true for any f ∈ `∞(X), which have been shown in the proof of [31, Proposition
2.11]. As it has been pointed out in [31, Remark 2.13], the procedure extends easily to a
quadratic dimension term. More accurately, in the formulation of Definition 2.3, it first
implies CD(κ, n) only for f ∈ `∞(X) with −Lf(x) > 0, but then extends to any f ∈ `∞(X)

by linearity of L, bilinearity of Γ and the definition of Γ2. The fact that the Bakry-Émery
condition is necessary for CDΥ with a quadratic CD-function also motivates to study the
former condition. In particular, we refer to [28], where CD(0, n) has been studied for a
large class of operators with long range jumps and state space Z.

(iii) The property (2.2) has an important consequence for CD-functions that behave
like a power-type function near the origin. Indeed, if CDΥ(κ, F ) holds with κ ∈ R and
F (r) ∼ r1+δ as r → 0+ for some δ > 0, then we infer from (2.2) that for any f ∈ `∞(X)

with −Lf(x) > 0, x ∈ X, we have at x

Γ2(f) = lim
λ→0+

Ψ2,Υ(λf)

λ2

≥ lim
λ→0+

κΨΥ(λf) + F (−λLf)

λ2

= κΓ(f) + (−Lf)1+δ lim
λ→0+

F (−λLf)

(−λLf)1+δ
λ1+δ−2.

Consequently, δ ≥ 1 must hold, or in other words the best behavior of a CD-function
near the origin one can hope for is quadratic.

Several concrete examples have been considered in [31, Section 5] to study the
CDΥ(κ,∞) condition. It has turned out that the functions

νc,d(r) = cΥ′(r)r + Υ(−r)− dΥ(r), r ∈ R, (2.3)

with constants c, d ∈ R, are of eminent importance. We refer the reader to the Appendix
of [31], where basic properties of these functions have been collected.

As a warm-up, we begin with the basic example of the two-point space, for which we
provide another property of the functions given by (2.3) in the Appendix below.
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Example 2.5. We consider the two-point spaceX = {0, 1}with k(0, 1) = a and k(1, 0) = b,
where a, b > 0. Here, the invariant and reversible probability measure µ is given by
dµ = πd# with π(0) = b

a+b and π(1) = a
a+b . We write x̃ = 1 − x for x ∈ X and

t = f(x̃)− f(x). From [31] we know that CDΥ(κ,∞) holds true for some κ > 0. In order
to show that the CDΥ condition is fulfilled with a positive curvature constant and a finite
dimension term it hence suffices to show CDΥ(0, F ), where F is a CD-function. Thus
it remains to compare Ψ2,Υ(f)(x) with F (−Lf(x)) = F (−k(x, x̃)t), for F being specified
below. We have

2Ψ2,Υ(f)(x) = LΨΥ(f)(x)−BΥ′(f, Lf)(x)

= k(x, x̃)
((

ΨΥ(f)(x̃)−ΨΥ(f)(x)
)
−Υ′

(
f(x̃)− f(x)

)(
Lf(x̃)− Lf(x)

))
= k(x, x̃) k(x̃, x)

(
Υ(−t) + Υ′(t)t

)
+ k(x, x̃)2

(
Υ′(t)t−Υ(t)

)
= k(x, x̃)k(x̃, x)ν

1+
k(x,x̃)
k(x̃,x)

,
k(x,x̃)
k(x̃,x)

(t).

Note that for c, d ∈ R and η > 0 we have that νc+η,d+η(r) ≥ νc,d(r) at any r ∈ R, since
Υ′(r)r ≥ Υ(r), r ∈ R, holds by convexity. Hence, we can estimate

Ψ2,Υ(f)(x) ≥ ab

2
ν1+λ,λ(t),

where λ := min{ab ,
b
a}. Note that ν1+λ,λ is strictly convex by Lemma A.1. Then, we infer

from Remark 2.2 and the asymptotic behavior of ν1+λ,λ that the mapping F : [0,∞)→
[0,∞) defined as

F (r) =
ab

2
ν1+λ,λ

(
− r

max{a, b}
)
, r ≥ 0,

is a CD-function and we deduce that CDΥ(0, F ) holds true.

We continue with the following basic observation.

Proposition 2.6. Let x ∈ X, κ ∈ R, γ : R→ [0,∞) be convex on R with γ|[0,∞) being a
CD-function and α : X → (0,∞) such that

Ψ2,Υ(f)(x) ≥ κΨΥ(f)(x) + α(x)
∑
y∈X

k(x, y)γ(f(x)− f(y)) (2.4)

holds for any f ∈ `∞(X). Then L satisfies CDΥ(κ, F ) at xwith F (r) = α(x)M1(x)γ
(

r
M1(x)

)
,

r ≥ 0. If 0 < M1,inf ≤ M1,sup < ∞, α∗ := infx∈X α(x) > 0 and (2.4) holds for any
f ∈ `∞(X) and all x ∈ X, then L satisfies CDΥ(κ, F ) with F (r) = α∗M1,infγ

(
r

M1,sup

)
,

r ≥ 0.

Proof. For fixed x ∈ X, we observe by Jensen’s inequality∑
y∈X\{x}

k(x, y)γ(f(x)− f(y)) ≥M1(x)γ
(
− Lf(x)

M1(x)

)
,

from which the first claim follows by (2.4). Clearly, γ is increasing on [0,∞), which
implies the second claim.

Note that the tempting naive approach to deduce a CDΥ condition with non-negative
curvature bound and finite dimension term from CDΥ(κ,∞) (with κ > 0) alone by using
Proposition 2.6 does not work. Indeed, the mapping r 7→ Υ(−r) can not play the role of
the function γ from Proposition 2.6 since it only grows linearly at∞ and is hence not a
CD-function. This is a difference to the Bakry-Émery condition in our setting, where the
analogous result to Proposition 2.6 yields at least that CD(κ,∞) (with κ > 0) at x ∈ X
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implies CD(λκ, (1− λ)n) at x ∈ X, where λ ∈ [0, 1] and n <∞ depends on κ and x. For
our purposes however, we need a refined analysis.

In light of the subsequent sections, power-type CD-functions are of particular im-
portance. We note that for any δ ≥ 1 there exists some optimal cδ > 0 such that the
estimate

Υ(r) + Υ(−r) ≥ cδ|r|1+δ (2.5)

holds true for any r ∈ R, which follows from the asymptotic and monotonic behavior of
the mapping r 7→ Υ(r) + Υ(−r), r ∈ R, and the fact that Υ(r) + Υ(−r) ∼ r2 as r → 0. For
instance, it can be easily checked that the optimal constant for δ = 1 in (2.5) is given by
c1 = 1.

We illustrate the practical use of (2.5) in the following example.

Example 2.7. Let X be an arbitrary countable set with at least two elements and
l : X → (0,∞) being integrable on X with respect to the counting measure. Further,
we set k(x, y) = l(y) for all x, y ∈ X, x 6= y. Then µ given by dµ = πd# with π(x) = l(x),
x ∈ X, is an invariant and reversible measure. In [31, Example 5.2] it has been shown
that L satisfies CDΥ(

√
2|l|1l∗,∞), where l∗ = infx∈X l(x) and |l|1 denotes the `1-norm

with respect to the counting measure on X. Clearly, the integrability of l implies that
l∗ = 0 if X is infinite. It has also been shown that CDΥ(0,∞) is best possible (concerning
the curvature term) in the infinite state space case. Therefore, we will only consider the
case of X being finite in the sequel, i.e. l∗ > 0 holds.

In [31, Example 5.2], the following representation formula has been established for
f ∈ RX at x ∈ X from (1.13)

2Ψ2,Υ(f)(x) =
∑

y∈X\{x}

l(y)
(
|l|1Υ′(f(y)− f(x))(f(y)− f(x)) + l(x)Υ(f(x)− f(y))

−
(
|l|1 − l(x)

)
Υ(f(y)− f(x))

)
+
∑
y,z∈X
y,z 6=x

l(y)l(z)Υ(f(z)− f(y)).

By positivity of the mapping r 7→ Υ(r) and (2.5), we proceed as follows

2Ψ2,Υ(f)(x) ≥ 2κΨΥ(f)(x)

+
∑

y∈X\{x}

l(y)
(
|l|1Υ′(f(y)− f(x))(f(y)− f(x)) + l(x)Υ(f(x)− f(y))

−
(
|l|1 + 2κ− l(x)

)
Υ(f(y)− f(x))

)
≥ 2κΨΥ(f)(x) + 2αcδ

∑
y∈X\{x}

l(y)
∣∣f(x)− f(y)

∣∣1+δ

+
∑

y∈X\{x}

l(y)
(
|l|1Υ′(f(y)− f(x))(f(y)− f(x)) + (l(x)− 2α)Υ(f(x)− f(y))

− (|l|1 + 2κ− (l(x)− 2α))Υ(f(y)− f(x))
)

= 2κΨΥ(f)(x) + 2αcδ
∑

y∈X\{x}

l(y)
∣∣f(x)− f(y)

∣∣1+δ

+ (l(x)− 2α)
∑

y∈X\{x}

l(y)ν |l|1
l(x)−2α

,
|l|1+2κ

l(x)−2α
−1

(f(y)− f(x)),

for κ > 0, δ ≥ 1 and α > 0 such that l(x) > 2α. Now, we aim to apply Proposition 2.6
with γ(r) = |r|1+δ. Therefore it is desirable that the last summand of the latter term
is non-negative. For this purpose we employ [31, Lemma A.4(ii)], which yields that if
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|l|1 ≥ 2(l(x)− 2α) it suffices that

2κ

l(x)− 2α
− 1 ≤ 2

3
2

√
|l|1

l(x)− 2α
− 1,

which is equivalent to κ ≤
√

2|l|1(l(x)− 2α). In case that |l|1 < 2(l(x)− 2α) it suffices by
[31, Lemma A.4(ii)] that

2κ

l(x)− 2α
− 1 ≤ 2|l|1

l(x)− 2α
− 1,

which is equivalent to κ ≤ |l|1. Clearly, |l|1 ≥
√

2|l|1(l(x)− 2α) for at least one x ∈ X.
Consequently, we obtain by Proposition 2.6 that L satisfies CDΥ

(√
2|l|1(l∗ − 2α), F

)
with

CD-function F (r) = αcδ
|l|δ1

r1+δ, r ≥ 0, for any α ∈
(
0, l∗2

)
and any δ ≥ 1.

Example 2.8. We choose l(x) = 1 in the setting of Example 2.7 for any x ∈ X with given
finite state space X consisting of n elements, n ≥ 2. Then the underlying graph to L is
given by the complete graph Kn and L satisfies CDΥ(

√
2n(1− 2α), nα ) for any α ∈ (0, 1

2 )

by Example 2.7 in the case of δ = 1 (recall that we have c1 = 1 in (2.5)). It is natural
to ask whether there also exists a dimension bound which is uniform in n while having
non-negative curvature as it is the case for the Bakry-Émery condition (see e.g. [15]).
Interestingly, in Example 2.14 we are able to give a negative answer to this question.

The procedure described in Example 2.7 can be seen as a guidance for other examples
where the mapping νc,d plays a similar role, e.g. for weighted 4-cycles, finite birth-death
processes and weighted stars as discussed in [31].

The case of (R)-Ricci-flat graphs will be discussed seperatly below. For the reader’s
convenience we recall the definition of (R)-Ricci flat graphs, which originates from the
work of [7].

Definition 2.9. Let G = (V,E) be an unweighted d-regular graph. We call G (R)-Ricci-
flat at x ∈ V if there exist maps ηi : B1(x)→ V (where B1(x) denotes the closed ball with
radius 1 and center x with respect to the combinatorical graph distance) for 1 ≤ i ≤ d
satisfying the following properties:

(i) ηi(u) ∈ B1(u) \ {u} for any u ∈ B1(x) and i ∈ {1, ..., d},
(ii) ηi(u) 6= ηj(u), whenever i 6= j,

(iii)
⋃
j ηj(ηi(x)) =

⋃
j ηi(ηj(x)) for any i ∈ {1, ..., d},

(iv) ηi(ηi(x)) = x for any i ∈ {1, ..., d}.

We call G (R)-Ricci-flat if G is (R)-Ricci-flat at each x ∈ V .

(R)-Ricci-flat graphs constitute a subclass of Ricci-flat graphs with Bakry-Émery
condition CD(2,∞), see [7]. Important examples are given by complete bipartite graphs
and, since (R)-Ricci-flat graphs are invariant under tensorization, by the hypercube,
cf. [7]. In [31, Example 5.12] it has been shown that a Markov generator with underlying
graph being (R)-Ricci-flat even satisfies CDΥ(2,∞).

Example 2.10. Let the transition rates be given such that the underlying graph to L
is a (d-regular) (R)-Ricci-flat graph with vertex set X. Further, let x ∈ X be chosen
arbitrary and let

(
ηi
)
i=1,...,d

denote the corresponding mappings from Definition 2.9. In

[31, Example 5.12] it has been shown that for f ∈ RX the estimate

2Ψ2,Υ(f)(x) ≥ 4ΨΥ(f)(x) +

d∑
i=1

ν2,5(f(ηi(x))− f(x))

holds true. Now, one readily checks (see also the proof of [31, Lemma A.3]) that ν2,5

is strictly convex on R. We infer from Proposition 2.6 that L satisfies CDΥ(2, F ) with

EJP 26 (2021), paper 52.
Page 11/31

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP627
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Entropy-information inequalities for Markov chains

F (r) = d
2ν2,5(− rd ), r ≥ 0, which is a CD-function due to the asymptotic behavior at ∞

and by Remark 2.2. Interestingly, since the curvature constant in CDΥ(2,∞) is optimal
in general, which follows, for instance, from the case where the underlying graph to L is
given by the hypercube (cf. [31]), we do not need a trade off from the curvature constant
in order to achieve the CDΥ(2, F ) condition (which is, for instance, in contrast to the
procedure described in Example 2.7). Further, note that ν2,5 behaves only quartic near
0. In fact, there does not exist in general a CD-function F̂ behaving quadratically near
zero such that L satisfies CDΥ(2, F̂ ), by combining Remark 2.4(ii) with the fact that the
hypercube does not satisfy CD(2,m) for some m <∞ (see [8]).

Example 2.11. Here we consider a birth-death process with infinite state space X = N0.
We use the notation originating from [6], which has also been used in [31], and introduce
the functions a, b : X → [0,∞) with a(x) = k(x, x+1), b(x) = k(x, x−1), b(0) = 0, b(x) > 0

otherwise, and a(x) > 0 for any x ∈ X. Moreover, we set k(x, y) = 0 whenever |x− y| > 1.
The detailed balance condition now reads as

a(x)π(x) = b(x+ 1)π(x+ 1) (2.6)

for any x ∈ X. Note that the measure µ given by dµ = πd# is a finite measure if and
only if

∞∑
x=1

a(x− 1) · · · a(0)

b(x) · · · b(1)
<∞.

We assume monotonicity of the rates in the sense that a(x) ≥ a(x+ 1) and b(x+ 1) ≥ b(x)

for any x ∈ X and moreover that

a(x)− a(x+ 1) + b(x+ 1)− b(x) ≥ κ (2.7)

holds for any x ∈ X and some κ > 0. Those assumptions led to modified logarithmic
Sobolev inequalities in [6], and in [31] it has been shown that they imply CD(κ2 ,∞).
Apparently they also entail that a(x) ≤ a(0) for any x ∈ X and b(x)→∞ as x→∞.

We specify for x ∈ X a function fx ∈ RX such that fx(x + 2) = fx(x + 1) + t and
fx(x− 2) = fx(x− 1) + s, where we define t = fx(x+ 1)− fx(x) and s = fx(x− 1)− fx(x)

(this is called minimizing Ψ2,Υ(f) over the second neighborhood throughout [31]) and set
t = 0. Then we observe from (1.13) (see also the representation formula for Ψ2,Υ(f)(x)

that has been established in [31, Example 5.13])

2Ψ2,Υ(fx)(x) = b(x)
(

Υ(s)
(
b(x− 1)− b(x)− a(x)

)
+ Υ(−s)a(x− 1) + Υ′(s)s

(
a(x− 1) + b(x)− b(x− 1)

))
.

Assuming that 2Ψ2,Υ(fx)(x) is greater than or equal to 1
nb(x)2s2 (which is equal to

1
n (−Lfx(x))2) for some n ∈ [1,∞) implies that

0 ≤ b(x)
(
Υ′(s)s−Υ(s)− 1

n
s2
)

+ b(x− 1)
(
Υ(s)−Υ′(s)s

)
+ a(x− 1)

(
Υ(−s) + Υ′(s)s

)
− a(x)Υ(s)

≤ a(0)
(
Υ(−s) + Υ′(s)s

)
+ b(x)

(
Υ′(s)s−Υ(s)− 1

n
s2
)

Choosing s < 0 such that Υ′(s)s−Υ(s)− 1
ns

2 < 0 and sending x→∞ yields a contradic-
tion.

Interestingly, in [31] it has been shown that under an assumption which is stronger
than (2.7) the CDΥ(κ0,∞) condition holds with some positive constant κ0 > 0. This
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shows that it is possible to have positive curvature bounds while having no finite di-
mension bound regarding the CDΥ(κ, n) condition for some κ > 0. Furthermore, note
that we will show by means of Corollary 3.10 below that a CDΥ condition with positive
curvature bound and a non-quadratic power-type CD-function does not hold either.

Next, we give a quite simple negative criterion for the existence of a dimension term
with regard to the quadratic CD-function in the infinite state space case.

Proposition 2.12. If there exists a sequence (xm)m∈N ⊂ X such that

N(xm)

(M1(xm))2
→ 0 (2.8)

as m→∞, then there does not exist some n <∞ such that CDΥ(0, n) holds true.

Proof. We consider
(
fm
)
m∈N ⊂ `∞(X) given by fm(y) = t for any y ∈ X \ {xm} and

fm(xm) = 0, m ∈ N, with t < 0 being specified below. We read from (1.13) that

2Ψ2,Υ(fm)(xm) = N(xm)
(
Υ′(t)t+ Υ(−t)

)
+ (M1(xm))2

(
Υ′(t)t−Υ(t)

)
holds. Moreover, we have (−Lfm(xm))2 = t2(M1(xm))2. Consequently, we observe that
2Ψ2,Υ(fm)(xm) ≥ 1

n (−Lfm(xm))2, with 1 ≤ n <∞, is equivalent to

N(xm)

(M1(xm))2

(
Υ′(t)t+ Υ(−t)

)
+ Υ′(t)t−Υ(t)− 1

n
t2 ≥ 0. (2.9)

Choosing t < 0 such that Υ′(t)t−Υ(t)− 1
n t

2 < 0 and sending m→∞, yields by (2.8) a
contradiction to (2.9).

Clearly, Proposition 2.12 also yields a necessary condition for families of Markov
generators satisfying a uniform CDΥ(0, n) condition. For the sake of clarity we will state
this in the following corollary in the case that the underlying graphs to the corresponding
Markov generators are unweighted, in which case the mappings N and M1 are equal.
The following corollary follows from the same arguments as in the proof of Proposi-
tion 2.12. Despite its simplicity, these findings lead to a remarkable difference between
the CDΥ(0, n) and the CD(0, n) condition, as it will be demonstrated by Example 2.14.

Corollary 2.13. Let I be an arbitrary index set and (Li)i∈I a family of Markov generators
whose respective underlying graphs are unweighted and with corresponding state space
(Xi)i∈I . Assume that there exist sequences (im)m∈N ⊂ I and (xm)m∈N ⊂ X, where

X =
⋃
i∈I Xi, such that M (im)

1 (xm)→∞ as m→∞. Here the upper index denotes that
the function M1 corresponds to the respective Markov generator. Then there exists no
n <∞ such that Li satisfies CDΥ(0, n) for all i ∈ I.

In particular, if the underlying graph to a Markov generator L is given by an un-
weighted graph with unbounded vertex degree, then there exists no n < ∞ such that
CDΥ(0, n) holds true.

Example 2.14. We consider the index set I = {n ∈ N : n ≥ 2} (in the sense of
Corollary 2.13) and the Markov generator Ln whose underlying graph is given by the
complete graph Kn for any n ∈ I. It is known on the one hand that CD(0, 4) holds for any
Ln (see [15, Proposition 3]), i.e. a dimension-term exists under non-negative curvature
with respect to the Bakry-Émery CD-condition that is uniform with regard to n. On
the other hand, due to Corollary 2.13 there does not exist a (uniform) d <∞ such that
CDΥ(0, d) holds for any Ln, n ∈ I.

EJP 26 (2021), paper 52.
Page 13/31

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP627
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Entropy-information inequalities for Markov chains

3 Entropy-Information inequalities

From now on we assume that the unique and reversible invariant measure µ is a
probability measure.

We consider the entropy

Entµ(f) =

∫
X

f log fdµ−
∫
X

fdµ log

∫
X

fdµ (3.1)

for any positive function f ∈ `1(µ). It is well known that Entµ(f) ≥ 0. Note that we also
allow for the value of Entµ(f) =∞.

The Fisher information is given by

I(f) =
1

2

∑
x,y∈X

k(x, y)
(
f(y)− f(x)

)(
log f(y)− log f(x)

)
π(x). (3.2)

If we assume that M1 ∈ `1(µ) then f ∈ `∞,+(X) ensures that I(f) <∞. Further, in the
latter case we have the representation

I(f) =

∫
X

fΨΥ(log f)dµ,

see [31, Section 3], where the formula has been established for f ∈ `∞,+(X) being a
probability densitiy with respect to µ, although the proof extends verbatim to the general
case. Since we sum up in the right-hand side of (3.2) over non-negative entries, we can
extend the functional I to positive functions f : X → (0,∞), where we allow for the
value of I(f) =∞.

Note that the assumption of the Markov chain being irreducible implies that I(f) = 0

if and only if f is constant and positive.
Besides that, one readily verifies that the well known scaling behavior

Entµ(cf) = cEntµ(f) (3.3)

and
I(cf) = c I(f) (3.4)

holds respectively for any constant c > 0.
Our main object of investigation in the remaining part of this article will be the

following family of functional inequalities.

Definition 3.1. We say that L satisfies an entropy-information inequality EI(Φ) with
respect to a strictly increasing and concave C1-function Φ : (0,∞)→ (0,∞), which we
refer to as the growth function, if for every f ∈ P∗(X) with Entµ(f) <∞ and I(f) <∞

Entµ(f) ≤ Φ(I(f)) (3.5)

holds, where we set Φ(0) := lim
r→0+

Φ(r).

A well known example for an entropy-information inequality is the modified logarith-
mic Sobolev inequality

Entµ(f) ≤ 1

2κ
I(f) (3.6)

with constant κ > 0. See [5] for an extensive account on modified logarithmic Sobolev
inequalities in the discrete setting of Markov chains. Further, the functional inequal-
ity (3.6) was subject of investigation in [6], [12], [13] and [14], as well as in [31] where
it has been shown that CDΥ(κ,∞) (with κ > 0) together with positive recurrence and
the integrability conditions M1 ∈ `2(µ) and M2 ∈ `1(µ) imply (3.6) with constant κ.
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Remark 3.2. (i) The diffusive counterpart to Definition 3.1, so called entropy-energy
inequalities, are defined for growth functions mapping toR instead of (0,∞), see [3]. This
generality in the context of [3] allows to include the quite important special case of the
Euclidean logarithmic Sobolev inequality (cf. [3, Proposition 6.2.5]). However, assuming
that Φ is non-negative is not a restriction in our setting where we have supposed that
µ is a probability measure. Indeed, applying (3.5) to f = 1 shows that lim

r→0+
Φ(r) < 0 is

impossible to hold.
(ii) It will turn out to be quite useful to write (3.5) in an equivalent linearized form.

More precisely, as Φ is concave we deduce from Φ(s) ≤ Φ(r) + Φ′(r)(s− r), s, r ∈ (0,∞),
that (3.5) implies

Entµ(f) ≤ Φ′(r) I(f) + Θ(r) (3.7)

for any r ∈ (0,∞), where Θ(r) = Φ(r) − Φ′(r)r. Conversely, specifying r = I(f), (3.7)
implies (3.5). Note that concavity also implies that Θ(r) ≥ 0 for any r > 0 since
lim
r→0+

Φ(r) ≥ 0. In particular, this implies that (3.7) also holds for the case of I(f) = 0, or

equivalently for f = 1.
(iii) Let f ∈ `1(µ) be positive with Entµ(f) < ∞ and I(f) < ∞. The entropy-

information inequality in the form (3.7) extends to f by

Entµ(f) ≤ Φ′(r)I(f) + Θ(r)

∫
X

fdµ (3.8)

for any r ∈ (0,∞). This is a consequence of the scaling behavior (3.3) and (3.4), after
having applied (3.7) to f

‖f‖1 .

Now, we come to the main theorem of this section, that links the previous section to
the notion of entropy-information inequalities.

Theorem 3.3. Let M1 ∈ `2(µ), M2 ∈ `1(µ) and the Markov chain generated by L be
positive recurrent. Further, let L satisfy CDΥ(κ, F ) with κ > 0 and a convex CD-function

F : [0,∞)→ [0,∞) such that F |(0,∞) ∈ C1
(
(0,∞)

)
and F ′(r)r

F (r) ≥ 1 + δ holds for any r > 0

and some δ > 0. Let G : (0,∞)→ (0,∞) denote the inverse function of r 7→ F (r)
r , r > 0.

Then

Entµ(f) ≤
∫ ∞

0

G
( κ

e2δκt
(
1 + κI(f)

F (I(f))

)
− 1

)
dt (3.9)

holds for any f ∈ P∗(X) with Entµ(f) <∞ and I(f) ∈ (0,∞).

Proof. It suffices to deduce the claim for f ∈ P+
∗ (X). The full statement follows then

from the same standard truncation argument as presented in [31, Lemma 3.2] and the
dominated convergence theorem for approximating the right-hand side of (3.9). For
f ∈ P+

∗ (X) we set Λ(t) = Entµ(Ptf), t ≥ 0. It is well known that

Λ′(t) = −I(Ptf) (3.10)

is valid provided that M1 ∈ `1(µ). Further, we infer from [31, Theorem 3.4] that

Λ′′(t) = 2

∫
X

PtfΨ2,Υ(logPtf)dµ (3.11)

holds true given the assumptions M1 ∈ `2(µ) and M2 ∈ `1(µ). We apply CDΥ(κ, F ) to
deduce

Λ′′(t) ≥ −2κΛ′(t) + 2

∫
X

Ptf F0(−L(logPtf))dµ

≥ −2κΛ′(t) + 2F0

(
−
∫
X

PtfL(logPtf)dµ
)
,

EJP 26 (2021), paper 52.
Page 15/31

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP627
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Entropy-information inequalities for Markov chains

where the latter follows from convexity of the trivial extension F0 (which follows from
convexity of F ), the fact that Ptf is a probability density with respect to µ, which follows
from µ being invariant for (Pt)t≥0, and Jensen’s inequality. Now, by the identity (1.5) (cf.
[31, Lemma 2.2]) and µ being invariant, we have

−
∫
X

PtfL(logPtf)dµ =

∫
X

Ptf ΨΥ(logPtf)dµ = I(Ptf)

and hence we end up with the differential inequality

Λ′′(t) ≥ −2κΛ′(t) + 2F (−Λ′(t)). (3.12)

Note that in fact Λ′(t) < 0 holds, since we have f = 1 otherwise. Further, we observe
that

d

dt

[
e−2δκt

(
1− κ Λ′(t)

F (−Λ′(t))

)]
= e−2δκt

( 2δκ2Λ′(t)

F (−Λ′(t))
− 2δκ− κΛ′′(t)

F (−Λ′(t)) + F ′(−Λ′(t))Λ′(t)

F (−Λ′(t))2

)
=

κe−2δκt

F (−Λ′(t))

(
2δκΛ′(t)− 2δF (−Λ′(t))− Λ′′(t)

(
1 +

F ′(−Λ′(t))Λ′(t)

F (−Λ′(t))

))
≥ δκe−2δκt

F (−Λ′(t))

(
2κΛ′(t)− 2F (−Λ′(t)) + Λ′′(t)

)
,

where we have applied the condition −Λ′(t)F ′(−Λ′(t))
F (−Λ′(t)) ≥ 1 + δ and Λ′′(t) ≥ 0 in the last

step. Hence, (3.12) yields that the mapping t 7→ e−2δκt
(
1− κ Λ′(t)

F (−Λ′(t))

)
is increasing. In

particular, this implies that

e−2δκt
(

1− κ Λ′(t)

F (−Λ′(t))

)
≥ 1− κ Λ′(0)

F (−Λ′(0))
,

which can be rearranged to

F (−Λ′(t))

−Λ′(t)
≤ κ

e2δκt
(
1− κ Λ′(0)

F (−Λ′(0))

)
− 1

.

Then, using I(f) = −Λ′(0), we obtain

−Λ′(t) ≤ G
( κ

e2δκt
(
1 + κI(f)

F (I(f)

)
− 1

)
.

Consequently, we conclude

Λ(0)− Λ(T ) = −
∫ T

0

Λ′(t)dt ≤
∫ T

0

G
( κ

e2δκt
(
1 + I(f)

F (I(f)

)
− 1

)
dt. (3.13)

The claim follows by sending T → ∞. Indeed, Λ(T ) → 0 as T → ∞ follows from the
dominated convergence theorem, the Markov chain being ergodic and (Pt)t≥0 being a
Markov semigroup.

Remark 3.4. (i) The crucial assumption that

F ′(r) ≥ (1 + δ)F (r)

r
, (3.14)
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holds for some δ > 0 and any r > 0 implies by Gronwall’s inequality that we have for
fixed a > 0

F (r)

r1+δ
≥ F (a)

a1+δ
,

for any r > a > 0, i.e. the mapping r 7→ F (r)
r1+δ

, r > 0, is increasing. Conversely,

differentiating r 7→ F (r)
r1+δ

, r > 0, the property (3.14) follows provided that r 7→ F (r)
r1+δ

, r > 0,
is increasing. Hence, both properties are equivalent. In particular, we observe that (3.14)
ensures that F grows at least like r1+δ as r →∞. On the other hand, recall that we have
seen in Remark 2.4(iii) that F can not behave better than quadratic at 0 provided that
CDΥ(κ, F ) holds for some κ ∈ R.

(ii) Note that the mapping G : (0,∞)→ (0,∞) is in fact well defined, since assuming
that r 7→ F (r)

r1+δ
is increasing on (0,∞) for some δ > 0 implies that F (r)

r → 0 as r → 0 and
F (r)
r →∞ as r →∞.

(iii) We interpret the integral on the right-hand side of (3.9) as ∞ in the case that
the integral is divergent. In fact, this situation appears even under the assumptions of
Theorem 3.3 as the CD-function F (r) = rme−

1
rm , r ≥ 0, for some m > 1 shows. Indeed,

one readily verifies that (3.14) with δ = m − 1 and convexity of F respectively hold
true. The problem results from the behavior of F in the origin. More precisely, F (r)

r

converges faster to 0 than e−
1
rm as r → 0+, which yields that G(r) tends slower to 0

than (log 1
r )−

1
m as r → 0+. Consequently the integrand in the right-hand side of (3.9)

dominates a behavior of t−
1
m as t→∞, which yields that the integral does not converge.

For general CD-functions the integral on the right-hand side of (3.9) can not be
calculated explicitly and, moreover, it is not clear whether r 7→

∫∞
0
G
(

κ
e2κt(1+ κr

F (r)
)−1

)
dt is

concave. We will focus in the sequel on the situation where the CD-function is given by
some power-type function, in which case the mapping G : (0,∞)→ (0,∞) of Theorem 3.3
can be given explicitly. In fact, the following result shows in particular that the functional
inequality (3.9) is compatible with Definition 3.1 for power-type CD-functions.

Proposition 3.5. Let M1 ∈ `2(µ), M2 ∈ `1(µ) and the Markov chain generated by L be

positive recurrent. Further, let L satisfy CDΥ(κ, F ) with κ > 0 and F (r) = rδ+1

n , r ≥ 0,
for some δ ≥ 1 and n ∈ (0,∞). Then L satisfies EI(Φ) with the growth function

Φ(r) =
δ
√
κn

2κ

∫ ∞
δ√κn
r

vδ−2

vδ + 1
dv, r > 0. (3.15)

Moreover, the growth function Φ satisfies the following assertions:

(i) Φ is bounded if and only if δ > 1,

(ii)
∫∞

0
Φ(s2)
s2 ds <∞.

Proof. Clearly, F is convex and F ′(r)r = (1 + δ)F (r) holds for any r > 0. The mapping
G : (0,∞) → (0,∞) from Theorem 3.3 is given by G(r) = δ

√
nr, r > 0. Now, it follows

from elementary substitution that∫ ∞
0

δ

√
κn

e2δκt(1 + κn
rδ

)− 1
dt =

δ
√
κn

2δκ

∫ ∞
κn

rδ

1
δ
√
u(u+ 1)

du =
δ
√
κn

2κ

∫ ∞
δ√κn
r

vδ−2

vδ + 1
dv = Φ(r).

By means of Definition 3.1 and Theorem 3.3 it suffices to prove that Φ is concave in
order to deduce that L satisfies EI(Φ) (note that there is nothing to show for the case of
I(f) = 0). To that aim, we differentiate Φ and observe

Φ′(r) =
n

2(κn+ rδ)
, (3.16)

Φ′′(r) = − nδrδ−1

2(κn+ rδ)2
,
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which implies concavity of Φ.
The growth function Φ is bounded if and only if the integral in the right-hand side

of (3.15) converges as r →∞. The latter property holds true if and only if the integral∫ 1
δ√κn
r

vδ−2dv converges as r →∞, which happens to be true if and only if δ > 1.

Regarding the remaining assertion, we note that there is nothing to show for the
behavior at∞ by boundedness of Φ in case of δ > 1 and by the explicit formula for the
growth function in the special case of δ = 1, which will be deduced in Corollary 3.7 below.
As to the behavior at 0, we observe for ε > 0 that∫ ε

0

1

s2

∫ ∞
δ√κn
s2

vδ−2

vδ + 1
dv ds ≤

∫ ε

0

1

s2

∫ ∞
δ√κn
s2

1

v2
dv ds =

ε
δ
√
κn
.

Remark 3.6. Let us emphasize an analogy between the relation of the curvature-
dimension conditions CDΥ(κ, F ) (with power-type CD-function F ) and CDΥ(κ,∞), and
the resulting functional inequalities, EI(Φ) with Φ given by (3.15) and the modified
logarithmic Sobolev inequality (3.6) with constant κ > 0. Clearly, CDΥ(κ, F ) implies
CDΥ(κ,∞). On the other hand, concavity of Φ (where Φ is given by (3.15)) implies that
Φ(r) ≤ Φ(s) + Φ′(s)(r − s), r, s ∈ (0,∞). Using identity (3.16), this estimate yields

Φ(r) ≤ r

2κ

when sending s→ 0. Hence, EI(Φ) is stronger than the modified logarithmic Sobolev
inequality (3.6) with constant κ > 0, where the latter is a consequence of CDΥ(κ,∞) (cf.
[31]).

In the case of the CDΥ(κ, n) condition, Theorem 3.3 yields the following important
entropy-information inequality.

Corollary 3.7. Let M1 ∈ `2(µ), M2 ∈ `1(µ) and the Markov chain generated by L be
positive recurrent. Further, let L satisfy CDΥ(κ, n) with κ > 0 and n <∞. Then EI(Φ)

holds with Φ(r) = n
2 log

(
1 + r

κn

)
, r > 0, i.e.

Entµ(f) ≤ n

2
log
(

1 +
I(f)

κn

)
(3.17)

holds for any f ∈ P∗(X) with Entµ(f) <∞.

Proof. Choosing δ = 1 in (3.15), the claim follows from elementary calculations.

As we already highlighted in the introduction, we emphasize that (3.17) serves as a
natural discrete analogue to the logarithmic entropy-energy inequality (1.3), which plays
an important role in the diffusive setting of [3] (in which case it holds true provided that
CD(κ, n) is valid).

In the following example we consider one of the most important instances of a
birth-death process from Example 2.11.

Example 3.8. As a special case of a birth-death process from Example 2.11 (with the
notation taken from there), we consider the Poisson case which is given by the choice
a(x) = λ, where λ > 0 is called the intensity rate, and b(x) = x, both for any x ∈ N0.
The invariant and reversible measure is given by the denisity πλ(x) = λx

x! e
−λ, x ∈ N0. In

[31, Example 5.13] it has been shown that there does not exists some κ > 0 such that
L satisfies CDΥ(κ,∞). However, it is known that the Poisson case of the birth-death
prosess satisfies the modified logarithmic Sobolev inequality EI(Φ) with Φ(r) = r, see
e.g. [6]. Here we show, that this is the best possible entropy-information inequality for
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the Poisson case in the sense that if Φ grows slower than linear as r →∞, then L fails to
satisfy EI(Φ).

To that aim we repeat an argument that has been used in [6] to show sharpness
of the corresponding modified logarithmic Sobolev inequality. Indeed, we consider
fk(x) = ekx

eλ(ek−1)
, which can be readily checked to be an element of P+

∗ (X) for any k ∈ N.
We have

Entµ(fk) =
1

eλek
∑
x∈N0

ekxλx(kx− λ(ek − 1))

x!

=
1

eλek

(
k
∑
x∈N

(ekλ)x

(x− 1)!
− eλe

k

λ(ek − 1)
)

= λ
(
kek − ek + 1

)
.

Further, it can be easily checked that the detailed balance condition (2.6) yields that

E(fk, log fk) =
∑
x∈N0

a(x)
(
fk(x+ 1)− fk(x)

)(
log(fk(x+ 1))− log(fk(x))

)
π(x)

=
λ

eλek
∑
x∈N0

(
ek(x+1) − ekx

)(
k(x+ 1)− kx

)λx
x!

= λk(ek − 1).

From this, we can see that
Entµ(fk)

I(fk)
→ 1, as k →∞.

Consequently, if Φ grows slower than linear at ∞, EI(Φ) fails for the Poisson case of
a birth-death process. In particular, the Poisson case of a birth-death process not only
does not satisfy the CDΥ(κ, n) condition (cf. Example 2.11), but also fails on the level of
the corresponding entropy-information inequality.

In a somewhat similar fashion, the next result shows quite remarkable consequences
of boundedness of the growth function and of the mapping M1, respectively.

Theorem 3.9. Let L satisfy EI(Φ), then the following assertions hold true.

(i) If Φ is bounded, then the state space X is finite and the estimate

Entµ(f) ≤ lim
r→∞

Φ(r)‖f‖1 (3.18)

holds true for any positive f ∈ RX .

(ii) If M1,sup <∞ and the state space X is infinite, then Φ grows linearly as r →∞.

Proof. We consider for x ∈ X and some ε ∈ (0, 1) the function

fx(y) =

{
ε, y 6= x
1−ε(1−π(x))

π(x) , y = x
.

One readily verifies that fx ∈ P∗(X) for any x ∈ X. We have

Entµ(fx) =

∫
X

fx log fx dµ =
(
1− ε(1− π(x))

)
log

1− ε(1− π(x))

π(x)
+ ε log ε (1− π(x)),

(3.19)
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for any x ∈ X. Moreover, we observe that

2I(fx) =
∑
z,y∈X

k(z, y)
(
fx(y)− fx(z)

)(
log fx(y)− log fx(z)

)
π(z)

=
∑
y∈X

k(x, y)
(
fx(y)− fx(x)

)(
log fx(y)− log fx(x)

)
π(x)

+
∑
z∈X

k(z, x)
(
fx(x)− fx(z)

)(
log fx(x)− log fx(z)

)
π(z)

= 2π(x)
∑
y∈X

k(x, y)
(
fx(y)− fx(x)

)(
log fx(y)− log fx(x)

)
,

where we have applied the detailed balance condition in the last step. Hence, we
conclude for any x ∈ X that

I(fx) = π(x)M1(x)
(
ε− 1− ε(1− π(x))

π(x)

)
log

επ(x)

1− ε(1− π(x))

= M1(x)(1− ε) log
1− ε(1− π(x))

επ(x)
.

(3.20)

After this preliminary work we now show the first assertion. The estimate (3.18) follows
from the definition of EI(Φ) for any f ∈ P∗(X) with Entµ(f) < ∞ and I(f) < ∞. We
then extend (3.18) to the more general case of positive f ∈ `1(µ) with Entµ(f) <∞ and
I(f) <∞ by applying (3.18) to f

‖f‖1 . It remains to show that X is finite. Assuming for

contradiction that X is infinite, we find a sequence (xm)m∈N ⊂ X such that π(xm)→ 0

as m → ∞, since µ is assumed to be a probability measure. We infer from (3.19) that
Entµ(fxm)→∞ as m→∞, which contradicts what has been shown before.

Let us now turn to the second assertion. Choosing a sequence (xm)m∈N ⊂ X as above
and assuming w.l.o.g. that π(xm) < 1 for any m ∈ N, we read from (3.19) that

Entµ(fxm) ≥ log
1

π(xm)
+ log(1− ε) + ε log ε

and from (3.20) that

I(fxm) ≤M1,sup(1− ε)
(

log
1

π(xm)
− log

ε

1− ε(1− π(xm))

)
≤M1,sup(1− ε)

(
log

1

π(xm)
− log ε

)
.

Thus, we have
Entµ(fxm)

I(fxm)
≥

log 1
π(xm) + log(1− ε) + ε log ε

M1,sup(1− ε)
(

log 1
π(xm) − log ε

) .
The right hand side of the latter estimate converges to 1

(1−ε)M1,sup
as m→∞. This yields

that there exists a constant C > 0 and some M ∈ N such that

Entµ(fxm)

I(fxm)
≥ C > 0

for any m ≥M . Consequently, it follows from EI(Φ) that

C I(fxm) ≤ Φ(I(fxm))

for all m ≥ M . Since I(fxm) → ∞ as m → ∞ and Φ is concave, we conclude that Φ(r)

must grow linearly as r →∞.
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While the corresponding growth function in the case of the CDΥ(κ, n) condition
(with κ > 0 and n < ∞) grows logarithmically at ∞, we have seen in Proposition 3.5
that for power type CD-functions of higher order the respective growth function is
bounded. Combining Proposition 3.5 with Theorem 3.9 leads to the following interesting
observation.

Corollary 3.10. Let M1 ∈ `2(µ), M2 ∈ `1(µ) and the Markov chain generated by L be

positive recurrent. Further, let L satisfy CDΥ(κ, F ) with κ > 0 and F (r) = r1+δ

n , r ≥ 0,
for some δ ≥ 1 and n ∈ (0,∞). Then the state space X is finite if and only if either δ > 1

or δ = 1 and M1,sup <∞.

4 Ultracontractive Bounds under Entropy-Information inequali-
ties

In the classical diffusive setting, entropy-energy inequalities imply under the condi-

tion that r 7→ Φ′(r)
r is integrable at ∞ ultracontractivity of the semigroup, cf. [3]. But

as the entropy-information inequality compares to entropy-energy inequalities like the
modified logarithmic Sobolev inequality to logarithmic Sobolev inequalities, it is natural
to expect that ultracontractive bounds come in the form of the hypercontractivity bounds
from [5] for the modified logarithmic Sobolev inequality, i.e. not with respect to the
respective norm of the semigroup, but of ePtf instead. We recall the following auxiliary
result, whose proof is contained in the proof of [5, Theorem 7.1], where the authors
have considered an even more general setting. Note in fact that the assumptions (1)–(4)
of [5, Section 7] are satisfied provided that f ∈ `∞(X). Moreover, f ∈ `∞(X) implies
that we have eη(t)Ptf ∈ `∞,+(X) for any fixed t > 0 (with η(t) ∈ R), which yields that
I(eη(t)Ptf ) <∞ if we assume in addition that M1 ∈ `1(µ).

Lemma 4.1. Let M1 ∈ `1(µ), f ∈ `∞(X), t > 0 and q : (0, C0) → (0,∞) be some
differentiable mapping, where C0 ∈ (0,∞]. Then we have

q(t)‖ePtf‖q(t)−1
q(t)

d

dt
‖ePtf‖q(t) =

q′(t)

q(t)
Entµ(eq(t)Ptf )− I(eq(t)Ptf ).

Proof. We briefly repeat the calculation of [5] for the reader’s convenience and refer for
more details to [5, Section 7]. Note that the assumption of M1 ∈ `1(µ) in fact justifies to
interchange integration and differentation in the lines below. We have

d

dt

(∫
X

eq(t)Ptfdµ
) 1
q(t)

= ‖ePtf‖q(t)
(∫

X
eq(t)Ptf

(
q′(t)Ptf + q(t)LPtf

)
dµ

q(t)
∫
X
eq(t)Ptfdµ

−
q′(t) log

∫
X
eq(t)Ptfdµ

q(t)2

)

=
‖ePtf‖1−q(t)q(t)

q(t)

( q′(t)
q(t)

Entµ(eq(t)Ptf )− I(eq(t)Ptf )
)
.

Theorem 4.2. Let L satisfy EI(Φ) and M1 ∈ `1(µ). Then for every 1 ≤ p ≤ q ≤ ∞, every
f ∈ `∞(X) and every % > 0

‖ePt(%)f‖q ≤ ‖ef‖pem(%)

holds true, where

t(%) =

∫ q

p

Φ′(%r)

r
dr, m(%) =

Φ(%p)

p
− Φ(%q)

q
. (4.1)

Here the case of q =∞ has to be understood in the limit q →∞ in both formulas in (4.1)
and can be reached only if r 7→ Φ′(r)

r is integrable at∞.
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Proof. We define Λ(t) = ‖ePtf‖q(t) for a strictly increasing and differentiable q : (0, C0)→
(0,∞), which, together with C0, will be specified below. By Lemma 4.1 we have

q(t)Λ(t)q(t)−1Λ′(t) =
q′(t)

q(t)
Entµ(eq(t)Ptf )− I(eq(t)Ptf ).

Applying EI(Φ) in the form of (3.8) to eq(t)Ptf yields for any r > 0

q(t)Λ(t)q(t)−1Λ′(t) ≤ I(eq(t)Ptf )
(q′(t)
q(t)

Φ′(r)− 1
)

+
q′(t)

q(t)
Θ(r)Λ(t)q(t).

For given r = r(q) (which will be made precise below) we choose q(t) such that the
differential equation q′Φ′(r(q)) = q is satisfied, which in fact can be done by separation

of variables. Indeed, let T : (p,∞) → (0, C0) be defined as T (s) =
∫ s
p

Φ′(r(q))
q dq, where

C0 =
∫∞
p

Φ′(r(q))
q dq (the value C0 = ∞ is allowed). Then T is bijective and q : (0, C0) →

(p,∞), given by q(t) = T−1(t), solves the ODE mentioned above on (0, C0). In particular,
q(0) = p extends q continuously onto [0, C0). We conclude that

Λ′(t) ≤ q′(t)

q(t)2
Θ(r(q(t)))Λ(t)

holds for any t ∈ (0, C0), which is equivalent to the differential inequality

(log Λ)′ ≤ q′

q2
Θ(r(q)). (4.2)

Integrating (4.2) yields

log(Λ(t)) ≤ log(Λ(0)) +

∫ t

0

q′(s)Θ(r(q(s)))

q(s)2
ds

= log(Λ(0)) +

∫ q(t)

q(0)

Θ(r(q))

q2
dq.

Note that we can write

t =

∫ t

0

q′(s)Φ′(r(q(s)))

q(s)
ds =

∫ q(t)

q(0)

Φ′(r(q))

q
dq.

Choosing r(q) = %q establishes the formula for t(%). Moreover, recalling that Θ(s) =

Φ(s) − Φ′(s)s, s ∈ (0,∞), we deduce from a simple application of integration by parts
that ∫ q

p

Θ(%s)

s2
ds =

∫ q

p

Φ(%s)

s2
ds− %t(%) =

Φ(%p)

p
− Φ(%q)

q
,

which yields the claim.

We see from Theorem 4.2 that q =∞ can be reached provided that Φ′(r)
r is integrable

at∞. In particular, in case of the modified logarithmic Sobolev inequality, Theorem 4.2
does not lead to ultracontractive bounds, which is consistent to the role of the logarithmic
Sobolev inequality in the diffusive setting. Otherwise, for a growth function Φ that

behaves as rα with 0 < α < 1 at∞ we have that Φ′(r)
r is integrable at∞. In this sense,

the modified logarithmic Sobolev inequality constitutes an extreme case.
The growth function resulting from CDΥ(κ, F ), with F being a power-type CD-

function from Proposition 3.5, satisfies the integrability condition that we have mentioned
throughout the previous lines. This fact can be seen from the identity (3.16). We close
this section with an application of Theorem 4.2 in this particular context.
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Corollary 4.3. Let M1 ∈ `2(µ), M2 ∈ `1(µ) and the Markov chain generated by L be

positive recurrent. Further, let L satisfy CDΥ(κ, F ) with κ > 0 and F (r) = r1+δ

n , r ≥ 0,
for some δ ≥ 1 and n ∈ (0,∞). Then we have for any t > 0 that

‖ePtf‖∞ ≤ eΦ
(
δ
√

n
2δt

)
‖ef‖1 (4.3)

holds for any f ∈ `∞(X), where Φ denotes the growth function given by (3.15). In
particular, in case of the CDΥ(κ, n) condition, (4.3) reads as

‖ePtf‖∞ ≤
(

1 +
1

2κt

)n
2 ‖ef‖1. (4.4)

Proof. Due to Proposition 3.5, L satisfies EI(Φ) with growth function given by (3.15).
We choose p = 1 and q =∞ (in the limit sense) in (4.1), recall the formula (3.16) for the
derivative of the growth function and observe for % > 0

t(%) =
n

2

∫ ∞
1

1

r(κn+ (%r)δ)
dr ≤ n

2%δ

∫ ∞
1

1

r1+δ
dr =

n

2δ%δ
.

From this we infer by monotonicity of the growth function that

m(%) = Φ(%) ≤ Φ
(
δ

√
n

2δt(%)

)
.

Consequently, by Theorem 4.2 we get that

‖ePt(%)f‖∞ ≤ eΦ
(
δ
√

n
2δt(%)

)
‖ef‖1

holds for any % > 0. But as the mapping % 7→ t(%), % > 0, is bijective onto (0,∞) since it
is decreasing with t(%)→ 0 as %→∞ and t(%)→∞ as %→ 0, (4.3) follows. The special
case of (4.4) now can be established by the explicit formula for the growth function in
the case of δ = 1, see Corollary 3.7.

5 Exponential integrability of Lipschitz functions and diameter
bounds

Exponential integrability of Lipschitz functions and diameter bounds (see the defini-
tions below) are both important properties to investigate in the classical theory of [3]. In
order to reach finite diameter bounds in the diffusive setting, Poincaré inequalities resp.
logarithmic Sobolev inequalities are not sufficient. Instead, Sobolev inequalities resp.
certain entropy-energy inequalities ensure the validity of a finite diameter. Speaking on
the level of CD-inequalities this means that in the diffusive setting positive curvature
and finite dimension suffices to deduce finite diameter bounds, while positive curvature
alone does not. In this section we will be able to show that the CDΥ condition behaves
consistently in the discrete setting of Markov chains.

Now, we recall the definitions of Lipschitz functions and the diameter.

Definition 5.1. A function f ∈ RX is called Lipschitz function if Γ(f)(x) exists at any

x ∈ X (in the sense that the sum in (1.11) with H(r) = r2

2 is finite) and ‖f‖Lip :=√
‖Γ(f)‖∞ <∞. Moreover, we say that f is C-Lipschitz, where C > 0, when ‖f‖Lip ≤ C

holds true.

Definition 5.2. Considering the mapping % : X ×X → [0,∞), given by

%(x, y) = sup{f(y)− f(x) : ‖f‖Lip ≤ 1},

we define the diameter with respect to L as diam% = sup
x,y∈X

%(x, y).
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These definitions have been used in the diffusive situation of [3], but also in the
discrete setting in [18], where diam% has been called the resistance diameter. Defini-
tion 5.2 is further closely related to the diameter with respect to the combinatorical
graph distance on the underlying graph to L. In fact, in [18] it has been shown that the
estimate

dist(x, y) ≤
√
M1,sup

2
%(x, y) (5.1)

holds true on locally finite graphs, provided that M1,sup <∞, where dist : X×X → [0,∞)

denotes the combinatorical graph distance. We emphasize that the bound (5.1) extends
to the case of locally infinite graphs with M1,sup < ∞ as the proof of [18, Lemma 1.4]
holds verbatim.

Lemma 5.3. Let f ∈ RX be a bounded C-Lipschitz function. Then we have that

I(esf ) ≤ C2 s2

∫
X

esfdµ,

holds true for any s ∈ R.

Proof. Clearly, there is nothing to show in the case of s = 0. Note that the detailed
balance condition implies that

k(x, y)s
(
f(y)− f(x)

)(
h(sf(y))− h(sf(x))

)
π(x)

= k(y, x)s
(
f(x)− f(y)

)(
h(sf(x))− h(sf(y))

)
π(y)

holds for any x, y ∈ X and s 6= 0, where h : R→ R is some arbitrary function. Defining
for x ∈ X and s 6= 0 the set Ax,s := {y ∈ X : s(f(y)− f(x)) < 0}, we then infer

C2s2

∫
X

esfdµ ≥ s2

∫
X

esfΓ(f)dµ

= s2
∑
x∈X

esf(x)
∑

y∈Ax,s

k(x, y)
(
f(y)− f(x)

)2
π(x)

≥
∑
x∈X

esf(x)
∑

y∈Ax,s

k(x, y)|s(f(y)− f(x))| |es(f(y)−f(x)) − 1|π(x)

=
∑
x∈X

esf(x)
∑

y∈Ax,s

k(x, y)s
(
f(y)− f(x)

)(
es(f(y)−f(x)) − 1

)
π(x)

=
∑
x∈X

∑
y∈Ax,s

k(x, y)s
(
f(y)− f(x)

)(
esf(y) − esf(x)

)
π(x)

= I(esf ).

Here, we have applied the inequality |τ | ≥ |eτ − 1|, which is valid if τ ≤ 0.

We now state the main result of this section.

Theorem 5.4. Let L satisfy EI(Φ) and let f ∈ `1(µ) be 1-Lipschitz. Further, we assume

that s 7→ Φ(s2)
s2 is integrable at 0. Then we have∫

X

etfdµ ≤ exp
(
t
(∫ t

0

Φ(s2)

s2
ds+

∫
X

fdµ
))
, t 6= 0. (5.2)

If in addition s 7→ Φ(s2)
s2 is also integrable at∞, then any Lipschitz function is bounded

and it holds

‖f −
∫
X

fdµ‖∞ ≤
∫ ∞

0

Φ(s2)

s2
ds (5.3)

for any 1-Lipschitz function f .
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In particular, the diameter bound

diam% ≤ 2

∫ ∞
0

Φ(s2)

s2
ds (5.4)

is valid.

Proof. First, let f ∈ RX be 1-Lipschitz and bounded. In particular, by Lemma 5.3
we have that I(esf ) < ∞ for any s ∈ R. We set Z(s) =

∫
X
esfdµ and observe that

Z ′(s) =
∫
X
fesfdµ. Further, we define Λ(s) = log(Z(s))

s , s 6= 0. Note that we can extend Λ

to a continuous function on R by means of L’Hospital’s rule by Λ(0) =
∫
X
fdµ. For some

fixed s 6= 0 we obtain

Λ′(s) =
sZ ′(s)− Z(s) log(Z(s))

s2Z(s)
=

Entµ(esf )

s2Z(s)
.

Now, we apply EI(Φ) (in the form of (3.8)) to esf and observe that

Λ′(s) ≤ Φ′(r)I(esf ) + Θ(r)Z(s)

s2Z(s)
(5.5)

holds for any r ∈ (0,∞). Due to f being bounded and 1-Lipschitz, Lemma 5.3 translates
to

I(esf ) ≤ s2Z(s).

With this at hand, we deduce from (5.5) that

Λ′(s) ≤ Φ′(r)s2 + Θ(r)

s2
=

Φ(r) + Φ′(r)(s2 − r)
s2

holds for any r ∈ (0,∞). Specifying r = s2, we end up with

Λ′(s) ≤ Φ(s2)

s2
.

Integrating this yields

Λ(t) ≤ Λ(0) +

∫ t

0

Φ(s2)

s2
ds,

when t > 0 and with the reverse inequality in case that t < 0. In both situations, (5.2)
follows from the definition of Λ in the case that f is bounded.

Regarding the general case, let f ∈ `1(µ) be 1-Lipschitz and consider fN ∈ `∞(X),
N ∈ N, given by fN (x) = f(x) if |f(x)| ≤ N , fN (x) = N if f(x) > N and fN (x) = −N if
f(x) < −N . Clearly, for any x, y ∈ X, we have |fN (x)− fN (y)| ≤ |f(x)− f(y)| and thus
fN is 1-Lipschitz for any N ∈ N. As f ∈ `1(µ),

∫
X
fNdµ converges to

∫
X
fdµ as N →∞

by the dominated convergence theorem. Furthermore, Fatou’s lemma implies∫
X

esfdµ ≤ lim inf
N→∞

∫
X

esfNdµ ≤ lim inf
N→∞

exp
(
t
(∫ t

0

Φ(s2)

s2
ds+

∫
X

fNdµ
))

= exp
(
t
(∫ t

0

Φ(s2)

s2
ds+

∫
X

fdµ
))
.

As a first step to establish the second claim, we note that if (5.3) is valid for bounded
1-Lipschitz functions then any 1-Lipschitz function is an element of `1(µ). Indeed, let f
be a general 1-Lipschitz function and denote by

(
fN
)
N∈N ⊂ `∞(X) the approximating
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sequence of 1-Lipschitz functions as defined above. Then, choosing x ∈ X arbitrary, we
observe, since clearly |f | is also 1-Lipschitz, that

∣∣|f(x)| −
∫
X

|fN |dµ
∣∣ ≤ ∥∥|fN | − ∫

X

|fN |dµ
∥∥
∞ ≤

∫ ∞
0

Φ(s2)

s2
ds,

where N ≥ N0 with N0 ∈ N such that |f(x)| ≤ N0. Sending N → ∞ in the latter
estimation, we deduce that f ∈ `1(µ).

We will now show that (5.3) holds for any 1-Lipschitz function that is an element of

`1(µ) (and hence for any 1-Lipschitz function). We set C =
∫∞

0
Φ(s2)
s2 ds and apply (5.2) to

f −
∫
X
fdµ, assuming that f ∈ `1(µ) is 1-Lipschitz. We obtain for any t > 0 that∫

X

exp
(
t
(
f −

∫
X

fdµ
))

dµ ≤ exp
(
tC
)
. (5.6)

Now, we assume for contradiction that we can find some x ∈ X and some ε > 0 such that

f(x)−
∫
X

fdµ > C + ε.

Then we have for t > 0 ∫
X

exp
(
t
(
f −

∫
X

fdµ
))

dµ > et(C+ε)π(x),

which contradicts (5.6) in the asymptotic behavior of t→∞. Simultaneously, by consid-
ering the asymptotic behavior as t→ −∞, one obtains that f(x)−

∫
X
fdµ ≥ −C holds

for all x ∈ X. This establishes (5.3) for any 1-Lipschitz function. From that we conclude

f(y)− f(x) ≤ 2‖f −
∫
X

fdµ‖∞ ≤ 2

∞∫
0

Φ(s2)

s2
ds. (5.7)

for any x, y ∈ X and 1-Lipschitz function f . But (5.7) implies that f must be bounded.
Hence we deduce by scaling that any Lipschitz function is bounded. Furthermore,
by (5.7) and the definition of %, we deduce (5.4).

Theorem 5.4 yields finite bounds on diam% if L satisfies CDΥ(κ, F ) with κ > 0 and
a power-type CD-function by means of Proposition 3.5(ii). In the special case of the
quadratic CD-function, we get the following bound.

Corollary 5.5. If M1 ∈ `2(µ), M2 ∈ `1(µ), the Markov chain generated by L is positive
recurrent and L satisfies CDΥ(κ, n) with κ > 0 and n <∞, then the diameter bound

diam% ≤ π
√
n

κ
(5.8)

holds true.

Proof. By elementary methods one calculates the integral

n

2

∫ ∞
0

log
(
1 + s2

κn

)
s2

ds =
π

2

√
n

κ
.

The claim follows by combining Corollary 3.7 with Theorem 5.4.
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Remark 5.6. By (5.8) we recover (by different methods) exactly the same diameter
bound as in [18], where there it is assumed on the one hand only CD(κ, n) but on the
other hand that the underlying graph to L is locally finite and satisfies the completeness
assumption and non-degeneracy of the vertex measure. Note that by [19, Theorem
2.2] the latter boils down to the case of finite graphs since κ > 0. Hence, although the
curvature-dimension condition of Corollary 5.5 is more restrictive, the setting where it
applies can be expected to be more general compared to the one of [18].

With the following example we aim to emphasize that the property that Lipschitz
functions are bounded is quite strong in the sense that it fails for a large class of
examples that all satisfy corresponding modified logarithmic Sobolev inequalities. In
particular, it turns out that CDΥ(κ,∞), with κ > 0, is not sufficient for deducing a finite
diameter bound.

Example 5.7. We consider a birth-death process on N0 as in Example 2.11 and employ
the notation that has been used therein. In particular, we assume that the rate functions
a and b are monotone as in Example 2.11 and that condition (2.7) holds for some κ > 0.
We set f(0) = 0 and define the sequence of partial sums

f(n) =
n∑
k=1

1√
b(k)

, n ∈ N. (5.9)

We claim that Lipschitz functions are bounded if and only if the partial sums given
by (5.9) converge.

First, we assume that the partial sums given by (5.9) diverge as n → ∞. Then, we
have

2Γ(f)(n) = a(n)(f(n+ 1)− f(n))2 + b(n)(f(n− 1)− f(n))2 =
a(n)

b(n+ 1)
+ 1

for any n ∈ N. From the monotonicity assumption on the rates we infer that Γ(f) is
bounded, or in other words that f is a Lipschitz function. But apparently, f is unbounded.
This yields that the corresponding generator does not satisfy an entropy-information

inequality with growth function Φ such that
∫∞

0
Φ(s2)
s2 ds < ∞. On the other hand, it is

known by [6] that L satisfies a corresponding modified logarithmic Sobolev inequality.
Moreover, we emphasize that among those birth-death processes of the present example
are also processes that even satisfy the condition CDΥ(κ,∞), see [31]. This shows that
the condition CDΥ(κ,∞) with κ > 0 is in general not sufficient to obtain a finite diameter.
The latter finding is consistent to the Bakry-Émery condition in the diffusive setting.

Now, let us assume conversely that the partial sums given by (5.9) converge and let g
be C-Lipschitz for some C > 0. In particular,

b(n)
(
g(n− 1)− g(n)

)2 ≤ 2C2

holds for any n ∈ N. Consequently, we have |g(n− 1)− g(n)| ≤
√

2C√
b(n)

, n ∈ N, and by the

triangle inequality we deduce

|g(N)− g(0)| ≤
√

2Cf(N) ≤
√

2C
∑
n∈N

1√
b(n)

for any N ∈ N, which yields that g is bounded.

6 Modified Nash inequalities

In the diffusive setting, it is known that logarithmic entropy-energy inequalities imply
Nash inequalities (cf. [3, Proposition 6.2.3]). Regarding the discrete setting of Markov
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chains we refer to [10], and also [27], for an extensive account on Nash inequalities.
Clearly, it can not be expected that logarithmic entropy-information inequalities are
linked to the classical Nash inequality in the discrete setting as they are in the diffusive
setting by the lack of chain rule. We refer to the natural analogue as the modified Nash
inequality, which can be induced from corresponding logarithmic entropy-information
inequality as will be shown subsequently. We say that a function f ∈ RX is non-vanishing
if f(x) 6= 0 for any x ∈ X.

Theorem 6.1. If L satisfies EI(Φ) with Φ(r) = α log
(
A + r

β

)
and α, β > 0, A ≥ 1, then

the following modified Nash inequality

‖f‖2α+2
2 ≤

(
A‖f‖22 +

I(f2)

β

)α
‖f‖21 (6.1)

holds for any non-vanishing f ∈ `2(µ).

Proof. Clearly, we can assume that I(f2) < ∞. Further, it suffices to prove (6.1)
for bounded non-vanishing functions by a standard truncation argument. Indeed, let
(fN )N∈N denote the sequence of bounded functions that has been considered in the proof
of Theorem 5.4. Then it follows readily by means of the monotone convergence theorem
that ‖fN‖2 → ‖f‖2, ‖fN‖1 → ‖f‖1 and I(f2

N )→ I(f2) as N →∞.

It is a well known consequence of Hölder’s inequality that the mapping r 7→ ‖f‖ 1
r
,

r ∈ (0, 1] is log-convex. Then, for a given non-vanishing f ∈ `∞(X) with ‖f‖2 = 1, we
consider the convex mapping Λ(r) = log ‖f‖ 1

r
, r ∈ (0, 1], which is well defined since µ is

a probability measure. One readily verifies by a similar calculation as in the proof of
Lemma 4.1 that

Λ′(r) = −Entµ(|f | 1r )∫
X
|f | 1r dµ

,

where we use that |f | is bounded in order to interchange differentation and integration.
In particular, using ‖f‖2 = 1, we observe that Λ′

(
1
2

)
= −Entµ(f2). By convexity, we thus

have

2
(
Λ(1)− Λ

(1

2

))
≥ Λ′

(1

2

)
.

Consequently, by the entropy-information inequality EI(Φ) and the fact that Λ
(

1
2

)
= 0,

we observe

log
1

‖f‖21
≤ Entµ(f2) ≤ log

(
A+

I(f2)

β

)α
,

which implies

1 ≤
(
A+

I(f2)

β

)α‖f‖21 . (6.2)

Now, for the non-normalized case we apply (6.2) to f
‖f‖2 . By the scaling behavior of the

Fisher information (cf. (3.4)), we deduce

‖f‖22 ≤
1

‖f‖2α2

(
A‖f‖22 +

I(f2)

β

)α
‖f‖21,

from which the claim follows.

Combining Corollary 3.7 with Theorem 6.1, we observe the following result.
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Corollary 6.2. If M1 ∈ `2(µ), M2 ∈ `1(µ), the Markov chain generated by L is positive
recurrent and L satisfies CDΥ(κ, n) with κ > 0 and n <∞, then L satisfies the following
modified Nash inequality

‖f‖n+2
2 ≤

(
‖f‖22 +

I(f2)

κn

)n
2 ‖f‖21

for any non-vanishing f ∈ `2(µ).

A Auxiliary lemma

In this section we provide an auxiliary result, which has been used to investigate the
example of the two-point space in Example 2.5. For further properties of the functions
νc,d : R→ R, given by

νc,d(r) = cΥ′(r)r + Υ(−r)− dΥ(r), c, d ∈ R,

which also have been used throughout Section 2, we refer to the Appendix of [31].

Lemma A.1. ν1+λ,λ is strictly convex for any λ ∈ (0, 1].

Proof. We have

ν′′1+λ,λ(r) = er
(
(1 + λ)r + 2 + λ

)
+ e−r,

ν′′′1+λ,λ(r) = er
(
(1 + λ)r + 3 + 2λ

)
− e−r.

Hence, ν′′′1+λ,λ(r) = 0 if and only if

e2r
(
(1 + λ)r + 3 + 2λ

)
= 1, (A.1)

which yields by monotonicity that ν′′1+λ,λ has a unique critical point r∗ for which we have

r∗ > − 3+2λ
1+λ . By applying the logarithm we can reformulate (A.1) into

r∗ = log
( 1√

(1 + λ)r∗ + 3 + 2λ

)
. (A.2)

We infer that

ν′′1+λ,λ(r∗) =
(1 + λ)r∗ + 2 + λ√
(1 + λ)r∗ + 3 + 2λ

+
√

(1 + λ)r∗ + 3 + 2λ ,

which is positive if and only if

r∗ > −
5 + 3λ

2(1 + λ)
.

Defining r̄ := − 5+3λ
2(1+λ) , we now observe that

e2r̄ < 1 ≤ 2

λ+ 1
=

1

(1 + λ)r̄ + 3 + 2λ
.

In particular, this implies that ν′′′1+λ,λ(r̄) < 0 and hence we have r∗ > r̄ by monotonicity,
which establishes the claim.
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