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Spatial-segregation limit for exclusion processes with
two components under unbalanced reaction
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Abstract

We consider exclusion processes with two types of particles which compete strongly
with each other. In particular, we focus on the case where one species does not
diffuse at all and killing rates of two species are given by monomials with distinct
exponents. We study limiting behavior of interfaces which appear by such a strong
competition. Consequently, three kinds of limiting behavior of interfaces (vanishing,
moving and immovable interfaces as in [9]) are derived directly from our interacting
particle system taking advantage of hydrodynamic limit procedure with singular limit
for annihilation dynamics.
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1 Introduction

Spatial-segregation limit (or fast-reaction limit in some literatures) is a problem that
discusses the limiting behavior of the solution of competitive reaction-diffusion system
when its competition rate tends to infinity. The problem has been studied in PDE theory,
which is concretely described as follows. Let Ω be a bounded domain in Rd with smooth
boundary and let uK and vK be a pair of non-negative solution of competition-diffusion
system {

∂tu = d1∆u−Kc1(u, v)uv

∂tv = d2∆v −Kc2(u, v)uv

in [0,∞)× Ω and study the limiting behavior of uK and vK as K tends to infinity under
some boundary condition for each case. Here d1 and d2 are non-negative constants
(diffusion coefficients) and c1 and c2 are non-negative functions on R2

+. When one of
d1 and d2 is zero we call this one-phase case, while the case when d1 and d2 are both
strictly positive is called two-phase case as our convention. Moreover, we call a pair
of reaction rates c1 and c2 is balanced if there exists a positive constant κ such that
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Unbalanced spatial-segregation limit for two-species exclusion processes

c1 = κc2 and otherwise we call it unbalanced. Here we remark that c1 and c2 physically
denote annihilation (or killing) rates since we only consider the case when c1 and c2 are
non-negative.

An early study for spatial-segregation limit in PDE theory is found in [7] for one-phase
case with balanced killing rates when the spatial dimension is one. For two-phase case
with balanced reaction rates, [3] considered in the Neumann boundary condition and [2]
in inhomogeneous Dirichlet boundary can be found.

Recently spatial-segregation limit problem described as above has been studied
from a microscopic viewpoint in [4]. They consider an exclusion process with two
components where two types of particles diffuse with different constant rates and they
strongly compete with each other. When a type-1 particle and a type-2 particle stay
at the same site, they annihilate simultaneously with rate K(N) which depends on the
scaling parameter N and diverges as N tends to infinity. Then they proved that taking
hydrodynamic limit procedure for this process limiting behavior of macroscopic density
of each type of particles is determined by a two-phase Stefan problem as derived for
example in [3] in PDE context. In other words, they derived the time-evolution of limiting
interface which asymptotically appears as competition rate tends to infinity directly
from an interacting particle system. Namely, the spatial-segregation limit problem can
be understood from a microscopic point of view in a special case where two species
compete with common and simple competition rates. One natural problem is to consider
the case when the competition rates are divergent but essentially different between two
distinct species.

When reaction rates c1 and c2 are unbalanced, for instance when one type of particles
has strong effect of competence while that of the other kind of particles is comparatively
weak, limiting behavior of the solution of the corresponding reaction-diffusion system as
K tends to infinity is far from well understood in PDE context but there are a few results
considering this unbalanced case. In [9], they study the case c1 and c2 are monomials
with different exponents. They consider a reaction-diffusion system{

∂tu = ∆u−Kum1vm2

∂tv = −Kum3vm4
(1.1)

with Neumann boundary condition focusing on following four cases:

Case I : m1 > 3,m2 = m3 = m4 = 1,

Case II : m2 ≥ 1,m1 = m3 = m4 = 1,

Case III : m3 > 1,m1 = m2 = m4 = 1,

Case IV : 1 ≤ m4 < 2,m1 = m2 = m3 = 1.

Then, they proved that there are three kinds of limiting behavior of the asymptotic
interfaces: vanishing, moving and immovable interfaces. For Case I, vK(t, ·) converges
to 0 for every t > 0 and uK converges to a solution of the heat equation on the whole
domain Ω as K tends to infinity. Thus the liming interface disappears instantaneously in
this case. Though some intuitive arguments for corresponding dynamical system (see [9]
for detail) support a conjecture which says the interface vanishes also when 2 < m1 ≤ 3

but this is not proved because of some technical reasons and we only consider the case
for m1 > 3 also in this article. For Case II and IV, a transformation of vK enables us to
get another competition-diffusion system with common reaction rates up to constant.
This case is already studied in [7] or [8] and one gets the limiting interface governed by a
one-phase Stefan problem. For Case III, a limiting interface appears but it does not move
at all. In this case, u evolves according to the heat equation on the fixed domain with
Dirichlet boundary condition and v does not change it values in its domain (this domain
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Unbalanced spatial-segregation limit for two-species exclusion processes

is the complement of the domain where the time evolution of u takes place). Our aim is
to understand this result by conducting the scaling limit of interacting particle systems
where the exponents of reaction terms are restricted to be positive integer. For this
reason, though [9] also studies CaseIV (moving interface) with its exponent 1 ≤ m4 < 2

in [9], this can not be derived from our interacting particle system except for the trivial
case m4 = 1 (this case is contained in CaseII).

In this paper, we extend the microscopic model in [4] to consider a fast-reaction
limit problem for Glauber-Kawasaki dynamics with unbalanced reaction rates. In [4],
they considered the case when d1, d2 > 0 and c1 ≡ c2 and derived a two-phase Stefan
problem as a system of hydrodynamic limit equations. On the other hand, we in this
paper consider the case when reaction rates are unbalanced (namely c1 6= κc2 for any
κ). For the first step to treat hydrodynamic limit problem with unbalanced reaction
rates, we consider the case in [9] where the corresponding PDE problem is discussed.
Concretely, we consider a simple exclusion process with annihilation dynamics where
annihilation rates of two species are given by monomials and further assume one type of
particles does not diffuse at all (namely we assume d2 = 0 as [9]). After some careful
calculations, we can show that three types of limiting interfaces as in [9] are derived
through the hydrodynamic limit procedure for this process. One reason for considering
the case d2 = 0 is that it makes the problem technically simple to prove the PDE part,
though this lack of Kawasaki dynamics for type-2 particles makes the probabilistic part
more difficult. For Case I, the assumption d2 = 0 makes the second equation of (1.1) an
ODE for v provided u is considered to be a given function, which can be solved explicitly.
Therefore, the reaction-diffusion system (1.1) can be reviewed as a single equation so
that the comparison principle becomes applicable. This plays a technically essential
role in CaseI. On the other hand, for CaseIII, d2 = 0 is an essential assumption for
the immovable interface to be deduced. In CaseIII, if type-2 particles diffuse (namely
d2 is positive), then the system becomes equivalent to CaseII by ignoring magnitude
of diffusion coefficients and thus the limiting interface does move as a solution of a
one-phase Stefan problem. Hence the condition d2 = 0 is not only a technical but also a
phenomenologically essential assumption which makes limiting behavior of interfaces
rich in variety.

Here we summarize what we prove as main theorems (Theorems 2.1, 2.3 and 2.4)
in this paper. Our main theorems state that three kinds of limiting behavior of asymp-
totic interfaces considered in [9] is derived directly from interacting particle systems
corresponding to each cases through the hydrodynamic limit procedure. The proof of
the main theorems is divided into two parts: the probabilistic part and the PDE part. In
the first part of this paper, we prove the probabilistic part of the hydrodynamic limit
theorems by means of the relative entropy method introduced by H.-T. Yau in [12]. In
that machinery, one needs to show that the probability law of an undergoing process
and another probability measure parametrized by macroscopic quantities which are
determined by some partial differential equation(s) are sufficiently close in terms of
relative entropy. In our cases, we take a reference measure whose weight parame-
ters satisfy a semi-discretized system (that is, discretized only for spatial variables so
that the system becomes to be a system of ODEs) and study limiting behavior of this
semi-discretized system as a deterministic problem after we proved the probabilistic
part. We call the latter part PDE part and such a deterministic limiting procedure is
conducted in semi-discretized settings. In other words, we treat the limit when both
the scaling parameter and the reaction rate tends to infinity, while in [9] they consider
continuous reaction-diffusion systems and taking limit only for the reaction rate. In this
paper, we first show the probabilistic part for our dynamics with general reaction terms,
namely the case with d2 = 0 and reaction rates c1, c2 are general, but c2 is assumed to
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depend only on the configuration of type-1 particles for a technical reason, non-negative
polynomials of configurations of each kind of particles. Then we study limiting behavior
of solutions of the semi-discretized reaction-diffusion system only for specific reaction
rates which macroscopically corresponds to the system of hydrodynamics limit equations
(1.1). To conduct such a procedure, we actually have to put a restriction which ensures
c2 depends only on configuration of type-1 particles to prove particularly the probabilistic
part, though it covers all cases considered in [9]. We take a product Bernoulli measure
for both types of particles as a reference measure which is parametrized by macroscopic
densities of type-1 and 2 particles. This is very natural for the dynamics for type-1 parti-
cles since product Bernoulli measure is stationary for Kawasaki dynamics and indeed
Bernoulli measures parametrized by a spatially constant densities are a family of invari-
ant measures for Kawasaki dynamics. For the Glauber-Kawasaki dynamics with single
component where creation and annihilation rule is added, product Bernoulli measure
with dynamical parameters which governed by a macroscopic equation (hydrodynamic
limit equation) is known to be appropriate as reference measure in Yau’s relative entropy
method.

Finally we explain how this paper is organized. First, in Section 2 we give a precise
description of our model and state main results and then we give the proof of main
theorems in the forthcoming sections (Sections 3–8). The proof is divided in two steps:
probabilistic part and PDE part. In Section 3 we explain these steps which are needed to
prove the main theorems in detail. Section 4 is devoted to the proof of probabilistic part
where we prove that the probability law of spatial density profiles of our microscopic
dynamics is close to a reference measure which is dynamically parametrized by a solution
of a semi-discretized reaction diffusion system. It should be noted here again that we
use product Bernoulli measure as reference measure in our proof. In the last four
sections (Sections 5–8), we study limiting behavior of the semi-discretized system and
show there are three regimes which derive three kinds of limiting behavior of interfaces:
vanishing regime, moving regime and immovable regime. In Section 5, we give a priori
estimates involving the semi-discretized reaction-diffusion system. In Section 6.1, we
consider the case when the interface vanishes instantaneously (CaseI in [9]). In this
case, type-2 particles extincts and the density of type-1 particles evolves according to
the heat equation on the whole domain at any positive time. In Section 7, we treat the
case when reaction terms become the same up to constant through a change of variables
(CaseII in [9]). Then the limiting interface moves, which is governed by a one-phase
Stefan problem. In Section 8, we investigate the case when the interface appears but it
does not move at all (CaseIII in [9]).

Remark 1.1. Throughout this article, we use Proposition to state results which are
already known in other literatures.

2 Our model and results

2.1 Microscopic model

Let TdN
∼= {1, ..., N}d be the d-dimensional discrete torus and let X 2

N = {0, 1}TdN ×
{0, 1}TdN be the configuration space of two kinds of particles. We denote an element
η = (η1, η2) ∈ X 2

N with ηi = {ηi(x)}x∈TdN (i = 1, 2). Here for each i = 1, 2, an element ηi
represents the configuration of type-i particles: ηi(x) = 1 means there exists a type-i
particle on site x ∈ TdN and ηi(x) = 0 means type-i particle does not exist on site x. Next,
we consider a kind of Glauber-Kawasaki processes which takes values on X 2

N as follows.
We consider the simple exclusion process where only type-1 particles diffuse and its
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generator is given by

LKf(η1, η2) =
1

2

∑
x,y∈TdN ,|x−y|=1

[f(ηx,y1 , η2)− f(η1, η2)]

for each function f : X 2
N → R. Here, for each σ ∈ XN , σx,y is the configuration after

exchanging occupation variables on sites x and y:

σx,y(z) =


σ(x) if z = y,

σ(y) if z = x,

σ(z) otherwise.

On the other hand, the generator of the Glauber dynamics is given by LG = L1,G + L2,G

with

L1,Gf(η1, η2) =
∑
x∈TdN

c1,x(η1, η2)η1(x)η2(x) [f(ηx1 , η2)− f(η1, η2)]

L2,Gf(η1, η2) =
∑
x∈TdN

c2,x(η1, η2)η1(x)η2(x) [f(η1, η
x
2 )− f(η1, η2)]

for each function f : X 2
N → R where for each σ ∈ XN , σx is the configuration after

flipping the particle configuration on site x:

σx(z) =

{
1− σ(x) if z = x,

σ(z) if z 6= x.

Here, ci,x(η1, η2) = ci(τxη1, τxη2) for i = 1, 2 and {τx}x∈Zd are shifts acting on XN as
τxσ(·) = σ(· + x) for every σ ∈ XN . Throughout this article, we assume that both
annihilation rates ci(η1, η2)(i = 1, 2) are non-negative and depend only on the particle
configuration of finite number of sites which depend neither on η1(0) nor η2(0) as follows:

c1(η1, η2) =
∑

Λ1,Λ2bZ
d,0 6∈Λ1∪Λ2

c1,Λ1,Λ2

∏
x∈Λ1

η1(x)
∏
x∈Λ2

η2(x)

and

c2(η1, η2) ≡ c2(η1) =
∑

ΛbZd,06∈Λ

c2,Λ
∏
x∈Λ

η1(x)

with some real constants c1,Λ1,Λ2
and c2,Λ such that c1 and c2 stay non-negative and

these constants are assumed to be zero except for finite numbers of them so that the
above summation becomes finite. In this paper, we assume the reaction rate c2 does not
depend on configuration of type-2 particles. A technical reason for this assumption will
be explained in the proof of the probabilistic part of main theorems given in Section 3
(see Remark 4.3). Moreover, for the sake of convenience described later we extend c1
and c2 as non-negative functionals on [0, 1]T

d
N × [0, 1]T

d
N by

c1(u, v) =
∑

Λ1,Λ2bZ
d

06∈Λ1∪Λ2

c1,Λ1,Λ2

∏
x∈Λ1

u(x)
∏
x∈Λ2

v(x)

and

c2(u, v) ≡ c2(u) =
∑

ΛbZd,06∈Λ

c2,Λ
∏
x∈Λ

u(x)
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for (u, v) ∈ [0, 1]T
d
N × [0, 1]T

d
N with u = {u(x)}x∈TdN and v = {v(x)}x∈TdN . In other words,

ci(u, v) is obtained by substituting u(x) and v(x) into η1(x) and η2(x), respectively, in the
definition of c1(η1, η2) and c2(η1, η2) for every x ∈ TdN .

For each N ∈ N, let {ηNt = (ηN1,t, η
N
2,t)}t≥0 be the X 2

N -valued Markov process generated
by LN = N2LK +K(N)LG on some probability space (ΩN ,FN ,PNµN0 ). Here for a proba-

bility measure µ on the configuration space X 2
N , PNµ is the probability measure under

which the initial distribution of {ηNt }t≥0 is µ and we denote the expectation with respect
to PNµ by ENµ [·]. An assumption for the initial distribution µN0 will be described later (see
assumption (A2)). Here K = K(N) is a divergent parameter as N tends to infinity, which
corresponds to take so-called “fast-reaction limit” in PDE context. Define macroscopic
empirical measures {πNt = (πN1,t, π

N
2,t)}t≥0 on the d-dimensional torus Td ∼= [0, 1)d by

πNi,t(dθ) :=
1

Nd

∑
x∈TdN

ηNi,t(x)δ x
N

(dθ), i = 1, 2

and hereafter we write 〈πNi,t, ϕ〉 :=
∫
Td
ϕ(θ)πNi,t(dθ) for any continuous function ϕ on Td.

Moreover, for any R2-valued continuous function ϕ = (ϕ1, ϕ2), we denote its vector-
valued integral by 〈πNt , ϕ〉 := (〈πN1,t, ϕ1〉, 〈πN2,t, ϕ2〉).

Our aim is to study the limiting behavior of spatial density profiles of both kinds of
particles under dynamics such that diffusion of type-1 particles is speeded up by N2 and
two species compete with rate K(N) which diverges as N tends to infinity. Particularly,
we will show that for special forms of reaction rates ci (i = 1, 2) (that is, Case 1, Case 2
and Case 3 which are described later) there are three regimes of interface growth.

2.2 Hydrodynamic limit

To evaluate the difference between two probability measures, we use the relative
entropy defined as follows. Let µ and ν be two probability measures on X 2

N . We define
the relative entropy of µ with respect to ν by

H(µ|ν) :=

∫
X 2
N

dµ

dν
log

dµ

dν
dν (2.1)

if µ is absolutely continuous with respect to ν, while otherwise we define H(µ|ν) :=∞.
Next we summarize our assumptions on the initial distribution and state main theo-

rems in this paper.

(A1) Let uN (0, x) = uN0 (x) and vN (0, x) = vN0 (x) be given and satisfy two bounds

e−C1K ≤ uN (0, x) ≤ C2, |∇NuN (0, x)| ≤ C0K

e−C1K ≤ vN (0, x) ≤ C2, |∇NvN (0, x)| ≤ C0K

for every x ∈ TdN with C1 > 0, 0 < C2 < 1 and C0 > 0. Here ∇N is the discrete
gradient, that is, for every u : TdN → R we define ∇Nu : TdN → Rd by ∇Nu(x) =

(N(u(x+ ej)− u(x)))j=1,...,d.

(A2) We denote µN0 the distribution of ηN0 = (ηN1,0, η
N
2,0) on X 2

N and let νN0 be the product
Bernoulli measure on X 2

N with mean (uN (0, ·), vN (0, ·)). We assume the relative
entropy H(µN0 |νN0 ) defined by (2.1) satisfies H(µN0 |νN0 ) = O(Nd−δ0) for some δ0 >
0 as N tends to infinity, that is, there exists a positive constant M such that
H(µN0 |νN0 ) ≤MNd−δ0 for sufficiently large N .

(A3)δ K = K(N) satisfies 1 ≤ K(N) ≤ δ(logN)1/2 and K(N)→∞ as N tends to infinity.
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For each m ∈ N and for some fixed sites zi ∈ Zd (i = 1, ...,m− 1), we introduce the
following three regimes which are special cases in our setting.

Case 1. c1(η1, η2) = η1(z1) · · · η1(zm−1), c2(η1, η2) ≡ 1 with m > 3.

Case 2. c1(η1, η2) = η2(z1) · · · η2(zm−1), c2(η1, η2) ≡ 1 with m ≥ 1.

Case 3. c1(η1, η2) ≡ 1, c2(η1, η2) = η1(z1) · · · η1(zm−1) with m > 1.

Here we suppose c1 ≡ 1 when m = 1 in Case 2 and c2 ≡ 1 when m = 1 in Case 3 by
convention. For each regime, we have the following hydrodynamic limit result which
describes the limiting behavior of interfaces between two particle territories.

In addition to the above assumptions (A1), (A2) and (A3) imposed for all three cases,
we further introduce conditions (B1), (B2) and (B3) which are assumed for Case 1,
Case 2 and Case 3, respectively.

(B1) There exist non-negative functions u0 ∈ C4(Td) and v0 ∈ Cα(Td) for some α ∈ (0, 1)

such that u0 6≡ 0, u0v0 ≡ 0 and vN (0, x) = o(1/K) for every x ∈ TdN satisfying x/N /∈
suppv0 as N tends to infinity, that is, we have limN→∞ supx/N /∈suppv0 Kv

N (0, x) = 0.
Moreover, we assume

lim
N→∞

sup
x∈TdN

K2|uN (0, x)− u0(x/N)| = 0, lim
N→∞

sup
x∈TdN

|vN (0, x)− v0(x/N)| = 0.

(B2) There exist functions u0, v0 ∈ L2(Td) such that u0v0 ≡ 0 and functions uN (0, ·) and
vN (0, ·) on Td defined by (3.2) satisfy for the index m ≥ 1 appearing in Case 2

uN (0, ·) ⇀ u0, v
N (0, ·)m ⇀ vm0 weakly in L2(Td)

as N tends to infinity.

(B3) There exist functions u0 ∈ C(Td), v0 ∈ L∞(Td) and a positive constant mv satisfying
u0, v0 6≡ 0, u0v0 ≡ 0 and v0 ≥ mv in supp(v0) such that uN (0, ·) and vN (0, ·) on Td

defined by (3.2) converge almost everywhere to u0, v0, respectively, as N tends to
infinity.

To state the main theorems in this article, we introduce the following notation. For
functions u and v on QT := [0, T ]×Td such that uv ≡ 0 a.e. in QT , we define

Ωu(t) := {θ ∈ Td|u(t, θ) > 0}, Ωv(t) := {θ ∈ Td|v(t, θ) > 0},

QuT :=
⋃

0≤t≤T

{t} × Ωu(t), QvT :=
⋃

0≤t≤T

{t} × Ωv(t),

Γ(t) := Ω\(Ωu(t) ∪ Ωv(t)), Γ :=
⋃

0≤t≤T

{t} × Γ(t).

(2.2)

First, when reaction rates are of Case 1, we can show that type-1 particles fill up the
whole space and the limiting interface vanishes in an instant.

Theorem 2.1 (Vanishing interface). Assume reaction rates c1 and c2 are of Case 1.
Assume (A1), (A2), (A3)δ and (B1) for some sufficiently small δ > 0. Then for every ε > 0

and ϕ = (ϕ1, ϕ2) ∈ C∞(QT ;R2) we have

lim
N→∞

PNµN0

(∣∣∣∣∣
∫ T

0

(
〈πNt , ϕ(t, ·)〉 − 〈(u(t, ·), 0), ϕ(t, ·)〉L2(Td;R2)

)
dt

∣∣∣∣∣ > ε

)
= 0.
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where the function u is a classical solution of the heat equation on the whole domain
with periodic boundary condition: {

∂tu = ∆u

u(0, ·) = u0(·).
(2.3)

Figure 1 shows an example of the evolution of limiting interface staring from some
initial functions u0 and v0 for Case 1. For a typical pair of initial functions (u0, v0), we
can choose a semi-discretized initial functions uN0 and vN0 satisfying the assumptions
(A1) and (B1). For example, as shown in the left side of Figure 1, if u0 and v0 are smooth
and bounded from above by C2 appearing in the assumption (A1), then it suffices to take
uN0 (x) = max{u0(x/N), e−C1K} for every x ∈ TdN . The initial function vN0 satisfying both
assumptions (A1) and (B1) can be taken similarly.

Figure 1: Interface behavior for Case 1. The left figure shows an example of initial
functions u0 and v0, while the right one shows a typical situation at some positive time t.

Next, when reaction rates are of Case 2, an interface between two territories appears
and we can describe the motion of the interface by a one-phase Stefan problem with
latent heat vm0 |Γ(t)/m. Hereafter we define w+ := max{w, 0} and w− := max{−w, 0} for
any w which takes values in R. To state the main result for Case 2, we introduce the
notion of weak solution to a free boundary problem called the one-phase Stefan problem.

Definition 2.2. Let w0 be a function in L∞(Td). We call a function w = w(t, θ) on
QT = [0, T ]×Td a weak solution of the one-phase Stefan problem with initial function
w0 if

(1) w ∈ L∞(QT ), w+ ∈ L2(0, T ;H1(Td)).

(2) For every ϕ ∈ H1(QT ) such that ϕ(T, ·) = 0, we have∫ T

0

∫
Td

(w∂tϕ−∇w+ · ∇ϕ)dθdt = −
∫
Td
w0ϕ(0, θ)dθ.

Theorem 2.3 (Moving interface). Assume reaction rates c1 and c2 are of Case 2. Assume
(A1), (A2), (A3)δ and (B2) with some δ > 0. Let w be a unique weak solution of the one-
phase Stefan problem with initial function u0 − vm0 /m and let u and v be defined by
u = w+ and vm = mw− which satisfy u(t, θ)v(t, θ) = 0 for every θ ∈ Td. Then for every
ε > 0 and ϕ = (ϕ1, ϕ2) ∈ C∞(QT ;R2) we have

lim
N→∞

PNµN0

(∣∣∣∣∣
∫ T

0

(
〈πNt , ϕ(t, ·)〉 − 〈(u(t, ·), v(t, ·)), ϕ(t, ·)〉L2(Td;R2)

)
dt

∣∣∣∣∣ > ε

)
= 0.

Uniqueness of the weak solution to the one-phase Stefan problem is proved in [8].
Moreover, we can show analogously in [7] that if the limiting interface Γ(t) is smooth
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in Td and u, v are smooth on Ωu(t), Ωv(t) for every t ∈ [0, T ], respectively, then u and v
satisfy the following free boundary problem in strong form:

∂tu = ∆u in QuT
vm0
m
V = − ∂u

∂nΓ
on Γ

u = 0 on Γ

u(0, ·) = u0(·) in Ωu(0)

v ≡ v0 in QvT

(2.4)

where V is the normal velocity of the free boundary Γ(t) and nΓ is the unit normal vector
on Γ(t) oriented from Ωu(t) to Ωv(t). When the above strong form holds, this system is
called a one-phase Stefan problem with latent heat vm0 |Γ(t)/m. In this Case 2, there exists
a nontrivial example of initial functions u0 and v0 and their corresponding approximating
sequences uN0 and vN0 satisfying the assumptions (A1) and (B2). For example, initial
functions u0 and v0 are bounded from above by C2 and suppose u0 and v0 are smooth on
Td and supp(v0), respectively, as shown in Figure 2. In this one-dimensional example,
Ωu(0) ∪ Ωv(0) = Td holds and Γ(0) = ∂Ωu(0) = ∂Ωv(0) is a set consisting two points:
one point is placed slightly right form the center and the other point is the identified
endpoint in Figure 2. For these initial functions u0 and v0, we can choose approximating
functions uN0 and vN0 by the same manner in Case 1, but we have to retake values of vN0
near interface points on Γ(0) in order that the derivative growth |∇NvN0 (x)| ≤ C0K holds.
This can be done through the following procedure. First we sample values of vN0 on
points which have distance larger than 1/2K from two points in Γ(0) by the same manner
as in Case 1 and then we linearly interpolate values of vN0 on other remaining points.
Then we can easily see that this construction provides us an example of approximating
functions uN0 and vN0 which satisfy the assumptions (A1) and (B2) simultaneously.

Figure 2: Interface behavior for Case 2. The left figure shows an example of initial
functions u0 and v0, while the right one shows a typical situation at some positive time t.

Finally, if reaction rates c1 and c2 are of Case 3, then we get immovable behavior of
the limiting interface as follows.

Theorem 2.4 (Immovable interface). Assume reaction rates c1 and c2 are of Case 3.
Assume (A1), (A2), (A3)δ and (B3) with some δ > 0. Then there exists a subsequence
(Nk) of (N) and a pair of real-valued functions (u, v) and a functional ζ on QT such that
for every ε > 0 and ϕ = (ϕ1, ϕ2) ∈ C∞(QT ;R2) we have

lim
N→∞

PNµN0

(∣∣∣∣∣
∫ T

0

(
〈πN1,t, ϕ(t, ·)〉 − 〈(u(t, ·), v(t, ·)), ϕ(t, ·)〉L2(Td;R2)

)
dt

∣∣∣∣∣ > ε

)
= 0

and
u, um/2 ∈ L∞(QT ) ∩ L2(0, T ;H1(Td)), v ∈ L∞(QT ), ζ ∈ H−1(QT ),

0 ≤ u ≤ 1, 0 ≤ v ≤ 1, uv = 0 a.e. in QT , ζ ≥ 0 in H−1(QT )
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satisfying∫∫
QT

{
−
(
um

m
− v
)
ϕt +

2

m
u
m
2 ∇um2 · ∇ϕ

}
dθdt+

4(m− 1)

m2 H−1(QT )〈ζ, ϕ〉H1
0 (QT ) = 0

for all ϕ ∈ H1
0 (QT ). Furthermore, assume the same conditions stated in Proposition 8.2.

Then u, v and ζ satisfy the followings:
V ≡ 0 on Γ,

∂tu = ∆u in (0, T ]× Ωu(0),

u = 0 on (0, T ]× Γ(0),

v = v0, ζ = |∇um/2|2 in QT .

Figure 3 explains a non-trivial example of interface evolution corresponding to
Case 3. Also for this case, there might exist some jump points for v0 at the interface so
that we conduct the same procedure as in Case 2 to find uN0 and vN0 which fulfill the
requirements (A1) and (B3).

Figure 3: Interface behavior for Case 3. The left figure shows an example of initial
functions u0 and v0, while the right one shows a typical situation at some positive time t.

In Case 1, starting from initial densities separated in two particle-phases, though,
the initial interface vanishes instantaneously and type-1 particles occupy the whole
space (see Section 6). This is intuitively caused by weak killing effect of type-2 particles
(recall that time evolution of type-2 particles is composed only of annihilation since
they do not diffuse), which makes them die out in an instant. On the other hand, in
Case 2 and Case 3, interfaces are created and they move according to the two-phase
Stefan problem in Case 2 (see Section 7) while they does not move at all in Case 3
(see Section 8). In Case 2, roughly speaking, multiplication of some monomial of the
density of type-2 particles to the second equation of (3.1) enables us to obtain another
reaction-diffusion system whose reaction terms coincide up to a positive constant (but
we have to replace a locally scattered product into a spatially-homogeneous one by
using uniform boundedness of spatial derivatives). Therefore, this case is essentially
considered in [4] but the diffusion coefficient for type-2 particles is zero in our model
and consequently we get a one-phase free boundary problem instead. Finally, in Case 3,
type-1 particles have weak killing effect. Comparing to Case 1, it seems that type-1
particles die out. However, since type-2 particles has no ability to diffuse, they do not
invade the territory of type-1 particles so that the initial interface does not move at all.

3 Strategy of proof

3.1 Yau’s relative entropy method

As we noted at the beginning of this paper, the proof of our main theorems is based on
Yau’s relative entropy method which is introduced in [12] combined with a (deterministic)
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result which ensures a solution of a semi-discretized system converges to a solution of
a continuous PDE system. In this section, we explain what we need to prove the main
theorems in detail. To see that, we first introduce a discretized version of macroscopic
equations which characterize time evolution of density. For every fixed T > 0, let
uN = uN (t, x) and vN = vN (t, x) be a unique solution of the following semi-discretized
reaction-diffusion system{

∂tu
N (t, x) = ∆NuN (t, x)−K(N)c1,x(uN (t), vN (t))uN (t, x)vN (t, x)

∂tv
N (t, x) = −K(N)c2,x(uN (t))uN (t, x)vN (t, x)

(3.1)

for every t ∈ [0, T ] and x ∈ TdN . Here ∆N denotes the discrete Laplacian defined by

∆Nu(x) := N2
∑

y∈TdN ,|x−y|=1

(u(y)− u(x))

for every u = {u(x)}x∈TdN and ci,x is defined by ci,x(u(t), v(t)) = ci(τxu(t), τxv(t)) for
each i = 1, 2 and every [0, 1]-valued functions u = {u(x)}x∈TdN and v = {v(x)}x∈TdN ,

and non-negative functionals c1 and c2 on [0, 1]T
d
N × [0, 1]T

d
N defined in Section 2. The

semi-discretized system (3.1) is a system of ODEs whose solutions are contained in the
interval (0, 1) uniformly in (t, x) ∈ [0, T ]×TdN for every N ∈ N and thus it has a unique
pair of time-global solution. Indeed, in Lemma 5.3 we prove 0 < uN (t, x), vN (t, x) < 1 for
every t ∈ [0, T ] and x ∈ TdN provided 0 < uN (0, x), vN (0, x) < 1 for all x ∈ TdN .

In Section 5, we give some general estimates derived for the solution of this semi-
discretized system (3.1). Moreover, let {uN (t, θ)}t∈[0,T ],θ∈Td and {vN (t, θ)}t∈[0,T ],θ∈Td be
macroscopic functions on QT := [0, T ]×Td defined by

uN (t, θ) :=
∑
x∈TdN

uN (t, x)

d∏
i=1

1[ xiN −
1

2N ,
xi
N + 1

2N )(θi),

vN (t, θ) :=
∑
x∈TdN

vN (t, x)

d∏
i=1

1[ xiN −
1

2N ,
xi
N + 1

2N )(θi)

(3.2)

for every t ∈ [0, T ] and θ = (θi)1≤i≤d ∈ Td.
We prove Theorems 2.1, 2.3 and 2.4 with the relative entropy method introduced

in [12] at hand. Let µNt be the probability distribution of ηNt = (ηN1,t, η
N
2,t) on X 2

N and let
νNt be the Bernoulli measure on X 2

N with mean (uN (t), vN (t)) for uN (t) = {uN (t, x)}x∈TdN
and vN (t) = {vN (t, x)}x∈TdN . By Lemma 5.2, for each fixed N ∈ N, values of uN (t, x)

and vN (t, x) are contained in the interval [0, 1] provided 0 ≤ uN0 (x), vN0 (x) ≤ 1 at initial
time, which makes our definition of νNt well-defined. In this section, we show the next
result which states that the distribution of the microscopic dynamics {ηNt }t≥0 is closely
described by the semi-discretized system (3.1) asymptotically as N tends to infinity. This
plays an essential role to prove our main theorems.

Theorem 3.1. Assume (A1), (A2) and (A3)δ with δ = δ(T ) > 0 sufficiently small. Then
for any t ∈ [0, T ] we have H(µNt |νNt ) = o(Nd) as N →∞.

3.2 Proof of Theorems 2.1, 2.3 and 2.4

Once the main ingredient of probabilistic part Theorem 3.1 is proved, we can deduce
the main theorems as follows. Let uN and vN be functions on QT defined by (3.2). For
any ε > 0 and any smooth test function ψ ∈ C∞(Td), let us define

A1 = A1(ψ, ε) := {η ∈ X 2
N ;
∣∣〈πN1,t, ψ〉 − 〈uN (t, ·), ψ〉L2(Td)

∣∣ > ε},
A2 = A1(ψ, ε) := {η ∈ X 2

N ;
∣∣〈πN2,t, ψ〉 − 〈vN (t, ·), ψ〉L2(Td)

∣∣ > ε}.
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Then, as a corollary of the entropy inequality, we get

µNt (Ai) ≤
log 2 +H(µNt |νNt )

log(1 + 1/νNt (Ai))

for each i = 1, 2. Moreover, for the probability of Ai under the product Bernoulli measure
νNt in the denominator of the above inequality can be estimated as follows.

Lemma 3.2. For any ψ ∈ C∞(Td) and ε > 0, there exists a positive constant C =

C(ε, ‖ψ‖L∞(Td)) such that

νNt (Ai(ψ, ε)) ≤ e−CN
d

.

In particular, the above estimate holds uniformly in {ψ; ‖ψ‖L∞(Td) < M} for every M > 0.

The proof of Lemma 3.2 can be done in the same manner as [4] so that we omit the
proof here. Recalling H(µNt |νNt ) = o(Nd) by Theorem 3.1, we have

lim
N→∞

µNt (Ai(ϕi(t, ·), ε)) = 0

for each i = 1, 2, t ∈ [0, T ], ε > 0 and ϕ = (ϕ1, ϕ2) ∈ C∞(QT ;R2). Therefore, once
the proof of Theorem 3.1 is completed, the detailed proof of Theorem 3.1 is given in
Section 4, then we can give the proof of the probabilistic part of our main theorems
as follows. First, the probability appearing in the main theorems (Theorems 2.1, 2.3
and 2.4) can be estimated by using Markov’s inequality the triangle inequality as

1

ε

∫ T

0

EµNt

[
|〈πNt , ϕ(t, ·)〉 − 〈(uN (t, ·), vN (t, ·)), ϕ〉L2(Td)|

]
dt

+
1

ε

∣∣∣∣ ∫ T

0

〈(uN (t, ·)− u(t, ·), vN (t, ·)− v(t, ·)), ϕ(t, ·)〉L2(Td)dt

∣∣∣∣.
(3.3)

We can see that these two terms converges to zero as N tends to infinity by combining
with results for limiting behavior of semi-discretized reaction-diffusion system (3.1) given
in Section 6, 7 and 8 for Case 1, Case 2 and Case 3, respectively to complete the proof
of Theorems 2.1, 2.3 and 2.4. Indeed, we have at least uN ⇀ u and vN ⇀ v weakly in
L2(QT ) for all cases (see Theorems 6.1, 7.1 and 8.1) but one should take a subsequence
for Case 3. In particular, the second term in (3.3) vanishes as N tends to infinity. On the
other hand, the integrand in the first term can be bounded above by

EµNt

[∣∣〈πNt , ϕ〉 − 〈(uN (t, ·), vN (t, ·)), ϕ(t, ·)〉L2(Td)

∣∣, ⋂
i=1,2

Ai(ϕi(t, ·), ε̃)
]

+ ε̃.

However, the first term in the above display converges to zero as N tends to infinity since
limN→∞ µNt (Ai) = 0 for each i = 1, 2 as we proved at the beginning of this subsection and
the quantity inside the expectation is bounded above by a positive constant. Therefore,
by taking ε̃ > 0 small enough to complete the proof.

4 Proof of Theorem 3.1

4.1 The relative entropy method

In this section, we prove Theorem 3.1. We first define a Dirichlet energy correspond-
ing to the Kawasaki dynamics with respect to the reference measure ν (namely ν is a
product Bernoulli measure on X 2

N with full support) as follows: for any f : X 2
N → R, we

define

D (f ; ν) :=
1

4

∑
x∈TdN

d∑
j=1

∫
X 2
N

[
f(η

x,x+ej
1 , η2)− f(η1, η2)

]2
dν(η1, η2).
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If the reference measure ν is a product Bernoulli measure with constant weight, then
the above energy becomes the Dirichlet form corresponding to our Kawasaki dynamics.
Recall here that we only have the Kawasaki dynamics for type-1 particles. We then have
the following estimate on entropy production (time derivative of relative entropy).

Proposition 4.1 (Yau’s inequality, [11]). For any probability measures {νt}t≥0 and m on
X 2
N which are differentiable in t and full-supported on X 2

N , we have

d

dt
H(µNt |νt) ≤ −2N2D

(√
dµNt
dνt

; νt

)
+

∫
X 2
N

(L∗,νtN 1− ∂t logψt)dµ
N
t (4.1)

where L∗,νtN is the adjoint operator of LN on L2(νt) and ψt := dνt/dm.

We define scaled variables ωi,x(t) by

ω1,x ≡ ωN1,x(t) :=
η1(x)

χ(uN (t, x))
, ω2,x ≡ ωN2,x(t) :=

η2(x)

χ(vN (t, x))
,

with η1(x) := ηN1,t(x)− uN (t, x) and η2(x) := ηN2,t(x)− vN (t, x). Moreover, χ(ρ) = ρ(1− ρ)

is the incompressibility for ρ ∈ [0, 1]. We show in Section 4 that 0 < uN (t, x), vN (t, x) < 1

holds for every t ∈ [0, T ] and x ∈ TdN if 0 < uN (0, x), vN (0, x) < 1 holds for every x ∈ TdN
and thus the denominator of ωi,x is always positive and it becomes well-defined for each
i = 1, 2. In the sequel, we sometimes omit dependence on t or N for notational simplicity
only for the case where dependence on those parameters is not important or it is obvious
from context.

Lemma 4.2. We have

L
∗,νNt
N 1− ∂t logψt = VK(t) + VG(t)

with

VK(t) = −N
2

2

∑
x,y∈TdN ,|x−y|=1

(
uN (y)− uN (x)

)2
ω1,xω1,y,

VG(t) = −K
∑
x∈TdN

[
c1,x(η1, η2)η2(x)− c1,x(uN , vN )vN (x)

]
uN (x)ω1,x

−K
∑
x∈TdN

[
c2,x(η1)η1(x)− c2,x(uN )uN (x)

]
vN (x)ω2,x

and these do not depend on particular choice of the reference measure m on X 2
N . In

particular, when the Glauber part has the form of Case 1,

VG(t) =−K
∑
x∈TdN

[
η2(x)η1(x1) · · · η1(xm−1)− vN (x)uN (x1) · · ·uN (xm−1)

]
uN (x)ω1,x

−K
∑
x∈TdN

χ(uN (x))vN (x)ω1,xω2,x,

for Case 2,

VG(t) =−K
∑
x∈TdN

[
η2(x)η2(x1) · · · η2(xm−1)− vN (x)vN (x1) · · · vN (xm−1)

]
uN (x)ω1,x

−K
∑
x∈TdN

χ(uN (x))vN (x)ω1,xω2,x,
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and for Case 3,

VG(t) =−K
∑
x∈TdN

uN (x)χ(vN (x))ω1,xω2,x

−K
∑
x∈TdN

[
η1(x)η1(x1) · · · η1(xm−1)− uN (x)uN (x1) · · ·uN (t, xm−1)

]
vN (x)ω2,x,

respectively. Here we have set xi := x+ zi for i = 1, ...,m− 1 for simplicity.

Remark 4.3. Linear terms in ω cancel by the semi-discretized system (3.1) and hence
the above VK and VG are reminder terms. Since we assumed the reaction rate c2 did
not depend on configuration of type-2 particles, any higher order correlation between
ω2’s does not appear in VG. Such terms cause appearance of a Dirichlet energy with
respect to the Kawasaki dynamics for type-2 particles with positive sign and it can not
be absorbed by the first term in (4.1). That is why we have assumed c2 to be a function
of configuration of only type-1 particles.

Proof. First we calculate for the Glauber part. For any f : X 2
N → R, we have that

EνNt [fL
∗,νNt
1,G 1] = EνNt [L1,Gf ] is equal to∑

η1,η2

∑
x∈TdN

c1,x(η1, η2)η1(x)η2(x) [f(ηx1 , η2)− f(η1, η2)] νNt (η1, η2). (4.2)

Recalling the form of reaction rates, we observe that for any configuration η1

ηx1 (x)νNt (ηx1 , η2) =
uN (x)

1− uN (x)

(
1− η1(x)

)
νNt (η1, η2).

Since c1,x(η1, η2) does not depend on η1(x), it is invariant under change of variables
ηx1 7→ η1. Therefore, (4.2) further equals to∑

η1,η2

∑
x∈TdN

c1,x(η1, η2)f(η1, η2)η2(x)

[
uN (x)

1− uN (x)
(1− η1(x))− η1(x)

]
νNt (η1, η2).

Since f : X 2
N → R is arbitrary, we thus obtain

L
∗,νNt
1,G 1 =

∑
x∈TdN

c1,x(η1, η2)η2(x)

[
uN (x)

1− uN (x)
(1− η1(x)− uN (x))− (η1(x) + uN (x))

]

= −
∑
x∈TdN

c1,x(η1, η2)η2(x)
η1(x)

1− uN (x)

= −
∑
x∈TdN

[
c1,x(η1, η2)η2(x)− c1,x(uN , vN )vN (x)

]
uN (x)ω1,x

−
∑
x∈TdN

c1,x(uN , vN )uN (x)vN (x)ω1,x.

Note here that the second term is linear in ω1 and the first term has higher order which

is equal to the first term of VG(t). Also, L
∗,νNt
2,G 1 is calculated in the same manner as

follows: Recalling c2 depends only on the configuration of type-1 particles,

L
∗,νNt
2,G 1 = −

∑
x∈TdN

[
c2,x(η1)η1(x)− c2,x(uN )uN (x)

]
vN (x)ω2,x

−
∑
x∈TdN

c2,x(uN )uN (x)vN (x)ω2,x
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and the higher order term matches the second term of VG(t). For the Kawasaki part, by
a similar calculation given in [6], we can easily obtain

N2L
∗,νNt
K 1 = −N

2

2

∑
x,y∈TdN ,|x−y|=1

[
uN (y)− uN (x)

]2
ω1,xω1,y +

∑
x∈TdN

∆NuN (x)ω1,x.

Finally, a simple computation similar to [6] yields

∂t logψt(η) =
∑
x∈TdN

∂tu
N (x)ω1,x +

∑
x∈TdN

∂tv
N (x)ω2,x.

Therefore, we could represent the integrand appearing in Yau’s inequality as the poly-
nomial expansion of ωi but linear terms in ωi (i = 1, 2) cancel by our semi-discretized
reaction-diffusion system (3.1) so that we end the proof.

Theorem 4.4. We assume the same conditions as Theorem 3.1. Let d ≥ 2. Then, for any
α > 0 and 0 < κ < 1, there exists a positive constant C depending only on α and κ such
that

EµNt [VG(t)] ≤ αN2D(
√
f ; νNt ) + CKH(µNt |νNt ) +Nd−1+κ (4.3)

and also
EµNt [VK(t)] ≤ αN2D(

√
f ; νNt ) + CK2H(µNt |νNt ) +Nd−1+κ. (4.4)

When d = 1, the last terms Nd−1+κ in both estimates are replaced by N1/2+κ.

The proof of this theorem is postponed in the nest subsection and we first give the
proof of Theorem 3.1.

Proof of Theorem 3.1. We now combine Theorem 4.4 and Yau’s inequality (Proposi-
tion 4.1) to end the proof of Theorem 3.1. We choose α > 0 so that the Dirichlet form
with positive coefficient can be absorbed into the first term of (4.1), which enables us to
estimate

d

dt
H(µNt |νNt ) ≤ CK2H(µNt |νNt ) +O(Nd−δ1)

with some 0 < δ1 < 1. Therefore, by Gronwall’s inequality, we have

H(µNt |νNt ) ≤
(
H(µN0 |νN0 ) + tO(Nd−δ1)

)
eCK

2t.

Now by the assumption (A2) and (A3)δ with δ > 0 small enough (in order that δ2 < δ/CT

holds), we end the proof of Theorem 3.1.

4.2 Proof of (4.3)

First we consider terms which appear in VG(t). Since c1 and c2 are polynomial of
configuration, the residual term VG is a linear combination of the form

K
∑
x∈TdN

η1,x+Λ1
η2,x+Λ2

where ηi,x+Λi =
∏
y∈Λi

ηi,x+y for i = 1, 2 and Λ1,Λ2 b Zd with |Λ1| ≥ 1 and |Λ1|+ |Λ2| ≥ 2.
For this term, we take “the utmost right site” in Λ1 and change variables in summation
in order that the picked site is again denoted by x. In other words, we consider the
quantity with the following form:

V = K
∑
x∈TdN

gx(η1, η2)ω1,x (4.5)
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for some functional g(η) = g(η1, η2) such that gx(η) = τxg(η) for every x ∈ TdN and gx−y(η)

is invariant under the transformation η1 7→ η
x,x+ej
1 for every y ∈ Λ2` = [0, 2`−1]d∩Zd and

j = 1, ..., d. Moreover, we suppose the function g(η) has the bound ‖g‖L∞ ≤ CeC1K for
some positive constant C1. It is noted here that such function g is bounded uniformly in N
when it is calculated for VG since any term in VG has neither uN nor vN in its denominator.
However, when a multi-point correlation which comes from VK is considered, it has at
least uN or vN in its denominator. In particular, according to Lemma 5.3, the above
bound has to be assumed. Hence we impose the above bound in advance in order to
make all cases to be proved at once.

The first step to prove Theorem 4.4 is to replace V by its local average V ` defined by

V ` = K
∑
x∈TdN

←−−
g(η)x,`

−−→
(ω1)x,`

where
←−
Gx,` :=

1

|Λ`|
∑
y∈Λ`

Gx−y,
−→
Gx,` :=

1

|Λ`|
∑
y∈Λ`

Gx+y

for G = {Gx}x∈TdN and Λ` = [0, `− 1]d ∩Zd. Then we can estimate the cost to replace V

by its local average V ` as follows.

Lemma 4.5. We assume the same conditions as Theorem 3.1 and choose ` = N1/d−κ/d

when d ≥ 2 and ` = N1/2−κ when d = 1 with κ > 0 sufficiently small. Then there exists a
positive constant C depending only on α and κ such that

EµNt

[
V − V `

]
≤ αN2D(

√
f ; νNt ) + C

(
H(µNt |νNt ) +Nd−1+κ

)
for every α > 0 when d ≥ 2 and the last term Nd−1+κ is replaced by N1/2+κ when d = 1.

To prove this lemma, we use the following key estimate between two probability
measures which is called flow lemma introduced in [11]. To state the flow lemma, we
introduce the notion of a flow between two probability measures on a graph.

Definition 4.6. Let G = (V,E) be a finite graph where V is a set of all vertices and E is
the set of all edges. For two probability measures p, q on V , we call Φ = {Φ(x, y)}{x,y}∈E
a flow on G connecting p and q if it satisfies:

• Φ(y, x) = −Φ(x, y) for all {x, y} ∈ E,
•
∑
z∈V Φ(x, z) = p(x)− q(x) holds for all x ∈ V .

In the sequel, we regard any finite subset in Zd as a graph where the set of all
bonds means the set of all pair of two points in that set such that the Euclidean distance
between them is 1.

Proposition 4.7 (Flow lemma). Let δ0 be the Dirac measure on Zd with mass 1 on
0 ∈ Zd and let p` be the uniform probability measure on Zd with mass on Λ` defined
by p`(x) = |Λ`|−11Λ`(x). Moreover, let q` be the probability measure on Zd defined by
q`(x) = p` ∗ p`(x) :=

∑
y∈Zd p`(y)p`(x− y). Then there exists a flow Φ` on Λ2` connecting

δ0 and q` such that Φ`(x, y) = 0 for any x ∈ Λc2` and y ∈ Zd, and that

∑
x∈Λ2`

d∑
j=1

Φ`(x, x+ ej)
2 ≤ Cdgd(`)

where ej is a unit vector to j-th positive direction and gd(`) is given by

gd(`) =


` if d = 1,

log ` if d = 2,

1 if d ≥ 3.
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In the sequel, we prove Lemma 4.4 by using the flow lemma. To see that, one can
notice for any G = {Gx}x∈TdN we have

G ∗ p`(x) =
∑
y∈TdN

Gx−yp`(y) =
1

|Λ`|
∑
y∈Λ`

Gx−y =
←−
Gx,`

and similarly G ∗ p̂`(x) =
−→
Gx,` with p̂`(y) := p`(−y). Therefore, using the above identity

and by definition of convolution, the local average V ` can be rewritten as

V ` = K
∑
x∈TdN

( ∑
y∈TdN

gy(η)p`(x− y)

)( ∑
z∈TdN

ω1,zp`(z − x)

)
= K

∑
x,y,z

gy(η)ω1,zp`(x)p`(z − y − x)

= K
∑
y,z

gy(η)ω1,z q̂`(y − z) = K
∑
x

gx(η)(ω1 ∗ q̂`)(x)

where we changed variables y to x in the last line. According to Proposition 4.7, we
can take a flow connecting δ0 and q` to calculate the difference between V and its local
average V ` as

V − V ` = K
∑
x∈TdN

gx(η)

(
ω1,x −

∑
y∈TdN

ω1,x+yq`(y)

)
= K

∑
x,y

gx(η)ω1,x+y

(
δ0(y)− q`(y)

)
= K

∑
x,y

gx(η)ω1,x+y

d∑
j=1

(
Φ`(y, y + ej) + Φ`(y, y − ej)

)
= K

d∑
j=1

∑
x,y

gx(η)
(
ω1,x+y − ω1,x+y+ej

)
Φ`(y, y + ej)

= K

d∑
j=1

∑
x

(∑
y

gx−y(η)Φ`(y, y + ej)

)
(ω1,x − ω1,x+ej )

where in the penultimate line we used the summation by parts recalling that Φ` is
anti-symmetric by definition and that Φ`(x, y) = 0 unless both x and y belong to Λ2`, and
in the last line we again conducted the summation by parts. By this line, we have shown
the identity

V − V ` = K

d∑
j=1

∑
x∈TdN

h`,jx (ω1,x − ω1,x+ej ) (4.6)

with
h`,jx ≡ h`,jx (η1, η2) =

∑
y∈Λ2`

gx−y(η1, η2)Φ`(y, y + ej).

Recalling that we took “the utmost right site” x in the definition of g so that gx−y =

gx−y(η1, η2) is invariant under transformation η1 7→ ηx,x+ej for any y ∈ Λ2` and j = 1, ..., d,
and so h`,jx also becomes to be invariant under that transformation. Moreover, since gx
and gxgy with x 6= y has average zero under νNt , recalling that g is bounded uniformly in
N , there exists a positive constant C which is independent of N such that

EνNt [h`,jx ] = 0, VarνNt [h`,jx ] ≤ Cgd(`)e2C1K
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by the flow lemma (Proposition 4.7) and the lower bound of uN according to Lemma 5.3.

We have the following integration by parts formula and an estimate for the cost to
replace V by its local average V `. These are already proved in [4] so that we omit the
proof here.

Lemma 4.8 (Integration by parts). Let ν be the Bernoulli measure on X 2
N with mean (u, v)

with u = {u(x)}x∈TdN , v = {v(x)}x∈TdN satisfying 0 < u(x), v(x) < 1 and assume there

exist some c1 > 0 and 0 < c2 < 1 such that u(x), u(y) ∈ [e−c1K , c2] for any x, y ∈ TdN with
|x − y| = 1. Then, for h = h(η) satisfying h(η

x,x+ej
1 , η2) = h(η1, η2)(x ∈ TdN , j = 1, ..., d)

and for any probability density f with respect to ν, we have∫
X 2
N

h(η)(η1,y − η1,x)f(η)dν(η) =

∫
X 2
N

h(η)η1,x [f(ηx,y1 , η2)− f(η1, η2)] dν(η) +R1

for any x, y ∈ TdN with |x− y| = 1 and the error term R1 is bounded as

|R1| ≤ Ce2C1K |u(x)− u(y)|
∫
X 2
N

|h(η)|f(η)dν(η)

with some positive constant C > 0.

Lemma 4.9. Under the same assumptions stated in Lemma 4.8, we have∫
X 2
N

h`,jx (ω1,z+ej − ω1,z)fdν =

∫
X 2
N

h`,jx
η1,z

χ(u(z))

[
f(η

z,z+ej
1 , η2)− f(η1, η2)

]
dν +R2 (4.7)

for every x, z ∈ TdN and the error term R2 is bounded as

|R2| ≤ Ce3C1K |u(z)− u(z + ej)|
∫
X 2
N

|h`,jx (η)|fdν (4.8)

with some positive constant C > 0.

Applying these lemmas, we next bound the summand in (4.6). Here we write the
Dirichlet energy corresponding to the Kawasaki dynamics as a sum of its pieces

Dx,x+ej (f ; ν) :=
1

4

∫
X 2
N

[
f(η

x,x+ej
1 , η2)− f(η1, η2)

]2
dν(η)

so that D(f ; ν) =
∑
x∈TdN

∑
j=1,...,dDx,x+ej (f ; ν). We recall here the definition of µNt and

νNt given at the beginning of subsection 3.1 and hereafter we define fNt := dµNt /dν
N
t so

that we have µNt = fNt ν
N
t .

Lemma 4.10. Assume the assumption (A1). Then there exists a positive constant C
such that for every β > 0 and x, z ∈ TdN we have∫

X 2
N

h`,jx (ω1,z − ω1,z+ej )dµ
N
t ≤ βDz,z+ej (

√
fNt ; νNt ) +

C

β
e3C1K

∫
X 2
N

(h`,jx )2dµNt +R1,z,j

and each error term R1,z,j satisfies the bound (4.8), that is,

|R1,z,j | ≤ Ce3C1K |uN (z)− uN (z + ej)|
∫
X 2
N

|h`,jx (η)|dµNt .

Proof. After applying Lemma 4.9 with h = h`,jx , f = fNt and ν = νNt , we decompose
fNt (η

z,z+ej
1 , η2) − fNt (η1, η2) into product by using a2 − b2 = (a + b)(a − b). Then, by an
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elementary inequality ab ≤ Aa2/2 + b2/2A for any a, b ∈ R and A > 0, the first term in
the right hand side of (4.7) is bounded above by

βDz,z+ej (
√
fNt ; νNt ) +

C

βχ(uN (z))2

∫
X 2
N

(h`,jx )2
[
fNt (η

z,z+ej
1 , η2) + fNt (η1, η2)

]
dνNt . (4.9)

Let ν1 be a product Bernoulli measure on XN with weight u = {u(x)}x∈TdN with 0 <

u(x) < 1 for every x ∈ TdN . Taking the spatial-inhomogeneity of u into account, for every
x, y ∈ TdN such that |x− y| = 1, we get the cost to replace ν1(ηx,y1 ) to ν1(η1) as

ν1(ηx,y1 )

ν1(η1)
= 1 + rx,y(η1)

with

rx,y(η1) = 1{η1(x)=1,η1(x)=0}
u(y)− u(x)

u(x)(1− u(x))
+ 1{η1(x)=0,η1(x)=1}

u(x)− u(y)

(1− u(x))u(y)

and this error to change variables can be absolutely bounded as

|rx,y(η1)| ≤ C0e
C1K |u(x)− u(y)|

for some positive constant C0 by our assumption on u. Therefore, by conducting the
change of variable η

z,z+ej
1 7→ η1 and using the bound of the cost rz,z+ej , the integral in

(4.9) divided by χ(uN (z))2 is bounded above by

1 + C0e
C1K |uN (z)− uN (z + ej)|

χ(uN (z))2

∫
X 2
N

(h`,jx )2fNt dν
N
t .

Hence, recalling the definition of the incompressibility χ(·) and using the bound for u to
end the proof.

Now we prove Lemma 4.5 by using the concentration inequality which is used in vast
literatures.

Proposition 4.11 (Concentration inequality). Let {Xi}{i=1,...,n} be a sequence of inde-
pendent random variables such that each Xi takes values in the interval [ai, bi] for
ai, bi ∈ R with ai < bi. Set X̄i = Xi − E[Xi] and κ =

∑n
i=1(bi − ai)2. Then, for every

γ ∈ [0, κ−1], we have

logE

[
eγ
(∑

i=1,...,n X̄i

)2]
≤ 2γκ.

Proof of Lemma 4.5. Recalling the representation of V − V ` in (4.6), what we should
estimate is given by∫

X 2
N

(V − V `)dµNt = K

d∑
j=1

∑
x∈TdN

∫
X 2
N

h`,jx (ω1,x − ω1,x+ej )dµ
N
t .

By Lemma 4.10, taking β = αN2K−1 with α > 0, the above quantity is bounded above by

αN2D(
√
fNt ; νNt ) +

CK2

αN2
e3C1K

d∑
j=1

∑
x∈TdN

∫
X 2
N

(h`,jx )2dµNt +K

d∑
j=1

∑
x∈TdN

R1,x,j .

Recall that the residual term R1,x,j has the bound (4.8) for each x ∈ TdN and j = 1, ..., d.
Since |uN (x)− uN (x+ ej)| ≤ CKN−1 by Lemma 5.5, estimating |h`,jx | ≤ 1 + (h`,jx )2, we
have

K|R1,x,j | ≤
CK2

N
e3C1K

∫
XdN

(
1 + (h`,jx )2

)
dµNt .
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Therefore, the expectation with respect to µN of V − V ` is bounded above by

αN2D(
√
fNt ; νNt ) +

CαK
2

N
e3C1K

d∑
j=1

∑
x∈TdN

∫
X 2
N

(h`,jx )2dµNt + CK2e3C1KNd−1.

For the second term, noting that the random variables {h`,jx } are (2`− 1)-dependent, we
decompose the summation

∑
x∈TdN

into
∑
y∈Λ2`

∑
z∈(4`)TdN∩TdN

and then apply the entropy
inequality, which yields

∑
x∈TdN

∫
X 2
N

(h`,jx )2dµNt ≤
1

γ

∑
y∈Λ2`

H(µNt |νNt ) + log

∫
X 2
N

∏
z∈(4`)TdN∩TdN

eγ(h`,jz+y)2dνNt


=

(2`)d

γ

H(µNt |νNt ) +
∑

z∈(4`)TdN∩TdN

log

∫
X 2
N

eγ(h`,jz+y)2dνNt


for every γ > 0. Moreover, recall here that by the flow lemma stated in Proposition 4.7
we can estimate the variance of h`,jx as

σ2 := sup
x∈TdN ,j=1,...,d

VarνNt [h`,jx ] ≤ Cdgd(`)e2C1K

with gd(`) in Proposition 4.7. Therefore, applying the concentration inequality, we have

log

∫
X 2
N

eγ(h`,jx )2dνNt ≤ 2

for every 0 < γ ≤ C0σ
−2. Therefore, by choosing γ−1 = C−1

0 Cdgd(`)e
2C1K , we have

shown EµNt [V − V `] is bounded above by

αN2D(
√
fNt ; νNt ) +

C̄α`
dgd(`)K

2e5C1K

N

(
H(µNt |νNt ) +

Nd

`d

)
+ CK2e3C1KNd−1.

Now recalling the growth rate of K was slower than δ(logN)1/2 by the assumption (A3)δ,
we end the proof by choosing ` = N1/d−κ/d when d ≥ 2 and ` = N1/2−κ when d = 1.

We thus estimated the cost to replace the reminder term V to its local average V `

and next we prove the following bound for V `.

Lemma 4.12. We assume the same conditions as Theorem 3.1. Then for any κ > 0, we
have

EµNt

[
V `
]
≤ CKH(µNt |νNt ) + CκN

d−1+κ

when d ≥ 2. When d = 1, the last term on the right hand side of the above is replaced by
N1/2+κ.

Proof. We again decompose the sum
∑
x∈TdN

in the definition of V ` as∑
y∈Λ2`

∑
z∈(4`)TdN∩TdN

and recall ay0+x,Λ+x is uniformly bounded above by some Ca > 0.
Then, by using the entropy inequality and the concentration inequality to show∫

X 2
N

V `dµNt ≤
CaK

γ

∑
y∈Λ2`

(
H(µNt |νNt ) +

∑
z∈(4`)TdN∩TdN

logEνNt [eγ
←−−
(ω1)z+y,`

−−→
(ω2)z+y,` ]

)

≤ CaK(4`)d

γ

(
H(µNt |νNt ) +

Nd

(4`)d
C1γ`

−d
)

for γ = c`d with c > 0 small enough. Then recalling the way to take ` when d ≥ 2 and
d = 1, we have the desired bound and end the proof.

Hence, we complete the proof of (4.3) for V defined by (4.5) involving all terms
appearing in VG.
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4.3 Proof of (4.4)

We now discuss the contribution of

VK(t) = −N
2

2

∑
x,y∈TdN ,|x−y|=1

(uN (x)− uN (y))2ω1,xω1,y.

But this can be estimated in the same manner as [4] and [6] as follows. We let

V `K(t) := −N2
∑
x∈TdN

d∑
j=1

(uN (x)− uN (x+ ej))
2←−−(ω1)x,`

−−→
(ω1)x+ej ,`.

Using the pointwise estimate for the spatial derivatives of uN (t, x) proved in Lemma 5.5,
we see that N2(uN (x) − uN (y))2 has order K2 for every x, y ∈ TdN with |x − y| = 1.
Therefore, repeating the same argument for VG, we obtain the desired estimate (4.4)
where K in (4.3) is replaced by K2.

5 Several estimates on discrete reaction-diffusion system (3.1)

In this section, we give some estimates for macroscopic quantities which are deter-
mined by solving the semi-discretized hydrodynamic limit equations (3.1). Throughout
this section, let uN = {uN (t, x)}t∈[0,T ],x∈TdN

and vN = {vN (t, x)}t∈[0,T ],x∈TdN
be the non-

negative solution of (3.1). First we show the following comparison principle in general
form under our discrete settings.

Lemma 5.1. Let (t, u) 7→ f(t, x, u) be a real-valued smooth function on [0, T ]×RTdN for
every x ∈ TdN . Let uN (t, x) be a unique solution of

∂tu
N (t, x) = ∆NuN (t, x) + f(t, x, uN (t)) (5.1)

and let uN (t, x) (resp. uN (t, x)) be a super- (resp. sub-) solution. Namely, uN (resp. uN )
satisfies (5.1) with “≥” (resp. “≤”) instead of the equality. Then we have uN (t, x) ≤
uN (t, x) (resp. uN (t, x) ≥ uN (t, x)) for every t ∈ [0, T ] and x ∈ TdN provided uN (0, x) ≤
uN (0, x) (resp. uN (0, x) ≥ uN (0, x)) for every x ∈ TdN .

Proof. We give the proof only for super-solution since it can be proved in the same
manner for sub-solution. Let uN (t, x) be any given super-solution, that is, it satisfies

∂tu
N (t, x) ≥ ∆NuN (t, x) + f(t, x, uN (t))

for every t ∈ [0, T ] and x ∈ TdN by definition. Then, subtracting (5.1) on both side of the
above display to obtain

∂t(u
N (t, x)− uN (t, x)) ≥∆N (uN (t, x)− uN (t, x))

+ f̃(t, x, u(t), u(t))(uN (t, x)− uN (t, x)).
(5.2)

Here, f̃ = f̃(t, x, uN (t), uN (t)) is defined by

f̃(t, x, uN (t), uN (t)) =


f(t, x, uN (t))− f(t, x, uN (t))

uN (t, x)− uN (t, x)
if uN (t, x) 6= uN (t, x),

∂f

∂u(x)
(t, x, u)

∣∣∣∣
u=uN (t)

if uN (t, x) = uN (t, x).

Let M := sup(t,x)∈QT |f̃(t, x, uN (t), uN (t))| and let wN (t, x) := (uN (t, x) − uN (t, x))eMt +

2ε− εe−t with ε > 0. Note here that such M <∞ exists since uN (t, x) and uN (t, x) are
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both continuous in t for every x ∈ TdN , and also by the assumption for the initial function
we have wN (0, x) > 0 for every x ∈ TdN . In the sequel, we show wN ≥ 0 in [0, T ]×TdN by
contradiction. Suppose there exists a point (t0, x0) ∈ (0, T ]×TdN such that wN (t0, x0) = 0

for the first time and wN (t, x) > 0 for every t ∈ [0, t0) and x ∈ TdN . Then, since (t0, x0)

attains minimum of wN in [0, t0] × TdN , we have ∂twN (t0, x0) ≤ 0 and ∆NwN (t0, x0) ≥ 0

and thus ∂twN (t0, x0)−∆NwN (t0, x0) ≤ 0. On the other hand, letting ũN := uN − uN , we
have by definition of M

∂tw
N (t0, x0)−∆NwN (t0, x0)

=
(
∂tũ

N (t0, x0)−∆N ũN (t0, x0) +MũN (t0, x0)
)
eMt0 + εe−t0

≥
(
∂tũ

N (t0, x0)−∆N ũN (t0, x0)− f̃(t0, x0, u
N (t0), uN (t0))ũN (t0, x0)

)
eMt0 + εe−t0 .

However, since uN is a super-solution of (5.1), the estimate (5.2) at the point (t0, x0)

implies that the last quantity is bounded from below by a strictly positive constant, which
is contradiction. Therefore, we have wN ≥ 0 so that uN (t, x)− uN (t, x) ≥ ε(e−t − 2)e−Mt

for every (t, x) ∈ QT . Since ε > 0 was taken arbitrary, we complete the proof by letting ε
tends to zero.

Since our exclusion rule prohibits same kind of particles to stay on the same site,
density of each particles would not leave the interval [0, 1]. Following two lemmas ensure
this intuition and give some quantitative estimates of densities from below and above.

Lemma 5.2. For every t ∈ (0, T ] and x ∈ TdN , we have

0 ≤ uN (t, x), vN (t, x) ≤ 1

provided 0 < uN (0, x), vN (0, x) < 1 holds for every x ∈ TdN .

Proof. First we observe that the zero function uN (t, x) ≡ 0 satisfies the first equation
of (3.1). In particular, the function 0 is a sub-solution of the first equation of (3.1) so
that for any solution uN (t, x) of the first equation of (3.1) we have uN (t, x) ≥ 0 for every
t ∈ [0, T ] and x ∈ TdN according to the comparison principle (Lemma 5.1). On the other
hand, viewing the second equation of (3.1), we can solve it for vN explicitly as

vN (t, x) = vN0 (x)e−K
∫ t
0
c2,x(uN (τ))uN (τ,x)dτ .

Since uN is proved to be non-negative, this explicit formula for vN implies that vN is non-
decreasing in time and non-negative, which end the proof of the assertion 0 ≤ vN (t, x) ≤ 1

for every t ∈ (0, T ] and x ∈ TdN . Finally, we observe that the constant function uN ≡ 1

satisfies the first equation of (3.1) with “≥” instead of the equality so that it becomes to
be a super-solution. Therefore, combining with the non-negativity of any solution uN , we
have the assertion for uN again by the comparison principle and complete the proof.

Next we let Mi := sup
(ρ1,ρ2)∈[0,1]T

d
N×[0,1]T

d
N
ci(ρ1, ρ2) ≥ 0 for i = 1, 2, which are inde-

pendent of the scaling parameter N .

Lemma 5.3. If there exists a positive constant δi ∈ (0, 1) (i = 1, 2) such that δ1 <

uN (0, x) < 1− δ1 and δ2 < vN (0, x) < 1− δ2 for all x ∈ TdN , then we have

δ1e
−KM1t ≤ uN (t, x) ≤ 1− δ1, δ2e

−KM2t ≤ vN (t, x) ≤ 1− δ2

for every t ∈ [0, T ] and x ∈ TdN . In particular, if 0 < uN (0, x), vN (0, x) < 1 for every
x ∈ TdN , then 0 < uN (t, x), vN (t, x) < 1 for every t ∈ [0, T ] and x ∈ TdN .
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Proof. The assertion for vN is obvious from its explicit representation given in the
previous lemma so we show the assertion only for uN . To prove the lower bound for
uN , let us define u(t) := δ1e

−KM1t and wN (t, x) := (uN (t, x)− u(t))e−2KM1t. Then, since
0 ≤ uN (t, x), vN (t, x) ≤ 1 by Lemma 5.2, we have

∂tw
N = ∆NwN −K

[
c1,x(uN (t), vN (t))uN (t, x)vN (t, x)−M1u(t)

]
e−2KM1t − 2KM1w

N

≥ ∆NwN −K
[
M1u

N (t, x)vN (t, x)−M1u(t)
]
e−2KM1t − 2KM1w

N

≥ ∆NwN − 3KM1w
N

Since wN (0, x) > 0 for every x ∈ TdN by definition, we have wN ≥ 0 in [0, T ] × TdN by
Lemma 5.1. The upper bound is obvious from Lemma 5.1.

Next we give a priori estimates for (3.1) which are needed to prove the relative
compactness of the sequence of discrete solutions. Let pN (t, x, y) be the discrete heat
kernel of ∆N on TdN . Then, we have the following estimate.

Lemma 5.4. There exist positive constants C, c > 0 such that

|∇NpN (t, x, y)| ≤ CpN (ct, x, y)/
√
t

for all t > 0 and x, y ∈ TdN .

This lemma is already shown as Lemma 2.6 in [4] or Lemma 4.2 in [6] so we omit
the proof here. Using this estimate for the discrete heat kernel, we obtain the following
pointwise estimate for growth of derivatives of discrete solution through the same
manner as [4].

Lemma 5.5. The gradients of the solution uN (t, x) of (3.1) are estimated as

|∇NuN (t, x)| ≤ K(C0 + C
√
t)

for every t > 0 and x ∈ TdN if |∇NuN (0, x)| ≤ C0K holds for every x ∈ TdN .

Proof. By Duhamel’s principle applied to the first equation of (3.1), we have

uN (t, x) =
∑
y∈TdN

uN (0, y)pN (t, x, y)

−K(N)

∫ t

0

∑
y∈TdN

c1,y(uN (t), vN (t))uN (t, y)vN (t, y)pN (t− s, x, y)ds

for every t ∈ [0, T ] and x ∈ TdN . Noting that the reaction rate c1 is assumed to be
bounded, the absolute value of the gradient ∇NuN (t, x) can be bounded above by

∑
y∈TdN

|∇NuN (0, y)|pN (t, x, y) +K(N)M1

∫ t

0

∑
y∈TdN

|∇NpN (t− s, x, y)|ds

and thus we complete the proof in view of the assumption (A1) and
∑
y p

N (t, x, y) = 1 for
every t, x for the first term and Lemma 5.4 for the second term.

Lemma 5.6. We have that

sup
N∈N

∫ T

0

1

Nd

∑
x∈TdN

K(N)c1,x(uN (t), vN (t))uN (t, x)vN (t, x)dt ≤ 1.
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Proof. From the first equation of (3.1), integrating over t ∈ [0, T ] and x ∈ TdN to represent
the integration of reaction term by terms which are independent of K(N). Since
summation over x ∈ TdN of ∆NuN (t, x) vanishes and the term involving time derivative
becomes an integration on the boundary, the proof is obvious in view of Lemma 5.2.

Lemma 5.7. We have that

sup
N∈N

∫ T

0

1

Nd

∑
x∈TdN

|∇NuN (t, x)|2dt ≤ 1

2
.

Proof. Multiplying uN (t, x) on both sides of the first equation of (3.1) and summing up
over x ∈ TdN , we obtain

1

2

∂

∂t

1

Nd

∑
x∈TdN

uN (t, x)2 +
1

Nd

∑
x∈TdN

|∇NuN (t, x)|2

= −K(N)

Nd

∑
x∈TdN

c1,x(uN (t), vN (t))uN (t, x)2vN (t, x)

for every t ∈ [0, T ]. Since the right hand side of this equation is always non-positive, this
further implies∫ T

0

1

Nd

∑
x∈TdN

|∇NuN (t, x)|2dt ≤ 1

2Nd

∑
x∈TdN

[
uN (0, x)2 − uN (T, x)2

]
≤ 1

2
.

6 Case 1: Vanishing interface

In this section we consider the semi-discretized system{
∂tu

N (t, x) = ∆NuN (t, x)−K(N)uN (t, x)uN (t, x+ z1) · · ·uN (t, x+ zm−1)vN (t, x)

∂tv
N (t, x) = −K(N)uN (t, x)vN (t, x)

(6.1)
where t ∈ [0, T ], x ∈ TdN and zi ∈ Zd, i = 1, ...,m− 1 with m > 3. We show in the sequel
that taking limit as N tends to infinity vN (t, x) vanishes at any time t > 0 and uN (t, x)

converges to a unique solution of the heat equation on the whole domain. Through this
section, in addition to the assumptions (A1), (A2) and (A3), we further assume (B1) which
ensures that the initial function u(0, ·) has better regularity than other cases. This is
used in order to approximate a solution of a linear hyperbolic equation (6.4) by solutions
of semi-discretized version with a good rate as the scaling parameter N tends to infinity.

Theorem 6.1. We assume (A1), (A3)δ and (B1) with some δ > 0. Let {uN (t, θ)} be defined
by (3.2) and let u = u(t, θ) be a solution of the heat equation (2.3) on the whole domain
with periodic boundary condition. Then for every t ∈ (0, T ] we have

lim
N→∞

sup
x∈TdN

|uN (t, x)− u(t, x/N)| = 0, lim
N→∞

sup
x∈TdN

|vN (t, x)| = 0.

Since the second equation of (6.1) is liner for vN , it suffices to study the limiting
behavior of the single equation

∂tu
N (t, x) = ∆NuN (t, x)−K(N)vN0 (x)uN (t, x) · · ·uN (t, x+zm−1)e−K(N)

∫ t
0
uN (τ,x)dτ . (6.2)
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To prove Theorem 6.1, we construct the functions ρN± (t, x) such that

ρN− (t, x) ≤ uN (t, x) ≤ ρN+ (t, x)

hold for every t ∈ [0, T ], x ∈ TdN and both ρN+ and ρN− converges to the solution to the
heat equation (2.3).

First we construct a super-solution of (6.2) which bounds the solution uN from above.
Let ρN+ = {ρN+ (t, x)}t∈[0,T ],x∈TdN

be the solution of the semi-discrete heat equation{
∂tρ

N
+ (t, x) = ∆NρN+ (t, x)

ρN+ (0, x) = uN (0, x)
(6.3)

Since uN (t, x) and vN (t, x) are supposed to be positive for all t ∈ [0, T ] and x ∈ TdN , the
reaction term of (6.2) is always non-positive. Therefore ρN is a super-solution of (6.2)
and the comparison principle shown in Lemma 5.1 assures that uN (t, x) is bounded
above by ρN+ (t, x) for every t ∈ [0, T ] and x ∈ TdN . Thus our remainder task is to construct
the sub-solution which asymptotically satisfies the heat equation (2.3).

As we see below, one can find such a sub-solution as a same manner with [9]. However,
we have to rearrange the building procedure to fit our discrete setting. To construct the
sub-solution ρN− , we consider the following problem for each fixed constant δ > 0. Let
uδ = uδ(t, θ) be a solution of {

∂tuδ = ∆uδ − δuδ
uδ(0, θ) = u0(θ)

(6.4)

and let {uNδ (t, x)}N∈N be a solution of{
∂tu

N
δ = ∆NuNδ − δuNδ

uNδ (0, x) = uN (0, x).
(6.5)

In fact, it becomes necessary to use that uδ can be approximated by uNδ with a rate
strictly faster than K2 to construct a desired sub-solution. Such a result can be easily
obtained by the convergence result of semi-discretized heat equation to the classical
one as we see in the sequel. First we can find the convergence rate for heat equation as
stated in [10].

Proposition 6.2 ([10]). Assume that ρ0 is a real-valued function on Td with a bounded
fourth derivative. Let {ρN (t, x)}N∈N be a solution to the semi-discretized heat equation{

∂tρ
N (t, x) = ∆NρN (t, x)

ρN (0, x) = ρ0(x/N)

and let ρ(t, θ) be a solution of the heat equation{
∂tρ(t, θ) = ∆ρ(t, θ)

ρ(0, θ) = ρ0(θ).

Then there exists a positive constant C such that for every t ≥ 0 and x ∈ TdN we have

|ρN (t, x)− ρ(t, x/N)| ≤ Ct/N2.

In other words, a solution to the (continuous) heat equation is approximated by that
of the semi-discretized one with precision order 1/N2 if they have the common initial
function. We see that uδ = e−δtρ and uNδ = e−δtρN where ρ is a solution of the classical
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heat equation (6.4) with initial function u0 and ρN is a solution of semi-discretized heat
equation (6.5) with initial function ρN (0, ·) = uN (0, ·). Moreover, recall here that their
initial function is close up to the order oN (1/K2) by the assumption (B1). Therefore, we
apply Proposition 6.2 to obtain

lim
N→∞

K2|uNδ (t, x)− uδ(t, x/N)| = 0

uniformly in t ∈ [0, T ]. Namely, we can approximate the solution of (6.4) by the solution
of (6.5) with precision order oN (1/K2). With these approximation results at hand,
now we show the following two lemmas (Lemmas 6.3 and 6.4) as preliminary to prove
Theorem 6.1.

Lemma 6.3. Assume (B1) and that let m be an integer satisfying m > 3. Let uδ be a
solution of (6.4). Then there exists a positive constant t∗ = t∗(δ) such that[

(m− 1)uδ(t, θ)
m−3∂tuδ(t, θ)− 1

]
uδ(t, θ) ≤ 0 (6.6)

for every t ∈ [0, t∗] and θ ∈ suppv0.

Proof. Since θ ∈ suppv0, the quantity inside the brackets in (6.6) is −1 at initial time
t = 0. Therefore, by the continuity in time of uδ, the assertion holds in a short time
interval and thus we complete the proof.

The above assertion is a result not in a discrete setting but completely in the PDE
context and of course the time horizon t∗ is independent of the scaling parameter N .

Lemma 6.4. We assume the same conditions as Theorem 6.1. Let δ > e−1 and t∗ > 0 be
the constant given in Lemma 6.3. Then for every sufficiently large N ∈ N we have

uN (t, x) ≥ uNδ (t, x)

for every t ∈ [0, t∗] and x ∈ TdN .

Proof. Let ε ∈ (0, εN ) be given and εN will be characterized later. Let WN := uN −uNδ +ε.
Then WN satisfies {

∂tW
N (t, x) = ∆NWN (t, x) + IN (t, x)

WN (0, x) = ε

with

IN (t, x) := −KvN0 (x)uN (t, x) · · ·uN (t, x+ zm−1)e−K
∫ t
0
uN (τ,x)dτ + δuNδ (t, x)

for every t ∈ [0, T ] and x ∈ TdN . We show WN > 0 in Qt∗ by contradiction. To see that,
suppose there exists a (t0, x0) ∈ Qt∗ such that

WN (t0, x0) = 0, WN (t, x) > 0 in [0, t0)×TdN .

Let IN0 = IN (t0, x0) and our task is to prove IN0 > 0. Indeed, since WN attains its minimal
value 0 at the point (t0, x0) in Qt0 , we have

∂tW
N (t0, x0) ≤ 0, ∆NWN (t0, x0) ≥ 0.

However, once we proved IN0 > 0, we have

0 ≥ ∂tWN (t0, x0) = ∆NWN (t0, x0) + IN0 > 0
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which becomes contradiction. First we consider the case x0/N 6∈ suppv0. Since uN is
non-negative and bounded from above by 1, we have

IN0 = −KvN0 (x0)uN (t0, x0) · · ·uN (t0, x0 + zm−1)e−K
∫ t0
0 uN (τ,x0)dτ + δuNδ (t0, x0)

≥ −KvN0 (x0)uN (t0, x0) + δuNδ (t0, x0).

However, by the assumption (B1), we have the bound KvN0 (x0) ≤ δ for every sufficiently
large K so that the last display is bounded form below by −δ(uN (t0, x0)−uNδ (t0, x0)) = δε

recalling WN (t0, x0) = uN (t0, x0)− uNδ (t0, x0) + ε = 0. Therefore, we have IN0 > 0 in the
case of x0/N /∈ suppv0 so we assume x0/N ∈ suppv0 in the sequel. To see IN0 > 0 in this
case, we decompose IN0 = IN1 + IN2 + IN3 where

IN1 = −KvN0 (x)
(
uN (t0, x0) · · ·uN (t0, x0 + zm−1)− uNδ (t0, x0)m

)
e−K

∫ t0
0 uN (τ,x0)dτ

IN2 = uNδ (t0, x0)
(
δ −KvN0 (x0)uNδ (t0, x0)m−1e−K

∫ t0
0 uNδ (τ,x0)dτ

)
IN3 = KvN0 (x0)uNδ (t0, x0)m

(
e−K

∫ t0
0 uNδ (τ,x0)dτ − e−K

∫ t0
0 uN (τ,x0)dτ

)
and estimate IN1 , IN2 and IN3 separately. First for IN1 , we replace the local product of uN

into the spatially homogeneous one, that is, we prove

lim
N→∞

sup
x∈TdN

K|uN (t, x) · · ·uN (t, x+ zm−1)− uN (t, x)m| = 0

for every t ∈ [0, T ]. To see this, let {yji }j=0,...,|zi+1−zi| be one of shortest paths from zi

to zi+1 for every i = 0, ...,m − 2: y0
i = zi, y

|zi+1−zi|
i = zi+1, |yj+1

i − yji | = 1 for every
i = 0, ...,m− 2, j = 0, ..., |zi+1− zi|− 1 and we let z0 = 0. Then, since uN (t, x) takes values
in [0, 1] according to Lemma 5.3, the absolute value appearing in the left hand side is
bounded above by

K

m−2∑
i=0

|zi+1−zi|−1∑
j=0

|uN (t, yj+1
i )− uN (t, yji )| = O(K2/N).

Here we have used the pointwise estimate of derivatives |∇NuN (t, x)| stated in Lemma 5.5.
In particular, we can replace the spatially inhomogeneous local product into the homoge-
neous one and thus we have

IN1 = KvN0 (x0)
(
uNδ (t0, x0)m − uN (t0, x0)m

)
e−K

∫ t0
0 uN (τ,x0)dτ +O(K2/N).

However, by an elementary estimate (u + ε)m − um ≥ mεum−1 for every u, ε ≥ 0 and
m > 1, the first term in the above comes out to be non-negative. Next we estimate
IN2 . Since uδ can be approximated by uNδ with precision order oN (1/K2) with help of
Proposition 6.2 and the assumption (B1), we can replace uNδ inside parentheses in IN2 by
uδ with a cost of order oN (K2/K2) = oN (1) which is small as N tends to infinity. Here
for K2 in the numerator, one K is the coefficient of the leading term (the first term in
the above) and the second one comes from the exponent in the exponential term. Now
we let zK := Kuδ(t0, x0/N)m−1. Then we have

IN2 = uNδ (t0, x0)
(
δ − vN0 (x0)zKe

−zKezK−K
∫ t0
0 uδ(τ,x0/N)dτ + oN (1)

)
≥ uNδ (t0, x0)

(
δ − vN0 (x0)e−1ezK−K

∫ t0
0 uδ(τ,x0/N)dτ + oN (1)

)
.

Looking the exponential term appearing in the last quantity, one can observe

zK −K
∫ t0

0

uδ(τ, x0/N)dτ

= K

∫ t0

0

[
(m− 1)uδ(τ, x0/N)m−3∂tuδ(τ, x0/N)− 1

]
uδ(τ, x0/N)dτ (6.7)
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since uδ(0, x0/N) = u0(x0) = 0 when x0/N ∈ suppv0. Therefore, (6.7) stays non-positive
if t0 ≤ t∗ recalling t∗ is the small time horizon found in Lemma 6.3. Therefore, IN2 can be
bounded from below as

IN2 ≥ uNδ (t0, x0)
(
δ − vN0 (x0)e−1 + oN (1)

)
as N tends to infinity. Finally, for IN3 , recalling the temporal assumption uNδ (t, x) −
uN (t, x) ≤ ε in [0, t0]×TdN , we have

IN3 = KvN0 (x0)uNδ (t0, x0)me−K
∫ t0
0 uNδ (τ,x0)dτ

(
1− eK

∫ t0
0 (uNδ (τ,x0)−uN (τ,x0))dτ

)
≥ KvN0 (x0)uNδ (t0, x0)me−K

∫ t0
0 uNδ (τ,x0)dτ

(
1− eKεt0

)
.

Combining all estimates obtained above and recalling t0 ≤ t∗, we conclude

IN0 ≥ uNδ (t0, x0)
(
δ − e−1 + oN (1)

)
−K(eKεt∗ − 1) +O(K2/N)

as N tends to infinity. We note here that we took δ > e−1 and that uNδ is bounded
from below by e−CK and we have limN→∞ eCKK2/N = 0 for every δ appearing in the
assumption (A3). Therefore, we choose εN so small that the above quantity stays strictly
positive for every fixed (but sufficiently large) N and thus we complete the proof by
showing contradiction.

Now we construct a desired sub-solution and give the proof of Theorem 6.1.

Proof of Theorem 6.1. Recall that uN (t, x) satisfies the single equation (6.2). We first
show that the reaction term in (6.2), which is denoted by JN (t, x), converges to 0 as N
tends to infinity. To see that, fix any t ∈ (0, t∗]. Then, according to Lemma 6.4, we have

−JN (t, x) = KvN0 (x)uN (t, x) · · ·uN (t, x+ zm−1)e−K(N)
∫ t
0
uN (τ,x)dτ

≤ KuN (t, x)e−K
∫ t
0
uNδ (τ,x)dτ

= KuN (t, x)e−K
∫ t
0

(uNδ (τ,x)−uδ(τ,x/N))dτe−K
∫ t
0
uδ(τ,x/N)dτ .

Here we did not replaced uN (t, x) by 1 to use Lemma 6.4 later again. We have seen
that uδ is approximated by uNδ with precision of order oN (1/K2). In particular, we have
limN→∞ supx∈TdN K|u

N
δ (t, x) − uδ(t, x/N)| = 0 for every t ∈ [0, T ] so that there exists a

positive constant C such that the last quantity is bounded above by

CKuN (t, x)e−K
∫ t
0
uδ(τ,x/N)dτ .

Moreover, by an elementary inequality s2e−s ≤ 4e−2 for every s ≥ 0, we have

−JN (t, x) ≤ CK
(
Ke

∫ t

0

uδ(τ, x/N)dτ

)−2

uN (t, x)

≤ C

K

(∫ t

0

min
θ∈[0,1)d

uδ(τ, θ)dτ

)−2

uN (t, x).

We let γ(t) :=
∫ t

0
minθ∈[0,1)d uδ(τ, θ)dτ . Since uδ(t, θ) > 0 for every t > 0 and θ ∈ [0, 1)d, we

have γ(t) > 0 so that there exists a positive constant K∗ > 0 such that γ(t∗) = (K∗)
−1/4.

In the sequel we suppose N is sufficiently large so that K∗ ≤ K(N). Then, since we
have γ(0) = 0 and t 7→ γ(t) is a continuous, strictly increasing mapping, there exists
tK ≤ t∗ such that γ(tK) = K−1/4 and tK(N) ↘ 0 as N tends to infinity. Therefore, for
every t ∈ [tK , t∗], we have

−JN (t, x) ≤ C

Kγ(tK)2
uN (t, x) =

C√
K
uN (t, x).
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On the other hand, when t ∈ (t∗, T ], since the function t 7→ γ(t) is increasing, by using a
similar argument given above, we have

−JN (t, x) ≤ C

Kγ(t∗)2
uN (t, x) ≤ C√

K
uN (t, x).

Thus we proved

0 ≥ JN (t, x) ≥ − C√
K
uN (t, x) (6.8)

for every t ∈ [tK , T ] and x ∈ TdN , which particularly implies supx∈TdN J
N (t, x) converges

to 0 as N tends to infinity.
Now we construct a sub-solution ρN− . Fix δ1 > e−1. Then, by Lemma 6.4, we have

uN (t, x) ≥ uNδ1(t, x)

for every t ∈ [0, t∗] and x ∈ TdN . Next we let δ2 = C/
√
K. Then, according to the first step

which is given above, the reaction term in (6.2) JN satisfies the bound (6.8) for every
t ∈ [tK , T ] and x ∈ TdN and thus uNδ2(t− tK , x;uNδ1(tK , ·;uN0 )) becomes to be a sub-solution
of (6.2). Here uNδ (t, x;uN0 ) denotes a solution of (6.5) with initial function uN0 : TdN → R.
Therefore, the comparison principle (Lemma 5.1) implies

uN (t, x) ≥ uNδ2(t− tK , x;uNδ1(tK , ·;uN0 ))

for every t ∈ [tK , T ] and x ∈ TdN . Recalling tK ≤ t∗, we define

ρN− (t, x) :=

{
uNδ1(t, x;uN0 ) if t ∈ [0, tK ],

uNδ2(t, x;uNδ1(tK , ·;uN0 )) if t ∈ (tK , T ].

Then ρN− (t, x) is continuous in t and we have uN (t, x) ≥ ρN− (t, x) for every t ∈ [0, T ] and
x ∈ TdN .

Next we show limN→∞ supx∈TdN |ρ
N
+ (t, x)− ρN− (t, x)| = 0 for every t ∈ [0, T ] to obtain

the result for uN . We let WN = ρN+ − ρN− and W
N

= δ1t be functions defined in QT . Then
we can easily see that WN satisfies

∂tW
N = ∆NWN + δ1u

N
δ1

(6.9)

in QtK and that W
N

is a super-solution of (6.9). Therefore, since WN and W
N

have the

same initial function, the comparison principle (Lemma 5.1) implies that WN ≤ W
N

in QtK . In particular we have WN ≤ δ1tK in QtK . Similarly, we can bound WN by a
function δ1tK + δ2(t− tK) in QT \QtK . Combining these results, we obtain

max
QT

WN ≤ max
QtK

WN + max
QT \QtK

WN ≤ 2δ1tK + Tδ2

and the last quantity converges to zero as N tends to infinity recalling tK ↘ 0 and δ2 is
proportional to K−1/2. Hence we have limN→∞WN = 0 and obtain the assertion for uN .

Finally, we show the assertion for vN . To see that, we have

vN (t, x) = vN0 (x)e−K
∫ t
0
uN (τ,x)dτ ≤ vN0 (x)e−K

∫ t∧t∗
0

uN (τ,x)dτ ≤ CvN0 (x)e−K
∫ t∧t∗
0

uδ(τ,x/N)dτ .

The last term converges to 0 as N tends to infinity since for any t > 0 the function uδ(t, ·)
is bounded from below by a strictly positive constant independent of N and thus we
complete the proof.
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7 Case 2: Moving interface

For Case 2, our semi-discretized hydrodynamic limit system is given by

{
∂tu

N (t, x) = ∆NuN (t, x)−K(N)uN (t, x)vN (t, x)vN (t, x+ z1) · · · vN (t, x+ zm−1)

∂tv
N (t, x) = −K(N)uN (t, x)vN (t, x)

(7.1)
for t ∈ [0, T ], x ∈ TdN and zi ∈ Zd, i = 1, ...,m− 1 with m ≥ 1. In this section and the next
section, we extend our semi-discretized functions uN = uN (t, x) and vN = vN (t, x) as
a simple function on [0, T ]×Td by (3.2) and study limiting behavior of these extended
functions. Looking the above semi-discretized reaction-diffusion system, the reaction
term of the first equation contains the product of several vN ’s which are spatially
dispersed. Since the diffusion coefficient for vN is zero, it seems that we may not be
able to replace this product into the spatially homogeneous one. However, by the second
equation of our system (7.1), we can see that derivatives of vN are controlled by those of
uN and the initial function vN (0, ·), which enables us to conduct replacement procedure.

Limiting behavior of uN (t, θ) and vN (t, θ) as N →∞ is stated as follows.

Theorem 7.1. Assume (A1), (A3)δ and (B2) with some δ > 0. Let uN (t, θ) and vN (t, θ) be
defined by (3.2). Then there exists functions u and v on QT such that

u ∈ L∞(QT ) ∩ L2(0, T ;H1(Td)), v ∈ L∞(QT )

0 ≤ u, v ≤ 1 and uv = 0 a.e. in QT ,

uN → u strongly in L2(QT ) and a.e. in QT ,

(vN )m ⇀ vm weakly in L2(QT )

as N tends to infinity. Moreover, w := u− vm/m satisfies

−
∫
Td

(u0 − vm0 /m)ϕ(0)dθ +

∫∫
QT

(−wϕt +∇w+ · ∇ϕ)dθdt = 0 (7.2)

for all ϕ ∈ H1(QT ) such that ϕ(T, ·) ≡ 0.

The equation (7.2) is the weak formulation of the one-phase Stefan problem. As
stated in [9], assuming the limiting interface is smooth and further u and v are smooth
on their support, one can write (7.2) as a strong form (2.4). The problem (2.4) is the
classical formulation of the one-phase Stefan problem with the latent heat w0|Γ(t)/m.
Derivation of (2.4) from the weak form (7.2) can be done analogously to [8].

Our plan to prove Theorem 7.1 is as follows: first we show relative compactness
of the sequence {uN (t, θ)}N∈N and {vN (t, θ)}N∈N so that they are convergent along a
subsequence and then we show that any limit points along this subsequence satisfy the
weak form of the one-phase Stefan problem (7.2). Moreover, according to the uniqueness
of weak solution of one-phase Stefan problem, we can show that the above convergence
holds for the full sequence.

Following this procedure, we first show that the sequence of discrete solutions
{uN (t, θ)}N∈N is relatively compact in Lp(QT ) for any p ≥ 2 without any restriction on
reaction rate c1.

Lemma 7.2. We assume the same conditions as Theorem 7.1. Then the sequence
{uN (t, θ)}N∈N is relatively compact in Lp(QT ) for any p ≥ 2.
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Proof. In the sequel, we show that there exists a positive constant C such that∫ T−τ

0

∫
Td
|uN (t+ τ, θ)− uN (t, θ)|pdθdt ≤ Cτ,∫ T

0

∫
Td
|uN (t, θ + α)− uN (t, θ)|pdθdt ≤ C|α|

for all p ≥ 2, τ ∈ (0, T ) and α ∈ Rd sufficiently small. Once these estimates are proved,
we complete the proof of lemma by the Fréchet-Kolmogorov theorem (see for example
[1], Theorem IV.25 and Corollary IV.26).

First we show the equi-continuity along spatial direction with exponent p = 1. Once
the case when p = 1 is proved, then we obtain the assertion for any exponent p ≥ 1

according to the uniform boundedness of uN . Change of variables enables us to restrict
our cases for non-negative α. In this case, we observe∫∫

QT

|uN (t, θ + n/N)− uN (t, θ)|dθdt ≤ n

N

∫∫
QT

|∇NuN (t, θ)|dθdt,∫∫
QT

|uN (t, θ + 1/rN)− uN (t, θ)|dθdt ≤ 1

rN

∫∫
QT

|∇NuN (t, θ)|dθdt

for every n ∈ Z+ = {0, 1, ...} and r ≥ 1. Combining these two estimates and applying
them for α = n/rN with n = dαNe and r = dαNe/αN to obtain∫∫

QT

|uN (t, θ + α)− uN (t, θ)|dθdt ≤ α
∫∫

QT

|∇NuN (t, θ)|dθdt ≤ α‖∇NuN‖L2(QT )

for every α ≥ 0 where in the last estimate we used Hölder’s inequality. According to the
uniform energy estimate Lemma 5.7, we obtain the equi-continuity in spatial variables
for any index p ≥ 1. In particular, the second assertion holds for any p ≥ 2.

Similarly, it suffices to prove the equi-continuity in time argument only for the case
p = 2 by again using the fact that uN is bounded uniformly in N . We remark here that
when 1 ≤ p < 2 another exponent for τ is needed so that we restrict our cases only for
p ≥ 2. The integral appearing in the left hand side of the first estimate for p = 2 is equal
to ∫ T−τ

0

∫
Td

(∫ τ

0

∂tu
N (t+ s, θ)ds

)(
uN (t+ τ, θ)− uN (t, θ)

)
dθdt.

However, using the first equation of (3.1) for the integrand, this quantity can be estimated
from above by

∫ τ

0

(∫ T−τ

0

∫
Td

∣∣∇NuN (t+ s, θ)
∣∣2 dθdt)1/2(∫ T−τ

0

∫
Td

∣∣∇NuN (t+ τ, θ)
∣∣2 dθdt)1/2

ds

+

∫ τ

0

(∫ T−τ

0

∫
Td

∣∣∇NuN (t+ s, θ)
∣∣2 dθdt)1/2(∫ T−τ

0

∫
Td

∣∣∇NuN (t, θ)
∣∣2 dθdt)1/2

ds

+ 2K

∫ τ

0

∫ T−τ

0

∫
Td
c1(x, uN (t+ s), vN (t+ s))uN (t+ s, x)vN (t+ s, x)dθdtds.

Here we used Schwarz’s inequality to estimate the first and the second terms. Thus we
get the desired estimate in view of Lemmas 5.6 and 5.7.

On the other hand, for the relative compactness of vN , we only impose the following
existence of a weakly convergent subsequence which is obvious from the uniform
boundedness of vN in view of Lemma 5.2.
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Lemma 7.3. We assume the same condition as Theorem 7.1. Then for any p > 1, the
sequence {vN}N∈N is weakly precompact in Lp(QT ). Namely, there exists a subsequence
(Nk) and v ∈ Lp(QT ) such that vNk ⇀ v weakly in Lp(QT ).

Proof of Theorem 7.1. For any p > 1, by Lemma 7.2 the sequences {uN (t, θ)}N∈N is
strongly precompact in Lp(QT ), while by Lemma 7.3 {vN (t, θ)}N∈N is weakly precompact
in Lp(QT ). Therefore, there exists a subsequence {Nk} and functions u, v ∈ Lp(QT ) such
that

uNk → u strongly in Lp(QT ), vNk ⇀ v weakly in Lp(QT )

for any p > 1. Moreover, by taking further subsequences if necessary (which again
denoted by Nk), we see that uNk → u a.e. in QT . Next we show that the limit function u
belongs to L2(0, T ;H1(Td)). For any test function ϕ ∈ C∞(Td), j = 1, ..., d and t ∈ [0, T ],
we have ∫

Td
uN (t, θ)∂Nj ϕ(θ)dθ = −

∫
Td
ϕ(θ)∂Nj u

N (t, θ)dθ

where ∂Nj is the discrete partial derivative on j-th direction defined by ∂Nj u(θ) :=

N [u(θ + ej/N)− u(θ)] for every u : Td → R. Taking limit along (Nk) on the above
identity, we see that ∂Nj u

N converges to the j-th partial derivative ∂ju in distributional
sense for every j = 1, ..., d. Moreover, since L2(Td)-norm of the discrete derivative
∂Nj u

N (t, ·) is bounded above by some constant independent of N in view of Lemma 5.7,
∂ju(t, ·) belongs to L2(Td) for every j = 1, ..., d and thus we obtain u ∈ L2(0, T ;H1(Td)).
Moreover, by the second equation of (3.1), we have∫∫

QT

uN (t, θ)vN (t, θ)dθdt ≤ 1

K

for every N ∈ N. Since uNk → u strongly in L2(QT ) and vNk ⇀ v weakly in L2(QT ) as k
tends to infinity, their product uNkvNk converges strongly in L1(QT ) to uv. Therefore,
taking limit along Nk on the above bound, we get uv = 0 a.e. in QT .

Next we let wN := uN − (vN )m/m for every N ∈ N. Note here that it is already shown
that wN converges weakly to some w along some subsequence Nk. We show that any
limit point w satisfies the weak form of the one-phase Stefan problem (7.2). To see this,
we first rearrange the reaction term of the first equation of (7.1) to the homogeneous
one, namely, we show for every t ∈ [0, T ] and x ∈ TdN , the absolute value of the difference

KuN (t, x)vN (t, x) · · · vN (t, x+ zm−1)−KuN (t, x)vN (t, x)m

converges to 0 as N tends to infinity. For simplicity we may assume m = 2 since for
the case m ≥ 3 it can be proven in a similar way. For z1 ∈ Zd, let {yj}j=0,...,|z1| be one
of minimal paths from the origin O of Zd to z1, namely yj ∈ Zd, y0 = O, y|z1| = z1 and
|yj+1 − yj | = 1 for j = 0, ..., |z1| − 1. Then, by the triangle inequality, we have∣∣KuN (t, x)vN (t, x)vN (t, x+ z1)−KuN (t, x)vN (t, x)2

∣∣
≤ K

|z1|−1∑
j=0

∣∣vN (t, x+ yj+1)− vN (t, x+ yj)
∣∣ ≤ K

N

|z1|−1∑
j=0

∣∣∇NvN (t, x+ yj)
∣∣

for every t ∈ [0, T ] and x ∈ TdN . Here we can see that the derivative of vN (t, x) has order
O(K) for N ∈ N since it was controlled by that of uN in view of the second equation
of (7.1). Indeed, by the second equation of (7.1), we have for every t ∈ [0, T ] and x ∈ TdN
that

vN (t, x) = vN (0, x)e−K
∫ t
0
uN (τ,x)dτ ,
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which implies that for every j = 1, ..., d the difference vN (t, x+ ej)− vN (t, x) is equals to

vN (0, x+ej)
(
e−K

∫ t
0
uN (τ,x+ej)dτ−e−K

∫ t
0
uN (τ,x)dτ

)
+
(
vN (0, x+ej)−vN (0, x)

)
e−K

∫ t
0
uN (τ.,x)dτ .

Therefore, since the function z 7→ e−z is Lipschitz continuous on [0,∞), Lemma 5.5 and
the assumption (A1) assures that ∇NvN (t, x) has order O(K2) as N tends to infinity.
According to this derivative estimate for vN , the above difference between the inhomo-
geneous product of vN ’s and the spatially-homogeneous one has order O(K3/N), which
converges to 0 as N tends to infinity by the assumption (A3)δ.

After rearranging the reaction term of the first equation of (7.1) to the homogeneous
one, we subtract the second equation multiplied by vN (t, x)m−1 from the first equation
to obtain

∂tw
N (t, x) = ∆NuN (t, x) +O(K3/N)

for every t ∈ [0, T ] and x ∈ TdN as N tends to infinity. Test ϕ ∈ H1(QT ) such that
ϕ(T, ·) ≡ 0 and integrate over QT to obtain the weak form (7.2) with wN instead of w
with an error term which vanishes as N tends to infinity. Then we take limit along the
subsequence (Nk) to get a weak solution w.

Finally, since it is known that the weak solution of (7.2) is unique (see [8]), above
convergence occurs along the full sequence and thus we complete the proof of Theo-
rem 7.1.

8 Case 3: Immovable interface

In this section we consider the semi-discretized reaction-diffusion system{
∂tu

N (t, x) = ∆NuN (t, x)−K(N)uN (t, x)vN (t, x)

∂tv
N (t, x) = −K(N)uN (t, x)uN (t, x+ z1) · · ·uN (t, x+ zm−1)vN (t, x)

(8.1)

where t ∈ [0, T ], x ∈ TdN and zi ∈ Zd, i = 1, ...,m − 1 with m > 1. For every N ∈ N, let
uN (t, θ) and vN (t, θ) be the macroscopic functions on QT = [0, T ]×Td defined by (3.2).
Then we have the following convergence of uN (t, θ) and vN (t, θ) as N tends to infinity.

Theorem 8.1. Assume (A1), (A3)δ and (B3) with some δ > 0. Let uN = uN (t, θ) and
vN = vN (t, θ) be defined by (3.2). Then there exist subsequences {uNk} and {vNk} of
{uN} and {vN}, respectively, and u, v, ζ such that

u, um/2 ∈ L∞(QT ) ∩ L2(0, T ;H1(Td)), v ∈ L∞(QT ), ζ ∈ H−1(QT ),

0 ≤ u ≤ 1, 0 ≤ v ≤ 1, uv = 0 a.e. in QT ,

ζ ≥ 0 in H−1(QT ), u(0, ·) = u0(·), v(0, ·) = v0(·)
(8.2)

and

uNk → u, (uNk)m/2 → um/2 strongly in Lp(QT ) and a.e. in QT , (8.3)

vNk ⇀ v weakly in Lp(QT ), (8.4)∣∣∣∇Nk(uNk)m/2
∣∣∣2 ∗⇀ ζ weakly∗ in H−1(QT ) (8.5)

for any p ≥ 2 as Nk tends to infinity. Moreover, u, v and ζ satisfy∫∫
QT

{
−
(
um

m
− v
)
ϕt +

2

m
u
m
2 ∇um2 · ∇ϕ

}
dθdt+

4(m− 1)

m2 H−1(QT )〈ζ, ϕ〉H1
0 (QT ) = 0

(8.6)
for all ϕ ∈ H1

0 (QT ).
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Proof. First we show (8.3). By the similar argument given in Lemma 7.2, we can show
the assertion for uN in view of Lemmas 5.6 and 5.7 with help of the Fréchet-Kolmogorov
theorem and we further obtain u ∈ L2(0, T ;H1(Td)). On the other hand, the assertion
for (uN )m/2 is proved in the same manner. Indeed, multiply (uN )m−1 on both sides of
the first equation of (8.1) to get

∂t(u
N )m/m = (uN )m−1∆NuN −K(uN )mvN .

Then, integrating the above identity over QT , integration by parts enables us to calculate∫∫
QT

∇N (uN )m−1 · ∇NuNdθdt

=
1

m

∫
Td

(
uN (0)m − uN (T )m

)
dθ −

∫∫
QT

K(uN )mvNdθdt ≤ 1

m

(8.7)

where in the last estimate we neglected the negative terms recalling the positivity of the
discrete solutions uN and vN . On the other hand, the integrand in the left-hand side of
the above display is close to 4m−2(m − 1)|∇N (uN )m/2|2 as N tends to infinity. Indeed,
for any α ∈ R, according to the mean value theorem for the function z 7→ zα, z ∈ R, for
every x ∈ TdN there exists ûNj (x) between uN (x) and uN (x+ ej) such that

∇NuN (x)α − αuN (x)α−1∇NuN (x) =
(
α∂Nj u

N (x)(ûNj (x)α−1 − uN (x)α−1)
)
j=1,...,d

.

In view of Lemma 5.5, the right-hand side has order O(K/N) and goes to zero as N
tends to infinity. By this line, we have that ∇N (uN )m−1 · ∇NuN is close to 4m−2(m −
1)|∇N (uN )m/2|2 in the sense of L1(QT )-norm as N tends to infinity. Therefore, according
to the estimate (8.7), we obtain

sup
N∈N

∫∫
QT

|∇N (uN )m/2|2dθdt <∞

so that um/2 ∈ L2(0, T ;H1(Td)). The weak convergence (8.4) is obvious since vN (t, θ)

takes value in [0, 1] for all t ∈ [0, T ] and θ ∈ Td.
Next we show (8.5). Since the H1(QT )-norm of uN is bounded uniformly in N ,

repeating the same argument conducted in preceding two sections, the reaction term
in the second equation of (8.1) can be rearranged to the spatially homogeneous one.
Namely, we have

∂tv
N (t, x) = −KuN (t, x)mvN (t, x) +O(K2/N).

After multiplying uN (t, x)m−1 to both sides of the first equation of (8.1), we subtract the
second equation from the first one to cancel the divergent reaction term. Then, after
hitting any test function ϕ ∈ H1

0 (QT ), integration by parts enables us to obtain∫∫
QT

[
−
(

(uN )m

m
− vN

)
ϕt +

2

m
(uN )

m
2 ∇N (uN )

m
2 · ∇Nϕ

]
dθdt

+

∫∫
QT

4(m− 1)

m2
|∇N (uN )m/2|2ϕdθdt+O(K2/N) = 0

(8.8)

where we used a chain rule for discrete gradient: for every α ∈ R and x ∈ TdN
|∇NuN (x)α − αuN (x)α−1∇NuN (x)| = O(K/N)

as N tends to infinity, which has already been proved in the above. Therefore there
exists a positive constant C such that∫∫

QT

|∇NuN |2ϕdθdt ≤ C‖ϕ‖H1
0 (QT ) +O(K2/N)
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for every ϕ ∈ H1
0 (QT ), which implies

sup
N∈N

‖|∇N (uN )m/2|2‖H−1(QT ) <∞

and thus we end proof of (8.5). Since any weak∗ limits of the sequence
{|∇N (uN )m/2|2}N∈N stay non-negative, combining the general estimates stated in Sec-
tion 4, all properties in (8.2) clearly hold.

Finally, taking limit in (8.8) along the common subsequence (Nk) we obtained above,
it follows that u, v and ζ satisfy the weak form (8.6) and hence we complete the proof.

The weak form (8.6) is the same as the one which was derived in [9]. They identify ζ
as |∇um/2|2 and further characterize behavior of the limiting interface as follows.

Proposition 8.2 ([9]). Assume the same conditions as in Theorem 8.1. Let u, v and
ζ be the functions given in Theorem 8.1 and assume there exists a positive constant
mv such that v(0, ·) ≥ mv in supp(v(0, ·)). Suppose that Γ(t) is a smooth, closed and
orientable hypersurface in Td and that Γ(t) smoothly moves with a normal speed V from
Ωu(t) to Ωv(t). Moreover, suppose that u (resp. v) is smooth in QuT (resp. QvT ) and that
ζ ∈ L1

loc(QT ). Then u, v and ζ satisfy the followings:
V ≡ 0 on Γ,

∂tu = ∆u in (0, T ]× Ωu(0),

u = 0 on (0, T ]× Γ(0),

v = v0, ζ = |∇um/2|2 in QT .
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