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Abstract

We analyse the metastable behaviour of the dilute Curie–Weiss model subject to a
Glauber dynamics. The model is a random version of a mean-field Ising model, where
the coupling coefficients are Bernoulli random variables with mean p ∈ (0, 1). This
model can be also viewed as an Ising model on the Erdős–Rényi random graph with
edge probability p. The system is a Markov chain where spins flip according to a
Metropolis dynamics at inverse temperature β. We compute the average time the
system takes to reach the stable phase when it starts from a certain probability
distribution on the metastable state (called the last-exit biased distribution), in the
regime where N → ∞, β > βc = 1 and h is positive and small enough. We obtain
asymptotic bounds on the probability of the event that the mean metastable hitting
time is approximated by that of the Curie–Weiss model. The proof uses the potential
theoretic approach to metastability and concentration of measure inequalities.
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1 Introduction and main results

The randomly dilute Curie–Weiss model (RDCW) is a classical model of a disordered
ferromagnet and was studied, e.g. in Bovier and Gayrard [6]. It generalises the standard
Curie–Weiss model (CW) in that the fixed interactions between each pair of spins is re-
placed by independent, identically distributed, random ferromagnetic couplings between
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Glauber dynamics for the RDCW model

any pair of spins. In Bovier and Gayrard [6] it is proven that the RDCW free energy
converges, in the thermodynamic limit, to that of the CW model, under some assumptions
on the coupling distribution. Their result relies on the fact that the RDCW Hamiltonian
can be approximated by that of the CW model up to a small perturbation which can be
uniformly bounded in high probability. In the last decade the RDCW model have gained
again some attention and various results at equilibrium have been proven, both in the
annealed and quenched case. De Sanctis and Guerra [9] give an exact expression of
the free energy first in the high temperature and low connectivity regime, and then
at zero temperature. The control of the fluctuations of the magnetisation in the high
temperature limit is addressed by De Sanctis [8], while recently Kabluchko, Löwe and
Schubert [15] prove a quenched Central Limit Theorem for the magnetisation in the
high temperature regime.

One of the features which make these random systems with “bond disorder” very
appealing is their deep connection with the theory of random graphs, which attracted
great interest in the last years due to their application to real-world networks. Indeed,
if the random couplings are chosen as i.i.d. Bernoulli random variables with mean
p, one can view the model as a spin system on an Erdős–Rényi random graph with
fixed edge probability p, which makes it a dense graph. There has been an extensive
study of the Ising model at equilibrium on different kinds of random graphs, e.g. in
Dembo, Montanari [10] and Dommers, Giardinà, van der Hofstad [14], where several
thermodynamic quantities were analysed when the graph size tends to infinity. These
results were all obtained for sparse graphs which have a locally tree-like structure. We
refer to van der Hofstad [17] for a general overview of these results.

In contrast to the substantial body of literature on the equilibrium properties of the
RDCW model, much less is known about its dynamical properties. The present paper
focuses on the phenomenon of metastability for the RDCW model where, for simplicity,
the couplings are Bernoulli distributed with fixed parameter p ∈ (0, 1), independent of
the number of vertices N , and the system evolves according to a Glauber dynamics.
In particular, we give a precise estimate of the mean transition time from a certain
probability distribution on the metastable state (called the last-exit biased distribution)
to the stable state, when the external magnetic field is small enough and positive and
when N tends to infinity. We obtain asymptotic bounds on the probability of the event
that the average time is close to the CW one times some constants of order 1 which
depend on the parameters of the system.

In the context of metastability for interacting particle systems on random graphs,
progress has been made for the case of the random regular graph, analysed by Dom-
mers [13] and for the configuration model, studied by Dommers, den Hollander, Jo-
vanovski, and Nardi [12], both subject to Glauber dynamics, in the limit as the temper-
ature tends to zero and the number of vertices is fixed. Both are dealing with sparse
random graphs. In [11] den Hollander and Jovanovski investigate the same model con-
sidered in the present paper and obtain estimates on the average crossover time for
fixed temperature in the thermodynamic limit. They show that, with high probability,
the exponential term is the same as in the CW model, while the multiplicative term
is polynomial in N . Their analysis relies on coupling arguments and on the pathwise
approach to metastability. This method uses large deviations techniques in path space
and focuses on properties of typical paths in the spirit of Freidlin-Wentzell theory. We
refer to the classical book by Olivieri and Vares [18] for an overview on this method.

In contrast, in the present paper, we use the potential theoretic approach initiated by
Bovier, Eckhoff, Gayrard and Klein in a series of papers [3, 4, 5] (see the monograph of
Bovier and den Hollander [2] for an in-depth review of this as well as other approaches).
This method gives less information on the evolution of the system, but leads to more
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precise estimates of the metastable transition time. It has been successfully applied
to a large variety of systems such as the random field CW model, where the external
magnetic field is given by i.i.d. random variables, first by Bovier, Eckhoff, Gayrard and
Klein in [3] and later by Bianchi, Bovier and Ioffe in [1]. Furthermore, inspired by the
results of Bovier and Gayrard [6], namely that the equilibrium properties of the RDCW
model are very close to those of the CW model, we observe that, using Talagrand’s
concentration inequality, the mesoscopic measure can be expressed in terms of that of
CW.

Before stating our results we give a precise definition of the model.

1.1 Glauber dynamics for the RDCW model

Let [N ] = {1, ..., N}, N ∈ N, be a set of vertices. To each vertex i ∈ [N ] an Ising spin
σi with values in {−1,+1} is associated. We denote by σ = {σi : i ∈ [N ], σi ∈ {−1,+1}} a
spin configuration and we define the state space SN = {−1,+1}N to be the set of all such
configurations σ. We fix a probability p ∈ (0, 1). Then the randomly dilute Curie–Weiss
model (RDCW) has the following random Hamiltonian HN : SN → R

HN (σ) = − 1

Np

∑
1≤i<j≤N

Jijσiσj − h
∑
i∈[N ]

σi, (1.1)

where h ∈ R represents an external constant magnetic field, while Jij/Np is a ferromag-
netic random coupling. In particular, {Jij}i,j∈[N ] is a sequence of i.i.d. random variables
with Jij ∼ Ber(p) and Jij = Jji.

Let us denote by PJ the joint probability distribution of the the random couplings Jij
with i, j ∈ [N ] and by E the corresponding mean value.

The RDCW model can be seen as the Ising model on the Erdős–Rényi random graph
with vertex set [N ], edge set E and edge probability p ∈ (0, 1) (see van der Hofstad [16]
for a general overview on random graphs). In this picture the Hamiltonian can also be
written as

HN (σ) = − 1

Np

∑
{i,j}∈E

σiσj − h
∑
i∈[N ]

σi. (1.2)

The Gibbs measure associated to the random Hamiltonian HN is

µβ,N (σ) =
e−βHN (σ)

Zβ,N
, σ ∈ SN , (1.3)

where β ∈ (0,∞) is the inverse temperature and the partition function is defined as

Zβ,N =
∑
σ∈SN

e−βHN (σ). (1.4)

The Gibbs measure µβ,N is the unique invariant (and reversible) measure for the
(discrete time) Glauber dynamics on SN with Metropolis transition probabilities

pN (σ, σ′) =


1
N exp

(
− β[HN (σ′)−HN (σ)]+

)
, if σ ∼ σ′,

1−
∑
η 6=σ pN (σ, η), if σ = σ′,

0, else,

(1.5)

where σ ∼ σ′ means ||σ − σ′|| = 2 with || · || the `1-norm on SN , i.e. σ ∼ σ′ if and only
if σ′ is obtained from σ by a single spin flip. We denote this Markov chain by {σ(t)}t≥0

and write Pν for the law of the process σ(t) with initial distribution ν conditioned on the
realisation of the random couplings. Analogously, Eν is the quenched expectation with
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respect to the Markov chain with initial distribution ν. Moreover, we set Pσ = Pδσ . For
any subset A ⊂ SN we define the hitting time of A as

τA = inf{t > 0 : σt ∈ A}. (1.6)

Notice that HN , µβ,N and pN are random variables, with respect to the random
realisation of the random variables {Jij}i,j∈[N ]. In this paper the results involving these
random variables hold pointwise, namely for every realisation of {Jij}i,j∈[N ], unless we
specify it differently, as in our main theorems.

1.2 The Curie–Weiss model

Before stating the main results, we recall some results for the mean-field Curie–Weiss
(CW) model (see e.g. Bovier and den Hollander [2, Section 13] and Bovier, Eckhoff,
Gayrard and Klein [3]). The CW Hamiltonian H̃N can be obtained taking the mean value
of (1.1) (namely, the first equality in (1.8) below). A simplifying feature of the CW model
is that its Hamiltonian depends on the configuration σ ∈ SN only through the empirical
magnetisation mN : SN → ΓN defined as

mN (σ) =
1

N

N∑
i=1

σi ∈ ΓN =
{
− 1,−1 + 2

N , ..., 1−
2
N , 1

}
. (1.7)

From now on we will drop the dependency on N from the magnetisation. Then we can
write

H̃N (σ) = − 1

N

∑
1≤i<j≤N

σiσj − h
∑
i∈[N ]

σi = −N
(

1
2m(σ)2 + hm(σ)

)
(1.8)

and we can define, for any m ∈ ΓN ,

E(m) = − 1
2m

2 − hm, (1.9)

obtaining
H̃N (σ) = NE(m(σ)). (1.10)

The associated Gibbs measure is

µ̃β,N (σ) =
e−βNE(m(σ))

Z̃β,N
, σ ∈ SN , (1.11)

where Z̃β,N =
∑
σ∈SN e−βH̃N (σ) is the normalising partition function.

We denote the law of m(σ) under the Gibbs measure by

Q̃β,N = µ̃β,N ◦m−1. (1.12)

Then

Q̃β,N (m) =
e−βNE(m)

Z̃β,N

∑
σ∈SN

1m(σ)=m =
e−βNE(m)

Z̃β,N

(
N

1+m
2 N

)
=

e−βNfβ,N (m)

Z̃β,N
, (1.13)

where

fβ,N (m) = E(m) + β−1IN (m) = −m
2

2
− hm+ β−1IN (m) (1.14)

is the finite volume free energy, while the entropy of the system is given by the following
combinatorial coefficient

IN (m) = − 1

N
log

(
N

1+m
2 N

)
(1.15)

EJP 26 (2021), paper 47.
Page 4/38

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP610
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Glauber dynamics for the RDCW model

and it has the following properties: as N →∞,

IN (m)→ I(m) ≡ 1−m
2

log
1−m

2
+

1 +m

2
log

1 +m

2
, (1.16)

more precisely,

IN (m)− I(m) =
1

2N
ln

1−m2

4
+

lnN + ln(2π)

2N
+O

(
1

N2

)
. (1.17)

As reference see for example Bovier, Eckhoff, Gayrard and Klein [3, (7.18)].

Notice that the previous definitions imply

µ̃β,N (σ) = Q̃β,N (m(σ)) eNIN (m(σ)). (1.18)

We use the notation fβ(m) = limN→∞ fβ,N (m). We refer to Bovier and den Hollan-
der [2, (13.2.6)] for more details on the following result.

Lemma 1.1. For m ∈ (−1, 1),

e−βNfβ,N (m) = e−βNfβ(m)(1 + o(1))

√
2

πN(1−m2)
(1.19)

and for m ∈ {1,−1}, fβ,N (m) = fβ(m).

Remark 1.2. Comparing our definitions and the literature (e.g. Bovier and den Hol-
lander [2, Section 13.1]), one notices that the Gibbs measure is often defined with an
additional factor 2−N , corresponding to the reference measure. More precisely, the
Gibbs measure would be µ̃β,N (σ) = 1

Z̃β,N
e−βNE(m(σ))2−N , where the partition function

would be defined by
∑
σ∈SN e−βH̃N (σ)2−N . We preferred to discard the 2−N from our

definitions. Therefore, for consistency, our definition of IN differs from the classical one
by a factor 2−N inside the logarithm, yielding a difference of log(2) in the limit in (1.16)
with respect to Bovier and den Hollander [2, (13.1.14)] or Bovier, Eckhoff, Gayrard and
Klein [3, (7.17)].

We consider the Glauber dynamics associated to the CW Hamiltonian in analogy with
(1.5) and with transition probabilities p̃N (σ, σ′). A particular feature of this model is that
the image process m(t) ≡ m(σ(t)) of the Markov process σ(t) under the map m is again
a Markov process on ΓN , with transition probabilities

r̃N (m,m′) =


exp(−βN [E(m′)− E(m)]+) (1−m)

2 if m′ = m+ 2
N ,

exp(−βN [E(m′)− E(m)]+) (1+m)
2 if m′ = m− 2

N ,

0 else.

(1.20)

The equilibrium CW model displays a phase transition. Namely, there is a critical
value of the inverse temperature βc = 1 such that, in the regime β > βc, h > 0 and small,
the free energy fβ(m) is a double-well function with local minimisers m−,m+ and saddle
pointm∗. They are the solutions of equationm = tanh(β(m+h)). Since fβ(m−) > fβ(m+),
the phase with m− represents the metastable state, while m+ represents the stable state
for the system. Define m−(N),m∗(N),m+(N) as the closest points in ΓN to m−,m∗,m+

respectively, with respect to the Euclidean distance on R. {m−(N),m+(N)} form a
metastable set in the sense of Definition 8.2 of Bovier and den Hollander [2]. Let ECW

m−(N)

be the expectation with respect to the Markov process m(t) with transition probabilities
r̃N and starting at m−(N). Then the following theorem holds.
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Theorem 1.3. For β > 1 and h > 0 small enough, as N →∞,

ECW
m−(N)[τm+(N)] = exp

(
βN [fβ(m∗)− fβ(m−)]

)
× π

1 +m∗

√
1−m∗2

1−m2
−

N(1 + o(1))

β

√
f ′′β (m−)

(
−f ′′β (m∗)

) . (1.21)

As a reference see Bovier and den Hollander [2, Theorem 13.1]. The difference of
sign in the denominator with respect to our statement is due to the fact that their result
holds for h < 0, while ours for h > 0.

We conclude this section by giving the explicit formula of the capacity for the CW
model. The definition of capacity is given in (1.31), while its relation with the mean
hitting time is given by the key relation (1.30). Let us denote, for any subset U of ΓN ,
the set of configurations with magnetisation in U by

SN [U ] = {σ ∈ SN : m(σ) ∈ U} (1.22)

and for simplicity, for any m ∈ ΓN , the set of configurations with given magnetisation m
by SN [m]. Notice that SN [m] has cardinality e−NIN (m), where IN (m) is defined in (1.15).

Then, the following formula,

capCW(SN [m−(N)],SN [m+(N)]) =
1

Z̃β,N
e−βNfβ(m∗)

√
β
(
−f ′′β (m∗)

)
πN

√
1 +m∗

1−m∗
(1 + o(1)),

(1.23)
follows from standard arguments (see e.g. techniques used in the proof of Bovier and
den Hollander [2, Theorem 13.1]).

1.3 Main results

For any A,B ⊂ SN disjoint, we define the so-called last-exit biased distribution on A
for the transition from A to B as

νA,B(σ) =
µβ,N (σ)Pσ(τB < τA)∑
σ∈A µβ,N (σ)Pσ(τB < τA)

, σ ∈ A. (1.24)

Since we are going to use νA,B on the sets SN [m−(N)],SN [m+(N)] defined above, we
introduce the following simplified notation

νNm−,m+
= νSN [m−(N)],SN [m+(N)]. (1.25)

The following theorem gives a description of the dynamical properties of the RDCW
model in the metastable regime where h is positive and small enough, β > βc = 1

(βc is the critical inverse temperature for the RDCW model) and N is going to infinity.
We provide an estimate on the mean time it takes to the system, starting with initial
distribution νNm−,m+

, to reach SN [m+(N)]. More precisely, we estimate, in the limit as
N →∞, its ratio with the mean metastable exit time for the CW model to go from m−(N)

to m+(N), providing constant upper and lower bounds independent of N . Because of
the random interaction, the result is given in the form of tail bounds.

After recalling that notation PJ and Eν was introduced in Section 1.1, while ECW
m−(N)

was introduced in Section 1.2, we are ready to formulate our main theorem.

Theorem 1.4 (Mean metastable exit time). For β > 1, h > 0 small enough and for s > 0,
there exist absolute constants k1, k2 > 0 and C1(p, β) < C2(p, β, h) independent of N ,

EJP 26 (2021), paper 47.
Page 6/38

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP610
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Glauber dynamics for the RDCW model

such that

lim
N↑∞

PJ

(
C1e−s(1 + o(1)) ≤

EνNm−,m+

[
τSN [m+(N)]

]
ECW
m−(N)

[
τm+(N)

] ≤ C2es(1 + o(1))

)
≥ 1− k1e−k2s

2

.

(1.26)

The quantities C1 and C2 in the previous theorem can be explicitly written. Set

α =
β2(1− p)

4p
, κ = α+ max

η∈(0,1)

log η −
β

√
2α+ log

(
c1

(1−η)2

)
p
√

2c2

 , (1.27)

where c1, c2 > 0 are absolute constants coming from Theorem 2.8. It is easy to see that
κ < α. With this notation

C1 = C1(β, h, p) = e−2β(1+h)−α+κ, (1.28)

C2 = C2(β, h, p) = e2β(1+h)+2α. (1.29)

1.4 Proof of the main theorem

The proof of Theorem 1.4 is based on the potential theoretic approach to metastability,
which turns out to be a rather powerful tool to analyse the main object we are interested
in, i.e. the mean hitting time of SN [m+(N)] for the system with initial distribution νNm−,m+

.
The general ideas of this approach were first introduced in a series of papers by Bovier,
Eckhoff, Gayrard and Klein [3, 4, 5]. We refer to Bovier and den Hollander [2] for an
overview on this method.

The crucial formula in the study of metastability is given by the following relation
linking mean hitting time and capacity of two sets A,B ∈ SN , which can be found in
Bovier and den Hollander [2, Eq. (7.1.41)]

EνA,B [τB ] =
∑
σ∈A

νA,B(σ)Eσ[τB ] =
1

cap(A,B)

∑
σ′∈SN

µβ,N (σ′)hAB(σ′), (1.30)

where the capacity, as in Bovier and den Hollander [2, (7.1.39)], is defined by

cap(A,B) =
∑
σ∈A

µβ,N (σ)Pσ(τB < τA). (1.31)

The function hAB is called harmonic function and has the following probabilistic inter-
pretation

hAB(σ) =

{
Pσ(τA < τB) σ ∈ SN \ (A ∪B),

1A(σ) σ ∈ A ∪B. (1.32)

We refer to Bovier and den Hollander [2, Section 7.1.2] for further details on the latter
quantities.

By (1.30), in order to estimate mean hitting times one needs estimates both on the
capacity and on the harmonic function.

We prove bounds on the capacity of two sets SN [m1],SN [m2], stated in the two
following theorems.

Theorem 1.5. For any m1 6= m2 ∈ ΓN and any s > 0, there exist absolute constants
k1, k2 > 0 such that

PJ

(
Zβ,N cap (SN [m1],SN [m2])

Z̃β,N capCW (SN [m1],SN [m2])
≤ es+2β(1+h)+α(1 + o(1))

)
≥ 1− k1e−k2s

2

, (1.33)

asymptotically as N →∞, where α is defined in (1.27).
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Theorem 1.6. For any m1 6= m2 ∈ ΓN and any s > 0, there exist absolute constants
k1, k2 > 0 such that

PJ

(
Zβ,N cap (SN [m1],SN [m2])

Z̃β,N capCW (SN [m1],SN [m2])
≥ e−(s+2β(1+h)+α)(1 + o(1))

)
≥ 1− k1e−k2s

2

, (1.34)

asymptotically as N →∞, where α is defined in (1.27).

We state asymptotic upper and lower bounds on the sum over the harmonic function
in the numerator of (1.30) in the following proposition. We used the simplified notation

hNm−,m+
= hSN [m−(N)],SN [m+(N)]. (1.35)

Theorem 1.7. For any s > 0, there exist absolute constants k1, k2 > 0 such that

PJ

 ∑
σ∈SN

µβ,N (σ)hNm−,m+
(σ) ≤ eα+s exp

(
− βNfβ(m−)

) (
1 + o(1)

)
Zβ,N

√
(1−m2

−)βf ′′β (m−)

 ≥ 1− k1e−k2s
2

,

(1.36)

PJ

 ∑
σ∈SN

µβ,N (σ)hNm−,m+
(σ) ≥ eκ−s

exp
(
− βNfβ(m−)

) (
1 + o(1)

)
Zβ,N

√
(1−m2

−)βf ′′β (m−)

 ≥ 1− k1e−k2s
2

,

(1.37)
asymptotically as N →∞, and where α and κ are defined in (1.27).

We conclude this section using Theorems 1.5-1.7, to prove the main theorem. First,
we introduce the following notation which will be extensively used:

A
P (s)

R B is equivalent to PJ(A R B) ≥ 1− k1e−k2s
2

, (1.38)

for all s > 0 and for some absolute constants k1, k2 > 0, whose values might change
along the paper.

Proof of Theorem 1.4 . We prove here only the upper bound, as the lower bound follows
similarly. More precisely, we prove

EνNm−,m+

[
τSN [m+(N)]

]
ECW
m−(N)

[
τm+(N)

] P (s)

≤ C2es. (1.39)

We start from (1.30), which in our case reads

EνNm−,m+

[
τSN [m+(N)]

]
=

∑
σ∈SN µβ,N (σ)hNm−,m+

(σ)

cap (SN [m−(N)],SN [m+(N)])
. (1.40)

From (1.36) we obtain

EνNm−,m+

[
τSN [m+(N)]

] P (s)

≤
eα+s exp

(
− βNfβ(m−)

)
(1 + o(1))

Zβ,N cap(SN [m−(N)],SN [m+(N)])
√

(1−m2
−)βf ′′β (m−)

.

(1.41)
Via the lower bound on the capacity from Theorem 1.6, we obtain

EνNm−,m+

[
τSN [m+(N)]

]
P (s)

≤ e2s+2β(1+h)+2α

√
1−m∗
1 +m∗

πN exp
(
βN [fβ(m∗)− fβ(m−)]

)
β
√

(1−m2
−)f ′′β (m−)

(
− f ′′β (m∗)

) (1 + o(1))

= e2s+2β(1+h)+2αECW
m−(N)[τm+(N)],

(1.42)

where we used (1.23) and Theorem 1.3.
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1.5 Outline

The remainder of this paper is organised as follows. In Section 2 we use the powerful
Talagrand’s concentration inequality to obtain bounds on the equilibrium measure of
the RDCW model. These bounds allow us to write the RDCW mesoscopic measure in
terms of the deterministic CW one, times a random factor which is the exponential
of a sub-Gaussian random variable. In Section 3 we give the proof of Theorems 1.5
and 1.6 via two dual variational principles, the Dirichlet and the Thomson principles,
which are the building blocks of the potential theoretic approach to metastability. In
obtaining upper and lower bounds on the capacity, the main strategy is to use the results
of Section 2 in order to recover the capacity of the CW model. In Section 4 we prove
Theorem 1.7, i.e. we compute the asymptotics of the numerator in the formula for the
mean hitting time using estimates on the harmonic function.

2 Equilibrium analysis via Talagrand’s concentration inequality

In this section we prove that the equilibrium mesoscopic measure of the RDCW
model is in fact very close to that of the CW model. This is done in two steps. First, we
prove that the difference between the random free energy at fixed magnetisation and
its average can be controlled via Talagrand’s concentration inequality. Second, we find
upper and lower bounds on the aforementioned average by estimating first and second
moments of the partition function of the RDCW model at fixed magnetisation.

2.1 Mesoscopic measure and closeness to the CW model

We start by analysing the equilibrium measure of the RDCW model. The aim is
to express the equilibrium measure µβ,N , defined in (1.3), in terms of the empirical
magnetisation in order to obtain a mesoscopic description, as we did for the CW model
in Section 1.2. Let us define the measure Qβ,N on ΓN , and let the partition function be
its normalisation

Qβ,N (·) = µβ,N ◦m−1(·) =
∑

σ∈SN [·]

µβ,N (σ), Zβ,N =
∑
m∈ΓN

Qβ,N (m). (2.1)

A priori the Hamiltonian of the RDCW model is not only depending on m, but it depends
of course on the whole spin configuration. Nonetheless, we will see later in this section
that the mesoscopic measure Qβ,N can be written in terms of the mesoscopic measure
Q̃β,N of the standard CW model.

E[HN (σ)] = − 1

Np

∑
i<j

E[Jij ]σiσj − h
∑
i

σi = − p

Np

∑
i<j

σiσj − h
∑
i

σi = H̃N (σ). (2.2)

Therefore, we can split the Hamiltonian into the mean-field part and the remaining
random part obtaining

HN (σ) = E[HN (σ)] + ∆N,p(σ), (2.3)

where, introducing the notation Ĵij = Jij − p,

∆N,p(σ) = HN (σ)− H̃N (σ) = − 1

Np

∑
i<j

Ĵijσiσj . (2.4)

Note that ∆N,p is a random variable with zero mean. In order to simplify the notation, we
drop from now on the dependence on N and p, from ∆N,p. Next, we write the mesoscopic
measure as

Qβ,N (m) =
1

Zβ,N
e−βNE(m) ·

∑
σ∈SN [m]

e−β∆(σ), (2.5)
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where E(m) is defined in (1.8).
We will now focus on proving bounds for functions of

∑
σ∈SN [m] e−β∆(σ) more general

than Qβ,N (m). These results will be fundamental to prove our main theorem in the
following sections. We will come back to Qβ,N at the end of this section, proving its
closeness to the CW correspondent Q̃β,N as a consequence of those general results.

Let us introduce the following notation, where we drop the dependence on β for
simplicity

ZN,g =
∑
m∈ΓN

g(m)
∑

σ∈SN [m]

e−β∆(σ) = exp (NpN,g) exp
(
N [FN,g − pN,g]

)
, (2.6)

FN,g =
1

N
logZN,g, (2.7)

pN,g = E(FN,g), (2.8)

where g : ΓN → [0,∞) is a function which may depend on N .
We are interested in finding precise estimates on ZN,g by writing it in terms of the

entropic exponential term e−NIN (m) times some random factor which takes into account
the randomness of the couplings. We notice that ZN,g is the product of a deterministic
factor eNpN,g and a random factor eN(FN,g−pN,g).

We first characterise the random variable N(FN,g − pN,g) in the following Proposition.

Proposition 2.1. For any β, t > 0,

PJ

(
|N(FN,g − pN,g)| ≥ t

)
≤ c1 exp

(
− γt2

)
, (2.9)

where γ ∝ p2

β2 .

The previous result intuitively means that the random FN,g is in fact very well
concentrated around its mean pN,g.

As a second step we provide asymptotic bounds on the average of FN,g, i.e. the
deterministic term pN,g.

Lemma 2.2. Asymptotically, as N →∞,

pN,g ≤
α

N
+

1

N
log

( ∑
m∈ΓN

g(m) exp
(
−NIN (m)

))
+ o

(
1

N

)
, (2.10)

where IN (m) is defined in (1.15) and α in (1.27).

Lemma 2.3. Asymptotically, as N →∞,

pN,g ≥
κ

N
+

1

N
log

( ∑
m∈ΓN

g(m) exp
(
−NIN (m)

))
+ o

(
1

N

)
, (2.11)

where IN (m) is defined in (1.15) and κ in (1.27).

Proposition 2.1 together with Lemmas 2.2 and 2.3 imply the following result.

Proposition 2.4. Asymptotically, as N →∞, we have

ZN,g ≤ eα

( ∑
m∈ΓN

g(m) exp
(
−NIN (m)

))
exp

[
N(FN,g − pN,g)

]
(1 + o(1)) , (2.12)

and

ZN,g ≥ eκ

( ∑
m∈ΓN

g(m) exp
(
−NIN (m)

))
exp

[
N(FN,g − pN,g)

]
(1 + o(1)) , (2.13)
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where ZN,g is defined in (2.6), α and κ in (1.27), and IN (m) in (1.15). Moreover,
N(FN,g − pN,g) is a sub-Gaussian random variable with variance

Var
[
N(FN,g − pN,g)

]
≤ c β2

p2
, (2.14)

where c is a positive constant.

We prove Proposition 2.1 in Section 2.2, and Lemmas 2.2 and 2.3 in Section 2.3.
We are ready to state the main result of this section, as a corollary of Proposition 2.1

and Proposition 2.4.

Corollary 2.5. Asymptotically, as N →∞, using notation (1.38), the following bounds
hold for any β > 0 and any function g : ΓN → [0,∞)∑

m∈ΓN

g(m)
∑

σ∈SN [m]

e−β∆(σ)
P (s)

≤ es+α

( ∑
m∈ΓN

g(m) exp
(
−NIN (m)

))
(1 + o(1)) , (2.15)

∑
m∈ΓN

g(m)
∑

σ∈SN [m]

e−β∆(σ)
P (s)

≥ e−s+κ

( ∑
m∈ΓN

g(m) exp
(
−NIN (m)

))
(1 + o(1)) , (2.16)

where α and κ are defined in (1.27), IN (m) in (1.15) and ∆(σ) in (2.4).

Proof. By Proposition 2.1 we obtain, for any fixed s > 0,

exp
[
N(FN,g − pN,g)

] P (s)

≤ es and exp
[
N(FN,g − pN,g)

] P (s)

≥ e−s, (2.17)

where k1, k2 > 0 are absolute constants.
To conclude the proof it is sufficient to use the definition of ZN,g (2.6) and Proposi-

tion 2.4.

Remark 2.6. The exact same statement of Corollary 2.5 holds replacing e−β∆(σ) with
e β∆(σ). The proof remains the same: the Lipschitz constant for the Talagrand concen-
tration inequality (in Section 2.2) is the same and the change of sign, being squared,
disappears from (2.30) onwards.

We conclude this section with an immediate application of Corollary 2.5 which
states the closeness of the random mesoscopic measure Qβ,N to the correspondent
deterministic CW quantity Q̃β,N . This result will be widely used in Section 4.

Corollary 2.7. Asymptotically, as N →∞, using notation (1.38), the following bounds
hold for any fixed s > 0 and any function ḡ : ΓN → [0,∞)∑

m∈ΓN

ḡ(m)Qβ,N (m)
P (s)

≤ es+α
Z̃β,N
Zβ,N

( ∑
m∈ΓN

ḡ(m) Q̃β,N (m)

)
(1 + o(1)) , (2.18)

∑
m∈ΓN

ḡ(m)Qβ,N (m)

P (s)

≤ es+α
1

Zβ,N

 ∑
m∈ΓN\{1,−1}

ḡ(m) exp
(
− βNfβ(m)

)√ 2

πN(1−m2)

 (1 + o(1))

+ es+α
1

Zβ,N

 ∑
m∈{1,−1}

ḡ(m) exp
(
− βNfβ(m)

) (1 + o(1)) ,

(2.19)

where α and κ are defined in (1.27).

EJP 26 (2021), paper 47.
Page 11/38

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP610
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Glauber dynamics for the RDCW model

Proof. Using (2.5) we obtain∑
m∈ΓN

ḡ(m)Qβ,N (m) =
1

Zβ,N

∑
m∈ΓN

ḡ(m) e−βNE(m)
∑

σ∈SN [m]

e−β∆(σ). (2.20)

Now we can apply the upper bound in Corollary 2.5, with g(m) = 1
Zβ,N

ḡ(m) e−βNE(m),
to the right hand side of (2.20). We conclude the proof of (2.18) using the definition of
Q̃β,N (1.13) and (1.14).

(2.19) follows by (2.18) simply applying Lemma 1.1.

2.2 Sub-Gaussian bounds on the random term

Proposition 2.1 follows from Talagrand’s concentration inequality, which we cite for
completeness in the version of Tao [20, Theorem 2.1.13].

Theorem 2.8 (Talagrand concentration inequality). Let G : RM → R be a 1-Lipschitz and
convex function. Let M ∈ N, X = (X1, . . . , XM ), with Xi be independent r.v., uniformly
bounded by K > 0, i.e. |Xi| ≤ K, for every 1 ≤ i ≤M . Then, for any t ≥ 0,

P
(
|G(X)− EG(X)| ≥ tK

)
≤ c1 exp

(
− c2t2

)
, (2.21)

with positive absolute constants c1, c2.

Proof of Proposition 2.1. We can apply Theorem 2.8 to the free energies FN,g as a func-
tion of the N2 coupling constants Ĵij . Indeed it is standard to see that FN,g is convex and
Lipschitz continuous with constant β

Np
√

2
(see e.g. Talagrand [19, Corollary 2.2.5]). Thus,

applying Theorem 2.8 for G = FN,g

(
β

Np
√

2

)−1

and K = 1, after defining t′ = t β

Np
√

2
we

obtain, for some positive constants c1, c2 and for any t′ ≥ 0,

PJ

(
N |FN,g − pN,g| ≥ t′

)
≤ c1 exp

(
− c2

2p2

β2
t′2

)
, (2.22)

concluding the proof of (2.9) and hence Proposition 2.1.

2.3 Asymptotic bounds on the deterministic term

In this section we prove first the upper bound on pN,g (Lemma 2.2) and then the lower
bound (Lemma 2.3). The upper bound is obtained by estimates on the first moment of the
random partition function ZN,g, while the lower bound is in the spirit of Talagrand [19,
Theorem 2.2.1] and is more delicate. We will see that it involves also estimates on the
second moment of the random partition function.

Proof of Lemma 2.2. Observing that {Ĵij}i,j∈[N ] defined in (2.4) are i.i.d. random vari-

ables such that E Ĵij = 0, we easily obtain

E[ZN,g] =
∑
m∈ΓN

g(m)
∑

σ∈SN [m]

E

exp

 β

Np

∑
i<j

Ĵijσiσj


=
∑
m∈ΓN

g(m)
∑

σ∈SN [m]

∏
i<j

E

(
exp

[
β

Np
Ĵijσiσj

])
.

(2.23)

In order to find estimates for (2.23), we first define

Φ(x) := E [exp(xĴij)], (2.24)
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which is a function independent of i, j, being {Ĵij}i,j i.i.d., with first and second deriva-
tives

Φ′(0) = E Ĵij = 0, (2.25)

Φ′′(0) = E Ĵ2
ij = p(1− p). (2.26)

Performing a Taylor expansion of Φ we get

Φ(x) = Φ(0) + xΦ′(0) +
x2

2
Φ′′(0) + o(x2) = 1 +

x2

2
p(1− p) + o(x2). (2.27)

Thus, we can exponentiate Φ(x) to obtain

Φ(x) = exp

(
log
(
Φ(x)

))
= exp

(
x2

2
p(1− p) + o(x2)

)
, (2.28)

where we used the expansion log(1 + x) = x + o(x). Therefore, for any sequence of
coefficients x2

ij which are independent of i, j and σ, we have the following∑
m∈ΓN

g(m)
∑

σ∈SN [m]

∏
i<j

E
[

exp(xij Ĵij)
]

=
∑
m∈ΓN

g(m)
∑

σ∈SN [m]

∏
i<j

Φ(xij)

=
∑
m∈ΓN

g(m)
∑

σ∈SN [m]

∏
i<j

exp

(
x2
ij

2
p(1− p) + o(x2

ij)

)

=
∑
m∈ΓN

g(m) e−NIN (m) exp

(
x2
ij

2
p(1− p) + o(x2

ij)

)N(N−1)/2

=
∑
m∈ΓN

g(m) e−NIN (m) exp

(
x2
ijp(1− p)

N(N − 1)

4
+ o

(
x2
ijN(N − 1)

))
,

(2.29)

asymptotically, for xij → 0, where the third equality holds only if x2
ij is independent of

i, j and σ. Moreover, we used that the cardinality of SN [m] is e−NIN (m), where IN (m) is
defined in (1.15), and the cardinality of {(i, j) ∈ [N ]2 : i < j} is N(N−1)

2 .

We can apply (2.29) with xij = β
Npσiσj because x2

ij is independent of i, j and σ.

Indeed x2
ij = β2

N2p2 , being σi, σj ∈ {−1,+1} for any i, j ∈ [N ] and σ ∈ SN . Thus, we get,
asymptotically as N →∞,

E [ZN,g] =
∑
m∈ΓN

g(m) e−NIN (m) exp

(
β2(1− p)

4p
+ o(1)

)
= exp

(
α+ o(1)

) ∑
m∈ΓN

g(m) exp
(
−NIN (m)

)
,

(2.30)

where α is defined in (1.27).
Therefore, by Jensen’s inequality and (2.30), we have

E
[

logZN,g
]
≤ log

(
E[ZN,g]

)
= α+ o(1) + log

( ∑
m∈ΓN

g(m) exp
(
−NIN (m)

))
(2.31)

which proves the upper bound.

Proof of Lemma 2.3. A key ingredient in the proof is to control the upper bound on the
second moment of ZN,g, i.e. prove that the following bound holds

E
[
Z2
N,g

]
≤ e2αE [ZN,g]2 (1 + o(1)) , (2.32)
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where α is defined in (1.27).
We estimate E

[
Z2
N,g

]
using the first two lines of (2.29) with

xij =
β

Np

(
σ

(1)
i σ

(1)
j + σ

(2)
i σ

(2)
j

)
, (2.33)

which hold also when x2
ij is not independent on i, j and σ,

E
[
Z2
N,g

]
= E

 ∑
m,m′∈ΓN

g(m) g(m′)
∑

σ(1)∈SN [m],

σ(2)∈SN [m′]

exp

(∑
i<j

β

Np
Ĵij

(
σ

(1)
i σ

(1)
j + σ

(2)
i σ

(2)
j

))

=
∑

m,m′∈ΓN

g(m) g(m′)E

 ∑
σ(1)∈SN [m],

σ(2)∈SN [m′]

exp

(∑
i<j

β

Np
Ĵij

(
σ

(1)
i σ

(1)
j + σ

(2)
i σ

(2)
j

))
=

∑
m,m′∈ΓN

g(m) g(m′)
∑

σ(1)∈SN [m],

σ(2)∈SN [m′]

∏
i<j

exp

(
1

2

β2

N2p2

(
σ

(1)
i σ

(1)
j + σ

(2)
i σ

(2)
j

)2
p(1− p) + o

(
β2

N2

))

≤
∑

m,m′∈ΓN

g(m) g(m′)
∑

σ(1)∈SN [m],

σ(2)∈SN [m′]

∏
i<j

exp

(
β2

N2p
2(1− p) + o

(
1

N2

))

=
∑

m,m′∈ΓN

g(m) g(m′) e−NIN (m) e−NIN (m′) exp

(
N(N − 1)

2

[
β2

N2p
2(1− p) + o

(
1

N2

)])

=
∑

m,m′∈ΓN

g(m) g(m′) e−NIN (m)e−NIN (m′) exp

(
β2 (1− p)

p
+ o(1)

)
= exp (4α+ o(1))

∑
m∈ΓN

g(m) e−NIN (m)
∑

m′∈ΓN

g(m′) e−NIN (m′)

= e2αE [ZN,g]2 (1 + o(1)) ,

(2.34)

where, similarly to the last steps in (2.29), we used that the cardinality of SN [m] is
e−NIN (m), the cardinality of {(i, j) ∈ [N ]2 : i < j} is N(N−1)

2 . Moreover, in the last line we
used (2.30).

We recall the Paley–Zygmund inequality, which states that

PJ
(
X ≥ ηEX

)
≥ (1− η)2 (EX)2

EX2
, (2.35)

for any non negative random variable X and any η ∈ (0, 1). Using (2.35) with X = ZN,g,
(2.30) and (2.34) we get, asymptotically as N →∞,

PJ

(
1

N
logZN,g ≥

1

N
log
(
ηEZN,g

))
= PJ

(
1

N
logZN,g ≥

1

N
log (EZN,g) +

1

N
log η

)
≥ (1− η)2

exp
(

2α+ o(1)
) .

(2.36)
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Moreover, using (2.22) together with (2.7) and the change of variables t′ = Nt′′, we
obtain ∀ t′′ > 0,

PJ

(∣∣∣∣ 1

N
logZN,g − pN,g

∣∣∣∣ ≥ t′′) ≤ c1 exp

(
−2c2N

2p2t′′2

β2

)
. (2.37)

Thus, taking the complementary event, we get

PJ

(
−t′′ ≤ 1

N
logZN,g − pN,g ≤ t′′

)
≥ 1− c1 exp

(
−2c2N

2p2t′′2

β2

)
. (2.38)

Now, using

PJ

(
1

N
logZN,g − pN,g ≤ t′′

)
≥ PJ

(
−t′′ ≤ 1

N
logZN,g − pN,g ≤ t′′

)
(2.39)

and the change of variable t = Np
√

2c2
β t′′ we obtain

PJ

(
1

N
logZN,g ≤ pN,g +

tβ

Np
√

2c2

)
≥ 1− c1 exp(−t2). (2.40)

Next we prove that the intersection of the events in (2.36) and (2.40) is non empty.
Assuming, for η ∈ (0, 1), that

PJ

(
1

N
logZN,g ≤ pN,g +

tβ

Np
√

2c2

)
> 1− (1− η)2

exp
(

2α+ o(1)
) (2.41)

and comparing (2.36) and (2.41), we notice that the sum of the probabilities of the two
events {

1

N
logZN,g ≤ pN,g +

tβ

Np
√

2c2

}
, (2.42)

and {
1

N
logZN,g ≥

1

N
log
(
EZN,g

)
+

1

N
log η

}
(2.43)

is strictly greater than 1. Therefore, they intersect in the not empty event{
1

N
log
(
EZN,g

)
+

1

N
log η ≤ 1

N
logZN,g ≤ pN,g +

tβ

Np
√

2c2

}
(2.44)

which is contained in the deterministic set{
1

N
log
(
EZN,g

)
+

1

N
log η ≤ pN,g +

tβ

Np
√

2c2

}
. (2.45)

As a consequence, the latter set is non empty and, being deterministic,

pN,g ≥
1

N
log
(
EZN,g

)
+

1

N
log η − tβ

Np
√

2c2
(2.46)

holds with probability 1.
It remains to choose a suitable t > 0 for assumption (2.41) to hold. A sufficient

condition is, for every η ∈ (0, 1),

c1 exp(−t2) <
(1− η)2

exp
(

2α+ o(1)
) , (2.47)
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namely

t2 > 2α+ log

(
c1

(1− η)2

)
+ o(1). (2.48)

Therefore, by (2.46) and (2.48), using (2.30) we obtain, for every η ∈ (0, 1),

pN,g ≥
1

N
log (EZN,g) +

1

N
log η −

β

√
2α+ log

(
c1

(1−η)2

)
+ o(1)

Np
√

2c2

=
1

N
log

( ∑
m∈ΓN

g(m) exp
(
−NIN (m)

))
+
κη
N

+ o

(
1

N

)
,

(2.49)

where

κη = α+ log η −
β

√
2α+ log

(
c1

(1−η)2

)
p
√

2c2
. (2.50)

Notice that κη < α. In order to obtain the best lower bound, namely the closer to the
upper bound proven in Lemma 2.2, we choose η ∈ (0, 1) s.t. α − κη is minimised and
we conclude the proof. This choice motivates the maximum in the definition of κ, in
(1.27).

3 Capacity estimates

This section is entirely devoted to obtain upper and lower bounds on capacities
between sets with a fixed magnetisation. These bounds are obtained via two dual
variational principles, i.e. the Dirichlet and Thomson principles which are extensively
discussed in Bovier and den Hollander [2, Sections 7.3.1, 7.3.2]. The result will be
expressed in terms of the capacity for the Curie–Weiss model, see (1.23). In particular,
we prove Theorem 1.5 in Section 3.1 and Theorem 1.6 in Section 3.2.

3.1 Asymptotics on capacity: upper bound

In this section we prove Theorem 1.5, obtaining the upper bound on the capacity of
the RDCW model in terms of the capacity of the CW model.

Proof of Theorem 1.5. The main idea of the proof is to find an upper bound on the
capacity via the following Dirichlet principle (see Bovier and den Hollander [2, Section
7.3.1 and (7.1.29)] for details)

cap (SN [m1],SN [m2]) = min
f∈H

∑
σ,σ′∈SN

µβ,N (σ)pN (σ, σ′)[f(σ)− f(σ′)]2, (3.1)

where
H =

{
f : SN → [0, 1] s.t. f |SN [m1] = 1, f |SN [m2] = 0

}
. (3.2)

Later it will be clear that we can restrict the previous variational principle over the
functions on the space ΓN , hence it is useful to define

H̃ =
{
v : ΓN → [0, 1] s.t. v(m1) = 1, v(m2) = 0

}
. (3.3)

In order to simplify the notation we will often neglect the dependency on m1,m2 when
this will not generate confusion.

From (3.1), in view of (1.5) and since [f(σ)− f(σ′)] vanishes for σ = σ′, we are left
only with the terms such that σ ∼ σ′ and obtain the following first equality in (3.4).
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The second equality in (3.4) follows by (1.10), (2.2), (2.3) and multiplying and dividing
by exp

(
−βN [E(m(σ′))− E(m(σ))]+

)
. The inequality in (3.4) is obtained restricting the

minimum on H to the minimum on {f ∈ H : f(η) = f(η′) ∀η, η′ ∈ SN s.t. m(η) = m(η′)}
and noticing that the latter is in bijection with H̃.

Zβ,N cap (SN [m1],SN [m2])

= min
f∈H

1

N

∑
σ,σ′∈SN

1σ∼σ′ exp
(
− βHN (σ)

)
exp

(
−β [HN (σ′)−HN (σ)]+

)
[f(σ)− f(σ′)]2

= min
f∈H

Z̃β,N
∑

m,m′∈ΓN

∑
σ∈SN [m],
σ′∈SN [m′]

1σ∼σ′
exp (−βNE(m(σ)))

Z̃β,NN
exp

(
−βN [E(m(σ′))− E(m(σ))]+

)

× [f(σ)− f(σ′)]2 exp (−β∆(σ))
exp

(
−β [HN (σ′)−HN (σ)]+

)
exp

(
−βN [E(m(σ′))− E(m(σ))]+

)
≤ min

v∈H̃
Z̃β,N

∑
m,m′∈ΓN

exp
(
− βNE(m)

)
Z̃β,NN

exp
(
− βN [E(m′)− E(m)]+

)
[v(m)− v(m′)]2

×
∑

σ∈SN [m]

exp
(
− β∆(σ)

) ∑
σ′∈SN [m′]

1σ∼σ′
exp

(
− β [HN (σ′)−HN (σ)]+

)
exp

(
− βN [E(m′)− E(m)]+

) .
(3.4)

We turn now to the last sum in (3.4) and call this quantity G(σ,m′). If σ ∼ σ′, then
σ and σ′ differ on a single vertex, say ` ∈ [N ], i.e. ∀i ∈ [N ] \ {`}, σi = σ′i and σ` = −σ′`.
Thus, setting m = m(σ) and recalling (2.4) and (1.8), we can write

∆(σ′)−∆(σ) = − 2

Np

∑
i:i6=`

Ĵi`σ
′
iσ
′
` =

2

Np

∑
i:i 6=`

Ĵi`σiσ`, (3.5)

H̃N (σ′)− H̃N (σ) = σ`

 2

N

∑
i:i6=`

σi + 2h

 = σ`

[
2

N
(Nm− σ`) + 2h

]
. (3.6)

Moreover, using (2.2), (2.3), the definition of Ĵij below (2.3), the second equality in (3.5)
and the first equality in (3.6) we can write

HN (σ′)−HN (σ) = H̃N (σ′)− H̃N (σ) + ∆(σ′)−∆(σ) = σ`

 2

Np

∑
i:i 6=`

Ji`σi + 2h

 . (3.7)

Due to the presence of the indicator function 1σ∼σ′ , G(σ,m′) vanishes if m′ /∈ {m± 2
N }.

Moreover, we can rewrite the sum
∑
σ′∈SN [m′] 1σ∼σ′ in terms of the single vertex ` ∈ [N ]

on which σ and σ′ differ. Notice that if m(σ′) = m + 2
N then σ` = −1 = −σ′` and if

m(σ′) = m− 2
N then σ` = 1 = −σ′`.

Therefore, calling i±(σ) := {j ∈ [N ] : σj = ±1}, and using (1.10), (3.6) and (3.7), we
obtain

G(σ,m+ 2
N ) =

∑
`∈i−(σ)

exp

(
−β
[
− 2
Np

∑
i:i 6=` Ji`σi − 2h

]
+

)
exp

(
−β
[
− 2
N (Nm+ 1)− 2h

]
+

) ≤ N 1−m
2

e2β , (3.8)

G(σ,m− 2
N ) =

∑
`∈i+(σ)

exp

(
−β
[

2
Np

∑
i:i 6=` Ji`σi + 2h

]
+

)
exp

(
−β
[

2
N (Nm− 1) + 2h

]
+

) ≤ N 1 +m

2
e2β(1+h). (3.9)
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To obtain the inequalities we used the fact that, for any σ in SN , the cardinalities of i−(σ)

and i+(σ) are respectively N 1−m(σ)
2 and N 1+m(σ)

2 . Moreover, for the inequality in (3.8)
we used the following elementary facts holding asymptotically in N ,

exp

−β
− 2

Np

∑
i:i6=`

Ji`σi − 2h


+

 ≤ 1, (3.10)

exp

(
β

[
− 2

N
(Nm+ 1)− 2h

]
+

)
≤ exp

(
β

[
−2m− 2

N
− 2h

]
+

)
≤ e2β . (3.11)

Similar inequalities were used to prove (3.9).
Thus, using (3.4), (3.8), (3.9) we obtain

Zβ,N cap (SN [m1],SN [m2])

≤ min
v∈H̃

Z̃β,N
∑

m,m′∈ΓN

exp
(
− βNE(m)

)
Z̃β,NN

exp
(
−βN [E(m′)− E(m)]+

)
[v(m)− v(m′)]2

× e2β(1+h)
∑

σ∈SN [m]

exp
(
− β∆(σ)

) [
N 1+m

2 1m− 2
N

(m′) +N 1−m
2 1m+ 2

N
(m′)

]
.

(3.12)

Using the upper bound in Corollary 2.5 with

g(m) =
∑

m′∈ΓN

exp
(
− βNE(m)

)
Z̃β,NN

exp
(
−βN [E(m′)− E(m)]+

)
[v(m)− v(m′)]2

× e2β(1+h)
[
N 1+m

2 1m− 2
N

(m′) +N 1−m
2 1m+ 2

N
(m′)

] (3.13)

we obtain

Zβ,N cap (SN [m1],SN [m2])

P (s)

≤ es+2β(1+h)+αZ̃β,N min
v∈H̃

∑
m,m′∈ΓN

exp (−βNE(m)−NIN (m))

Z̃β,NN
exp(−βN [E(m′)− E(m)]+)

× [v(m)− v(m′)]2
[
N

1 +m

2
1m− 2

N
(m′) +N

1−m
2

1m+ 2
N

(m′)

]
(1 + o(1))

= es+2β(1+h)+αZ̃β,N min
v∈H̃

∑
m,m′∈ΓN

Q̃(m) r̃(m,m′) [v(m)− v(m′)]2 (1 + o(1))

= es+2β(1+h)+α Z̃β,N capCW (SN [m1],SN [m2]) (1 + o(1)) ,

(3.14)

where we used notation (1.38) and in the middle step we used (1.13), the first equality
in (1.14) and (1.20). Furthermore, we noticed that the variational form appearing in the
previous formula is the Dirichlet principle (see Bovier and den Hollander [2, (7.1.29),
(7.3.1)]) applied to the random walk performed by the projection of the CW model
dynamics onto the magnetisation space. See Section 1.2 for the CW model.

We conclude that the minimum equals the capacity of the CW model using lumping
techniques. More precisely, here we used Bovier and den Hollander [2, (9.3.6)], stating
that the capacity for the dynamics projected onto the magnetisation space equals the
capacity for the CW dynamics on the configuration space, which holds because of the CW
model mean-field property. For reference on lumping see Bovier and den Hollander [2,
Section 9.3].
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3.2 Asymptotics on capacity: lower bound

In this section we prove Theorem 1.6, obtaining the lower bound on the capacity of
the RDCW model in terms of the capacity of the CW model. We will prove it without
loss of generality, only for m1 < m2 ∈ ΓN , because the capacity can be proven to be
symmetric, using the reversibility of the dynamics.

The main idea of the proof is to find a lower bound on the capacity of the RDCW
model via the Thomson principle (see e.g. Bovier and den Hollander [2, Theorem 7.37].
For cap (SN [m1],SN [m2]) it reads

cap (SN [m1],SN [m2]) = sup

{
1

D(Ψ̄)
: Ψ̄ ∈ USN [m1],SN [m2]

}
, (3.15)

where we denote by USN [m1],SN [m2] the space of all unitary antisymmetric flows from
SN [m1] to SN [m2] and D is defined by

D(ψ) =
1

2

∑
σ,σ′∈SN

1σ′∼σ
ψ(σ, σ′)2

µβ,N (σ) pN (σ, σ′)
(3.16)

for any ψ : S2
N → R antisymmetric flow. Thus, in order to find a lower bound in terms

of the capacity of the CW model we have to find a unitary flow from which we could
reconstruct the CW capacity term.

For all σ, σ′ ∈ SN , we define the candidate flow ΨN as follows

ΨN (σ, σ′) = φN (m(σ),m(σ′)), (3.17)

where, for all m,m′ ∈ ΓN ,

φN (m,m′) =



[
(1−m)N

2 exp (−NIN (m))

]−1

if m1 ≤ m ≤ m2 − 2
N ,m

′ = m+ 2
N

−
[

(1+m)N
2 exp (−NIN (m))

]−1

if m1 + 2
N ≤ m ≤ m2,m

′ = m− 2
N

0 otherwise.

(3.18)

The proof of Theorem 1.6 is postponed after two technical intermediate results which
are essential for it. The following lemma allows us to use ΨN in the Thomson principle.

Lemma 3.1. Let m1 < m2 ∈ ΓN . The flow ΨN on SN , defined in (3.17) is a unitary
antisymmetric flow from SN [m1] to SN [m2], i.e. ΨN ∈ USN [m1],SN [m2].

Proof. ΨN is antisymmetric because for all m ∈ ΓN , i.e.

(1 +m)

2
N exp

(
−NIN (m)

)
=

(
1−

(
m− 2

N

))
2

N exp
(
−NIN

(
m− 2

N

) )
. (3.19)

Indeed, using (1.15), the right hand side of (3.19) writes(
1−

(
m− 2

N

))
2

N exp
(
−NIN

(
m− 2

N

) )
=

(1−(m− 2
N ))N

2

(
N

1−(m− 2
N )

2 N

)
=

(1−(m− 2
N ))N

2

N ![
(1−m)N

2 + 1
]
!
[

(1+m)N
2 − 1

]
!

=
N ![

(1−m)N
2

]
!
[

(1+m)N
2 − 1

]
!

=
(1 +m)

2
N

(
N

1+m
2 N

)
=

(1 +m)

2
N exp

(
−NIN (m)

)
.

(3.20)
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Next we prove that the Kirchhoff law holds, i.e., for all σ ∈ SN \ (SN [m1] ∪ SN [m2])∑
σ′∈SN :σ∼σ′

ΨN (σ, σ′) = 0. (3.21)

For all σ ∈ SN such that m(σ) /∈ (m1,m2), (3.21) holds trivially being all terms zero,
by (3.18). Now, for all σ ∈ SN such that m(σ) ∈ (m1,m2),∑
σ′∈SN :σ∼σ′

ΨN (σ, σ′) =
∑

σ′∈SN :σ∼σ′,
m(σ′)=m(σ)+ 2

N

φN (m(σ),m(σ′)) +
∑

σ′∈SN :σ∼σ′,
m(σ′)=m(σ)− 2

N

φN (m(σ),m(σ′))

=
(1−m(σ))N

2

[
(1−m(σ))N

2
exp

(
−NIN (m(σ))

)]−1

− (1 +m(σ))N

2

[
(1 +m(σ))N

2
exp

(
−NIN (m(σ))

)]−1

= 0,

(3.22)

where (1∓m(σ))N
2 in the second equality are the cardinalities of the set over which we were

summing, namely the number of negative, respectively positive, spins in a configuration
σ ∈ SN .

We are left to show that ΨN is unitary from SN [m1] to SN [m2], namely∑
a∈SN [m1]

∑
σ′∈SN :a∼σ′

ΨN (a, σ′) = 1 =
∑

b∈SN [m2]

∑
σ∈SN :σ∼b

ΨN (σ, b). (3.23)

The left hand side of (3.23) equals∑
a∈SN [m1]

∑
σ′∈SN :a∼σ′

φN (m(a),m(σ′))

=
∑

a∈SN [m1]

∑
σ′∈SN :a∼σ′,
m(σ′)=m1+ 2

N

[
(1−m1)N

2 exp
(
−NIN (m1)

)]−1

= exp
(
−NIN (m1)

) (1−m1)N
2

[
(1−m1)N

2 exp
(
−NIN (m1)

)]−1

= 1.

(3.24)

The right hand side of (3.23) equals∑
b∈SN [m2]

∑
σ∈SN :σ∼b

φN (m(σ),m(b))

=
∑

b∈SN [m2]

∑
σ∈SN :σ∼b,
m(σ)=m2− 2

N

[(
1−
(
m2−

2
N

))
2 N exp

(
−NIN

(
m2 −

2

N

))]−1

= exp (−NIN (m2)) (1+(m2))
2 N

[(
1−
(
m2−

2
N

))
2 N exp

(
−NIN

(
m2 −

2

N

))]−1

.

(3.25)

We use (3.19) to conclude the proof.
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Lemma 3.2. For all σ ∈ SN and m′ ∈ ΓN , the following holds

∑
σ′∈SN [m′]

1σ′∼σ

exp

(
−β
[
H̃N (σ′)− H̃N (σ)

]
+

)
exp

(
− β [HN (σ′)−HN (σ)]+

)
≤ e2β(1+h)

[
N

1 +m(σ)

2
1m(σ)− 2

N
(m′) +N

1−m(σ)

2
1m(σ)+ 2

N
(m′)

]
. (3.26)

Proof. Let m = m(σ). The left hand side is non-zero only if m′ ∈
{
m+ 2

N ,m−
2
N

}
.

Recalling the definition i±(σ) = {j ∈ [N ] : σj = ±1}, if m′ = m+ 2
N , we have

∑
σ′∈SN

[
m+ 2

N

]1σ′∼σ
exp

(
−β
[
H̃N (σ′)− H̃N (σ)

]
+

)
exp

(
− β [HN (σ′)−HN (σ)]+

)

=
∑

`∈i−(σ)

exp
(
−β
[
− 2p
N (Nm+ 1)− 2h

]
+

)
exp

(
−β
[
− 2
N

∑
i:i 6=` Ji`σi − 2h

]
+

)

≤
∑

`∈i−(σ)

exp

β
− 2

N

∑
i:i6=`

Ji`σi − 2h


+

 ≤ ∑
`∈i−(σ)

e2β = N
1−m

2
e2β ,

(3.27)

where we have used that, since h > 0,

− 2

N

∑
i:i 6=`

Ji`σi − 2h ≤ 2

N

∑
i:i 6=`

|Ji`σi| ≤
2(N − 1)

N
≤ 2. (3.28)

Similarly, if m′ = m− 2
N , we get

∑
σ′∈SN

[
m− 2

N

]1σ′∼σ
exp

(
−β
[
H̃N (σ′)− H̃N (σ)

]
+

)
exp

(
− β [HN (σ′)−HN (σ)]+

)

=
∑

`∈i+(σ)

exp
(
−β
[

2p
N (Nm− 1) + 2h

]
+

)
exp

(
−β
[

2
N

∑
i:i 6=` Ji`σi + 2h

]
+

) ≤ N 1 +m

2
e2β(1+h). (3.29)

With the previous lemmas at hand, we are now ready to prove the lower bound on
the capacity.

Proof of Theorem 1.6. As we mentioned above, since the capacity is symmetric, we will
prove the result only for m1 < m2 ∈ ΓN .

Let ΨN be the test flow defined in (3.17), which by Lemma 3.1 is in USN [m1],SN [m2].
Thus, using the Thomson principle (3.15), we obtain the following bound

cap (SN [m1],SN [m2]) ≥ 1

D(ΨN )
. (3.30)
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Therefore, we are interested in upper bounds on D(ΨN ) which, using (1.3), (1.5) and
(2.4), can be written as follows

D(ΨN ) =
1

2
N

∑
σ,σ′∈SN

1σ′∼σ
φN (m(σ),m(σ′))2

exp
(
−β(H̃N (σ) + ∆(σ))

) Zβ,N

exp
(
− β[HN (σ′)−HN (σ)]+

) .
(3.31)

By multiplying and dividing by exp(−β[H̃N (σ′) − H̃N (σ)]+) Z̃β,N , and using (1.10),
(1.11) and (1.18), we get

D(ΨN ) = N
Zβ,N

2Z̃β,N

∑
m,m′∈ΓN

φN (m,m′)2

Q̃β,N (m) exp
(
NIN (m)

)
exp

(
−βN [E(m′)− E(m)]+

)
×

∑
σ∈SN [m]

exp(β∆(σ))
∑

σ′∈SN [m′]

1σ′∼σ

exp

(
−β
[
H̃N (σ′)− H̃N (σ)

]
+

)
exp

(
− β [HN (σ′)−HN (σ)]+

)
≤ N Zβ,N

2Z̃β,N
e2β(1+h)

∑
m,m′∈ΓN

φN (m,m′)2

Q̃β,N (m) exp
(
NIN (m)

)
exp

(
−βN [E(m′)− E(m)]+

)
×
[
N

1 +m

2
1m− 2

N
(m′) +N

1−m
2

1m+ 2
N

(m′)
] ∑
σ∈SN [m]

exp(β∆(σ)),

(3.32)

where we used Lemma 3.2 to bound the sum over σ′, uniformly in σ ∈ SN [m]. Then, to
bound the remaining sum over σ, we use the upper bound in Corollary 2.5 (in the version
with e β∆(σ), motivated by the Remark therein) with

g(m) =
∑

m′∈ΓN

φN (m,m′)2

Q̃β,N (m) exp
(
NIN (m)

)
exp

(
−βN [E(m′)− E(m)]+

)
×
[
N

1 +m

2
1m− 2

N
(m′) +N

1−m
2

1m+ 2
N

(m′)
]
,

(3.33)

obtaining, with notation (1.38),

D(ΨN )
P (s)

≤ N
Zβ,N

2Z̃β,N

∑
m,m′∈ΓN

es+2β(1+h)+α φN (m,m′)2 exp
(
−NIN (m)

)
Q̃β,N (m) exp

(
NIN (m)

)
exp

(
−βN [E(m′)− E(m)]+

)
×
[
N

1 +m

2
1m− 2

N
(m′) +N

1−m
2

1m+ 2
N

(m′)
]

(1 + o(1))

=
Zβ,N

2Z̃β,N
es+2β(1+h)+α

∑
m,m′∈ΓN

φN (m,m′)2 exp
(
− 2NIN (m)

)
Q̃β,N (m) r̃N (m,m′)

×
[
N

1 +m

2
1m− 2

N
(m′) +N

1−m
2

1m+ 2
N

(m′)
]2

(1 + o(1)) ,

(3.34)

where in the equality we only used (1.20).

Now we first substitute φN defined in (3.18) into (3.34) and then use reversibility to
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obtain

D(ΨN )
P (s)

≤ Zβ,N

2Z̃β,N
es+2β(1+h)+α

∑
m1≤m<m2,
m∈ΓN

1

Q̃β,N (m) r̃N
(
m,m+ 2

N

) (1 + o(1))

+
Zβ,N

2Z̃β,N
es+2β(1+h)+α

∑
m1<m≤m2,
m∈ΓN

1

Q̃β,N (m− 2
N ) r̃N

(
m− 2

N ,m
) (1 + o(1))

=
Zβ,N

Z̃β,N
es+2β(1+h)+α

∑
m1≤m<m2

1

Q̃β,N (m) r̃N
(
m,m+ 2

N

) (1 + o(1)) ,

(3.35)

where the last equality follows noticing that the two sums in the previous step are equal.
Therefore, by (3.30) and (3.35), we obtain

Zβ,N cap(SN [m1],SN [m2]) ≥ Zβ,N
D(ΨN )

P (s)

≥ Z̃β,N e−s−2β(1+h)−α

 ∑
m1≤m<m2

1

Q̃β,N (m) r̃N
(
m,m+ 2

N

)
−1

(1 + o(1))

= Z̃β,N e−s−2β(1+h)−α capCW(SN [m1],SN [m2]) (1 + o(1)) ,

(3.36)

where we used notation (1.38) and we noticed that the inverse of the expression ap-
pearing in brackets in (3.36) gives exactly the capacity for the CW model. Indeed, that
expression gives exactly the capacity for the one-dimensional random walk in ΓN which
is the projection of the CW dynamics onto the magnetisation space ΓN (see the formula
for the capacity in Bovier and den Hollander [2, Section 7.1.4, (7.1.60)]). Using lumping
techniques exactly as at the end of the proof of Theorem 1.5 (end of Section 3.1), we
have that the aforementioned capacity equals the CW capacity.

4 Estimates on the harmonic function

As pointed out in Section 1.4, the proof of Theorem 1.4 relies on sharp estimates on
capacities, carried out in Section 3, and estimates on the harmonic function. We entirely
devote this section to obtain asymptotic upper and lower bounds on the numerator in
(1.40), which is given by the following sum∑

σ∈SN

µβ,N (σ)hNm−,m+
(σ), (4.1)

that is to give the proof of Theorem 1.7.
In order to control the sum (4.1), one generally uses a renewal argument which relies

again on estimates over capacities. However, in our case this is not possible, due to the
fact that capacities of single spins are too small.

We first prove the upper bound and then give some details about how to prove the
lower bound, which is very similar and more straightforward. Our proof follows Bianchi,
Bovier and Ioffe [1, Section 6].

4.1 Notation and decomposition of the space

Before starting with the proof, we introduce some notation. We refer to Figure 1
below for a better visual understanding of the objects we are defining.

Recall that we denote by m+ the global minimum, by m− the local minimum, and by
m∗ the local maximum of fβ(·) in [−1, 1], where fβ(·) = limN→∞ fβ,N (·), defined in (1.14).
We want to decompose the space ΓN (and eventually the set of spin configurations SN )
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according to the values of fβ. The notation and the decomposition are organised in 4
steps.

Step 1. First, let δ > 0 be small in a way which will become clear later, and define
the set

Uδ =
{
m ∈ [−1, 1] : fβ(m) ≤ fβ(m−) + δ

}
. (4.2)

We write U cδ = [−1, 1] \ Uδ and we denote by Uδ(m) the connected component of Uδ
containing m. Note that {m−,m+} ∈ Uδ. In general, Uδ(m−) and Uδ(m+) may have non
empty intersection, but we choose δ such that m∗ /∈ Uδ, implying that Uδ is partitioned
by the disjoint sets Uδ(m−) and Uδ(m+). For this to hold, it suffices to take δ < fβ(m∗)−
fβ(m−). Moreover, we choose δ also such that −1 /∈ Uδ(m−). For this to hold, it suffices
to take δ < fβ(−1)−fβ(m−). Thus, we choose δ < min

(
fβ(−1), fβ(m∗)

)
−fβ(m−). These

conditions are needed to prove (4.11) below.
Let us denote by mδ the unique point in (m∗,m+) such that

fβ(mδ) = fβ(m−) + δ. (4.3)

Step 2. With δ chosen as above, we define a sequence (δN )N∈N, converging to δ

from below, such that the left extreme of UδN (m+) is in ΓN . Specifically, we define δN as
follows:

δN = max
{
δ̄ ∈ (0, δ] : ∃m ∈ Uδ(m+) ∩ ΓN \ [m+, 1] s.t. fβ(m) = fβ(m−) + δ̄

}
, (4.4)

for N sufficiently large. Moreover, set

Uδ,N = UδN ∩ ΓN , U cδ,N = ΓN \ Uδ,N and Uδ,N (m) = UδN (m) ∩ ΓN , (4.5)

for all m ∈ [−1, 1]. Thus, we have the partitions

ΓN = Uδ,N (m−) ∪ Uδ,N (m+) ∪ U cδ,N (4.6)

and

SN = SN [Uδ,N (m−)] ∪ SN [m+(N)] ∪ SN
[
U cδ,N

]
∪ SN [Uδ,N (m+) \ {m+(N)}] . (4.7)

Remark 4.1. Notice that, for N sufficiently large, Uδ,N (m−(N)) = Uδ,N (m−) and
Uδ,N (m+(N)) = Uδ,N (m+). Furthermore, with these definitions, mδN ∈ Uδ,N and it
is the left extreme of Uδ,N (m+).

Step 3. Let ε > 0 be arbitrarily small (the choice of ε will be relevant in Section 4.2).
We denote by mε the only point in a small left neighbourhood of m+, more precisely in
Uδ(m+) \ [m+, 1], such that

fβ(mε) = fβ(m+) + ε. (4.8)

Let us define an ε-dependent parameter θ > 0 by

θ = m+ −mε. (4.9)

Step 4. Similarly to Step 2, fixed ε > 0, we want to define a sequence (εN )N∈N
converging to ε from below such that mεN is in ΓN . More precisely, we define εN as
follows

εN = max
{
ε̄ ∈ (0, ε] : ∃m ∈ Uδ,N (m+) \ [m+, 1] s.t. fβ(m) = fβ(m+) + ε̄

}
. (4.10)

We will use later that mεN ∈ Uδ,N (m+) and it satisfies fβ(mεN ) = fβ(m+) + εN .
Moreover, given ε > 0, we define the sequence (θN )N∈N, analogously to (4.9), by

setting θN = m+(N)−mεN . θN plays an important role in Lemma 4.4 below. Notice that
limN→∞ θN = θ and, if m+ 6= m+(N), then f(mεN )− f(m+(N)) 6= εN .
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-1 1

fβ(m−)

fβ(m−) + δ

fβ

m− mδ m+mεm∗

Uδ(m−) Uδ(m+)

Figure 1: Graph of fβ and decomposition of the magnetisation space [−1, 1]: the two
intervals Uδ(m−) and Uδ(m+) around the two minima are drawn, together with the
special points mδ, mε. Uδ is painted in red.

4.2 Upper bound on the harmonic sum

In this section we prove the first part of Theorem 1.7 by giving an upper bound on
the harmonic sum in (4.1).

We will estimate the contribution of each set of the partition in (4.7) to the sum
in (4.1). As one expects, the only relevant contribution will be given by the terms in
SN [Uδ,N (m−)]. Indeed, µβ,N is very small in SN [U cδ,N ] while hNm−,m+

is very small in
SN [Uδ,N (m+)] and we will see the two contributions on these two sets turn out to be
irrelevant.

The main ingredients in the proof of the upper bound are Corollary 2.7 and Lemma 4.2
below. The proof of the latter result is quite technical and it is postponed to Section 4.3.

Proof of Theorem 1.7. Upper bound. We are ready to start estimating the contributions
of each disjoint set of the partition in (4.7) to the sum in (4.1).

Part 1. Sum on SN [Uδ,N (m−)]. This will be the relevant part. Using first that
hNm−,m+

(σ) ≤ 1, (2.1) and (2.19) of Corollary 2.7 with ḡ(m) = 1m∈Uδ,N (m−)(m) we obtain∑
σ∈SN [Uδ,N (m−)]

µβ,N (σ)hNm−,m+
(σ) ≤

∑
m∈Uδ,N (m−)

Qβ,N (m)

P (s)

≤ es+α (1 + o(1))

Zβ,N

∑
m∈Uδ,N (m−)

exp (−βNfβ(m))

√
2

πN(1−m2)

=
es+α (1 + o(1)) exp (−βNfβ(m−))

Zβ,N
√

(1−m2
−)βf ′′β (m−)

.

(4.11)

In the second line we used our assumption of δN being small enough such that −1 /∈
Uδ,N (m−) (see Section 4.1, Step 1). To obtain the last equality we first approximated, for
N sufficiently large, the sum with an integral and then applied the saddle point method
(see, for instance, de Bruijn [7, Chp 5.7]), where m− is the maximum point of −βfβ on
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the considered domain. Notice that here we use the fact that m∗ /∈ Uδ,N (m−), which
holds again for δN small enough (see Section 4.1, Step 1). More precisely,

∑
m∈Uδ,N (m−)

exp
(
− βNfβ(m)

) 1√
(1−m2)

≈ N

2

∫ b

a

exp
(
− βNfβ(x)

) 1√
(1− x2)

dx

= exp
(
− βNfβ(m−)

) 1√
(1−m2

−)

√
πN

2βf ′′β (m−)
(1 + o(1)) ,

(4.12)

where −1 < a, b ∈ ΓN are the left and right extremes of Uδ,N (m−), respectively.

Part 2. Sum on SN [m+(N)]. Being by definition hNm−,m+
(σ) = 0 for all σ ∈ SN [m+(N)],

we trivially have ∑
σ∈SN [m+(N)]

µβ,N (σ)hNm−,m+
(σ) = 0. (4.13)

Part 3. Sum on SN [U cδ,N ].

Using hNm−,m+
≤ 1 and (2.1), we have

∑
σ∈SN [Ucδ,N ]

µβ,N (σ)hNm−,m+
(σ) ≤

∑
σ∈SN [Ucδ,N ]

µβ,N (σ) =
∑

m∈Ucδ,N

Qβ,N (m)

=
∑

m∈Ucδ,N\{1,−1}

Qβ,N (m) +
∑

m∈Ucδ,N∩{1,−1}

Qβ,N (m).
(4.14)

We bound the right hand side using (2.19) of Corollary 2.7 with ḡ(m) = 1m∈Ucδ,N (m)

obtaining∑
σ∈SN [Ucδ,N ]

µβ,N (σ)hNm−,m+
(σ)

P (s)

≤ es+α (1 + o(1))

Zβ,N

∑
m∈Ucδ,N\{1,−1}

exp
(
− βNfβ(m)

)√ 2

πN(1−m2)

+
es+α (1 + o(1))

Zβ,N

∑
m∈Ucδ,N∩{1,−1}

exp
(
− βNfβ(m)

)

≤ es+α (1 + o(1))

Zβ,N
exp

(
− βN (fβ(m−) + δN )

)√ 2

πN

∑
m∈Ucδ,N\{1,−1}

1√
(1−m2)

+ 2

 ,

(4.15)
where in the last inequality we used the bound fβ(m) ≥ fβ(m−) + δN given by the
definition of U cδ,N (see (4.2)).

Part 4. Sum on SN [Uδ,N (m+) \ {m+(N)}]. Using (1.32) and the fact that, for any
σ ∈ SN such that m(σ) > m+(N), Pσ

(
τSN [m−(N)] < τSN [m+(N)]

)
= 0, we get∑

σ∈SN [Uδ,N (m+)\{m+(N)}]

µβ,N (σ)hNm−,m+
(σ) =

∑
σ∈SN [[mδN ,m+(N))]

µβ,N (σ)Pσ
(
τSN [m−(N)] < τSN [m+(N)]

)
.

(4.16)
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Thus, applying Lemma 4.2 below, the following holds for any γ ∈ (0, 1)∑
σ∈SN [Uδ,N (m+)\{m+(N)}]

µβ,N (σ)hNm−,m+
(σ)

≤ exp
(
− βN(1− γ)fβ(m−)

) ∑
m∈[mδN ,m+(N))

Qβ,N (m)
[

exp
(
βN(1− γ)fβ(m)

)
+ exp

(
βN(1− γ)(fβ(m+) + 3 εN ) +N`N (θN )

)]
exp

(
− βN(1− γ) δN

)
(1 + o(1)).

(4.17)

We use (2.19) of Corollary 2.7 with ḡ(m) defined by

ḡ(m) =
[
exp

(
βN(1− γ)fβ(m)

)
+ exp

(
βN(1− γ)(fβ(m+) + 3 εN ) +N`N (θN )

)]
,

(4.18)
for m ∈ [mδN ,m+(N)) and ḡ(m) = 0 for m ∈ ΓN \ [mδN ,m+(N)). Thus, we obtain∑
σ∈SN [Uδ,N (m+)\{m+(N)}]

µβ,N (σ)hNm−,m+
(σ)

P (s)

≤ es+α (1 + o(1))

Zβ,N
exp

(
− βN(1− γ) (fβ(m−) + δN )

) ∑
m∈[mδN ,m+(N))

exp
(
− βNfβ(m)

)

×

√
2

πN(1−m2)

[
exp

(
βN(1− γ)fβ(m)

)
+exp

(
βN(1− γ)(fβ(m+)+ 3εN ) +N`N (θN )

)]
≤ es+α (1 + o(1))

Zβ,N
exp

(
− βN(1− γ) (fβ(m−) + δN )

)√ 2N

π(1−m2
+)

×
[

exp
(
− γ βNfβ(m+)

)
+exp

(
βN(1− γ) (fβ(m+) + 3εN ) +N`N (θN )− βNfβ(m+)

)]
=

es+α (1 + o(1))

Zβ,N
exp

(
− βNfβ(m−)

)√ 2N

π(1−m2
+)

exp
(
− γ βN [fβ(m+)− fβ(m−)]

)
× exp

(
− βN(1− γ)(δN − 3 εN ) +N`N (θN )

)[
exp

(
− βN(1− γ)3 εN −N`N (θN )

)
+ 1
]

≤ es+α (1 + o(1))

Zβ,N
exp

(
− βNfβ(m−)

)√ 2

π(1−m2
+)

× exp
[
−βN

(
γ [fβ(m+)− fβ(m−)] + (1− γ)(δN − 3 εN )− 1

β `N (θN )− εN
)]
.

(4.19)

In the last step we embedded [ exp
(
− βN(1− γ)3 εN −N`N (θN )

)
+ 1] in the already

present (1 + o(1)) and bounded
√
N by exp

(
− βN(−εN )

)
, because for N large enough

log(N)
2βN ≤ εN (which converges to ε > 0, see Step 4 in Section 4.1).

Now we prove that this part is not relevant compared to the right hand side of (4.11).
In particular, we show that, for a certain choice of γ,

cN = γ[fβ(m+)− fβ(m−)] + (1− γ)(δN − 3 εN )− 1
β `N (θN )− εN (4.20)

is positive and its limit,

lim
N→∞

cN = γ [fβ(m+)−fβ(m−)]+(1−γ)(δ−3 ε)− θ
2β

(
log(2)+3− log(1−m+)

)
−ε, (4.21)

is positive and finite. In order to achieve this, we choose γ ∈ (0, 1) small enough, such
that cN and its limit are positive, definitely in N . In particular, we want to impose

0 < γ <
δN − 4 εN − 1

β `N (θN )

fβ(m−)− fβ(m+) + δN − 3 εN
< 1, (4.22)

EJP 26 (2021), paper 47.
Page 27/38

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP610
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Glauber dynamics for the RDCW model

definitely in N , and

0 < γ <
δ − 4 ε− 1

β limN→∞ `N (θ)

fβ(m−)− fβ(m+) + δ − 3 ε
< 1. (4.23)

First, we notice that it is easy to check that the previous quantities are strictly smaller
than 1. Second, we want to show that a strictly positive γ satisfying (4.22)-(4.23) exists.
Note that `N (θN ), defined in (4.37), has the following trivial upper bound for every N ,

`N (θN ) ≤ θN (β + log 2 +O(θN )) . (4.24)

Thus, a sufficient condition is to choose, for N large enough, γ ≥ γ0, where

γ0 =
δ − 4 ε− θ

(
1 + log 2

β +O(θ)
)

fβ(m−)− fβ(m+) + δ
(4.25)

is clearly strictly positive. Indeed, we can choose ε > 0 sufficiently small for the
numerator on the left hand side of (4.25) to be positive, while θ is small accordingly to ε
(see Section 4.1). We conclude by obtaining, for N sufficiently large,

∑
σ∈SN [Uδ,N (m+)\{m+(N)}]

µβ,N (σ)hNm−,m+
(σ)

P (s)

≤ es+α+o(1)

Zβ,N
exp (−βN(fβ(m−) + cN ))

√
2

π(1−m2
+)
,

(4.26)

where 0 < cN = O(1).

Conclusion.
With the previous bounds at hand, we are now ready to conclude the proof of the

upper bound. Decomposing the sum over SN using (4.7), and inserting the estimates we
computed above into (4.1), we obtain

∑
σ∈SN

µβ,N (σ)hNm−,m+
(σ)

P (s)

≤ es+α (1 + o(1))

Zβ,N
exp

(
− βNfβ(m−)

)e−βNδN

√ 2

πN

∑
m∈Ucδ,N\{1,−1}

1√
(1−m2)

+ 2


+

√
2

π (1−m2
+)

e−βNcN +
1√

(1−m2
−)βf ′′β (m−)


≤ es+α

Zβ,N
exp

(
− βNfβ(m−)

) 1√
(1−m2

−)βf ′′β (m−)
(1 + o(1)) ,

(4.27)

concluding the proof.

4.3 Some technical results

In this section we prove Lemma 4.2, which is pivotal in obtaining the upper bound
in Theorem 1.7 (see (4.17)). The proof is quite involved, therefore we split it into
subsequent technical results. Before starting the proof, we give a brief outline of this
section. First, we state Lemma 4.2 and prove it via Lemmas 4.4, 4.5 and 4.6, which
follow later on. Second, we give the proof of Lemmas 4.4 and 4.5. The latter relies on
Lemma 4.6, which we subsequently prove using Lemma 4.7. We conclude the section
proving Lemma 4.7. Throughout this section we will use the notation introduced in
Section 4.1.
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Lemma 4.2. For all σ ∈ SN [[mδN ,m+(N))], for all γ ∈ (0, 1) and ε > 0,

Pσ

(
τSN [m−(N)] < τSN [m+(N)]

)
≤ exp

(
− βN(1− γ)[fβ(m−) + δN ]

)
(1 + o(1))

×

[
exp

(
βN(1− γ)fβ(m(σ))

)
+ exp

(
βN(1− γ)[fβ(m+) + 3εN ] +N`N (θN )

)]
,

(4.28)

where `N (·) is defined in (4.37).

Proof. For all σ ∈ SN [[mδN ,m+(N))], we have

Pσ

(
τSN [m−(N)] < τSN [m+(N)]

)
= Pσ

(
τSN [m−(N)] < τSN [m+(N)], τSN [m−(N)] < τSN [mεN ]

)
+

∑
η∈SN [mεN ]

Pσ

(
τSN [m−(N)] < τSN [m+(N)], τη < τSN [{mεN ,m−(N),m+(N)}]

)
= Pσ

(
τSN [m−(N)] < τSN [{m+(N),mεN }]

)
+

∑
η∈SN [mεN ]

Pσ

(
τSN [m−(N)] < τSN [m+(N)]

∣∣∣ τη < τSN [{mεN ,m−(N),m+(N)}]

)
× Pσ

(
τη < τSN [{mεN ,m−(N),m+(N)}]

)
,

(4.29)

where we notice that,

Pσ

(
τSN [m−(N)] < τSN [m+(N)]

∣∣∣ τη < τSN [{mεN ,m−(N),m+(N)}]

)
= Pη

(
τSN [m−(N)] < τSN [m+(N)]

)
.

(4.30)

Using the Markov property and taking the maximum of the first factor out of the sum,
we have that, for all σ ∈ SN

[
[mδN ,m+(N))

]
,

Pσ

(
τSN [m−(N)] < τSN [m+(N)]

)
≤ Pσ

(
τSN [m−(N)] < τSN [{m+(N),mεN }]

)
+

(
max

η∈SN [mεN ]
Pη
(
τSN [m−(N)] < τSN [m+(N)]

)) ∑
η∈SN [mεN ]

Pσ

(
τη < τSN [{mεN ,m−(N),m+(N)}]

)
= Pσ

(
τSN [m−(N)] < τSN [{m+(N),mεN }]

)
+

(
max

η∈SN [mεN ]
Pη
(
τSN [m−(N)] < τSN [m+(N)]

))
Pσ

(
τSN [mεN ] < τSN [{m−(N),m+(N)}]

)
≤ Pσ

(
τSN [m−(N)] < τSN [{m+(N),mεN }]

)
+

(
max

η∈SN [mεN ]
Pη
(
τSN [m−(N)] < τSN [m+(N)]

))
Pσ

(
τSN [mεN ] < τSN [m+(N)]

)
.

(4.31)

We first consider the case σ ∈ SN [mεN ]. By Lemma 4.4, we get

Pσ

(
τSN [m−(N)] < τSN [m+(N)]

)
≤ Pσ

(
τSN [m−(N)] < τSN [{m+(N),mεN }]

)
+

(
max

η∈SN [mεN ]
Pη
(
τSN [m−(N)] < τSN [m+(N)]

))(
1− e−N`N (θN )(1 + o(1))

)
.

(4.32)
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Taking the maximum over σ and noticing that the same term appears in both right and
left hand side of the inequality, we obtain

max
σ∈SN [mεN ]

Pσ

(
τSN [m−(N)] < τSN [m+(N)]

)
≤ max
σ∈SN [mεN ]

Pσ

(
τSN [m−(N)] < τSN [{m+(N),mεN }]

)
eN`N (θN ) (1 + o(1))

≤ exp
(
− βN (1− γ)

[
fβ(m−) + δN − fβ

(
mεN − 2

N

)
− εN

]
−N`N (θN )

)
(1 + o(1)),

(4.33)

where we used Lemma 4.5.
By Taylor expansion of fβ

(
mεN − 2

N

)
and definition of mεN , we get

max
σ∈SN [mεN ]

Pσ

(
τSN [m−(N)] < τSN [m+(N)]

)
≤ exp

(
− βN (1− γ) [fβ(m−) + δN − 3εN − fβ(m+)]−N`N (θN )

)
(1 + o(1)),

(4.34)

where the last inequality holds for N sufficiently large. Here we bounded the Taylor
expansion error O

(
1
N

)
with εN , which converges to ε > 0 (see Step 4 in Section 4.1).

Now we consider the case where σ ∈ SN
[
[mδN ,m+(N)) \ {mεN }

]
. Going back to

(4.31) and using again (4.34), we obtain

Pσ

(
τSN [m−(N)] < τSN [m+(N)]

)
≤ Pσ

(
τSN [m−(N)] < τSN [{m+(N),mεN }]

)
+ exp

(
− βN(1− γ) [fβ(m−) + δN − 3εN − fβ(m+)]−N`N (θN )

)
(1 + o(1))

≤ exp
(
− βN(1− γ)[fβ(m−) + δN ]

)
(1 + o(1))

×

[
exp

(
βN(1− γ)fβ(m(σ))

)
+ exp

(
βN(1− γ)[fβ(m+) + 3εN ] +N`N (θN )

)]
.

(4.35)

In the last inequality we used Lemma 4.6, which holds for σ ∈ SN [[mδN ,mεN )], and that

Pσ

(
τSN [m−(N)] < τSN [{m+(N),mεN }]

)
= 0 for all σ ∈ SN [(mεN ,m+(N))].

Remark 4.3. In Lemma 4.2 one might try to further bound the right hand side of (4.28)
using that fβ(m(σ)) is bounded by fβ(mδN ) = fβ(m−)+δN . This would yield to the trivial
upper bound 1 on Pσ

(
τSN [m−(N)] < τSN [m+(N)]

)
, which is not sufficient for our purpose

of proving that the second term in (4.27) is negligible with respect to the last one. The
way to go is, therefore, to keep the dependence on m(σ) in order to obtain later a more
suitable bound, uniform in m, by exploiting the smallness of Qβ,N (m(σ)) in (4.17) and
(4.19).

In order for (4.32) to be true, we have to prove the following result.

Lemma 4.4. For all σ ∈ SN [mεN ], for ε sufficiently small and for N sufficiently large,

Pσ

(
τSN [m+(N)] < τSN [mεN ]

)
≥ e−N`N (θN )(1 + o(1)), (4.36)

where `N : R→ R is defined by

`N (x) = 1
2

[
x
(

log 2 + β |2− 2h|+ 1
)
− (1−m+(N) + x) log(1−m+(N) + x)

+ (1−m+(N)) log(1−m+(N))
]
. (4.37)
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Proof. Recall that {σ(t)}t≥0 is the Markov chain with transition probabilities (1.5) and,
for σ ∈ SN with m(σ) < m+(N), let

AN (σ) =
{

(σ(0), σ(1), σ(2), . . . ) : σ(0) = σ, ∀i ∈ N, σ(i) ∈ SN , σ(i) ∼ σ(i+ 1),

∃ k ∈ N s.t. σ(k) ∈ SN [m+(N)], and ∀i ≤ k − 1, m(σ(i+ 1)) = m(σ(i)) + 2
N

}
(4.38)

be the set of infinite paths starting in σ and having increasing magnetisation until the
set SN [m+(N)] is reached.

Notice that, for fixed σ and N , the number k of steps of increasing magnetisation to
reach SN [m+(N)] is fixed, namely k = N

2 (m+(N)−m(σ)).
We want to partition AN (σ) according to the values of the first k + 1 elements of its

paths. Given a sequence π ∈ Sk+1
N , let us denote by {π} the set of all paths in AN (σ) in

which the first k + 1 elements are exactly given by π, namely

{π} =
{

(σ(0), σ(1), . . . , σ(k), σ(k + 1), . . . ) ∈ AN (σ) : (σ(0), . . . , σ(k)) = π
}
. (4.39)

Notice that, by definition of AN (σ), {π} is empty for many π ∈ Sk+1
N . We denote by BN (σ)

the set of all the sequences π ∈ Sk+1
N such that {π} is not empty. Thus, we obtain the

following partition of AN (σ)

AN (σ) =
⊔

π∈BN (σ)

{π}. (4.40)

Fix σ ∈ SN [mεN ], then one simply notices that

Pσ

(
τSN [m+(N)] < τSN [mεN ]

)
≥ Pσ(AN (σ)) =

∑
π∈BN (σ)

Pσ ({π}) . (4.41)

Thus, we first find a lower bound on Pσ ({π}) independent of π in BN (σ) and later we
compute the cardinality of BN (σ). Fix π = (σ(0), σ(1), σ(2), . . . , σ(k)) ∈ BN (σ), then we
have

Pσ ({π}) =

k∏
i=1

pN (σ(i− 1), σ(i)) =
1

Nk

k∏
i=1

exp
(
− β [H(σ(i))−H(σ(i− 1))]+

)
≥ Ck

Nk

k∏
i=1

exp
(
− βN [E(mi)− E(mi−1)]+

)
=
Ck

Nk

k∏
i=1

exp

(
−β
[
−2mi−1 −

2

N
− 2h

]
+

)
,

(4.42)

where mi = m(σ(i)), C = exp (−β|2− 2h|) and we used the following fact

exp
(
− β[H(σ(i))−H(σ(i− 1))]+

)
exp

(
− βN [E(mi)− E(mi−1)]+

) =
exp

(
− β[H(σ(i))−H(σ(i− 1))]+

)
exp

(
− β

[
− 2mi−1 − 2

N − 2h
]
+

)
≥ exp

(
− β[H(σ(i))−H(σ(i− 1))]+

)
= exp

−β
− 2

N

∑
j:j 6=r

Jjrσ(i− 1)j − 2h


+


≥ exp

(
−β
[
2− 2h− 2

N

]
+

)
≥ exp

(
− β|2− 2h|

)
,

(4.43)

where r is the index of the spin to be flipped to go from σ(i − 1) to σ(i). Therefore,
recalling that mi ∈ [mεN ,m+(N)], we obtain the following lower bound independent of π

Pσ ({π}) ≥ Ck

Nk

k∏
i=1

exp

(
−β
[
−2mεN −

2

N
− 2h

]
+

)
=
Ck

Nk
. (4.44)
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Indeed, for εN sufficiently small, mεN is close to m+(N) > 0, allowing us to assume
mεN > 0. Therefore, −2mεN − 2

N − 2h < 0, which implies the last equality in (4.44).
We are left to compute the cardinality of BN (σ), with σ ∈ SN [mεN ], namely we have

to count all paths from σ to SN [m+(N)] with increasing magnetisation and length k + 1.
Any of these paths is characterised by a final spin σ̄ ∈ SN [m+(N)] and a sequence
of negative spins which are flipped. Notice that σ̄ is reachable by σ through a path
with increasing magnetisation if and only if the two following properties are satisfied:
σ̄ has k positive spins more than σ and, for all i ∈ [N ], σi = +1 implies σ̄i = +1.
Thus, a configuration σ̄ ∈ SN [m+(N)] reachable by σ through a path with increasing
magnetisation is characterised by the k spins which are negative in σ and positive in σ̄.
Therefore, the number of reachable configurations σ̄ is( 1

2N (1−mεN )

k

)
=

( 1
2N [1−m+(N) + θN ]

1
2NθN

)
, (4.45)

being 1
2N(1−mεN ) the number of negative spins of σ ∈ SN [mεN ] and k = 1

2NθN , where
θN has been defined in Section 4.1.

The number of paths with increasing magnetisation from σ ∈ SN [mεN ] to a reachable
σ̄ ∈ SN [m+(N)], both fixed, is k!, namely the number of permutations of the k negative
spins which are flipped along a path. Thus, being k = 1

2NθN , the cardinality of BN (σ) is(
1
2NθN

)
!

( 1
2N
[
1−m+(N) + θN

]
1
2NθN

)
. (4.46)

Going back to (4.41), we obtain

Pσ

(
τSN [m+(N)] < τSN [mεN ]

)
≥

∑
π∈BN (σ)

Pσ
(
{π}

)
≥
(
C

N

) 1
2NθN (

1
2NθN

)
!

( 1
2N
[
1−m+(N) + θN

]
1
2NθN

)
= e−

1
2NθN log N

C
N(1−m+(N) + θN )

2
!

[
N(1−m+(N))

2
!

]−1

.

(4.47)

Using Stirling’s approximation n! =
√

2πn en(logn−1)(1 + o(1)) and the notation

kθN =
1−m+(N) + θN

1−m+(N)
, (4.48)

we obtain

N(1−m+(N) + θN )

2
!

[
N(1−m+(N))

2
!

]−1

=
√
kθN exp

[
N(1−m+(N))

2 log(kθN ) + 1
2NθN log

(
N(1−m+(N)+θN )

2

)
− 1

2NθN

]
(1 + o(1)).

(4.49)

Thus, since kθN ≥ 1 and C = exp(−β|2− 2h|), we conclude by

Pσ

(
τSN [m+(N)] < τSN [mεN ]

)
≥
√
kθN e−

N
2 (θN log(NC )+θN−(1−m+(N)) log(kθN )−θN log(N2 (1−m+(N)+θN )))(1 + o(1))

≥ e−
N
2 (θN log(NC )+θN−(1−m+(N)) log(kθN )−θN log(N2 )−θN log(1−m+(N)+θN ))(1 + o(1))

= e−
N
2

(
θN log(2)+θN β|2−2h|+θN−(1−m+(N)+θN ) log(1−m+(N)+θN )

)
× e−

N
2

(
(1−m+(N)) log(1−m+(N))

)
(1 + o(1))

= e−N`N (θN )(1 + o(1)). (4.50)
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To prove Lemma 4.2 we used the following fact.

Lemma 4.5. For σ ∈ SN [mεN ], for N sufficiently large and any γ ∈ (0, 1),

Pσ

(
τSN [m−(N)] < τSN [{m+(N),mεN }]

)
≤ exp

(
− βN(1− γ)

[
fβ(m−) + δN − fβ

(
mεN − 2

N

)
− εN

] )
. (4.51)

Proof. Let us denote by WN (m) the event of making the first flip in SN [m].
For σ ∈ SN [mεN ], conditioning on the first step, we obtain

Pσ

(
τSN [m−(N)] < τSN [{m+(N),mεN }]

)
= Pσ

(
WN

(
mεN + 2

N

))
Pσ

(
τSN [m−(N)] < τSN [{m+(N),mεN }]

∣∣∣WN

(
mεN + 2

N

))
+ Pσ

(
WN

(
mεN − 2

N

))
Pσ

(
τSN [m−(N)] < τSN [{m+(N),mεN }]

∣∣∣WN

(
mεN − 2

N

))
= Pσ

(
WN

(
mεN + 2

N

)) ∑
σ′∈SN

[
mεN+

2
N

]
, σ∼σ′

Pσ′
(
τSN [m−(N)] < τSN [{m+(N),mεN }]

)

+ Pσ
(
WN

(
mεN − 2

N

)) ∑
σ′∈SN

[
mεN−

2
N

]
, σ∼σ′

Pσ′
(
τSN [m−(N)] < τSN [{m+(N),mεN }]

)
.

(4.52)

The first term vanishes because all the probabilities in the sum are zero. Thus, we get
the upper bound

Pσ

(
τSN [m−(N)] < τSN [{m+(N),mεN }]

)
≤

∑
σ′∈SN

[
mεN−

2
N

]
,σ∼σ′

Pσ′
(
τSN [m−(N)] < τSN [{m+(N),mεN }]

)
. (4.53)

Using first Lemma 4.6 which gives bounds uniform in σ′, we obtain

Pσ

(
τSN [m−(N)] < τSN [{m+(N),mεN }]

)
≤

∑
σ′∈SN

[
mεN−

2
N

]
,σ∼σ′

exp
(
− βN(1− γ) [fβ(m−) + δN − fβ(m(σ′))]

)

= N
1 +mεN

2
exp

(
− βN(1− γ)

[
fβ(m−) + δN − fβ

(
mεN − 2

N

)] )
= exp

(
−βN(1− γ)

[
fβ(m−) + δN − fβ

(
mεN − 2

N

)
− logN+O(1)

βN(1−γ)

])
≤ exp

(
− βN(1− γ)

[
fβ(m−) + δN − fβ

(
mεN − 2

N

)
− εN

] )
,

(4.54)

where in the last inequality we used that, for N large enough, logN+O(1)
βN(1−γ) ≤ εN (which

converges to ε > 0, see Step 4 in Section 4.1).

In the proofs of Lemmas 4.2 and 4.5, we use the following fact.

Lemma 4.6. For σ ∈ SN
[
[mδN ,mεN )

]
, for N sufficiently large and any γ ∈ (0, 1),

Pσ

(
τSN [m−(N)] < τSN [{m+(N),mεN }]

)
≤ exp

(
− βN(1− γ) [fβ(m−) + δN − fβ(m(σ))]

)
.

(4.55)
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Proof. For σ ∈ SN
[
[mδN ,mεN )

]
,

Pσ

(
τSN [m−(N)] < τSN [{m+(N),mεN }]

)
≤ Pσ

(
τSN [mδN ] < τSN [{m+(N),mεN }]

)
, (4.56)

being m−(N) < m∗ < mδN < mεN < m+(N), for N sufficiently large. Therefore, we
focus on finding an upper bound on the right hand side of (4.56).

Assume that there exists a function ψ super-harmonic in SN
[
[mδN ,mεN )

]
. As a

consequence, 0 > Lψ(σ) = ∂
∂tEσ [ψ(σ(t))]. This implies Eσ [ψ(σ(t))] ≤ Eσ [ψ(σ(s))], for all

s < t. Take s = 0, and σ(0) = σ, therefore Eσ [ψ(σ(t))] ≤ ψ(σ), for all t > 0. Thus, ψ(σ(t))

is a super-martingale. For the integrable stopping time T = τSN [mδN ] ∧ τSN [{m+(N),mεN }],
we use Doob’s optional stopping theorem for super-martingales to show that, for all σ in
the domain SN

[
[mδN ,mεN )

]
of ψ, Eσ [ψ(σ(T ))] ≤ ψ(σ). Therefore,

ψ(σ) ≥ Eσ
[
ψ(σ(T ))

]
≥ min
σ′∈SN [mδN ]

ψ(σ′)Pσ

(
τSN [mδN ] < τSN [{m+(N),mεN }]

)
, (4.57)

which implies that

Pσ

(
τSN [mδN ] < τSN [{m+(N),mεN }]

)
≤ ψ(σ)

minσ′∈SN [mδN ] ψ(σ′)
. (4.58)

For a suitably chosen ψ the latter inequality will yield the desired upper bound. Now
we are left with the choice of a suitable ψ : SN → R such that Lψ(x) < 0, for all
x ∈ SN

[
[mδN ,mεN )

]
. We define a function ψ which depends on a parameter γ ∈ (0, 1)

and is constant on fixed magnetisation sets, i.e, for all σ ∈ SN ,

ψ(σ) = φ(m(σ)), (4.59)

where φ : [−1, 1]→ R is defined by

φ(m) = exp
(
βN (1− γ)fβ(m)

)
. (4.60)

Our choice of ψ is similar to the one used by Bianchi, Bovier and Ioffe in [1, Proposition
6.4]. The choice of γ is relevant in (4.22).

We claim and prove later in Lemma 4.7 that ψ is super-harmonic in SN
[
[mδN ,mεN )

]
.

Therefore, we conclude the proof by inserting ψ in (4.58) and obtaining

Pσ

(
τSN [mδN ] < τSN [{m+(N),mεN }]

)
≤

exp
(
βN(1− γ)fβ(m(σ))

)
minσ′∈SN [mδN ] exp

(
βN(1− γ)fβ(m(σ′))

)
= exp

(
βN(1− γ) [fβ(m(σ))− fβ(mδN )]

)
= exp

(
− βN(1− γ) [fβ(m−) + δN − fβ(m(σ))]

)
,

(4.61)

where we used the definition of mδN (see Section 4.1).

We are now left with the proof of the super-harmonicity of ψ, which is used in the
proof of Lemma 4.6.

Lemma 4.7. ψ defined in (4.59) is super-harmonic in SN
[
[mδN ,mεN )

]
.

Proof. We have to prove that Lψ(x) < 0, for all x ∈ SN
[
[mδN ,mεN )

]
. Set m̄ = m(x). As

usual, we try to rewrite the terms appearing in the expression for Lψ(x) in terms of their
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mean-field version.

Lψ(x) =
∑
y∈SN

p(x, y)[ψ(y)− ψ(x)]

=
1

N

∑
y∈SN

1y∼x exp
(
− β[H(y)−H(x)]+

)
×
[

exp
(
β(1− γ)Nfβ(m(y))

)
− exp (β(1− γ)Nfβ(m(x)))

]
=

1

N

∑
m∈ΓN

exp
(
− βN [E(m)− E(m̄)]+

)
×
[

exp
(
βN(1− γ)fβ(m)

)
− exp

(
βN(1− γ)fβ(m̄)

)]
×

∑
y:m(y)=m

1x∼y
exp

(
− β[H(y)−H(x)]+

)
exp

(
− βN [E(m)− E(m̄)]+

)
≤
∑
m∈ΓN

exp
(
− βN [E(m)− E(m̄)]+

)
φ(m̄)

[
exp

(
βN(1− γ)[fβ(m)− fβ(m̄)]

)
− 1
]

× e2β

[
1 + m̄

2
1m̄− 2

N
(m) +

1− m̄
2

1m̄+ 2
N

(m)

]
,

(4.62)

where φ is defined in (4.60) and we used the upper bound exp(2β) on G(σ,m′) as in the
proof of the upper bound on capacity (see (3.8), (3.9)).

Now, recalling definition (1.20), we use the following notation

r+ = r̃N
(
m̄, m̄+ 2

N

)
= exp

(
−2β

[
− 1

N
− (m̄+ h)

]
+

)
1− m̄

2
, (4.63)

r− = r̃N
(
m̄, m̄− 2

N

)
= exp

(
−2β

[
− 1

N
+ m̄+ h

]
+

)
1 + m̄

2
, (4.64)

and, for all m ∈ ΓN \ {1},

g(m) =
N

2

[
fβ
(
m+ 2

N

)
− fβ(m)

]
. (4.65)

Therefore, we can rewrite (4.62) as

Lψ(x) ≤ e2β φ(m̄) r+

[
exp

(
2β(1− γ)g(m̄)

)
− 1
]

+ e2β φ(m̄) r−

[
exp

(
− 2β(1− γ)g

(
m̄− 2

N

) )
− 1
]

= e2β φ(m̄) r+G+,

(4.66)

where

G+ =
(

e2β(1−γ)g(m̄) − 1
)

+
r−
r+

(
e
−2β(1−γ)g

(
m̄− 2

N

)
− 1

)
. (4.67)

Being e2β, φ(m̄) and r+ positive, we have only to show that G+ < 0. First we notice
that

g(m) = −m− h+
1

β
I ′(m) +O

(
1
N

)
(4.68)

and similarly

g
(
m− 2

N

)
= −m− h+

1

β
I ′(m) +O

(
1
N

)
. (4.69)
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Therefore,

g(m)− g
(
m− 2

N

)
= O

(
1
N

)
. (4.70)

Then, since I ′(m) = 1
2 log

(
1+m
1−m

)
(see (1.16)), and using (4.69) we have

r−
r+

=
1 + m̄

1− m̄
exp

(
2β
[
− 1
N − (m̄+ h)

]
+

)
exp

(
2β
[
− 1
N + m̄+ h

]
+

)
=

1 + m̄

1− m̄
exp

(
− 2β(m̄+ h)

) (
1 +O

(
1
N

))
= exp

(
2I ′(m̄)− 2β(m̄+ h)

) (
1 +O

(
1
N

))
= exp

(
2β
[
g
(
m̄− 2

N

)
+ m̄+ h+O

(
1
N

)]
− 2β(m̄+ h)

) (
1 +O

(
1
N

))
= exp

(
2β g(m̄− 2

N )
) (

1 +O
(

1
N

))
.

(4.71)

Therefore, rearranging (4.67) and then using (4.70) and (4.71), we obtain

G+ =
[

exp
(
2β (1− γ) g(m̄)

)
− 1
] [

1− r−
r+

exp
(
−2β (1− γ) g

(
m̄− 2

N

))]
+
r−
r+

[
exp

(
2β (1− γ)

[
g(m̄)− g

(
m̄− 2

N

)] )
− 1
]

=
[

exp
(
2β (1− γ) g(m̄)

)
− 1
][

1− exp
(
2β γ g

(
m̄− 2

N

) ) (
1 +O

(
1
N

)) ]
+
r−
r+

[
exp

(
2β (1− γ)O

(
1
N

) )
− 1
]
.

(4.72)

Notice that, for every m ∈ [mδN ,mεN ) ⊂ [m∗,m+), g(m) is negative, being fβ strictly
decreasing in [m∗,m+). As a consequence, e2β(1−γ)g(m̄) − 1 < 0. Furthermore, for N
sufficiently large, 1− e2βγg(m̄− 2

N )
(
1 +O

(
1
N

))
> 0, implying that the first term in (4.72)

is negative.
Moreover, r−r+ ≥ 0 is uniformly bounded from above, for N sufficiently large. There-

fore, since β is finite, γ ∈ (0, 1) and the term
[
exp

(
2β(1− γ)O

(
1
N

) )
− 1
]

is positive but
converging to zero as N grows to infinity, the second term in (4.72) is negligible.

Therefore, for N sufficiently large, G+ is negative, concluding the proof.

4.4 Lower bound on the harmonic sum

In this section we provide the main ideas to prove the second part of Theorem 1.7,
namely the lower bound on the harmonic sum in (4.1).

Proof of Theorem 1.7. Lower bound. The proof is very similar to the proof of the upper
bound we gave in Section 4.2, therefore we omit the details. The main contribution is
given once again by the sum on SN [Uδ,N (m−)].

We have,∑
σ∈SN

µβ,N (σ)hNm−,m+
(σ) ≥

∑
σ∈SN [Uδ,N (m−)]

µβ,N (σ)hNm−,m+
(σ)

=
∑

σ∈SN [Uδ,N (m−)]

µβ,N (σ)−
∑

σ∈SN [Uδ,N (m−)]

µβ,N (σ)
(
1− hNm−,m+

(σ)
)

≥
∑

m∈Uδ,N (m−)\[−1,m−(N))

Qβ,N (m)

−
∑

σ∈SN [Uδ,N (m−)\[−1,m−(N))]

µβ,N (σ)Pσ

(
τSN [m+(N)] < τSN [m−(N)]

)
.

(4.73)
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The first term, i.e. the sum on the mesoscopic measure Qβ,N , gives the main contri-
bution. This sum can be estimated from below using the lower bound in Corollary 2.5,
obtaining a lower bound similar to the second upper bound in Corollary 2.7 and applying
the saddle point method as in (4.11). More precisely, using notation (1.38), we have the
following lower bound for s > 0:

∑
m∈Uδ,N (m−)\[−1,m−(N))

Qβ,N (m)
P (s)

≥
eκ−s exp

(
− βNfβ(m−)

)
Zβ,N

√
(1−m2

−)β f ′′β (m−)
(1 + o(1)). (4.74)

The second term in (4.73), appearing with a negative sign in front, is estimated via
an upper bound, obtaining

∑
σ∈SN [Uδ,N (m−)\[−1,m−(N))]

µβ,N (σ)Pσ

(
τSN [m+(N)] < τSN [m−(N)]

)

≤
es+α exp

(
−βNfβ(m−)

)
Zβ,N

√
2

π(1−m2
+)

e−βNc(1 + o(1)), (4.75)

which is negligible compared to the right hand side of (4.74), concluding the proof.
We omit the proof of (4.75) being it again technical and very similar to the proof of

the upper bound (4.26) in Part 4 of Section 4.2. An analogue construction to the one
given in Section 4.1 and similar proofs to those in Section 4.3 are needed. The main
difference consists in restricting the analysis on a right neighbourhood of m−(N) instead
of a left neighbourhood of m+(N).
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