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Abstract

We consider a broad class of Approximate Message Passing (AMP) algorithms defined
as a Lipschitzian functional iteration in terms of an n× n random symmetric matrix A.
We establish universality in noise for this AMP in the n-limit and validate this behavior
in a number of AMPs popularly adapted in compressed sensing, statistical inferences,
and optimizations in spin glasses.
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1 Introduction

Motivated by the ideas from belief propagation algorithms, Approximate Message
Passing (AMP) algorithms were initially introduced in the context of compressed sensing,
see [13, 14, 15, 16]. Thereafter they have received great popularity in a number of
emerging applications in data science, statistical physics, etc. concerning the develop-
ment of efficient algorithms for some randomized estimations and optimizations with
large complexity.

One major application has been laid on the subject of matrix estimations, in which
one aims to extract the structure of a signal matrix in a randomized environment. A
popular setting is the so-called spiked model, where the data arrives as the sum of a
noise, an n×n symmetric random matrix An, and the signal, an n×n symmetric low-rank
matrix Zn,

Ân := An + Zn.
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Universality of approximate message passing algorithms

The goal is to recover the structure of Zn from the realization of the matrix Ân. A typical
example one considered in the literature is when An is the normalized Gaussian Wigner
ensemble and Zn is given by

Zn =
1

n

r∑
`=1

γ`z
` ⊗ z`, (1.1)

where z1, . . . , zr are non-random column vectors with ‖z`‖2 =
√
n and the parameters

γ1, . . . , γr ≥ 0 are the signal-to-noise ratios (SNR’s). In probability and statistics, this
spiked model has been intensively studied by means of the spectral method, see [2, 6,
7, 9, 18, 20, 22, 32, 33]. In Bayesian optimal approach, the setting often considered
in the literature is to assume that the vectors z1, . . . , zr are randomized and their i-th
marginal vectors, (z1

i , . . . , z
r
i ) for 1 ≤ i ≤ n, are independently sampled from a given prior

distribution. It turns out that the corresponding Minimum Mean Square Error Estimator
(MMSEE), E[(z1, . . . , zr)|Ân], can be connected to the Gibbs expectation of the famous
Sherrington-Kirkpatrick (SK) mean-field spin glass model arising from the statistical
physics [35]. One peculiar feature within this connection is that this model satisfies the
so-called Nishimori identity, namely, the conditional distribution of the vectors z1, . . . , zr

given the data Ân is equal to the distribution of the vector-valued spin configuration of
the corresponding SK model. This allows one to fully understand the behavior of the
MMSEE and its phase transition in terms of SNR’s, see [3, 10, 11, 23, 24, 25, 26] for the
recent progress.

The study of the above Bayesian estimation arises a challenging computational
problem in searching for polynomial-time algorithms in simulating the MMSEE. To this
end, AMP algorithms have been widely adapted [21, 28, 29, 30, 31, 34, 37] and known to
achieve a good level of success; in some cases, it allows to obtain the Bayesian-optimal
error estimates, see [11, 12, 29]. In addition to being useful in matrix estimations, AMP
has also been applied to a number of randomized optimization problems in mean-field
spin glass models in recent years. In particular, it was shown in [17, 27] that AMP allows
to implement polynomial-time algorithms in the optimization of the SK Hamiltonian and
its variants.

In these applications, the AMP algorithm is formulated as a sequence of n-dimensional
vectors (v[k])k≥0 of the form

v[k+1] = Ânfk(v[k], . . . , v[0])−
k∑
j=1

bk,jfj−1(v[j−1], . . . , v[0]),

for

bk,j =
1

n

n∑
i=1

∂fk

∂v
[j]
i

(v
[k]
i , . . . , v

[0]
i ),

where fk ∈ C1(Rk+1) and the two vectors fk(v[k], . . . , v[0]) and fj−1(v[j−1], . . . , v[0]) above
are defined coordinate-wise by v[k], . . . , v[0] and v[j−1], . . . , v[0], respectively. The key
component here is the initialization v[0]; it influences the convergence of the AMP in the
large n limit.

When Zn is a zero matrix and the initialization v[0] is independent of An, it was known
[4, 5, 8, 19] that under mild assumptions on fj ’s, this iterative algorithm converges in
the sense that for any Lipschitz function φ ∈ C(Rk+1), almost surely,

lim
n→∞

1

n

n∑
i=1

φ(v
[k]
i , . . . , v

[0]
i ) = Eφ(Vk, . . . , V0), (1.2)
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Universality of approximate message passing algorithms

where (Vk, . . . , V0) is a centered Gaussian random vector with covariance

EVa+1Vb+1 = Efa(Va, . . . , V0)fb(Vb, . . . , V0), ∀0 ≤ a, b ≤ k − 1.

When Zn is of the form (1.1) and the spectrum of Ân exhibit the so-called Baik-Ben
Arous-Péché (BBP) phase transition [1], namely, the top eigenvalue of Ân stays a gap
away from the rest of the eigenvalues and the principal eigenvector is correlated to
the prior, a recent paper [29] further showed that an analogous convergence remains
valid when the AMP is initialized by the principal eigenvector, see Example 2.8 below.
The typical way to use AMP is to select the functions φ, fk, . . . , f0 properly (usually are
smooth and with bounded derivatives) so that the limit (1.2) converges to the desired
quantities of interest by adjusting the number of iteration k, see, e.g., [15, 27, 29].

While the above convergences were known to be true when An is Gaussian, in this
work we investigate their validity under general randomness. When the signal matrix
is not presented, i.e., Zn ≡ 0 (or equivalently, Ân = An) and u[0] is independent of An,
this question was answered earlier in the work [4], in which they showed that if the
evolution functions fk, . . . , f0 of the AMP are polynomials, then the AMP converges to the
same limit of (1.2) independent of the choice of the randomness on An. In our setting,
we consider a generalized AMP with Lipschitz evolution functions and let it iterate in
the presence of the signal matrix. Our first main result validates the universality of
the AMP. As a consequence, this implies that the universality established in [4] also
holds for Lipschitz functions and under the presence of the signal matrix Zn. (We note
here that the work in [4] can be actually extended to Lipschitz evolution functions by
[4, Proposition 6] and its proof, but only when Zn ≡ 0.) Furthermore, we show that
universality of AMP with spectral initialization remains valid when the system exhibits
the BBP phase transition.

Our approach is based on a Gaussian interpolation argument. In doing so, the central
ingredient relies on a novel control on the moments of the partial derivatives of the
AMP orbit with respect to the entries of the noise matrix An. While our argument are
formulated for the purpose of this paper, the same strategy is expected to be applicable
in more general settings.

2 Main results

We begin with some notations. For any column vectors u0, u1, . . . , uk ∈ Rn and a
function f : Rk+1 → R, we define f(uk, uk−1, . . . , u0) as a column vector by

f(uk, uk−1, . . . , u0)i = f(uki , u
k−1
i , . . . , u0

i ).

For x, y ∈ Rn, set ‖x‖2 =
(∑n

i=1 x
2
i

)1/2
and 〈x, y〉 =

∑n
i=1 xiyi. LetMn(R) be the collection

of all n× n real-valued symmetric matrices. For X,Z ∈Mn(R), denote

Xn =
X√
n

and

X̂n =
X√
n

+
Z

n
.

The generalized approximate message passing is formulated as follows.

Definition 2.1. Let u[0] : Mn(R) → Rn be a measurable function. For any k ≥ 0, let
Fk ∈ C(Rk+1) be Lipschitz. The generalized AMP orbit corresponding to (X,Z), (Fk)k≥0,

and u[0] is the sequence of vector-valued functions u[k] : Mn(R)→ Rn for k ≥ 0 defined
iteratively by

u[k+1](X) = Fk(X̂nu
[k](X), u[k−1](X), u[k−2](X), . . . , u[0](X)).
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We now specify the randomness on X, Z, and u0 Let σ > 0 be fixed. For any n ≥ 1,

let u0 = (u0
i )i∈[n] be an n-dimensional random vector and Z = (zii′)i,i′∈[n] be an n × n

random symmetric matrix. Assume that there exists a constant C(σ) > 0 such that

sup
n≥1

(
E exp

(‖u0‖22
σn

)
,max
i∈[n]

E exp
( |u0

i |
σ

)
, max
i,i′∈[n]

E exp
( |zii′ |

σ

))
≤ C(σ). (2.1)

Suppose that A = (aii′)i,i′∈[n] is an n× n random symmetric matrix, whose upper trian-
gular entries are independent with zero mean and unit variance and are σ-subgaussian,
i.e., Eeλaii′ ≤ eλ2σ2/2 for all λ ∈ R.

We further assume that A is independent of u0 and Z, but allow u0 and Z to be
dependent on each other. An important example of A is when the entries aii′ ’s are
standard normal. In this case, we denote A by G and we call Definition 2.1 associated to
X = G a Gaussian AMP. Our main result shows that if we initialize u[0](X) = u0, then the
AMP corresponding to any A is essentially the same as the Gaussian AMP.

Theorem 2.2. Let u[0](X) = u0. For any k ≥ 0 and Lipschitz function φ on Rk+1, we
have that in probability

lim
n→∞

∣∣Φk,n(A)− Φk,n(G)
∣∣ = 0,

where

Φk,n(X) :=
1

n

n∑
i=1

φ(u
[k]
i (X), . . . , u

[0]
i (X)), X ∈Mn(R). (2.2)

Next we introduce the AMP used in the matrix estimation and some optimization
problems in mean-field spin glasses.

Definition 2.3. Let f−1 ≡ 0. For k ≥ 0, assume that fk ∈ C1(Rk+1) is Lipschitz and
its first-order partial derivatives are also Lipschitz. Let X ∈ Mn(R). Starting from an
initialization v[0](X), define the AMP orbit for k ≥ 0 iteratively by

v[k+1](X) = X̂nfk(v[k](X), . . . , v[0](X))−
k∑
j=1

bk,j(X)fj−1(v[j−1](X), . . . , v[0](X)), (2.3)

where

bk,j(X) =
1

n

n∑
i=1

∂fk

∂v
[j]
i (X)

(v
[k]
i (X), . . . , v

[0]
i (X)).

Note that Definition 2.3 is not a direct example of the generalized AMP in Definition
2.1 due to the term bk,j(X). Nevertheless, since bk,j(X) is an average of the partial
derivatives, this quantity is essentially indistinguishable between different randomness
and this allows us to establish the following universality.

Theorem 2.4. Let v[0](X) = u0. For any k ≥ 0, if φ is Lipschitz on Rk+1, then in
probability,

lim
n→∞

∣∣φk,n(A)− φk,n(G)
∣∣ = 0,

where

φk,n(X) :=
1

n

n∑
i=1

φ(v
[k]
i (X), . . . , v

[0]
i (X)), X ∈Mn(R).
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Remark 2.5. As pointed out in the introduction, it was known [4, 5, 8, 19] that if Z = 0,

the Gaussian AMP in Definition 2.3 converges, see (1.2). If f0, . . . , fk are polynomials and
Z = 0, it was further understood in [4] that this convergence is independent of the choice
of the randomness of A. Theorem 2.4 here extends this universality to Lipschitz functions
and in the presence of Z. We refer the reader to check [17, 27] for the universality of this
AMP in the optimization of the Hamiltonian of the SK and related models. We mention
that while our extension here allows to achieve the same result in [27], the work [27]
adapted [4] directly with a truncation argument.

Example 2.6. For γ ≥ 0, set Z = γu0 ⊗ u0. In this case, Ân is a rank-one spiked matrix,

Ân =
A√
n

+ γ
u0 ⊗ u0

n
.

In matrix estimation, one would like to recover the vector u0 from the realization of Ân.
When A = G, the MMSEE, E[u0|Ân], is popularly adapted for this purpose and it can be
simulated via the AMP in Definition 2.3 with specifically chosen functions fk’s, see, e.g.,
[11]. Theorem 2.4 here indicates that in a non-Gaussian noise environment, the AMP in
Definition 2.3 still allows to implement the same simulation for u0 as the the Gaussian
AMP.

Recall that the initialization u0 and the signal matrix Z are assumed to be independent
of the noise. In Example 2.6, since the MMSEE is a measurable function of the spiked
matrix Ân, it is often more desirable that the initialization depends on Ân, as it should
provide a better estimate for the MMSEE. When A = G, an attempt along this line has
been successfully carried out in [29]. Our last main result addresses universality towards
this direction. For any X ∈ Mn(R), denote by λ1(X̂n) ≥ λ2(X̂n) ≥ · · · ≥ λn(X̂n) the
eigenvalues of X̂n and by ψ1(X̂n) the top eigenvector of X̂n with ‖ψ1(X̂n)‖2 =

√
n. Set

ψ(X) = sign
(
〈ψ1(X̂n), u0〉

)
ψ1(X̂n) (2.4)

whenever 〈ψ1(X̂n), u0〉 6= 0. Note that although there are two possible choices of ψ1(X̂n)

up to a sign, the definition ψ(X) here is not influenced by this difference.

Theorem 2.7. Assume that

lim inf
n→∞

λ1(Ĝn) > max
(
lim sup
n→∞

max
2≤`≤n

∣∣λ`(Ĝn)
∣∣, 1),

lim inf
n→∞

λ1(Ân) > max
(
lim sup
n→∞

max
2≤`≤n

∣∣λ`(Ân)
∣∣, 1), (2.5)

and

lim inf
n→∞

1

n
min

(∣∣〈ψ1(Ĝn), u0〉
∣∣, ∣∣〈ψ1(Ân), u0〉

∣∣) > 0. (2.6)

Consider the AMP orbit (v[`])0≤`≤k defined in Definition 2.3. Let v[0](X) = ψ(X). If
φ ∈ C(Rk+1) is Lipschitz, then in probability,

lim
n→∞

|φk,n(A)− φk,n(G)| = 0.

The assumptions (2.5) and (2.6) say that the top eigenvalue stays a gap away from
the rest of the eigenvalues and the principal eigenvector is correlated to the prior vector
u0. These behaviors are not only required in our proofs for technical purposes, but also
appear to be quite typical in the BBP phase transition, see the following example.

Example 2.8. Recall Ân from Example 2.6. Let u0 = (u0
1, . . . , u

0
n) for u0

1, . . . , u
0
n
i.i.d.∼ w,

where w is a centered random variable with compact support and unit variance. Recall
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from [6] that the BBP transition point is equal to 1: If γ < 1,

lim
n→∞

λ1(Ĝn) = 2, a.s.,

lim
n→∞

1

n

〈
ψ1(Ĝn), u0

〉
= 0, a.s.;

(2.7)

if γ > 1,

lim
n→∞

λ1(Ĝn) = γ + γ−1 > 2, a.s.,

lim
n→∞

1

n

〈
ψ1(Ĝn), u0

〉
=
√

1− γ−2 > 0, a.s..
(2.8)

These imply that the spectral method can be used to gain useful information about u0

only if the SNR exceeds the critical threshold, i.e., γ > 1, as in this case the principal
eigenvector is positively correlated to u0. In [29], the convergence of AMP in Definition
2.1 initialized by the top eigenvector was investigated, which states that again when
γ > 1,

lim
n→∞

1

n

n∑
i=1

φ(u
[0]
i (G), u

[k]
i (G)) = Eφ(w, µkw + σkg). (2.9)

Here, starting from µ0 =
√

1− γ2 and σ0 = 1/γ, (µk)k≥1 and (σk)k≥1 are defined through

µk+1 = γE[wfk(µkw + σkg)],

σ2
k+1 = E[fk(µkw + σkg)2],

where g ∼ N(0, 1) is independent of w. Note that Ĝn is a perturbation of Gn by a
rank-one matrix. The eigenvalue interlacing property implies that for any small δ > 0,
asymptotically

−
√

2− δ ≤ λn(Gn) ≤ λi(Ĝn) ≤ λ1(Gn) ≤
√

2 + δ

for all 2 ≤ i ≤ n, where λ1(Gn) and λn(Gn) are the largest and smallest eigenvalues of
Gn, respectively. Note that this inequality, (2.7), and (2.8) are also valid for A. Hence,
the assumptions of (2.5) and (2.6) are valid and as a result, the convergence of (2.9) is
universal in probability.

Remark 2.9. In Theorems 2.2, 2.4 and 2.7, although we assume that φ is Lipschitz, these
theorems indeed also hold for polynomial φ (this is particularly relevant for applications
in statistics when considering square losses). This essentially follows from a truncation
argument along with the moment bound of ‖u[k](A)‖2 in Proposition 5.4.

Our approach to proving Theorem 2.2 is to match the first and second moments of
Φk,n between A and G, respectively. To this end, we define a Gaussian interpolation
X = A(t) :=

√
tA+

√
1− tG for 0 ≤ t ≤ 1 and control the t-derivatives of EΦk,n(A(t)) and

EΦk,n(A(t))2. The hope is that if the total number of the terms as well as their orders
appearing in these derivatives are small enough, then we anticipate that an application
of the approximate Gaussian integration by parts would make the derivatives small.
However, due to the iteration of the AMP, these derivatives involve highly complicated
Hadamard products of a large number of column vectors in terms of the higher order
partial derivatives of u[`](X) and X̂nu

[`](X). As a result, the control of their p-th moments
are extremely delicate, especially for those of X̂nu

[`](X). The novelty of our analysis
adapts a Taylor expansion of the derivatives up to the p-th order, which allows us to
extract the dependence of the i-th row of X out of the derivatives. This combining with
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a subtle moment computation in this expansion perfectly cancels out the majority of the
smaller order terms and yields the following moment controls (see Proposition 5.4 and
Lemma 5.5) that for any p ≥ 1, there exists a universal constant C > 0 such that for any
collection P of variables xii′ for i, i′ ∈ [n] counting multiplicities with |P | = m, we have

sup
n≥2

sup
i∈[n]

(
E
∣∣∂Pu[k](A)i

∣∣p)1/p

≤ C

nm/2
,

sup
n≥2

sup
i∈[n]

(
E
∣∣∂P (Âu[k](A)

)
i

∣∣p)1/p

≤ C

nm/2
,

where ∂P is the partial derivatives with respect to the variables in P. Using the Markov
inequality and the union bound, these yield a uniform control on the derivatives that for
any P with |P | = m and δ > 0, with probability at least 1− Cn−δ,

max
i∈[n]

∣∣∂Pu[k](A)i
∣∣ ≤ 1

n
m
2 −δ−

1
p

,

max
i∈[n]

∣∣∂P (Âu[k](A)
)
i

∣∣ ≤ 1

n
m
2 −δ−

1
p

.

Once Theorem 2.2 is established, the proof of Theorem 2.4 follows essentially by a
special choice of the functions F0, . . . , Fk, . . .. Although the term bk,j(X) in (2.3) relies
on all coordinates, its form averages out the partial derivatives and consequently, bk,j(A)

and bk,j(G) are asymptotically equal in probability, which is already enough to establish
Theorem 2.4 following an induction argument. Lastly to show Theorem 2.7, recall that
while both AMP’s in Theorems 2.4 and 2.7 share the same iteration procedure, their
initializations are of different kind; the former is initialized independent of An, but the
latter adapts the principal eigenvector of Ân. We show that this eigenvector can be
approximated very well by the power method (see Lemma 8.1). In view of this method, it
is essentially a special case of our generalized AMP with the choice Fk(xk, . . . , x0) = X̂nxk
and an analogous argument as that for Theorem 2.4 allows to establish Theorem 2.7. One
technicality here is that in order to guarantee the convergence of the power method, one
would have to choose the initialization carefully and ensure that the principle eigenvalue
of Ân is well-separated from the other eigenvalues. This explains why the assumptions
(2.5) and (2.6) need to be in position.

We mention that our approach can also be extended to prove universality for a
number of different settings of the AMPs, such as for the high-dimensional version of
the AMP in [19] and for the signal recovery in the square/rectangular spiked matrices
via the AMP initialized by top eigenvectors/singular vectors [29], whose corresponding
eigenvalues/singular values exhibit the BBP phase transition. It is plausible that they
can be obtained from our approach. We do not pursue these directions here.

The rest of the paper is organized as follows. Sections 3-6 are the preparation for the
proof of Theorem 2.2. Section 3 establishes a Gaussian concentration inequality for the
function Φk,n(X) as well as a number of prior controls on the AMP orbit. In Section 4, we
show that in proving Theorem 2.2, it suffices to assume that φ and Fk’s are smooth with
uniformly bounded derivatives. Section 5 provides the main estimates on the moments of
the derivatives of the AMP orbits. In Section 6, we carry out our interpolation argument
and present the proof of Theorem 2.2. The proofs of Theorems 2.4 and 2.7 are provided
in Sections 7 and 8, respectively. Finally, the Appendix gathers error estimates of some
approximate Gaussian integration by parts.

3 Lipschitz property and concentration inequality

Consider the AMP in Definition 2.1 with initialization u[0](X) = u0. In this section, we
establish a Lipschitz property for this AMP and a concentration inequality for Φk,n(G).
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These will be used later in the proof of Theorem 2.2. Recall that the functions Fk in
Definition 2.1 are Lipschitz. Let ηk be the Lipschitz constant of Fk. For any X ∈Mn(R),

denote by ‖X‖2 the `2 − `2 operator norm of X.

Proposition 3.1. If φ ∈ C(Rk+1) is Lipschitz with Lipschitz constant η > 0, then we
have that

|Φk,n(X)− Φk,n(Y )| ≤ kη‖Xn − Yn‖2
(‖u[0](X)‖2√

n
+ 1
) k∑
`=1

Θ`(Y )∆`(X)

+
kη‖u[0](X)− u[0](Y )‖2√

n

k∑
`=1

Θ`(Y ),

where

∆k(X) := 2k
(

(η0 + · · ·+ ηk−1)(‖X̂n‖2 + 1) + |F0(0)|+ · · ·+ |Fk−1(0)|+ 1
)k

(3.1)

and

Θk(Y ) :=
(
(1 + ‖Ŷn‖2) max(η0, . . . , ηk−1) + 2

)k
. (3.2)

This proposition says that the AMP orbits behave stably subject to a small perturbation
to the matrix X and the initialization. From this, we show that the Gaussian AMP is
concentrated.

Theorem 3.2. Let u[0](X) = u0. For any k ≥ 0, if φ ∈ C(Rk+1) is Lipschitz, then

lim
n→∞

E
∣∣Φk,n(G)− ẼΦk,n(G)

∣∣2 = 0,

where Ẽ is the expectation conditionally on u0 and Z.

For the rest of this section, we establish these results.

3.1 Proof of Proposition 3.1

The proof of this proposition relies on two lemmas on the boundedness and the
Lipschitz property of the vector u[k](X) following an iterative argument.

Lemma 3.3. For every k ≥ 1,

‖u[k](X)‖2 ≤ ∆k(X)(‖u[0](X)‖2 +
√
n), (3.3)

where ∆k(X) is defined in (3.1).

Proof. Write

‖u[`](X)‖22 =

n∑
i=1

F`−1(X̂nu
[`−1](X), u[`−2](X), . . . , u[0](X))2

i .

Using the Lipschitz property of F`−1 and the trivial bound (a+ b)2 ≤ 4(a2 + b2) yields

‖u[`](X)‖22 ≤
n∑
i=1

(
η`−1

(
|X̂nu

[r](X)i|2 +

`−2∑
r=0

|u[r]
i (X)|2

)1/2

+ |F`−1(0)|
)2

≤ 4

n∑
i=1

(
η2
`−1|X̂nu

[`−1](X)i|2 + η2
`−1

`−2∑
r=0

|u[r]
i (X)|2 + F`−1(0)2

)
= 4η2

`−1‖X̂nu
[`−1](X)‖22 + 4η2

`−1

`−2∑
r=0

‖u[r](X)‖22 + 4nF`−1(0)2
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so that from the Minkowski inequality,

‖u[`](X)‖2 ≤ 2η`−1‖X̂n‖2‖u[`−1](X)‖2 + 2η`−1

`−2∑
r=0

‖u[r](X)‖2 + 2n1/2|F`−1(0)|

≤ C
(`−1∑
r=0

‖u[r](X)‖2 + n1/2
)
,

where

C := 2(η0 + · · ·+ ηk−1)(‖X̂n‖2 + 1) + 2
(
|F0(0)|+ · · ·+ |Fk−1(0)|

)
.

If we let t` := ‖u[`](X)‖+ n1/2 and C ′ := 1 + C, then the above inequality implies that

t` ≤ C ′
`−1∑
r=0

tr, ∀1 ≤ ` ≤ k.

Using induction yields that

t` ≤ C ′(1 + C ′)`−1t0, ∀1 ≤ ` ≤ k,

which implies that for ∆k(X) := (1 + C ′)k = (2 + C)k,

‖u[k](X)‖2 ≤ C ′(1 + C ′)k−1(‖u[0](X)‖2 +
√
n) ≤ ∆k(X)(‖u[0](X)‖2 +

√
n)

and this completes our proof. ut

Lemma 3.4. For any X,Y ∈Mn(R),

‖u[k](X)− u[k](Y )‖2 ≤ Θk(Y )∆k(X)‖Xn − Yn‖2(‖u[0](X)‖2 +
√
n)

+ Θk(Y )‖u[0](X)− u[0](Y )‖2,

where ∆k(X) is defined in (3.2).

Proof. From the Lipschitz property of F`−1,

‖u[`](X)− u[`](Y )‖2 ≤ η`−1

(
‖X̂nu

[`−1](X)− Ŷnu[`−1](Y )‖2 +

`−2∑
r=0

‖u[r](X)− u[r](Y )‖2
)
.

Here, for any 1 ≤ ` ≤ k,

‖X̂nu
[`−1](X)− Ŷnu[`−1](Y )‖2 ≤ ‖u[`−1](X)‖2‖Xn − Yn‖2

+ ‖Ŷn‖2‖u[`−1](X)− u[`−1](Y )‖2.

If we let

C = (1 + ‖Ŷn‖2) max(η0, . . . , ηk−1),

D = ‖Xn − Yn‖2 max
(
‖u[0](X)‖2, . . . , ‖u[k−1](X)‖2

)
,

then

‖u[`](X)− u[`](Y )‖2 ≤ C
(
D +

`−1∑
r=0

‖u[r](X)− u[r](Y )‖2
)
.
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If we let

t` := D + ‖u[`](X)− u[`](Y )‖2,

then for C ′ := C + 1,

t` ≤ C ′
`−1∑
r=0

tr, 1 ≤ ` ≤ k

and by induction, t` ≤ C ′(1 + C ′)`−1t0. Consequently, for Θk(Y ) := (1 + C ′)k,

‖u[k](X)− u[k](Y )‖2 ≤ C ′(1 + C ′)k−1t0 ≤ Θk(Y )t0

and this completes our proof by noting that

D ≤ ‖Xn − Yn‖2(‖u[0](X)‖2 +
√
n)∆k−1(X) ≤ ‖Xn − Yn‖2(‖u[0](X)‖2 +

√
n)∆k(X). ut

Proof of Proposition 3.1. From the Lipschitz property of φ and Lemmas 3.3 and 3.4,
our assertion follows immediately. ut

3.2 Some prior bounds

Lemma 3.5. For any integer p ≥ 1, we have that

sup
n≥1

(E‖u0‖p2
np/2

,
E‖Z‖p2
np

,E‖An‖p2,E‖Ân‖
p
2

)
<∞.

Proof. Note that x2p ≤ p!ex2

and |x|p ≤ p!e|x|. The inequality (2.1) implies that

sup
n≥1

E‖u0‖p2
np/2

≤ sup
n≥1

(
E
‖u0‖2p2
np

)1/2

≤ sup
n≥1

√
p!σpEe‖u

0‖22/σn <
√
p!σpC(σ).

Next, note that the operator norm is no larger than the Frobenius norm. This and the
Jensen inequality lead to

sup
n≥1

E‖Z‖p2
np

≤ sup
n≥1

E
(∑n

i,i′=1 |zii′ |2

n2

)p/2
≤ sup
n≥1

E
∑n
i,i′=1 |zii′ |p

n2

≤ sup
n≥1

p!σp

n2

n∑
i,i′=1

Ee|zii′ |/σ ≤ p!σpC(σ).

Finally, since the entries of A are independent σ-subgaussian with zero mean, it is
well-known (see, for instance, Corollary 4.4.8 in [36]) that supn≥1E‖An‖

p
2 <∞. Putting

these bounds together yields the uniform integrability of ‖Ân‖p2 and this completes our
proof. ut

Lemma 3.6. For any k ≥ 0, we have that

sup
n≥1

E
(‖u[k](A)‖2√

n

)4

<∞ (3.4)

and if φ ∈ C(Rk+1) is Lipschitz,

sup
n≥1

E|Φk,n(A)|4 <∞. (3.5)

Proof. The proof follows directly from Lemmas 3.3 and 3.5. ut
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3.3 Proof of Theorem 3.2

First of all, we establish a Gaussian concentration inequality for the functional Φk,n.

Lemma 3.7. Let u[0](X) = u0. For any k ≥ 0, if φ ∈ C(Rk+1) is Lipschitz, then there
exists a constant c > 0 such that for every t > 0,

P̃
(∣∣Φk,n(G)− Ẽ[Φk,n(G)]

∣∣ ≥ t− c(Ωn + 1)e−n/c
)
≤ ce−nt

2/(cΩ2
n) + ce−n/c,

where P̃ and Ẽ are the probability and expectation conditionally on u0 and Z, and

Ωn :=
(

1 +
‖u0‖2√

n

)(
1 +
‖Z‖2
n

)k
. (3.6)

Proof. From u[0](X) = u[0](Y ) = u0 and ‖X̂n‖2 ≤ ‖Xn‖2+‖Z‖2/n, Proposition 3.1 implies

|Φk,n(X)− Φk,n(Y )| ≤ c0Ωn‖Xn − Yn‖2
k∑
`=1

(
1 + ‖Xn‖2

)`(
1 + ‖Yn‖2

)`
,

where Ωn is defined in (3.6) and c0 is a constant independent of n. Observe that for any
M > 0, if ‖Xn‖2, ‖Yn‖2 ≤M , then

Φk,n(X) ≤ Φk,n(Y ) + c0Ωn(‖Xn − Yn‖2 ∧ (2M))

k∑
`=1

(1 + ‖Xn‖2 ∧M)`(1 + ‖Yn‖2)`).

This implies that if

T (X) := inf
Y ∈Mn(R):‖Yn‖2≤M

(
Φk,n(Y ) + c0Ωn(‖Xn − Yn‖2 ∧ (2M))

·
k∑
`=1

(1 + ‖Xn‖2 ∧M)`(1 + ‖Yn‖2)`)
)
,

then T (X) ≥ Φk,n(X) if ‖Xn‖2 ≤ M and consequently, T (X) = Φk,n(X) if ‖Xn‖2 ≤ M.

Next, note that for any Yn ∈Mn(R) with ‖Yn‖2 ≤M and X,X ′ ∈Mn(R),

‖Xn − Yn‖2 ∧ (2M) ≤ (‖Xn −X ′n‖2 + ‖X ′n − Yn‖2) ∧ (2M)

≤ ‖Xn −X ′n‖2 ∧ (2M) + ‖X ′n − Yn‖2 ∧ (2M)

≤ ‖Xn −X ′n‖2 + ‖X ′n − Yn‖2 ∧ (2M)

and

(1 + ‖Xn‖2 ∧M)` ≤ (1 + ‖Xn −X ′n‖2 ∧M + ‖X ′n‖ ∧M)`

= (1 + ‖X ′n‖2 ∧M)` +
∑̀
a=1

(
`

a

)(
‖Xn −X ′n‖2 ∧M

)a
(1 + ‖X ′n‖2 ∧M)`−a

≤ (1 + ‖X ′n‖2 ∧M)` +
∑̀
a=1

(
`

a

)
‖Xn −X ′n‖2Ma−1(1 +M)`−a

= (1 + ‖X ′n‖2 ∧M)` + ‖Xn −X ′n‖2
∑̀
a=1

(
`

a

)
Ma−1(1 +M)`−a.

From these and noting that the `2-operator norm of a matrix is less than its Frobenius
norm, we see that T (X) is Lipschitz with respect to the Frobenius norm with Lipschitz
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constant c1Ωn/n
1/2 for some constant c1 independent of n. Hence, the usual Gaussian

concentration inequality for Lipschitz functions implies that

P̃
(∣∣T (G)− Ẽ[T (G)]

∣∣ ≥ t) ≤ 2e−nt
2/(4c1

2Ω2
n), ∀t > 0.

Now note that as long as we fix M large enough at the beginning,

P̃(|T (G)− ẼT (G)| ≥ t) ≥ P̃
(
|Φk,n(G)− ẼT (G)| ≥ t, ‖Gn‖2 ≤M

)
≥ P̃

(
|Φk,n(G)− ẼT (G)| ≥ t

)
− P

(
‖Gn‖2 ≥M

)
≥ P̃

(
|Φk,n(G)− ẼT (G)| ≥ t

)
− c2e−n(M−c3)2/c2 ,

where the last inequality used the well-known bound that the largest eigenvalue of
G is concentrated around its mean with exponential tail bound, which follows by the
Borell-TIS inequality and c2, c3 are two constants independent of n and M. On the other
hand,

ẼT (G) = Ẽ[Φk,n(G); ‖Gn‖2 ≤M ] + Ẽ[T (G); ‖Gn‖2 ≥M ]

= Ẽ[Φk,n(G)] + Ẽ[−Φk,n(G) + T (G); ‖Gn‖2 ≥M ].

Here,∣∣Ẽ[−Φk,n(G) + T (G); ‖Gn‖2 ≥M ]
∣∣ ≤ (Ẽ(|Φk,n(G)|+ |T (G)|)2

)1/2
P
(
‖Gn‖2 ≥M

)1/2
≤ c4(Ωn + 1)e−n(M−c3)2/2c2

for some c4 independent of n and M. From these,

P̃
(∣∣Φk,n(G)− Ẽ[Φk,n(G)]

∣∣ ≥ t− c4(Ωn + 1)e−n(M−c3)2/2c2
)

≤ 2e−nt
2/(4c1

2Ω2
n) + c2e

−n(M−c3)2/c2 .

This completes our proof. ut

Proof of Theorem 3.2. From Lemmas 3.5 and 3.7 and the Markov inequality, in proba-
bility P,

lim
n→∞

∣∣Φk,n(G)− Ẽ[Φk,n(G)]
∣∣ = 0.

In addition, from(
E
∣∣Φk,n(G)−Ẽ[Φk,n(G)]

∣∣4)1/4≤(EΦk,n(G)4
)1/4

+
(
E
(
Ẽ[Φk,n(G)]

)4)1/4≤2
(
EΦk,n(G)4

)1/4
,

the uniform upper bound (3.5) gives

sup
n≥1

(
E
∣∣Φk,n(G)− Ẽ[Φk,n(G)]

∣∣4)1/4 <∞.
Hence, the assertion follows. ut

4 Smooth approximation

Recall that the functions Fk in Definition 2.1 and φ in Theorem 2.2 are Lipschitz.
In this section, we show that to prove Theorem 2.2, it suffices to assume that these
functions are smooth and their derivatives of any nonzero orders are uniformly bounded.
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Proposition 4.1. For any k ≥ 0, there exists a constant C independent of n such that for
any ε > 0, there exist some functions φ̄ ∈ C∞(Rk+1) and F̄` ∈ C∞(R`+1) for 0 ≤ ` ≤ k − 1,
whose partial derivatives of any nonzero orders are uniformly bounded such that

∣∣Φk,n(X)− Φ̄k,n(X)
∣∣ ≤ εC k−1∑

`=0

‖X̂n‖`2, (4.1)

where

Φ̄k,n(X) =
1

n

n∑
i=1

φ̄
(
ū

[k]
i (X), ū

[k−1]
i (X), . . . , ū

[0]
i (X)

)
and ū[k] is the k-th AMP orbit in Definition 2.2 associated to the functions F̄0, . . . , F̄k−1

and the initial condition ū[0](X) = u[0](X).

Proof. Denote by η` the Lipschitz constant of F`. Let ε > 0 be fixed. Assume that
ζ` ∈ C∞(R`+1) is a mollifier with ζ` ≥ 0 and

∫
ζ`dx = 1 and it is supported on the unit

ball {x ∈ R`+1 : ‖x‖2 ≤ 1}. Define ζ`,ε(x) = ε−(`+1)ζ`(x/ε). Set

F̄`,ε(x) = F` ∗ ζ`,ε(x) =

∫
ζ`,ε(x− y)F`(y)dy.

Note that for any ε > 0 and x ∈ R`+1,

|F̄`(x)− F`(x)| =
∣∣∣∫ ζ`(z)(F`(x− εz)− F`(x))dz

∣∣∣ ≤ η`ε∫ ‖z‖2ζ`(z)dz ≤ η′`ε
for some constant η′` > 0. In addition, for any index α = (α`, . . . , α0) ∈ ({0} ∪N)`+1 with

|α| :=
∑`
r=0 αr ≥ 1, if αr0 ≥ 1 for some 0 ≤ r0 ≤ `, then

∂αF̄`(x) =
1

ε`+|α|

∫
∂α
′
ζ`

(x− y
ε

)
∂yr0

F`(y)dy = ε1−|α|
∫
∂α
′
ζ`(z)∂yr0

F`(x− εz)dz,

where
α′ := (α`, . . . , αr0+1, αr0 − 1, αr0−1, . . . , α0).

Since F` is Lipschitz and ζ` is supported on the unit ball, it follows that the par-
tial derivatives of all nonzero orders of F̄` are uniformly bounded. In particular,
supx ‖∇F̄`(x)‖2 ≤ η′′` , independent of ε. Let η = max1≤j≤`{η′j , η′′j }. To show (4.1), note
that

‖u[`+1] − ū[`+1]‖2 ≤
∥∥F`(X̂nu

[`], u[`−1], . . . , u[0])− F̄`(X̂nū
[`], ū[`−1], . . . , ū[0])

∥∥
2

≤
∥∥F`(X̂nu

[`], u[`−1], . . . , u[0])− F̄`(X̂nu
[`], u[`−1], . . . , u[0])

∥∥
2

+
∥∥F̄`(X̂nu

[`], u[`−1], . . . , u[0])− F̄`(X̂nū
[`], ū[`−1], . . . , ū[0])

∥∥
2

≤ ηε+ η
(
‖X̂n‖2‖u[`] − ū[`]‖2 +

`−1∑
r=0

‖u[r] − ū[r]‖
)
.

Since ū[0] = u[0], an induction argument implies that

‖u[`](X)− ū[`](X)‖2 ≤ εC
`−1∑
j=0

‖X̂n‖j2, (4.2)

where C is a constant depending only on ` and η. Finally, by the same argument, for any
ε > 0, there exists a φ̄ ∈ C∞(Rk+1) with uniformly bounded partial derivatives of any
nonzero orders such that ‖φ− φ̄‖∞ < ε. From (4.2) and the Lipschitz property of φ, our
proof is completed. ut
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5 Bounding the derivatives

We establish uniform moment controls on the partial derivatives of the generalized
AMP orbit in Definition 2.1. For σ > 0, recall the random vector u0 and the random
matrix Z from (2.1). Let Gn(σ) be the collection of n × n symmetric random matrices
A = (aii′)i,i′∈[n], whose entries are centered independent and each of them are σ′-
subgaussian for some 0 ≤ σ′ ≤ σ. We also assume that Gn(σ) is independent of u0 and
Z.

For any m ∈ N, denote by [m] = {1, . . . ,m}. For any n ≥ 2, let Tn be the collection
of all sequences (ir, i

′
r)r≥1 ⊂ [n]2 with ir < i′r for all r ≥ 1. Let P be an arbitrary finite

subset of N and let m = |P |. For h ∈ Cm(Mn(R)) and (ir, i
′
r)r≥1 ∈ Tn, denote by

∂Ph(X) ∈ R

the partial derivative of h with respect to the variables xiri′r for all r ∈ P counting
multiplicities. For a vector-valued function H = (h1, . . . , hn) for h1, . . . , hn ∈ Cm(Mn(R)),
we also set the partial derivative of H by

∂PH(X) = (∂Ph1(X), . . . , ∂Phn(X)) ∈ Rn

and denote

∂PH(X)i = ∂Phi(X), 1 ≤ i ≤ n.

For any n ≥ 2 and m ≥ 0, denote by Bn(m) the collection of all(
P, (ir, i

′
r)r≥1, A, i

)
for P ⊂ N with |P | = m, (ir, i

′
r) ∈ Tn, A ∈ Gn(σ), and i ∈ [n]. The following is our main

estimate.

Proposition 5.1. Consider the AMP orbit (u[k](X))k≥0 in Definition 2.1 with u[0](X) = u0.
Assume that the functions Fk in Definition 2.1 satisfy the following assumption:

Fk ∈ C∞(Rk+1) and its partial deriatives of all nonzero orders are uniformly bounded.
(5.1)

Let k ≥ 0, p ≥ 1, and m ≥ 0. Let U ∈ C∞(R2(k+1)). Assume that its partial derivatives
of nonzero orders are uniformly bounded. Define a vector-valued random function on
Mn(R) by

U(X) = U(X̂nu
[k](X), . . . , X̂nu

[0](X), u[k](X), . . . , u[0](X)) ∈ Rn.

There exists a universal constant ΓUk,p,m such that

sup
Bn(m)

(
E
∣∣∂PU(A)i

∣∣p)1/p ≤ ΓUk,p,m
nm/2

, ∀n ≥ 2.

As we shall see, this bound will be used to control the Gaussian interpolation between
the first two moments of Φk,n(A) and Φk,n(G). For the rest of this section, we establish
this proposition in three subsections. First of all, we derive explicit formulas for the
derivatives of the AMP orbit. Next, we show that Proposition 5.1 is valid if U depends
only on the marginal variables. The general case is treated in the last subsection.
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5.1 Some auxiliary lemmas

Let k ≥ 0 and m ≥ 1 be fixed. Let v0, . . . , vk ∈ Cm(Mn(R)) and F ∈ Cm(Rk+1). Set

V (X) = F (vk(X), . . . , v0(X)) ∈ R, ∀X ∈Mn(R).

Let (ir, i
′
r)r≥1 ∈ Tn. Let P be a finite subset of N with |P | = m. For any 1 ≤ r ≤ m, set

Jr(k) = {0, . . . , k}r and set Pr(P ) the collection of all partitions P = {P1, . . . , Pr} of P
into r nonempty subsets. For J = (j1, . . . , jr) ∈ Jr(k), set

∂JF (yk, . . . , y0) = ∂yjr ···yj1F (yk, . . . , y0).

Lemma 5.2. We have that

∂PV =
∑

1≤r≤m

∑
J∈Jr(k)

∑
P∈Pr(P )

∂JF (vk, . . . , v0)∂P1vj1 · · · ∂Prvjr .

Proof. We argue by induction on the size of the set P . The case |P | = 1 is obvious.
Suppose that the conclusion holds for some m ≥ 1 and all P ⊂ N with |P | = m. Without
loss of generality, it suffices to show that the conclusion holds for P = [m + 1]. From
induction hypothesis, we compute directly to get

∂[m+1]V = ∂{m+1}
(
∂[m]V

)
=

∑
1≤r≤m

∑
J∈Jr(k)

∑
P∈Pr([m])

(
∂JF∂{m+1}

(
∂P1vj1 · · · ∂Prvjr

)
+
( k∑
j=0

∂j,JF∂{m+1}vj

)
∂P1

vj1 · · · ∂Pr
vjr

)
.

To handle the first summation, note that

∂{m+1}
(
∂P1

vj1 · · · ∂Pr
vjr
)

=

r∑
s=1

(∂P1
vj1) · · · (∂Ps−1

vjs−1
)(∂{m+1}∪Ps

vjs)(∂Ps+1
vjs+1

) · · · (∂Pr
vjr ),

which implies that∑
1≤r≤m

∑
J∈Jr(k)

∑
P∈Pr([m])

∂JF∂{m+1}
(
∂P1

vj1 · · · ∂Pr
vjr
)

=
∑

1≤r≤m

∑
J∈Jr(k)

∑
P∈Pr([m+1]):{m+1}/∈P

∂JF
(
∂P1

vj1 · · · ∂Pr
vjr
)
.

(5.2)

On the other hand, since

( k∑
j=0

∂j,JF∂{m+1}vj

)
∂P1vj1 · · · ∂Prvjr =

k∑
jr+1=0

∂jr+1,JF∂P1vj1 · · · ∂Prvjr∂{m+1}vjr+1 ,

it follows that

∑
1≤r≤m

∑
J∈Jr(k)

∑
P∈Pr([m])

( k∑
j=0

∂j,JF∂{m+1}vj

)
∂P1

vj1 · · · ∂Pr
vjr

=
∑

1≤r≤m

∑
J∈Jr+1(k)

∑
P∈Pr+1([m+1]):{m+1}∈P

∂JF∂P1
vj1 · · · ∂Pr+1

vjr+1
.
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To simplify this summation, we write∑
1≤r≤m

∑
J∈Jr+1(k)

∑
P∈Pr+1([m+1]):{m+1}∈P

∂JF∂P1
vj1 · · · ∂Pr+1

vjr+1

=
∑

2≤r≤m+1

∑
J∈Jr(k)

∑
P∈Pr([m+1]):{m+1}∈P

∂JF∂P1
vj1 · · · ∂Pr

vjr

=
∑

1≤r≤m

∑
J∈Jr(k)

∑
P∈Pr([m+1]):{m+1}∈P

∂JF∂P1
vj1 · · · ∂Pr

vjr

+
∑

J∈Jm+1(k)

∑
P∈Pm+1([m+1])

∂JF∂P1
vj1 · · · ∂Pm+1

vjm+1
,

where in the first equality we changed the variable r+1→ r, while in the second equality
we divide 2 ≤ r ≤ m + 1 into 2 ≤ r ≤ m and r = m + 1 and use the observation that
P1([m+ 1]) contains no element P so that {m+ 1} ∈ P. Combining this summation with
(5.2) yields the desired formula. ut

Lemma 5.3. For any H = (h1, . . . , hn) for h1, . . . , hn ∈ Cm(Mn(R)), we have that

∂P
(
X̂nH(X)

)
=

1√
n

∑
r∈P

Er∂P\{r}H(X) + X̂n∂PH(X),

where Er ∈ Mn(R), whose entries are equal to 1 at (ir, i
′
r) and (i′r, ir) and are zero

otherwise.

Proof. It suffices to assume that P = [m]. Ifm = 1, then ∂{1}
(
X̂nH(X)

)
= n−1/2E1H(X)+

X̂n∂{1}H(X). Assume that the assertion is valid for m ≥ 1. Then

∂[m+1]

(
X̂nH(X)

)
= ∂{m+1}

( 1√
n

∑
r∈[m]

Er∂[m]\{r}H(X) + X̂n∂[m]H(X)
)

=
1√
n

∑
r∈[m]

Er∂[m+1]\{r}H(X) + ∂{m+1}
(
X̂n∂[m]H(X)

)
=

1√
n

∑
r∈[m+1]

Er∂[m+1]\{r}H(X) + X̂n∂[m+1]H(X).
ut

5.2 Moment control

The most crucial ingredient of this paper lies on the following proposition, which
establishes two special cases of Proposition 5.1.

Proposition 5.4. Consider the AMP orbits in Definition 2.1 with the initialization
u[0](X) = u0 and assume that (Fk)k≥0 satisfies (5.1). For any k ≥ 0, p ≥ 1, and m ≥ 0,

there exist constants Γk,p,m and Γ′k,p,m such that for any n ≥ 2,

sup
Bn(m)

(
E
∣∣∂Pu[k](A)i

∣∣p)1/p ≤ Γk,p,m
nm/2

(5.3)

and

sup
Bn(m)

(
E
∣∣∂P (Ânu[k](A)

)
i

∣∣p)1/p ≤ Γ′k,p,m
nm/2

. (5.4)

Proof. We argue by induction on k ≥ 0. First assume that k = 0. We aim to show that (5.3)
and (5.4) are valid for all p ≥ 1 and m ≥ 0. For any P with |P | = m, since ∂Pu[0](X) = u0
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if m = 0 and ∂Pu
[0](X) = 0 if m ≥ 1, (2.1) obviously implies (5.3). To show (5.4), note

that for any P with |P | = m,

∂P (X̂nu
[0](X)) =


X̂nu

0, if m = 0,
1√
n
Eru

0, if m = 1 and P = {r} for some r ≥ 1,

0 if m ≥ 2,

where Er ∈Mn(R) is equal to 1 on the entries (ir, i
′
r) and (i′r, ir) and is zero elsewhere.

To control the first case, note that u0 is independent of A and the entries in A are
independent. From the subgaussianity of aij and (2.1), there exist positive constants
λ(σ) and D(σ) such that for any n ≥ 1 and λ ∈ [−λ(σ), λ(σ)],

Eeλn
−1/2 ∑n

j=1 aiju
0
j ≤ Eeλ

2σ2‖u0‖2/2n ≤ Eeλ(σ)2σ2‖u0‖2/2n ≤ D(σ).

Consequently, from x2p ≤ (2p)! coshx and the Jensen inequality,

E

∣∣∣∑n
j=1 aiju

0
j√

n

∣∣∣p ≤ √(2p)!D(σ)

λ(σ)p
.

On the other hand, the Cauchy-Schwarz and Jensen inequalities imply that

E

∣∣∣ n∑
j=1

zij
n
u0
j

∣∣∣p ≤ E∣∣∣∑n
j=1 z

2
ij

n

∣∣∣p/2(‖u0‖2√
n

)p
≤
(
E

∣∣∣∑n
j=1 z

2
ij

n

∣∣∣p)1/2(
E
(‖u0‖22

n

)p)1/2

≤
(
E

∣∣∣∑n
j=1 z

2p
ij

n

∣∣∣)1/2(
E
(‖u0‖22

n

)p)1/2

≤ D′(σ),

where D′(σ) is a constant independent of n and is guaranteed by the moment assumption
(2.1). Combining these two inequalities validates (5.4) for (k, p,m) = (0, p, 0). In the
second case, since Eru0 has only two nonzero entries and they are u0

ir
and u0

i′r
, the bound

(2.1) implies (5.4) for (k, p,m) = (0, p, 1). The third case is evident. In conclusion, (5.4)
holds for k = 0, p ≥ 1, and m ≥ 0.

Next, we assume that there exists some k0 ≥ 0 such that (5.3) and (5.4) are valid
for all 0 ≤ k ≤ k0, p ≥ 1, and m ≥ 0. Our goal is to show that they are also valid for
k = k0 + 1, p ≥ 1, and m ≥ 0. Denote by

v[k0](X) = X̂nu
[k0](X), v[k0−1](X) = u[k0−1](X), . . . , v[0](X) = u[0](X).

First we verify (5.3). Assume that m = 0. From the Lipschitz property of Fk0
,(

E|u[k0+1](A)i|p
)1/p

=
(
E|Fk0

(v[k0](A), . . . , v[0](A))i|p
)1/p

≤ ηk0

k0∑
`=0

(
E|v[`](A)i|p

)1/p
+ |Fk0(0)|,

where ηk0
is the Lipschitz constant of Fk0

. By induction hypothesis, (5.3) follows when
(k, p,m) = (k0 + 1, p, 0) for all p ≥ 1. Now suppose that m ≥ 1. For n ≥ 2, consider an
arbitrary P with |P | = m, (ir, i

′
r)r≥1 ∈ Tn, A ∈ Gn(σ), and i ∈ [n]. From Lemma 5.2,

∂Pu
[k0+1](X)i =

∑
r∈P

∑
J∈Jr(k0),P∈Pr(P )

∂JFk0
(v

[k0]
i (X), . . . , v

[0]
i (X))

∂P1v
[j1]
i (X) · · · ∂Prv

[jr]
i (X).
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From this, Minkowski’s inequality, Hölder’s inequality, and the boundedness of the partial
derivatives of Fk0

, there exist constants ηk0,J ’s such that

(
E|∂Pu[k0+1](A)i|p

)1/p ≤∑
r∈P

∑
J∈Jr(k0),P∈Pr(P )

ηk0,J

r∏
l=1

(
E|∂Pl

v[jl](A)i|rp
)1/rp

.

Since each v[j](A) is either Ânu[j](A) or u[j](A), this implies that

(
E|∂Pu[k0+1](A)i|p

)1/p ≤∑
r∈P

∑
J∈Jr(k0),P∈Pr(P )

r∏
l=1

max(Γk0,rp,|Pl|,Γ
′
k0,rp,|Pl|)

n|Pl|/2

=
1

nm/2

∑
r∈P

∑
J∈Jr(k0),P∈Pr(P )

r∏
l=1

max(Γk0,rp,|Pl|,Γ
′
k0,rp,|Pl|)

=:
1

nm/2
Γk0+1,p,m.

Hence, (5.3) is valid for k = k0 + 1, p ≥ 1, and m ≥ 1. Putting these two cases together
yields the validity of (5.3) for k = k0 + 1, p ≥ 1, and m ≥ 0.

Now we verify (5.4). Let P ⊂ N with |P | = m, (ir, i
′
r)r≥1 ∈ Tn, A ∈ Gn(σ), and i ∈ [n].

Note that from Lemma 5.3,

∂P
(
X̂nu

[k0+1](X)
)

=
1√
n

∑
r∈P

Er∂P\{r}u
[k0+1](X) + X̂n∂Pu

[k0+1](X). (5.5)

The first term can be controlled by(
E

∣∣∣ 1√
n

∑
r∈P

Er∂P\{r}u
[k0+1](A)i

∣∣∣p)1/p

≤ 1√
n

∑
r∈P

(
E
∣∣δi,ir∂P\{r}u[k0+1](A)i′r + δi,i′r∂P\{r}u

[k0+1](A)ir
∣∣p)1/p

≤ 1√
n

∑
r∈P

((
E|∂P\{r}u[k0+1](A)i′r |

p
)1/p

+
(
E|∂P\{r}u[k0+1](A)ir |p

)1/p)
≤ 2mΓk0+1,p,m−1

nm/2
, (5.6)

where δi,i′ = 1 if i = i′ and it is zero if i 6= i′. As for the second term, note that for any
u ∈ Rn,

|(X̂nu)i| ≤ |(Xnu)i|+
1

n

( n∑
j=1

z2
ij

)1/2

‖u‖2.

This implies that(
E
∣∣(Ân∂Pu[k0+1](A)

)
i

∣∣p)1/p
≤
(
E
∣∣(An∂Pu[k0+1](A)

)
i

∣∣p)1/p +
1

n

(
E
[( n∑

j=1

z2
ij

)p/2∥∥∂Pu[k0+1](A)
∥∥p

2

])1/p

≤
(
E
∣∣(An∂Pu[k0+1](A)

)
i

∣∣p)1/p +
(
E

(∑n
j=1 z

2
ij

)p
np

)1/2p(
E
‖∂Pu[k0+1](A)

∥∥2p

2

np

)1/2p

.

Here, from (2.1), n−pE
(∑n

j=1 z
2
ij

)p
is bounded above by a constant independent of n.

From the validity of (5.3) for k = k0 + 1, p ≥ 1, and m ≥ 0 that we established above, we
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also have that(
E
‖∂Pu[k0+1](A)

∥∥2p

2

np

)1/2p

≤
(E∑n

i=1 |∂Pu[k0+1](A)i|2p

n

)1/2p

≤ Γk0+1,2p,m

nm/2

and from Lemma 5.5 below,(
E
∣∣(An∂Pu[k0+1](A)

)
i

∣∣p)1/p ≤ Υk0+1,p,m

nm/2
,

where Υk0+1,p,m is a universal constant independent of n. Therefore, we arrive at(
E
∣∣(Ân∂Pu[k0+1](A)

)
i

∣∣p)1/p ≤ C

nm/2
,

where C is a constant independent of n. Plugging this inequality and (5.6) into (5.5)
yields (5.4) for k = k0 + 1, p ≥ 1, and m ≥ 0. This completes our proof. ut

At the end of this subsection, we establish the following lemma used in the above
proof.

Lemma 5.5. Let k ≥ 1. Assume that for any p ≥ 1 and m ≥ 0, there exists a constant
Γk,p,m such that

sup
Bn(m)

(
E
∣∣∂Pu[k](A)i

∣∣p)1/p ≤ Γk,p,m
nm/2

, ∀n ≥ 2. (5.7)

Then for any p ≥ 1 and m ≥ 0, there exists a constant Υk,p,m such that

sup
Bn(m)

(
E
∣∣(An∂Pu[k](A)

)
i

∣∣p)1/p ≤ Υk,p,m

nm/2
, ∀n ≥ 2.

Proof. Our idea is to use the Taylor expansion to track the dependence of(
An∂Pu

[k](A)
)p

on each variable aii′ in each iteration. By Jensen’s inequality, it suffices to assume that
p is even. Let m ≥ 0 be fixed. Let P ⊂ N with |P | = m, (ir, i

′
r)r≥1 ∈ Tn, A ∈ Gn(σ), and

i ∈ [n]. Denote
V (X) = ∂Pu

[k](X).

For any D ⊆ [p], let ID be the collection of all I = (ι1, . . . , ιp) ∈ [n]p such that ιs are
distinct for s ∈ D and

{ιs : s ∈ Dc} ⊆ {ιs : s ∈ D}. (5.8)

For I ∈ ID and X ∈Mn(R), let XI ∈Mn(R), in which each entry of XI is equal to that
of X except that it vanishes on the sites (i, ιs) and (ιs, i) for all s ∈ D. For ι ∈ [n] and
0 ≤ t ≤ 1, define

fι(t) = Vι(X
I(t))

for
XI(t) := tX + (1− t)XI .

Here, Vι is the ι-th entry of V . Write by Taylor’s theorem,

Vι(X) = fι(1) =

p−1∑
a=0

f
(a)
ι (0)

a!
+

1

(p− 1)!

∫ 1

0

(1− t)p−1f (p)
ι (t)dt =: M I

ι (X) +N I
ι (X).
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Note that here

f (a)
ι (0) =

∑
s1,...,sa∈D

∂aVι(X
I)

∂xiιsa · · · ∂xiιs1

xiιs1
· · ·xiιsa .

Also, note that [n]p = ∪D⊆[p]ID. Write

E
(
AnV (A)

)p
i
≤ 1

np/2

∑
D⊆[p]

∑
I∈ID

|Eaiι1 · · · aiιpVι1(A) · · ·Vιp(A)|

=
1

np/2

∑
D⊆[p]

∑
I∈ID

∑
S⊆[p]

∣∣∣E(∏
l∈[p]

aiιl

)(∏
l∈S

M I
ιl

(A)
)(∏

l∈Sc

N I
ιl

(A)
)∣∣∣

=
1

np/2

∑
D⊆[p]

∑
I∈ID

∑
S([p]

∣∣∣E(∏
l∈[p]

aiιl

)(∏
l∈S

M I
ιl

(A)
)(∏

l∈Sc

N I
ιl

(A)
)∣∣∣

+
1

np/2

∑
D⊆[p]

∑
I∈ID

∣∣∣E(∏
l∈[p]

aiιl

)(∏
l∈[p]

M I
ιl

(A)
)∣∣∣

=: ∆n,1 + ∆n,2.

To control these two terms, note that from x2p ≤ (2p)! coshx and the σ-subgaussianity,
we have the bound

sup
i,j∈[n]

(
E|aij |p

)1/p ≤ sup
i,j∈[n]

(
E|aij |2p

)1/2p ≤ ξp := (2p)!eσ
2/2, ∀p ≥ 1.

First we handle ∆n,1. From the given assumption,(
E

∣∣∣ ∂aVιl(A
I)

∂xiιsa · · · ∂xiιs1

aiιs1
· · · aiιsa

∣∣∣2p)1/2p

≤
(
E

∣∣∣ ∂aVιl(A
I)

∂xiιsa · · · ∂xiιs1

∣∣∣4p)1/4p(
E|aiιs1

· · · aiιsa |
4p
)1/4p

≤
Γk,4p,a+mξ

a
4ap

n(a+m)/2
.

Using the Minkowski inequality, this inequality, and (5.7) yields that after dropping 1/a!,

∏
l∈S

(
E|M I

ιl
(A)|2p

)1/2p ≤∏
l∈S

p−1∑
a=0

∑
s1,...,sa∈D

Γk,4p,a+mξ
a
4ap

n(a+m)/2

≤ 1

n|S|m/2

(p−1∑
a=0

|D|aΓk,4p,a+mξ
a
4ap

)|S|
=:

CD,S
n|S|m/2

.

Also, since

E

∣∣∣∫ 1

0

(1− t)p−1f (p)
ι (t)dt

∣∣∣2p ≤ E(∫ 1

0

|f (p)
ι (t)|dt

)2p

≤
∫ 1

0

E|f (p)
ι (t)|2pdt,

we have, by dropping 1/(p− 1)!, that∏
l∈Sc

(
E|N I

ιl
(A)|2p

)1/2p ≤ ∏
l∈Sc

∑
s1,...,sa∈D

(∫ 1

0

E

∣∣∣ ∂pVιl(A
I(t))

∂xiιsp · · · ∂xiιs1

aiιs1
· · · aiιsp

∣∣∣2pdt)1/2p

≤
∏
l∈Sc

|D|pΓk,4p,p+mξp4p2

n(p+m)/2

=
1

n(p+m)|Sc|/2

∏
l∈Sc

|D|pΓk,4p,p+mξp4p2

=:
C ′D,S

n(p+m)|Sc|/2 .
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Combining these together leads to

|∆n,1| ≤
1

np/2

∑
D⊆[p]

∑
I∈ID

∑
S([p]

∏
l∈[p]

(E|aiιl |2p)1/2p
∏
l∈S

(
E|M I

ιl
(A)|2p

)1/2p ∏
l∈Sc

(
E|N I

ιl
(A)|2p

)1/2p
≤ 1

np/2
npξp2p

∑
D⊆[p]

∑
S([p]

CD,S
n|S|m/2

C ′D,S
n(p+m)|Sc|/2

= ξp2p
∑
D⊆[p]

∑
S([p]

CD,SC
′
D,S

n(p(|Sc|−1)+pm)/2

≤
ξp2p
npm/2

∑
D⊆[p]

∑
S([p]

CD,SC
′
D,S ,

where the last inequality used the fact that |Sc| ≥ 1 since S ( [p].

Next we turn to the control of ∆n,2, which requires more steps. Let D ⊆ [n] and
I ∈ ID. Write

∏
l∈[p]

M I
ιl

(A) =
∑
ā

1

ā!

∑
s̄1a1

,··· ,s̄pap

(∏
r∈[p]

ar∏
b=1

aiιsr
b

)(∏
r∈[p]

∂arVιr (AI)

∂xiιsr1
· · · ∂xiιsrar

)
,

where the first summation is over all ā = (a1, . . . , ap) ∈ {0, . . . , p− 1}p and ā! := a1! · · · ap!,
while the second summation is over all s̄rar = (sr1, . . . , s

r
ar ) ∈ Dar for 1 ≤ r ≤ p. Set

Sā = Da1 × · · · × Dap . Note that from our construction of AI , its entries at (i, ιs) and
(ιs, i) are all zero for all s ∈ D and consequently, (5.8) implies that AI is independent of
aiι1 , . . . , aiιp . It follows that

∆n,2 ≤
1

np/2

∑
ā

1

ā!

∑
D⊆[p]

∑
I∈ID

∑
Sā

|AL(I, s̄1
a1
, . . . , s̄pap)|,

where

A(I, s̄1
a1
, . . . , s̄pap) := E

(
aiι1 · · · aiιp

∏
r∈[p]

ar∏
b=1

aiιsr
b

)
,

L(I, s̄1
a1
, . . . , s̄pap) := E

(∏
r∈[p]

∂arVιr (AI)

∂xiιsr1
· · · ∂xiιsrar

)
,

AL(I, s̄1
a1
, . . . , s̄pap) := A(I, s̄1

a1
, . . . , s̄pap)L(I, s̄1

a1
, . . . , s̄pap).

To control the right-hand side, note that∣∣A(I, s̄1
a1
, . . . , s̄pap)

∣∣ ≤ ξp+|ā|p+|ā|

and from (5.7),

∣∣L(I, s̄1
a1
, . . . , s̄pap)

∣∣ ≤ ∏
r∈[p]

(
E

∣∣∣ ∂arVιr (AI)

∂xiιsr1
· · · ∂xiιsrar

∣∣∣p)1/p

≤
∏
r∈[p]

Γk,p,m+ar

n(m+ar)/2
=

1

n(pm+|ā|)/2

∏
r∈[p]

Γk,p,m+ar ,

where |ā| := a1 + · · ·+ ap. For any fixed D ⊆ [p] and 0 ≤ b ≤ |D|, let ID,b be the collection
of all I ∈ ID such that there are exactly b many entries that appear once in I. For any
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I ∈ ID,b, let Sā,I,b be the collection of all (s̄1
a1
, . . . , s̄pap) ∈ Sā such that all entries that

appear exactly once in I also appear in

{ιs11 , . . . , ιs1a1
, ιs21 , . . . , ιs2a2

, . . . , ιsp1 , . . . , ιs
p
ap
}.

Note that when b = 0, every entry in I ∈ ID,0 must appear at least twice in I and hence,
Sā,I,b = Sā, or equivalently, Scā,I,b = ∅. Also, note that Sā,I,b is nonempty only if |ā| ≥ b.

From these, we can write

∑
ā

∑
I∈ID

∑
Sā

=
∑
ā

|D|∑
b=0

∑
I∈ID,b

∑
Sā,I,b

+
∑
ā

|D|∑
b=0

∑
I∈ID,b

∑
Sc
ā,I,b

=
∑
ā

|D|∧|ā|∑
b=0

∑
I∈ID,b

∑
Sā,I,b

+
∑
ā

|D|∑
b=1

∑
I∈ID,b

∑
Sc
ā,I,b

.

To control the first summation, note that for any I ∈ ID,b, there are exactly b many
entries in I that appear once and the other entries are repeated. This implies that

|ID,b| ≤ CD,bnb+b(p−b)/2c,

where CD,b is a universal constant independent of n. Plugging this inequality to the
above equation yields that

1

np/2

∑
ā

|D|∧|ā|∑
b=0

∑
I∈ID,b

∑
Sā,I,b

∣∣AL(I, s̄1
a1
, . . . , s̄pap)

∣∣
≤ 1

np/2

∑
ā

|D|∧|ā|∑
b=0

|ID,b||D||ā|ξp+|ā|p+|ā|

n(pm+|ā|)/2

∏
r∈[p]

Γk,p,m+ar

≤
∑
ā

|D|∧|ā|∑
b=0

1

npm/2+|ā|/2+p/2−b−b(p−b)/2cCD,b|D|
|ā|ξ

p+|ā|
p+|ā|

∏
r∈[p]

Γk,p,m+ar

≤
∑
ā

|D|∧|ā|∑
b=0

1

npm/2+(p−b)/2−b(p−b)/2cCD,b|D|
|ā|ξ

p+|ā|
p+|ā|

∏
r∈[p]

Γk+,p,m+ar

≤ 1

npm/2

∑
ā

|D|∧|ā|∑
b=0

CD,b|D||ā|ξp+|ā|p+|ā|

∏
r∈[p]

Γk,p,m+ar , (5.9)

where the third inequality used |ā| ≥ b. As for the second summation, observe that for
1 ≤ b ≤ |D|, if I ∈ ID,b and (s̄1

a1
, . . . , s̄pap) ∈ Scā,I,b, then there exists one entry, say ι`, in I

that appears only once in I and it does not appear in the entries of s̄1
a1
, · · · , s̄pap . Hence,

aiι` is independent of

aiι1 · · · aiι`−1
aiι`+1

· · · aiιp
∏
r∈[p]

ar∏
b=1

aiιsr
b
,

which results in EA(I, s̄1
a1
, . . . , s̄pap) = 0. Therefore,

1

np/2

∑
ā

|D|∑
b=1

∑
I∈ID,b

∑
Sc
ā,I,b

|AL(I, s̄1
a1
, . . . , s̄pap)| = 0. (5.10)
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Finally, combining (5.9) and (5.10) together and dropping 1/ā! lead to

|∆n,2| ≤
1

npm/2

∑
D⊆[p]

∑
ā

|D|∧|ā|∑
b=0

CD,b|D||ā|ξp+|ā|p+|ā|

∏
r∈[p]

Γk,p,m+ar .

This completes our proof. ut

5.3 Proof of Proposition 5.1

Let m = |P |. From Lemma 5.2, the Minkowski inequality, and the Cauchy-Schwarz

inequality, we can compute the partial derivatives of U(X)i to see that
(
E
∣∣∂PU(A)i

∣∣p)1/p
is bounded above by a sum, in which each summand is of the form(

E
∣∣∂P1

vj1(A) · · · ∂Pr
vjr (A)

∣∣p)1/p
for some 1 ≤ r ≤ m and (j1, . . . , jr) ∈ Jr(2(k + 1)). More importantly, P = {P1, . . . , Pr} ∈
Pr(P ) and each term vjs(A) is equal to either (X̂nu

[`](A))i or u[`](A)i for some 0 ≤ ` ≤ k.
Now, using the Hölder inequality gives that(

E
∣∣∂P1

vj1(A) · · · ∂Pr
vjr (A)

∣∣p)1/p ≤ (E∣∣∂P1
vj1(A)

∣∣rp)1/rp · · · (E∣∣∂Pr
vjr (A)

∣∣rp)1/rp.
Here, from Proposition 5.4, each term on the right-hand side is bounded above by a
term of order 1/n|Ps|/2 and they together yield that a bound of order 1/n|P |/2 since
|P1|+ · · ·+ |Pr| = |P |. This completes our proof.

6 Proof of Theorem 2.2

We establish universality for the generalized AMP in Definition 2.1. Recall that in
Theorem 3.2, we use P̃ and Ẽ to denote the probability and expectation conditionally on
u0, Z. The following proposition shows that conditionally on u0, Z, the first two moments
of the AMP orbits between A and G asymptotically match each other.

Proposition 6.1. Consider the AMP orbit in Definition 2.1 with the initialization u[0](X) =

u0 and assume that (Fk)k≥0 satisfies (5.1). Let k ≥ 0. Assume that φ ∈ C∞(Rk+1) has
uniformly bounded partial derivatives of any nonzero orders. There exists a universal
constant C independent of n such that for any n ≥ 2,

E
∣∣ẼΦk,n(A)− ẼΦk,n(G)

∣∣ ≤ C√
n

(6.1)

and

E
∣∣ẼΦk,n(A)2 − ẼΦk,n(G)2

∣∣ ≤ C√
n
, (6.2)

where Φk,n(X) is defined in (2.2).

The proof of Theorem 2.2 is argued as follows. From Proposition 4.1, it suffices to
assume that the functions φ and Fk’s in Definition 2.1 have uniformly bounded partial
derivatives of any nonzero orders. First of all, we claim that

lim
n→∞

E
(
Φk,n(A)− ẼΦk,n(A)

)2
= lim
n→∞

E
(
Φk,n(G)− ẼΦk,n(G)

)2
= 0.

Note that from Theorem 3.2,

lim
n→∞

E|Φk,n(G)− ẼΦk,n(G)|2 = 0.
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Now from Proposition 6.1,

lim
n→∞

∣∣EΦk,n(A)2 − EΦk,n(G)2
∣∣ ≤ lim

n→∞
E
∣∣ẼΦk,n(A)2 − ẼΦk,n(G)2

∣∣ = 0.

Since ∣∣E(ẼΦk,n(A)
)2 − E(ẼΦk,n(G)

)2∣∣
= E

(∣∣ẼΦk,n(A)− ẼΦk,n(G)
∣∣∣∣ẼΦk,n(A) + ẼΦk,n(G)

∣∣)
≤
(
E
(∣∣ẼΦk,n(A)− ẼΦk,n(G)

∣∣2)1/2(E∣∣ẼΦk,n(A) + ẼΦk,n(G)
∣∣2)1/2

≤
(
E
(∣∣ẼΦk,n(A)− ẼΦk,n(G)

∣∣2)1/2((EΦk,n(A)2
)1/2

+
(
EΦk,n(G)2

)1/2)
,

it follows from Proposition 6.1 and the moment control in (3.5),

lim
n→∞

∣∣E(ẼΦk,n(A)
)2 − E(ẼΦk,n(G)

)2∣∣ = 0.

Putting these limits together yields the claim. Consequently, the proof of Theorem 2.2
follows by our claim and Proposition 6.1,

E
(
Φk,n(A)− Φk,n(G)

)2 ≤ 9E
(
Φk,n(A)− ẼΦk,n(A)

)2
+ 9E

(
ẼΦk,n(A)− ẼΦk,n(G)

)2
+ 9E

(
Φk,n(G)− ẼΦk,n(G)

)2 → 0.

For the rest of this section, we establish Proposition 6.1 in five subsections using the
Gaussian interpolation and approximate Gaussian integration by parts. In doing these,
Proposition 5.1 will be of great use in tracking the error terms. Subsection 6.1 shows
that to prove Proposition 6.1, it suffices to assume that the main diagonals of A,G,Z are
all equal to zero. The Gaussian interpolation between Φk,n(A) and Φk,n(G) is introduced
in Subsection 6.2 and the control of its derivative is handled in Subsection 6.3. Finally,
the proofs of (6.1) and (6.2) are established in Subsections 6.4 and 6.5, respectively.

6.1 Deletion of the main diagonal

By the virtue of Proposition 3.1, it suffices to assume that the main diagonals in A and
Z are zero. To see this, recall Φk,n(X),∆k(X), and Θk(X) from Proposition 3.1. Assume
that A′ is equal to A except that the main diagonal vanishes. Note that from Lemma 3.5,
‖An‖2 and ‖A′n‖2 are of order O(1). On the other hand, since

‖An −A′n‖2 =
1√
n

max
1≤i≤n

|aii|

and

P
( 1√

n
max

1≤i≤n
|aii| ≥ t

)
≤
∑
i∈[n]

P(|aii| ≥ t
√
n) ≤ ne−nσ

2t2/2,

these imply that in probability,

lim
n→∞

‖An −A′n‖2 = 0.

As a result, Proposition 3.1 implies that the AMP orbits corresponding to (A,Z) and
(A′, Z) satisfy that in probability,

lim
n→∞

∣∣Φk,n(A)− Φk,n(A′)
∣∣ = 0,
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which together with Lemma 3.6 gives that

lim
n→∞

E
∣∣Φk,n(A)− Φk,n(A′)

∣∣ = 0.

Next one can prove by an almost identical argument to show that the AMP orbits
correspond to (A′, Z) and (A′, Z ′) are also asymptotically the same under the L1(P)-
distance, where Z ′ is the same as Z except that its main diagonal is zero. From this, in
what follows, we assume that the main diagonals of A, G, and Z are all equal to zero.

6.2 Interpolation

Define the Gaussian interpolation between A and G by

A(t) = (aij(t))i,j∈[n] =
√
tA+

√
1− tG, 0 ≤ t ≤ 1.

Denote

An(t) =
A(t)√
n

and

Ân(t) =
A(t)√
n

+
Z

n
.

For φ ∈ C∞(Rk+1) with uniformly bounded partial derivatives of all nonzero orders,
define

Φk,n(t) = ẼΦk,n(A(t)).

Note that

E
∣∣ẼΦk,n(A)− ẼΦk,n(G)

∣∣ = E
∣∣Φk,n(1)− Φk,n(0)

∣∣.
To show (6.1), our goal is to show that∫ 1

0

E|Φ′k,n(t)|dt ≤ C√
n

for some constant C independent of n. Note that u[0](X) = u. A direct differentiation
gives

Φ′k,n(t) =

k∑
`=1

1

n

n∑
i=1

Ẽ
(
∂y`φ

(
u[k](A(t)), . . . , u[0](A(t))

)
◦ d
dt
u[`](A(t))

)
i
, 0 < t < 1. (6.3)

Here and thereafter, if v, v′ ∈ Rn, we define v ◦ v′ = (viv
′
i)i∈[n] as the Hadamard product

between v and v′. Note that this operation is commutative.
To simplify our notation, denote

Ȧn(t) = (ȧii′(t))i,i′∈[n],

for

ȧii′(t) =
1

2

(aii′√
t
− gii′√

1− t

)
.

Also, denote

u[`](t) = u[`](A(t)),

∂yrF`(t) = ∂yrF`(Ân(t)u[`](t), u[`−1](t), . . . , u[0](t)).
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Observe that

d

dt
u[1](t) = ∂y0F0(t) ◦ (Ȧn(t)u[0](t)),

d

dt
u[2](t) = ∂y1

F1(t) ◦ (Ȧn(t)u[1](t))

+ ∂y1F1(t) ◦
(
Ân
(
∂y0F0(t) ◦ (Ȧn(t)u[0](t))

))
,

and

d

dt
u[3](t) = ∂y2

F2(t) ◦ (Ȧn(t)u[2](t))

+ ∂y2F2(t) ◦
(
Ân(t)

(
∂y1F1(t) ◦ (Ȧn(t)u[1](t))

))
+ ∂y2

F2(t) ◦
(
Ân(t)

(
∂y1

F1(t) ◦
(
Ân(t)

(
∂y0

F0(t) ◦ (Ȧn(t)u[0](t))
))))

+ ∂y1F2(t) ◦ ∂y0F0(t) ◦ (Ȧn(t)u[0](t)).

For general 1 ≤ ` ≤ k,

d

dt
u[`](t) = ∂y`−1

F`−1(t)
(
Ȧn(t)u[`−1](t) + Ân(t)

d

dt
u[`−1](t)

)
+

`−2∑
s=1

∂ysF`−1(t)
d

dt
u[s](t).

From these equations, one readily sees that the vector

∂y`φ
(
u[k](t), . . . , u[0](t)

)
◦ d
dt
u[`](A(t))

appearing in (6.3) can be written as a summation of column vectors, in which each
summand is of the form wr(t) = (wri (t))i∈[n] for some 0 ≤ r ≤ `− 1 that is defined by an
iterative procedure through some functions L0, L1, . . . , Lr+1 ∈ C∞(R2`), whose partial
derivatives of any nonzero orders are uniformly bounded. More precisely, starting from

wr,[0](t) = U [1](A(t)) ◦ (Ȧn(t)U [0](A(t))),

define

wr,[s](t) = U [s+1](A(t)) ◦ (Ân(t)wr,[s−1](t)), ∀1 ≤ s ≤ r, (6.4)

where

U [s](X) := Ls
(
X̂nu

[`−1](X), . . . , X̂nu
[0](X), u[`−1](X), . . . , u[0](X)

)
, ∀0 ≤ s ≤ r (6.5)

and

U [r+1](X) := ∂y`φ
(
u[k](X), . . . , u[0](X)

)
◦ Lr+1

(
X̂nu

[`−1](X), . . . , X̂nu
[1](X), u[`−1](X), . . . , u[0](X)

)
.

(6.6)

Finally, set wr(t) = wr,[r](t).

6.3 Bounding the derivative of the interpolation

For r ≥ 0, from the iteration (6.4) and expanding the Hadamard product,

1

n

n∑
i=1

Ẽwri (t) =
1

n1+(r+1)/2

∑
I∈Ir

ẼVI(t) (6.7)
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for

VI(t) :=
( r∏
l=1

U
[l+1]
il+1

(A(t))
(
ail+1,il(t) + n−1/2zil+1,il

))
U

[1]
i1

(A(t))ȧi1,i0(t)U
[0]
i0

(A(t))

=
(r+1∏
l=0

U
[l]
il

(A(t))
)( r∏

l=1

(
ail+1,il(t) + n−1/2zil+1,il

))
ȧi1,i0(t),

(6.8)

where Ir is the collection of all I = (i0, i1, . . . , ir, ir+1) ∈ [n]r+2 with i0 6= i1 6= · · · 6= ir 6=
ir+1. Here we view each I as a directed graph of length r + 1 with vertices (is)0≤s≤r+1

and edges eI(l) = (il, il+1) for 0 ≤ l ≤ r. For any I ∈ Ir, disregard the direction, let Λ0
I be

the collection of all 0 ≤ l ≤ r with eI(l) = eI(0). Let Ir(s) be the collection of all graphs
in Ir so that disregard the direction there are exactly s many edges that appear once.

Proposition 6.2. For any I ∈ Ir(s), we have that for any 0 < t < 1,

∫ 1

0

E
∣∣ẼVI(t)∣∣dt ≤


Cs

n(s+1)/2 , if |Λ0
I | ≤ 2,

Cs

ns/2 , if |Λ0
I | ≥ 3,

where Ẽ is the expectation conditionally on u0, Z and Cs is a universal constant indepen-
dent of n.

To prove this proposition, we first establish a key lemma. For any 0 ≤ b ≤ r + 1,

let Ir(s, b) be the collection of all I ∈ Ir(s) with |Λ0
I | = b. Note that when b = 1, the

set Ir(s, b) is nonempty for all 1 ≤ s ≤ r + 1 and when 2 ≤ b ≤ r + 1, the set Ir(s, b) is
nonempty only if 0 ≤ s ≤ r + 1− b.
Lemma 6.3. If b = 1, then for any 1 ≤ s ≤ r + 1,

|Ir(s, 1)| ≤ Cr,1,snb
r+1−s

2 c+s+1. (6.9)

If 2 ≤ b ≤ r + 1, then for any 0 ≤ s ≤ r + 1− b,

|Ir(s, b)| ≤ Cr,b,snb
r+1−b−s

2 c+s+2. (6.10)

Here, Cr,b,s’s are universal constants independent of n.

Proof. For any graph I ∈ Ir(s, 1), let I ′ be the graph, in which we disregard both
multiplicities and directions of the edges. See Figure 1 for examples. Observe that there
are at most b(r + 1− s)/2c many edges in I ′ that appear at least twice in I and the total
number of edges of I ′ is at most b(r + 1− s)/2c+ s. This implies that the total number of
vertices of I ′ should be at most b(r + 1− s)/2c+ s+ 1 so there are at most nb

r+1−s
2 c+s+1

many such I ′.
Since different I can correspond to the same I ′ (again we refer the reader to Figure 1

for examples), it remains to show that for each I ′, there are at most a constant multiple
(independent of n) of many different I that corresponds to I ′. First fix such a possible
I ′ and write E(I ′) for the edge set of I ′. Each edge of I ′ may correspond to an edge of
multiplicity 1 in I or to an edge of multiplicity at least 2 in I (ignoring directions). We
choose s edges in I ′ so that they correspond to the multiplicity 1 edges in I. There are(|E(I′)|

s

)
ways to choose such s edges. Now, for the remaining (|E(I ′)| − s) many edges,

the multiplicities are at least 2 in I and they add up to r + 1 − s. To count how many
possibilities there are, it is equivalent to find how many ways r + 1− s can be written as
sum of (|E(I ′)| − s) many integers which are at least 2, which in turn is bounded above
by the number of ways to partition the integer r + 1 − s as sum of (|E(I ′)|′ − s) many
positive integers, and it is well-known that the number of ways is

(
r−s

|E(I′)|−s−1

)
. Moreover,
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each edge has two possible directions in I. Finally, each vertex in I ′ can correspond to
several it (0 ≤ t ≤ r + 1) in I (see Figure 1). As there are at most b(r + 1− s)/2c+ s+ 1

vertices in I ′, and each vertex can correspond to at most r + 1 many it’s, there are at
most (r + 1)b(r+1−s)/2c+s+1 many such correspondence. Therefore, the total number of I
that an I ′ can correspond to is bounded above by

(r+ 1)b(r+1−s)/2c+s+12(|E(I′)|
s )·( r−s

|E(I′)|−s−1) ≤ (r+ 1)b(r+1−s)/2c+s+122b(r+1−s)/2c·2r−s

=: Cr,1,s.

This proves (6.9).
To prove (6.10), note that in this case, the edge eI(0) has multiplicity b, and hence

there are at most b(r + 1− b− s)/2c+ 1 many edges in I ′ that appear at least twice in I.
Here, the latest +1 comes from eI(0). The remaining of the proof is similar to that of
(6.9), and we omit the detail. ut

(a) One example of I ∈ Ir(s, 1) (b) Another example of I ∈ Ir(s, 1)

(c) The corresponding undirected graph I ′

Figure 1: (a) and (b) are two different directed graphs in Ir(s, 1) for r = 7 and s = 2.
After we disregard the multiplicities and directions, they correspond to the same I ′ as
shown in (c), where the solid edges correspond to the edges in I that appear only once
and the dashed edges correspond to those in I with multiplicity ≥ 2.

Proof of Proposition 6.2. Let I ∈ Ir(s) be fixed. Disregard the direction, let Λ1
I be the

collection of all l /∈ Λ0
I so that eI(l) appears exactly once in I and Λ2

I be the collection
of all l /∈ Λ0

I so that eI(l) appears more than once in I. In addition, for any R ⊆ [r], set
Λ0
I(R) = Λ0

I ∩ R, Λ1
I(R) = Λ1

I ∩ R, and Λ2
I(R) = Λ2

I ∩ R. Let ΛI(R) := Λ1
I(R) ∪ {0}. From

these and (6.8), after expanding

r∏
l=1

(
ail+1,il(t) + n−1/2zil+1,il

)
,

we can write

ẼVI(t) =
∑
R⊆[r]

ZI,R
n|Rc|/2 Ẽ

[
UI(A(t))AI,R(t)

(
aeI(0)(t)

|Λ0
I(R)|ȧeI(0)(t)

)( ∏
l∈Λ1

I(R)

aeI(l)(t)
)]
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for

UI(X) :=

r+1∏
l=0

U
[l]
il

(X), AI,R(t) :=
∏

l∈Λ2
I(R)

aeI(l)(t), ZI,R :=
∏
l∈Rc

zil+1,il .

Note that inside the expectation, the two parentheses are independent of AI,R(t), and
each term in the second parentheses appears only once in I. From these, we can apply
Proposition 5.1 and Lemmas A.1, A.2, and A.3 in Appendix to control VI(t). To see this,
note that for any 0 < t < 1 and p ≥ 1,(

E|aeI(0)(t)|p
)1/p ≤ Cp (6.11)

and (
E|ȧeI(0)(t)|p

)1/p ≤ Cp( 1√
t

+
1√

1− t

)
for some universal constant Cp independent of t. Let EI,R be the expectation only with
respect to aeI(l)(t) for all l ∈ ΛI(R). Using these bounds and Lemmas A.1, A.2, and A.3,
we get that ∣∣∣EI,R[UI(A(t))

(
aeI(0)(t)

|Λ0
I(R)|ȧeI(0)(t)

)( ∏
l∈Λ1

I(R)

aeI(l)(t)
))]∣∣∣

is bounded above, up to an absolute constant independent of I and n, by( 1√
t

+
1√

1− t

) ∑
|α|=s0

(∫ 1

0

EI,R
[∣∣∂αI,RUI(A(t, ξ)))

∣∣2]dξ)1/2

,

where A(t, ξ) = (aii′(t, ξ))i,i′∈[n] is defined as aii′(t, ξ) = ξaii′(t) for all i, i′ ∈ [n] satisfying
(i, i′) = eI(l) or (i′, i) = eI(l) for some l ∈ ΛI(R) and aii′(t, ξ) = aii′(t) otherwise. Here,

s0 =


|Λ1
I(R)|+ 2, if |Λ0

I(R)| = 0 by (A.4),
|Λ1
I(R)|+ 1, if |Λ0

I(R)| = 1 by (A.1),
|Λ1
I(R)|, if |Λ0

I(R)| ≥ 2 by (A.3).
(6.12)

The summand in the above bound is over all α := (αl)l∈ΛI(R) ∈ ({0} ∪ N)s0 , |α| :=∑
l∈ΛI(R) αl, and ∂αI,R is the partial derivative with respect to xeI(l) of order αl for all

l ∈ ΛI(R). From this inequality, it follows that∫ 1

0

∣∣∣E[UI(A(t))AI,R(t)
(
aeI(0)(t)

|Λ0
I(R)|ȧeI(0)(t)

)( ∏
l∈Λ1

I(R)

aeI(l)(t)
)]∣∣∣dt

≤ C
∑
|α|=s0

∫ 1

0

E
[
|AI,R(t)|

(∫ 1

0

EI,R
[∣∣∂αI,RUI(A(t, ξ)))

∣∣2]dξ)1/2]
dt

≤ C
∫ 1

0

(
EAI,R(t)2

)1/2 ∑
|α|=s0

(∫ 1

0

E
∣∣∂αI,RUI(A(t, ξ)))

∣∣2dξ)1/2

dt

≤ C ′
∫ 1

0

∑
|α|=s0

(∫ 1

0

E
∣∣∂αI,RUI(A(t, ξ)))

∣∣2dξ)1/2

dt, (6.13)

for some constants C and C ′ independent of I and n, where the second inequality used
the Cauchy-Schwarz inequality, while the third inequality used the Hölder inequality
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and the bounds (2.1) and (6.11). The last inequality can further be controlled as follows.
From the product rule,

∂αI,RUI =
∑

βl:l∈ΛI(R)

( ∏
l∈ΛI(R)

(
αl
βl

))(r+1∏
`=1

∂
β(`)
I U

[`]
i`

)
,

where the summand is over all βl ∈ ({0} ∪ N)r+2 satisfying that
∑r+1
`=0 βl,` = αl for

l ∈ ΛI(R) and ∂
β(`)
I is the partial derivative ∂

βl,`
xeI (l)

for all l ∈ ΛI(R). Now, using the
Minkowski and Hölder inequalities leads to(

E
∣∣∂αI,RUI(A(t, ξ)))

∣∣2)1/2
≤

∑
βl:l∈ΛI(R)

( ∏
l∈ΛI(R)

(
αl
βl

)) r+1∏
`=1

(
E
∣∣∂β(`)
I,R U

[`]
i`

(A(t, ξ))
∣∣2(r+2)

)1/2(r+2)

.

From (6.5) and (6.6), note that any nonzero-order partial derivatives of U [`]’s are uni-
formly bounded. From Proposition 5.1, each term on the right-hand side is bounded
by (

E
∣∣∂β(`)
I,R U

[`]
i`

(A(t, ξ))
∣∣2(r+2)

)1/2(r+2)

≤ Γ`

n
∑

l∈ΛI (R) βl,`/2
,

where Γ` is a constant independent of n. Consequently,

(
E
∣∣∂αI,RUI(A(t, ξ)))

∣∣2)1/2 ≤ ∑
βl:l∈ΛI(R)

( ∏
l∈ΛI(R)

(
αl
βl

)) ∏r+1
`=0 Γ`

n
∑r+1

`=0

∑
l∈ΛI (R) βl,`/2

=
∑

βl:l∈ΛI(R)

( ∏
l∈ΛI(R)

(
αl
βl

)) ∏r+1
`=0 Γ`

n
∑

l∈ΛI (R) αl/2

=
1

ns0/2

∑
βl:l∈ΛI(R)

( ∏
l∈ΛI(R)

(
αl
βl

)) r+1∏
`=0

Γ`.

Plugging this inequality into (6.13) and noting that Z is independent of A,G together
with the bound (2.1) yield that

1

n|Rc|/2

∫ 1

0

∣∣∣E[UI(A(t))ZI,RAI,R(t)
(
aeI(0)(t)

|Λ0
I(R)|ȧeI(0)(t)

)( ∏
l∈Λ1

I(R)

aeI(l)(t)
)]∣∣∣dt

≤ C ′′

n|Rc|/2+s0/2
.

Here, note that

|Rc|+ |Λ1
I(R)| =

(
|Λ0
I(R

c)|+ |Λ1
I(R

c)|+ |Λ2
I(R

c)|
)

+ |Λ1
I(R)|

= |Λ0
I(R

c)|+ |Λ1
I([r])|+ |Λ2

I(R
c)|

≥ |Λ1
I([r])|.

Also, note that s is the number of edges in I that are crossed once disregard the
direction. This implies that Λ1

I([r]) ≥ s − 1 and that Λ1
I([r]) = s if |Λ0

I(R)| ≥ 1 since
|Λ0
I | ≥ 1 + |Λ0

I(R)| ≥ 2. Recall (6.12). If |Λ0
I(R)| = 0, then

|Rc|+ s0 = |Rc|+ |Λ1
I(R)|+ 2 ≥ (s− 1) + 2 = s+ 1;
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if |Λ0
I(R)| = 1, then

|Rc|+ s0 = |Rc|+ |Λ1
I(R)|+ 1 ≥ s+ 1;

if |Λ0
I(R)| ≥ 2, then

|Rc|+ s0 = |Rc|+ |Λ1
I(R)| ≥ s.

From these, if |Λ0
I | ≤ 2, then |Λ0

I(R)| can only be 0 or 1 for any R ⊆ [r] and this implies
that ∫ 1

0

E
∣∣ẼVI(t)∣∣dt ≤ Cs

n(s+1)/2

and if |Λ0
I | ≥ 3, then |Λ0

I(R)| could be larger than 2 for some R ⊆ [r] and hence,∫ 1

0

E
∣∣ẼVI(t)∣∣dt ≤ Cs

ns/2

for some constant Cs > 0. This completes our proof. ut

6.4 Proof of Proposition 6.1: first moment

Recall (6.7). Our proof will be completed once we establish that

1

n1+(r+1)/2

∑
I∈Ir

∫ 1

0

E|ẼVI(t)|dt ≤
C

n1/2
, (6.14)

where C is an absolute constant independent of n. Recall from the definition of Tr(s, b)
that when b = 1, Ir(0, b) = ∅ and Ir(s, b) 6= ∅ for all 1 ≤ s ≤ r + 1 and that the set Ir(s, b)
is nonempty only if 0 ≤ s ≤ r + 1− b. From these,

∑
I∈Ir

ẼVI(t) =

r+1∑
s=0

∑
I∈Ir(s)

ẼVI(t)

=

r+1∑
s=1

∑
I∈Ir(s,1)

ẼVI(t) +

r−1∑
s=1

∑
I∈Ir(s,2)

ẼVI(t) +

r+1∑
b=3

r+1−b∑
s=0

∑
I∈Ir(s,b)

ẼVI(t).

(6.15)

In what follows, we let Cr,b,s and C ′r,b,s be absolute constants independent of n. Here,
from the first case of Proposition 6.2 and Lemma 6.3, the first two summations can be
controlled by

1

n1+(r+1)/2

∑
I∈Ir(s,1)

∫ 1

0

E|ẼVI(t)|dt ≤
1

n1+(r+1)/2
· Cr,1,snb

r+1−s
2 c+s+1 ·

C ′r,1,s
n(s+1)/2

= Cr,1,sC
′
r,1,sn

b r+1−s
2 c− (r+1−s)

2 − 1
2

≤ Cr,1,sC ′r,1,sn−1/2

for 1 ≤ s ≤ r + 1 and

1

n1+(r+1)/2

∑
I∈Ir(s,2)

∫ 1

0

E|ẼVI(t)|dt ≤
1

n1+(r+1)/2
· Cr,2,snb

r−1−s
2 c+s+2 ·

C ′r,2,s
n(s+1)/2

= Cr,2,sC
′
r,2,sn

b r−1−s
2 c− (r−1−s)

2 − 1
2

≤ Cr,2,sC ′r,2,sn−1/2
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for 0 ≤ s ≤ r − 1. To control the second summation, from the second case of Proposition
6.2 and Lemma 6.3,

1

n1+(r+1)/2

∑
I∈Ir(s,b)

∫ 1

0

E|ẼVI(t)|dt ≤
1

n1+(r+1)/2
· Cr,b,snb

r+1−b−s
2 c+s+2 ·

C ′r,b,s
ns/2

= Cr,b,sC
′
r,b,sn

b r+1−b−s
2 c− r+1−b−s

2 −( b
2−1)

≤ Cr,b,sC ′r,b,sn−( b
2−1)

for 0 ≤ s ≤ r + 1 − b. Plugging these into (6.15) yields (6.14) and this completes our
proof.

6.5 Proof of Proposition 6.1: second moment

Our approach is the same as that for the first moment. Set

Ψk,n(t) = ẼΦk,n(A(t))2, 0 < t < 1.

Note that

E
∣∣ẼΦk,n(A)2 − ẼΦk,n(G)2

∣∣ = E
∣∣Ψk,n(1)−Ψk,n(0)

∣∣.
To control this expectation, we again consider the derivative

d

dt
Ψk,n(t) = 2ẼΦk,n(A(t))

d

dt
Φk,n(A(t)).

Again, our goal would be to show that∫ 1

0

E
∣∣ẼΨ′k,n(t)

∣∣dt
is bounded above, up to an absolute constant, by n−1/2. To see this, recall from Section
6.2 that Φ′k,n(t) can be written as a summation, in which each summand is of the form

1

n

n∑
i=1

wri (t)

for some 0 ≤ r ≤ k − 1. In a similar manner, from (6.7) and (6.8), EΨ′k,n(t) can also be
written as a sum, in which each term is equal to

ẼΦk,n(A(t))
( 1

n

n∑
i=1

wri (t)
)

=
1

n2+(r+1)/2

n∑
i=1

∑
I∈Ir

ẼV i,I(t),

where

V i,I(t) := ẼU
[r+2]
i (A(t))

(r+1∏
l=0

U
[l]
il

(A(t))
)( r∏

l=1

(
ail+1,il(t) + n−1/2zil+1,il

))
ȧi1,i0(t)

for

U
[r+2]
i (A(t)) := φ(u

[k]
i (t), . . . , u

[0]
i (t)), ∀i ∈ [n].

Here, V i,I(t) is essentially the same as VI(t) (see (6.8)) except that it contains one extra

term U
[r+2]
i (A(t)). In view of the proof of Proposition 6.2, an identical argument implies

that for any i ∈ [n] and I ∈ Ir(s),∫ 1

0

E
∣∣ẼV i,I(t)∣∣dt ≤


C′s

n(s+1)/2 , if |Λ0
I | ≤ 2,

C′s
ns/2 , if |Λ0

I | ≥ 3,
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where C ′s is a universal constant independent of n and i. Consequently, as in the proof of
(6.14), it follows that

1

n1+(r+1)/2

∑
I∈Ir

∫ 1

0

E
∣∣ẼV i,I(t)∣∣dt ≤ C

n1/2

for some constant C independent of n and i and the same inequality remains valid after
taking n−1

∑n
i=1,

2

n1+(r+1)/2

n∑
i=1

∑
I∈Ir

∫ 1

0

E
∣∣ẼV i,I(t)∣∣dt ≤ C

n1/2
,

which completes our proof.

7 Proof of Theorem 2.4

We establish the proof of Theorem 2.4. For notational convenience, if an and bn are
two random variables, we denote

an � bn
if |an−bn| → 0 in probability; if they are n-dimensional random vectors, then this notation
means that in probability,

lim
n→∞

1

n
‖an − bn‖22 = 0.

To begin with, recall from Lemma 3.6 and Theorem 3.2 that due to the Lipschitz
property of the functions (Fk)k≥0, the AMP orbit defined in Definition 2.1 is uniformly
square-integrable and the average along the Gaussian AMP orbit is concentrated with
respect to Ẽ. Here, in the setting of Definition 2.3, since both f` and its first-order
derivatives are Lipschitz, an identical argument also allows to show that (v[k])k≥0 is
uniformly squared-integrable and when X = G, its average along the orbit is self-
averaged with respect to Ẽ. More precisely, for any Lipschitz φ ∈ C(Rk+1),

1

n

∑
i∈[n]

φ(v[k](G), . . . , v[0](G)) � 1

n
Ẽ
∑
i∈[n]

φ(v[k](G), . . . , v[0](G)). (7.1)

Denote by (vG,[k])k≥0 the AMP orbit in Definition 2.3 with the replacement of bk,j by

bGk,j :=
1

n
Ẽ
∑
i∈[n]

∂fk

∂u
[j]
i

(
v[k](G), . . . , v[0](G)

)
and initialization vG,[0] = u0.

Lemma 7.1. For any Lipschitz φ ∈ C(Rk+1),

1

n

∑
i∈[n]

φ
(
v
G,[k]
i (G), . . . , v

G,[0]
i (G)

)
� 1

n

∑
i∈[n]

φ
(
v
G,[k]
i (A), . . . , v

G,[0]
i (A)

)
.

Proof. Consider the initialization

u[0](X) = v[0](X) = u0.

Set

u[1](X) = 0,

u[2](X) = f0(u[0](X)),

u[3](X) = X̂nu
[2](X) = X̂nf0(u[0](X))
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and for ` ≥ 1, set

u[3`+1](X) = 0,

u[3`+2](X) = f`(u
[3`](X), u[3(`−1)](X), . . . , u[3](X), u[0](X)),

u[3`+3](X) = X̂nu
[3`+2](X)−

∑̀
j=1

bG`,ju
[3j−1](X).

The main feature of this construction is that u[3`](X) = vG,[`](X) for all ` ≥ 0. Note that
bG`,j depends only on u0, Z and it is uniformly bounded. Although Definition 2.1 assumes
that Fk’s are nonrandom, with no essential changes to the proof, Theorem 2.2 indeed
extends to randomized Fk’s that are dependent only on u0, Z and the Lipschitz constants
of Fk’s are bounded by some constants independent of u0, Z. Hence, the assertion follows
by applying Theorem 2.2 to (u[`])`≥0 and φ(u[3k], u[3(k−1)], . . . , u[0]). ut

Lemma 7.2. For any k ≥ 0,

v[k](G) � vG,[k](G).

Proof. We argue by induction. Obviously the assertion is valid for k = 0. Assume that
there exists some k′ ≥ 0 such that it is also valid for all 0 ≤ k ≤ k′. From the triangle
inequality,∥∥v[k′+1](G)− vG,[k

′+1](G)
∥∥

2

≤ ‖Ĝn‖2
∥∥fk′(v[k′](G), . . . , v[0](G))− fk(vG,[k

′](G), . . . , vG,[0](G))
∥∥

2

+

k′∑
j=1

|bk′,j(G)|
∥∥fj−1(v[j−1](G), . . . , v[0](G))− fj−1(vG,[j−1](G), . . . , vG,[0](G))

∥∥
2

+

k′∑
j=1

|bk′,j(G)− bGk′,j |
∥∥fj−1(vG,[j−1](G), . . . , vG,[0](G))

∥∥
2
.

By induction hypothesis, Lemma 3.5, and noting that the first-order partial derivatives of
fj ’s are uniformly bounded, the first two terms after dividing by

√
n converge to zero

in probability. As for the last term, note that (7.1) implies that bGk′,j � bk′,j(G) for all

1 ≤ j ≤ k′. Also, note that from the relation, u[3`] = vG,[`], in the proof of Lemma 7.1,
the Lipschitz property of fj−1 and Lemmas 3.5 and 3.6 (here, again Lemma 3.6 is valid
despite of the fact that Fk’s are dependent on Z and u0) imply

sup
n≥1

1√
n
E
∥∥fj−1(vG,[j−1](G), . . . , vG,[0](G))

∥∥
2
<∞. (7.2)

Hence, the third term also vanishes in probability and this validates the announced
result. ut

We are ready to prove Theorem 2.4, namely, for any k ≥ 0 and Lipschitz φ ∈ C(Rk+1),

1

n

∑
i∈[n]

φ
(
v

[k]
i (G), . . . , v

[0]
i (G)

)
� 1

n

∑
i∈[n]

φ
(
v

[k]
i (A), . . . , v

[0]
i (A)

)
. (7.3)

We argue by induction. Evidently this is valid for k = 0. Assume that there exists some
k′ ≥ 0 such that it is also valid for all 0 ≤ k ≤ k′. From Lemmas 7.1 and 7.2,

1

n

∑
i∈[n]

φ
(
v

[k′+1]
i (G), . . . , v

[0]
i (G)

)
� 1

n

∑
i∈[n]

φ
(
v
G,[k′+1]
i (G), . . . , v

G,[0]
i (G)

)
� 1

n

∑
i∈[n]

φ
(
v
G,[k′+1]
i (A), . . . , v

G,[0]
i (A)

)
.
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We claim that

1

n

∑
i∈[n]

φ
(
v
G,[k′+1]
i (A), . . . , v

G,[0]
i (A)

)
� 1

n

∑
i∈[n]

φ
(
v

[k′+1]
i (A), . . . , v

[0]
i (A)

)
.

If this is valid, then (7.3) is also true for k + 1 and this would complete our proof. It
suffices to show that

vG,[k](A) � v[k](A), ∀0 ≤ k ≤ k′ + 1.

Easy to see that this is valid if k = 0. Assume that there exists some 0 ≤ k′′ ≤ k′ such
that this equation holds for all 0 ≤ k ≤ k′′. Write∥∥v[k′′+1](A)− vG,[k

′′+1](A)
∥∥

2

≤ ‖Ân‖2
∥∥fk′′(v[k′′](A), . . . , v[0](A))− fk′′(vG,[k

′′](A), . . . , vG,[0](A))
∥∥

+

k′′∑
j=1

|bk′′,j |
∥∥fj−1(v[j−1](A), . . . , v[0](A))− fj−1(vG,[j−1](A), . . . , vG,[0](A))

∥∥
2

+

k′′∑
j=1

|bk′′,j(A)− bGk′′,j |
∥∥fj−1(vG,[j−1](A), . . . , vG,[0](A))

∥∥
2
.

Here, from the induction hypothesis, after dividing by
√
n, the first two lines vanish in

probability by using the fact that bk′′,j is uniformly bounded and Lemma 3.5. As for the
last one, write

bk′′,j(A)− bGk′′,j = (bk′′,j(A)− bk′′,j(G)) + (bk′′,j(G)− bGk′′,j).

Note that (7.1) implies bGk′′,j � bk′′,j(G), while the induction hypothesis of (7.3) implies

that bGk′′,j � bAk′′,j . Hence, bk′′,j(A) � bGk′′,j . This and (7.2) imply that the third line also

vanishes in probability. Hence, v[k′′+1](A) � vG,[k′′+1](A) and this completes the proof of
our claim.

8 Proof of Theorem 2.7

We establish the proof of Theorem 2.7. Our strategy is to approximate the principal
eigenvector by the power method. In view of this, it is essentially a special case of the
generalized AMP in Definition 2.1. Once this is done, universality would follow by an
analogous argument as that for Theorem 2.7. Again, we adapt the notation an � bn from
Section 7.

8.1 Power method

The well-known power method states that if the principal eigenvalue stays a gap
away from the other eigenvalues, then one can generate the principal eigenvector via an
iteration procedure.

Lemma 8.1 (Power method). Let Y ∈ Mn(R) and y ∈ Rn with ‖y‖2 = 1. Let λ1 ≥ · · · ≥
λn be the eigenvalues of Y satisfying λ1 ≥ max2≤r≤n |λr| and y1 be the normalized
eigenvector associated to λ1. If λ1 6= 0 and y 6⊥ y1, then for any d ≥ 1,∥∥∥ Y dy

‖Y dy‖2
− sign

(
〈y1, y〉

)
y1
∥∥∥

2
≤ 1

|〈y1, y〉|
max

2≤r≤n

∣∣∣λr
λ1

∣∣∣d. (8.1)

Proof. Let y1, . . . , yn be the orthonormal eigenvectors associated to λ1, . . . , λn. Write

y = c1y
1 + · · ·+ cny

n,
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where c = (c1, . . . , cn) ∈ Rn satisfies ‖c‖2 = ‖y‖2 = 1. Note that

Y dy = c1λ
d
1y

1 + · · ·+ cnλ
d
ny

n

and

‖Y dy‖2 =
(
c21λ

2d
1 + · · ·+ c2nλ

2d
n

)1/2
. (8.2)

From these,

Y dy

‖Y dy‖2
=

c1λ
d
1y

1 + · · ·+ cnλ
d
ny

n(
c21λ

2d
1 + · · ·+ c2nλ

2d
n

)1/2
= sign(c1)

|c1λd1|y1 + sign(c1)
∑n
r=2 crλ

d
ry
r(

c21λ
2d
1 + · · ·+ c2nλ

2d
n

)1/2
= sign(c1)

y1 + sign(c1)
∑n
r=2

crλ
d
r

|c1λd
1 |
yr(

1 +
∑n
r=2

c2r
c21

(
λr

λ1

)2d)1/2 .

If we denote

Π =
n∑
r=2

c2r
c21

(λr
λ1

)2d

,

then ∥∥∥ Y dy

‖Y dy‖2
− sign(c1)y1

∥∥∥
2

=
( (1−

√
1 + Π)2 + Π

1 + Π

)1/2

≤
(Π2 + Π

1 + Π

)1/2

= Π1/2,

where we used that
√

1 + x− 1 ≤ x for x ≥ 0. Now, the assertion follows by

Π ≤ 1

c21
max

2≤r≤n

∣∣∣λr
λ1

∣∣∣2d n∑
r=2

c2r ≤
1

|〈y, y1〉|2
max

2≤r≤n

∣∣∣λr
λ1

∣∣∣2d. ut

We continue to show that the AMP orbits in Definition 2.1 initialized by the principal
eigenvector and the power method can be as close as we want by increasing the power
iteration d. Let ε ∈ (0, 1). For any d ≥ 1, let

uA,ε,d(X) =

√
nX̂d

nu
0

Ẽ‖Âdnu0‖2 +
√
nε

and

uG,ε,d(X) =

√
nX̂d

nu
0

Ẽ‖Ĝdnu0‖2 +
√
nε
.

Let λ1(X̂n) ≥ · · · ≥ λn(X̂n) be the eigenvalues of X̂n. Let ψ1(X̂n) be the principal
eigenvector of X̂n with ‖ψ1(X̂n)‖2 =

√
n. Recall the vector ψ defined through (2.4).

Let v[k], vA,ε,d,[k], and vG,ε,d,[k] be three AMP orbits that are defined via Definition 2.1
associated to the initializations ψ, uA,ε,d, and uG,ε,d, respectively. For any Lipschitz
φ ∈ C(Rk+1), denote by φψk,n, φu

A,ε,d

k,n , and φu
G,ε,d

k,n the averages of φ over these AMP orbits,
respectively.

Lemma 8.2. Assume that (2.5) and (2.6) are valid. Suppose that φ ∈ C(Rk+1) is
Lipschitz. We have that in probability,

lim
ε↓0

lim
d→∞

lim
n→∞

∣∣φψk,n(A)− φu
A,ε,d

k,n (A)
∣∣ = 0,

lim
ε↓0

lim
d→∞

lim
n→∞

∣∣φψk,n(G)− φu
G,ε,d

k,n (G)
∣∣ = 0.

EJP 26 (2021), paper 36.
Page 36/44

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP604
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Universality of approximate message passing algorithms

Proof. We only need to establish the first equality. First of all, we claim that in probability

lim
ε↓0

lim
d→∞

lim
n→∞

1

n

∥∥ψ(A)− uA,ε,d(A)
∥∥2

2
= 0.

Define

uε,d(X) :=

√
nX̂d

nu
0

‖X̂d
nu

0‖2 + ε
√
n
.

From (2.5), (2.6), and (8.2), there exist 0 < δ < 1 and δ′, δ′′ > 0 such that

lim sup
n→∞

max
2≤r≤n

∣∣∣λr(Ân)

λ1(Ân)

∣∣∣ ≤ δ,
lim inf
n→∞

1

n

∣∣〈ψ1(Ân), u0〉
∣∣ ≥ δ′,

and

lim inf
n→∞

1√
n
‖Âdnu0‖2 ≥ lim inf

n→∞

1

n

∣∣〈ψ1(Ân), u0〉
∣∣λ1(Ân)d ≥ δ′(1 + δ′′)d.

Note that (8.1) implies that∥∥∥uε,d(A)√
n
− ψ(A)√

n

∥∥∥
2
≤ n

|〈ψ1(Ân), u0〉|
max

2≤r≤n

∣∣∣λr(Ân)

λ1(Ân)

∣∣∣d +
ε

‖Âd
nu

0‖2√
n

+ ε
.

From these inequalities, as long as d is large enough such that

δd

δ′
+

ε

δ′(1 + δ′′)d + ε
< ε,

we have

lim sup
n→∞

∥∥∥uε,d(A)√
n
− ψ(A)√

n

∥∥∥
2
≤ ε. (8.3)

Next, note that

1√
n

∥∥uε,d(A)− uA,ε,d(A)
∥∥

2
=
‖Âdnu0‖2√

n

∣∣∣ ‖Âdnu0‖2/
√
n− Ẽ‖Âdnu0‖2/

√
n(

‖Âdnu0‖2/
√
n+ ε

)(
Ẽ‖Âdnu0‖2/

√
n+ ε

) ∣∣∣
≤ ‖Â

d
nu

0‖2
ε2
√
n

∣∣∣‖Âdnu0‖2√
n

− Ẽ‖Â
d
nu

0‖2√
n

∣∣∣.
From Lemmas 3.5 and 8.3 (established below), in probability,

lim
n→∞

1

n

∥∥uε,d(A)− uA,ε,d(A)
∥∥2

2
= 0.

Combining this with (8.3), our claim follows.
Now to establish the first assertion, note that similar to Proposition 3.1, the assump-

tion that both fk and its first-order partial derivative are Lipschitz ensures that the
average φk,n(X) of φ along the AMP orbit (v[k])k≥1 is Lipschitz with respect to its initial-
ization. The proof of this fact follows directly from the same proof as that of Proposition
3.1. Hence, it suffices to show that in probability,

lim
ε↓0

lim
d→∞

lim
n→∞

1

n

∥∥v[k](A)− vA,ε,d,[k](A)
∥∥

2
= 0, ∀k ≥ 0.
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When k = 0, this is valid by our claim. Assume that this is also valid for all 0 ≤ k ≤ k′ for
some k′. We prove that this is also valid for k′ + 1. To see this, we use triangle inequality
to write∥∥v[k′+1](A)− vA,ε,d,[k

′+1](A)
∥∥

2

≤ ‖Ân‖2
∥∥fk′(v[k′](A), . . . , v[0](A))− fk′(vA,ε,d,[k

′](A), . . . , vA,ε,d,[0](A))
∥∥

+

k′∑
j=1

|bk′,j(A)|
∥∥fj−1(v[j−1](A), . . . , v[0](A))− fj−1(vA,ε,d,[j−1](A), . . . , vA,ε,d,[0](A))

∥∥
2

+

k′∑
j=1

|bk′,j(A)− bA,ε,dk′,j (A)|
∥∥fj−1(vA,ε,d,[j−1](A), . . . , vA,ε,d,[0](A))

∥∥
2
,

where

bA,ε,dk′,j (A) :=
1

n

∑
i∈[n]

∂fk′

∂v
[j]
i

(
v
A,ε,d,[k′]
i (A), . . . , v

A,ε,d,[0]
i (A)

)
.

Here by Lemma 3.5, Lemma 3.6, and the Lipschitz property of fk and its first-order
derivative, these terms vanish in probability from the induction hypothesis. ut

At the end of this subsection, we establish the following lemma, which was used in
the above proof.

Lemma 8.3.

lim
n→∞

1

n
E
∣∣‖Âdnu0‖2 − ‖Ĝdnu0‖2

∣∣2 = 0, (8.4)

lim
n→∞

1

n
E
∣∣‖Ĝdnu0‖2 − Ẽ‖Ĝdnu0‖2

∣∣2 = 0. (8.5)

Proof. We establish (8.4) first. Consider the AMP orbit

u[0](X) = u0,

u[k+1](X) = X̂nu
[k](X) = X̂k

nu
0, k ≥ 0.

Note that u[d+1](G) = Ĝdnu
0 and u[d+1](A) = Âdnu

0. Recall that Theorem 2.2 implies that if
φ ∈ C(Rk+1) is Lipschitz, then limn→∞ |φk,n(A)−φk,n(G)| = 0 in probability. However, we
can not apply this result directly to ‖u[d+1](X)‖22 since each term inside the summation is
not Lipschitz. To this end, we adapt a truncation argument. For any M > 1, let ρ ∈ C1(R)

be uniformly bounded by 2M2 and satisfy that ρ(x) = x2 on [−M,M ] and ρ(x) = (M + 1)2

for x /∈ [−(M + 1),M + 1]. Note that for any x ∈ R,

x2 − ρ(x) = (x2 − ρ(x))1{|x|∈[M,M+1]} + (x2 − (M + 1)2)1{|x|∈(M+1,∞)},

which implies that

|x2 − ρ(x)|2 ≤ 4(x4 + 9M4)1{|x|≥M}.

It follows that from the Jensen and Cauchy-Schwarz inequalities,

E

∣∣∣ 1
n

n∑
i=1

(
u

[d+1]
i (G)2 − ρ(u

[d+1]
i (G))

)∣∣∣2
≤ 4

n
E

n∑
i=1

(
(E(u

[d+1]
i (G))8)1/2P(|u[d+1]

i (G)| ≥M)1/2 + 9M4P(|u[d+1]
i (G)| ≥M)

)
.
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Here, from Proposition 5.4, there exists a constant C > 0 independent of n, i, and M > 1,

E|u[d+1]
i (G)|8 ≤ C

and

P(|u[d+1]
i (G)| ≥M)

)
≤ E|u

[d+1]
i (G)|8

M8
≤ C

M8
.

Consequently,

E

∣∣∣ 1
n

n∑
i=1

(
u

[d+1]
i (G)2 − ρ(u

[d+1]
i (G))

)∣∣∣2 ≤ 40C

M4
.

Similarly, the same inequality is valid for A. Now from Theorem 2.2 and the dominated
convergence theorem,

lim
n→∞

E

∣∣∣ 1
n

n∑
i=1

(
ρ(u

[d+1]
i (G))− ρ(u

[d+1]
i (A))

)∣∣∣2 = 0.

Hence, we arrive at

lim sup
n→∞

1

n2
E

∣∣∣‖u[d+1](G)‖22 − ‖u[d+1](A)‖22
∣∣∣2 ≤ 640C

M4
.

Since this is valid for all M > 1, this limit is indeed equal to zero. From this, since both
n−1/2‖u[d+1](G)‖2 and n−1/2‖u[d+1](A)‖2 are uniformly square-integrable by Lemma 3.6,
the assertion (8.4) follows. The proof of (8.5) can be established by using Theorem
3.2 and an identical truncation argument. As this part of the proof does not involve
additional complications, we omit the details here. ut

8.2 Main argument

We are ready to establish the proof of Theorem 2.7. Recall the AMP orbits (vA,ε,d,[k])k≥0

and (vG,ε,d,[k])k≥0 from last subsection. Define

vA,ε,d,[−d](X) =

√
nu0

Ẽ‖Âdnu0‖2 +
√
nε
,

vG,ε,d,[−d](X) =

√
nu0

Ẽ‖Ĝdnu0‖2 +
√
nε
.

For −d ≤ k ≤ −1, set

vA,ε,d,[k+1](X) = X̂nv
A,ε,d,[k](X),

vG,ε,d,[k+1](X) = X̂nv
G,ε,d,[k](X).

Note that vA,ε,d,[0](X) = uA,ε,d(X) and vG,ε,d,[0](X) = uG,ε,d(X). This implies that
(vA,ε,d,[k])k≥−d and (vG,ε,d,[k])k≥−d are again AMP orbits with the initializations vA,ε,d,[−d](X)

and vG,ε,d,[−d](X). The key feature of this construction is that the initializations are inde-
pendent of X and its norm is bounded above by ‖u0‖2/ε. Hence, the assumption (2.1) is
satisfied with possibly a larger σ. From an identical argument as that of Theorem 2.4,
we see that the AMP orbit (vA,ε,d,[k])k≥−d satisfies universality. In particular, for any
Lipschitz φ ∈ C(Rk+1), this implies that

φu
A,ε,d

k,n (A) � φu
A,ε,d

k,n (G).
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Finally, since Lemma 8.3 implies that the initialization satisfies

vA,ε,d,[−d](G) = uA,ε,d(G) � uG,ε,d(G) = vG,ε,d,[−d](G),

the argument in the second half of the proof of Lemma 8.2 applies to the present setting
and it yields that

vA,ε,d,[k](G) � vG,ε,d,[k](G)

for all k ≥ −d. Consequently,

φu
A,ε,d

k,n (G) � φu
G,ε,d

k,n (G).

From this and Lemma 8.2, the announced result follows.

A Approximate Gaussian integration by parts

This appendix gathers three inequalities of approximate Gaussian integration by
parts. Let s ≥ 1 be fixed. Let a1, . . . , as be independent random variables with zero mean
and unit variance. Suppose that g1, . . . , gs are i.i.d. standard standard normal and are
independent of a1, . . . , as. Set

aj(t) =
√
taj +

√
1− tgj

for 0 ≤ t ≤ 1 and 1 ≤ j ≤ s. Set a(t) = (a1(t), . . . , as(t)). In what follows, we denote
α = (α1, . . . , αs) ∈ ({0}∪N)s, α! = α1! · · ·αs!, and |α| = α1+· · ·+αs. Also, ∂α = ∂α1

x1
· · · ∂αs

xs

and xα = xα1
1 · · ·xαs

s .

Lemma A.1. Let f ∈ Cs(Rs). For any 0 < t < 1, we have that∣∣Ef(a(t))a1(t) · · · as(t)ȧ1(t)
∣∣

≤ E[ȧ1(t)4]1/4

(s− 1)!

∑
|α|=s

s∏
j=1

E
[
aj(t)

4(αj+1)
]1/4(∫ 1

0

E
[∣∣∂αf(ξa(t))

∣∣2]dξ)1/2

.
(A.1)

Proof. From Taylor’s theorem, for any x ∈ Rs,

f(x) =
∑
|α|≤s−1

∂αf(0)

α!
xα +

1

(s− 1)!

∑
|α|=s

xα
∫ 1

0

∂αf(ξx)dξ.

From these, for any α satisfying that |α| ≤ s− 1, we can write

Ea(t)αa1(t) · · · an(t)ȧ1(t) = Ea1(t)α1+1ȧ1(t) · Ea2(t)α2+1 · · ·Eas(t)αs+1(t).

If αj = 0 for some 2 ≤ j ≤ s, then this expectation vanishes. If αj 6= 0 for all 2 ≤ j ≤ s,

then the condition |α| ≤ s− 1 forces that α1 = 0 and α2 = · · · = αs = 1 so that

Ea1(t)α1+1ȧ1(t) · Ea2(t)α2+1 · · ·Eas(t)αs+1(t) = Ea1(t)ȧ(t) · Ea2(t)2 · · ·Eas(t)2 = 0

since

Ea1(t)ȧ1(t) = E(
√
ta1 +

√
1− tg1)

( a1√
t
− g1√

1− t

)
= Ea2

1 −
√
t√

1− t
Ea1g1 +

√
1− t√
t
Ea1g1 − Eg2

1 = 0.

(A.2)
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From these,∣∣Ef(a(t))a1(t) · · · as(t)ȧ1(t)
∣∣

=
∣∣∣ 1

(s− 1)!

∑
|α|=s

∫ 1

0

E
[
a1(t) · · · as(t)ȧ1(t)a(t)α∂αf(ξa(t))

]
dξ
∣∣∣

≤ 1

(s− 1)!

∑
|α|=s

E
[(
a1(t) · · · as(t)ȧ1(t)a(t)α

)2]1/2(∫ 1

0

E
[∣∣∂αf(ξa(t))

∣∣2]dξ)1/2

.

Finally applying the Cauchy-Schwarz inequality and the independence of a1(t), . . . , as(t)

to the first expectation in the last line ends our proof. ut

Lemma A.2. Let f ∈ Cs−1(Rs). For any 0 < t < 1 and r ≥ 2, we have that∣∣Ef(a(t))a1(t)ra2(t) · · · as(t)ȧ1(t)
∣∣

≤ E[ȧ1(t)4]1/4

(s− 2)!

∑
|α|=s−1

E
[
a1(t)4(α1+r)

]1/4 s∏
j=2

E
[
aj(t)

4(αj+1)
]1/4(∫ 1

0

E
[∣∣∂αf(ξa(t))

∣∣2]dξ)1/2

.

(A.3)

Proof. Consider Taylor’s expansion,

f(x) =
∑
|α|≤s−2

∂αf(0)

α!
xα +

1

(s− 2)!

∑
|α|=s−1

xα
∫ 1

0

∂αf(ξx)dξ.

For any α satisfying |α| ≤ s− 2, we can write

Ea(t)αa1(t)r · · · as(t)ȧ(t) = Ea1(t)α1+rȧ(t) · Ea2(t)α2+1 · · ·Eas(t)αs+1(t).

Observe that if αj ≥ 1 for all 2 ≤ i ≤ s, then |α| ≥ s− 1, which is not possible. Thus, one
of the α2, . . . , αs must be zero so that this expectation vanishes. Consequently,∣∣Ef(a(t))a1(t)ra2(t) · · · as(t)ȧ1(t)

∣∣
=
∣∣∣ 1

(s− 2)!

∑
|α|=s−1

∫ 1

0

E
[
a1(t)ra2(t) · · · as(t)ȧ1(t)a(t)α∂αf(ξa(t))

]
dξ
∣∣∣

≤ 1

(s− 2)!

∑
|α|=s−1

E
[(
a1(t)r · · · as(t)ȧ1(t)a(t)α

)2]1/2(∫ 1

0

E
[∣∣∂αf(ξa(t))

∣∣2]dξ)1/2

,

which leads to the assertion by applying the Cauchy-Schwarz inequality to the first
expectation in the last line. ut

Lemma A.3. Let f ∈ Cs+1(Rs). For any 0 < t < 1, we have that∣∣Ef(a(t))a2(t) · · · as(t)ȧ1(t)
∣∣

≤ E[ȧ1(t)4]1/4

s!

∑
|α|=s+1

E
[
a1(t)4α1

]1/4 s∏
j=2

E
[
aj(t)

4(1+αj)
]1/4(∫ 1

0

E
[∣∣∂αf(ξa(t))

∣∣2]dξ)1/2

.

(A.4)

Proof. Write

f(x) =
∑
|α|≤s

∂αf(0)

α!
xα +

1

s!

∑
|α|=s+1

xα
∫ 1

0

∂αf(ξx)dξ,
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For α satisfying |α| ≤ s, write

Ea(t)αa2(t) · · · as(t)ȧ1(t) = Ea1(t)α1 ȧ1(t)Ea2(t)α2+1 · · ·Eas(t)αs+1.

If αj = 0 for some 2 ≤ j ≤ s, then this expectation is equal to zero. If αj > 0 for all
2 ≤ j ≤ s, then α1 = 0 or α1 = 1. In the former case, the expectation vanishes; in
the latter case, this expectation is also equal to zero since Ea1(t)ȧ(t) = 0 due to (A.2).
Consequently,∣∣Ef(a(t))a2(t) . . . as(t)ȧ1(t)

∣∣
=
∣∣∣ 1

s!

∑
|α|=s+1

∫ 1

0

E
[
a2(t) · · · as(t)ȧ1(t)a(t)α∂αf(ξa(t))

]
dξ
∣∣∣

≤ 1

s!

∑
|α|=s+1

E
[(
a2(t) · · · as(t)ȧ1(t)a(t)α

)2]1/2(∫ 1

0

E
[∣∣∂αf(ξa(t))

∣∣2]dξ)1/2

.

The rest of the proof follows by using the Cauchy-Schwarz inequality and the indepen-
dence of a1(t), . . . , as(t) to the first expectation of the last line. ut
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